高中文科数学考试技巧及公式大全
高中文科数学公式大全(精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
高中文科数学知识点全总结
高中文科数学知识点全总结1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。
(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。
(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。
(4)根与系数的关系:x1+x2=-b/ax1*x2=c/a,备注:韦达定理。
(5)判别式1)b2-4a=0,备注:方程存有成正比的两实根。
2)b2-4ac\ue0,注:方程有一个实根。
3)b2-4ac\uc0,备注:方程存有共轭复数根。
2、三角函数公式(1)两角和公式sin(a+b)=sinacosb+cosasinb;sin(a-b)=sinacosb-sinbcosa;cos(a+b)=cosacosb-sinasinb;cos(a-b)=cosacosb+sinasinb;tan(a+b)=(tana+tanb)/(1-tanatanb);tan(a-b)=(tana-tanb)/(1+tanatanb);ctg(a+b)=(ctgactgb-1)/(ctgb+ctga);ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
(2)倍角公式tan2a=2tana/(1-tan2a);ctg2a=(ctg2a-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
(3)半角公式sin(a/2)=√((1-cosa)/2);sin(a/2)=-√((1-cosa)/2);cos(a/2)=√((1+cosa)/2);cos(a/2)=-√((1+cosa)/2);tan(a/2)=√((1-cosa)/((1+cosa));tan(a/2)=-√((1-cosa)/((1+cosa));ctg(a/2)=√((1+cosa)/((1-cosa));ctg(a/2)=-√((1+cosa)/((1-cosa))。
高二文科数学知识点公式
高二文科数学知识点公式在高二文科数学学习中,数学知识点的理解和掌握对于学生的学习成绩至关重要。
其中,数学公式是数学问题解决的基础工具,掌握常见的数学公式能够帮助学生更好地解题。
本文将介绍一些高二文科数学的常见知识点和公式。
一、代数与函数1. 代数基础- 一元二次方程的求解公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 因式分解公式:$a^2-b^2=(a+b)(a-b)$- 完全平方公式:$a^2+2ab+b^2=(a+b)^2$2. 指数与对数- 指数幂运算法则:$a^m\times a^n = a^{m+n}$- 对数定义:若$a^x=b$,则$x=\log_a{b}$3. 函数与图像- 一次函数:$y = kx + b$- 二次函数:$y = ax^2 + bx + c$- 绝对值函数:$y = |x|$- 指数函数:$y = a^x$- 对数函数:$y = \log_a{x}$二、几何1. 平面几何- 直线与线段关系:重合、平行、垂直- 直线方程:一般式 $Ax + By + C = 0$、斜截式 $y = kx + b$、点斜式 $y - y_1 = k(x - x_1)$、两点式 $\frac{y-y_1}{x-x_1}=\frac{y-y_2}{x-x_2}$- 圆的方程:标准式 $(x-a)^2 + (y-b)^2 = r^2$2. 空间几何- 空间直线方程:一般式 $\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}$- 空间平面方程:一般式 $Ax + By + Cz + D = 0$、点法式$A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$- 空间坐标系:直角坐标系、柱坐标系、球坐标系三、概率与统计1. 概率- 事件与样本空间:事件的发生、不发生、互斥、独立- 事件概率计算:频率概率、古典概型、几何概型2. 统计- 数据的收集与整理:频数、频率、累计频数、分布图- 数据的描述性统计:均值、中位数、众数、四分位数、标准差四、数列与数学归纳法1. 等差数列- 通项公式:$a_n=a_1+(n-1)d$- 前n项和公式:$S_n = \frac{n}{2}(a_1+a_n)$2. 等比数列- 通项公式:$a_n = a_1 \cdot q^{(n-1)}$- 前n项和公式:$S_n = \frac{a_1(1-q^n)}{1-q}$总结:本文简要介绍了高二文科数学中一些重要的知识点和公式,包括代数与函数、几何、概率与统计以及数列与数学归纳法。
高中文科数学考试技巧及公式大全
数学考试技巧一、调理大脑思绪,提前进入数学情境2013,05制。
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
高中文科数学公式大全(完整完全精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时: ① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当n为奇数时,a =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
(完整版)高中文科数学公式汇总.docx
高中数学公式汇总(文科)一、三角函数、三角变换、解三角形、平面向量 1、同角三角函数的基本关系式2 2 sinsin cos 1,tan = .2、正弦、余弦的诱导公式k的正弦、 余弦,等于 的同名函数, 前面加上把 看成锐角时该函数的符号;k的正弦、余弦,等于 的余名函数,前2面加上把看成锐角时该函数的符号。
3、和角与差角公式sin( ) sin cos cos sin ;cos( ) cos cosmsin sin;tan()tantan.m1 tan tan4 、二倍角公式sin 2sin cos .cos 2cos2sin22cos21 1 2sin2tan22 tan.1 tan2公式变形:2 cos21 cos2 , cos21 cos2 ;2 2sin 21 cos2 , sin 21 cos2;25 、三角函数的周期 函 数y sin( x ) ,x ∈ R 及 函 数ycos( x) , x ∈ R(A, ω , 为常数,且 A ≠ 0,ω > 0) 的 周 期 T 2) , ; 函 数 y tan( x x k, k Z (A, ω, 为常数, 且 A ≠ 0,ω> 0)2的周期 T.6 函数 ysin( x) 的周期、最值、单调区间、图象变换 7、辅助角公式y a sin xb cosxa 2b 2 sin(x )其中 tan ba8、正弦定理a b c2R .sin Asin B sin C9、余弦定理a 2b 2c 2 2bc cos A ;b 2c 2 a 2 2ca cos B ; c 2a2b22ab cosC .10、三角形面积公式S1ab sin C1bc sin A 1ca sin B .2 2211、三角形内角和定理在△ ABC 中,有 A B CC (A B)二、函数、导数1、函数的单调性(1) 设 x 1、 x 2 [ a, b], x 1 x 2 那么f ( x 1 ) f ( x 2 )f ( x)在[ a, b] 上是增函数;f ( x 1 ) f ( x 2 ) 0 f ( x)在[a, b] 上是减函数 . (2) 设函数 y f ( x) 在某个区间内可导,若 f ( x) 0 ,则 f (x) 为增函数;若 f ( x) 0 ,则 f (x) 为减函数 .2 、函数的奇偶性x ,都有 f ( x)f ( x) ,则 f ( x)对于定义域内任意的 是偶函数;对于定义域内任意的 x ,都有 f ( x) f ( x) ,则 f ( x)是奇函数。
高中数学公式大全文科
高中数学公式大全文科1.代数运算公式:(1) 二项式公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^2,(a + b)(a - b) = a^2 - b^2(2) 平方差公式:(a + b)^2 - (a - b)^2 = 4ab(3) 证明等式:(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,(a -b)^3 = a^3 - 3a^2b + 3ab^2 - b^3(4)等比数列求和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数(5) 二次根式相加:√a + √b = √(a + b + 2√ab)(6)三次方程和四次方程的求根公式2.几何公式:(1) 三角形面积公式:S = 1/2 * a * b * sinC,其中a,b为两边的长度,C为两边夹角的度数(2) 三角形边长关系:a/sinA = b/sinB = c/sinC = 2R,其中R为外接圆半径(3) 三角函数的和与差的公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB,tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB)(4) 三角函数的倍角公式:sin2A = 2sinAcosA,cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A,tan2A = (2tanA)/(1 - tan^2A)(5)圆的面积公式:S=πr^2,其中r为半径(6)圆的周长公式:C=2πr,其中r为半径3.概率与统计公式:(1)加法原理:P(A∪B)=P(A)+P(B)-P(A∩B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率,P(A∩B)为事件A与事件B同时发生的概率(2)乘法原理:P(A∩B)=P(A)×P(B,A),其中P(A)为事件A发生的概率,P(B,A)为在事件A发生的条件下事件B发生的概率(3)期望:E(X)=μ=∑(xP(x)),其中X为随机变量,x为随机变量X 的取值,P(x)为X取值为x的概率(4) 方差:Var(X) = σ^2 = E((X - μ)^2),其中E为期望,σ^2为方差,(X - μ)^2为随机变量X与其期望之差的平方以上是高中数学文科相关的一些公式,但由于篇幅有限,可能并未包含所有相关的公式。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-.4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)mna =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
关于高考文科数学必记公式有哪些整理
关于高考文科数学必记公式有哪些整理关于高考文科数学必记公式有哪些有许多的同学是特别的想知道,文科数学有哪些必需要记的公式的,下面我为大家带来高考文科数学必记公式有哪些,欢迎大家参考阅读,盼望能够关心到大家!高考文科必背数学公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈z)cos(2kπ+α)=cosα(k∈z)tan(2kπ+α)=tanα(k∈z)cot( 2kπ+α)=cotα(k∈z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-c osαcos(3π/2+α)=sinα高中文科数学必备公式正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py直棱柱侧面积S=c_h斜棱柱侧面积S=c_h正棱锥侧面积S=1/2c_h正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi_r2圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=s_h圆柱体V=p_r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b=-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1_X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac0注:方程有两个不等的实根b2-4ac0注:方程没有实根,有共轭复数根怎样让数学成果提高一、课内重视听讲,课后准时复习数学接受一种新的学问,主要实在课堂上进行的,所以要重视数学课堂上的学习效率,找到适合自己的学习方法,数学上课时要跟住老师的思路,乐观思索。
高中文科数学公式汇总及复习应试技巧
高中文科数学公式汇总及复习应试技巧一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性(1)前提是定义域关于原点对称。
(2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
(3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v-=≠. 6、导数的应用:切线方程、单调区间、极值和最值 。
高中人教版数学公式大全,文科
高中人教版数学公式大全,文科一、几何公式:1、直角三角形的面积:S=1/2ab;2、球的表面积和体积:S=4πr2;V=4/3πr3;3、圆的周长和面积:C=2πr;S=πr2;4、正n边形顶点角:A=360/n;5、正n边形内角总和:A =(n-2)*180°;6、三棱锥体、四棱锥体的表面积和体积:S=a2+πah;V=1/3ah2;7、四面体、六面体的表面积和体积:S=a2√3;V=a3/6√2。
二、勾股定理:1、勾股定理:a2+b2=c2。
2、数学归纳法:利用原理归纳出许多命题,保证在一般情况下同样成立。
三、系数法:1、第一型:ax+by=c;2、第二型:ax2+bx+c=0;3、第三型:ax3+bx2+cx+d=0。
四、分式:1、分式加减法:分子分母分别相加、减。
2、分式乘法:分子分母各自乘以另一分式的分子分母,最后约分即可。
3、分式除法:分子乘以另一分式的分母,分母乘以另一分式的分子,最后约分即可。
五、二次函数:1、一元二次函数的基本性质:y = ax2+bx+c ;2、最高点位置:x=-b/2a;3、函数图像的性质:a>0,函数图像沿y轴双单减;a<0,函数图像沿y轴双单增;4、“乘根”公式:y=(√ax2+bx+c)/2+d;5、方程组:x+y=a,x2+xy+y2=b。
六、三角函数:1、正弦定理:a:b:c=sinA:sinB:sinC;2、余弦定理:a2=b2+c2-2bc cos A。
3、正弦函数y=A sin(ωt+φ) ;4、余弦函数:y=A cos(ωt+φ)。
七、矩形体:1、矩形面积:S=ab;2、棱形面积:S=边长×其高;3、梯形面积:S=1/2(a+b)h;4、矩形、梯形体积:V=abh;5、棱形体积:V=边长×其面积。
高中文科数学公式大全(精华版)
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+-4、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm na a-==0,,a m n N *>∈,且1n >)..根式的性质(1)n a=(2)当n当n(1) r sa a⋅=(2) ()r s rsa a=(3)()r rab a b=注:若a>0,指数幂都适用..(0,1,0)a a N>≠>..1a≠,0m>,且1m≠,0N>).对数恒等式:).推论log m nab).常见的函数图象822sin cosθθ+9απ±kα看成锐角时该函数的符号;αππ±+2kα看成锐角时该函数的符号。
高中数学公式大全 高考文科必背数学公式整理
高考数学爆强秒杀公式与方法一1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):1>若f(x)=-f(x+k),则T=2k;2>若f(x)=m/(x+k)(m不为0),则T=2k;3>若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x 相加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:1>若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2>函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3>若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4,函数奇偶性:1>对于属于R上的奇函数有f(0)=0;2>对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3>奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6,数列的终极利器特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q(n+1为下角标,n 为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学公式大全文科
高中数学公式大全文科1. 方程式及其解:①一元二次方程:若一元二次方程的系数a≠0,则有ax²+bx+c=0的一元二次方程的根为:X1= [-b+√(b2-4ac)]/2a,X2= [-b-√(b2-4ac)]/2a。
②二元一次方程:若二元一次方程的两个系数都不为0,则有ax + by= c的二元一次方程解为x = (c - b) / a, y = (c - a) / b。
③一元一次不等式:若ax+b 0,则有ax + b 0的一元一次不等式解为x 0。
2. 三角函数:①余弦定理:中余弦定理是三角形的一个结论,它的典型表达形式为:a² = b²+c²-2bc·cosA,其中A为∠BAC的角,a、b、c分别为角A、B、C对应的边。
②正弦定理:正弦定理也叫做余弦定理的推广,它的典型表达形式为:a/sinA = b/sinB = c/sinC,其中A,B,C为三角形∠ABC内角,a,b,c为∠ABC对应的边。
3. 椭圆方程:椭圆方程常常可以表示其他曲线,它的典型表达形式为:ax²/a² +by²/b²= 1,其中a,b分别为椭圆实轴和虚轴,a>b并且常称a为半焦距。
4. 平面向量与几何:①矢量的组成:矢量由若干单位矢量组成,它们的求和或称为合成矢量。
②向量的运算:向量的加法是把两个向量的对应终点相加,乘法是在向量的起始点放大或缩小向量的大小。
5. 几何证明:几何证明的主要手段包括推理、逻辑、图形和计算等方法,具体可用如下步骤来进行:①确定要证明的定理或结论;②构建证明环境;③提出假设;④做出推理或运算,从而证明出要证明的定理或结论。
高考文科数学公式总结
高考文科数学公式总结数学作为高考文科考试中的一门重要科目,公式的掌握和运用对考生来说至关重要。
下面将对高考文科数学中常用的公式进行总结,希望能帮助考生们更好地备战高考。
一、代数部分。
1. 二项式定理。
(a+b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n。
2. 平方差公式。
(a+b)(a-b) = a^2 b^2。
3. 一元二次方程根的判别式。
Δ = b^2 4ac。
当Δ > 0时,方程有两个不相等的实根;当Δ = 0时,方程有两个相等的实根;当Δ < 0时,方程没有实根。
二、几何部分。
1. 直线的点斜式方程。
y y₁ = k(x x₁)。
2. 三角形面积公式。
S = 1/2 × a × b × sinC。
3. 圆的面积和周长。
圆的面积 S = πr²。
圆的周长 L = 2πr。
三、概率与统计部分。
1. 排列组合公式。
排列,A(n, m) = n!/(n-m)!组合,C(n, m) = n!/(m!(n-m)!)。
2. 期望的计算。
E(X) = Σ(x×P(x))。
3. 正态分布的标准差计算。
P(a < X < b) = Φ(b) Φ(a)。
其中Φ(x)表示标准正态分布曲线下面积为x的部分。
四、导数与微积分部分。
1. 导数的基本公式。
(1) (x^n)' = nx^(n-1)。
(2) (e^x)' = e^x。
(3) (sinx)' = cosx。
(4) (cosx)' = -sinx。
2. 不定积分的基本公式。
(1) ∫x^n dx = x^(n+1)/(n+1) + C。
(2) ∫e^x dx = e^x + C。
(3) ∫sinx dx = -cosx + C。
高中文科数学公式大全精品
高中文科数学公式大全精品
一、几何公式
1、三角形的面积公式:
S=1/2ab sinC,其中a、b分别为三角形的两条边,C为其夹角。
2、海伦公式:
S=√p(p-a)(p-b)(p-c),其中a、b、c分别为三角形的三个边长,p=1/2(a+b+c)。
3、四边形面积公式:
S=a×b,其中a、b分别为四边形的两条对边。
4、圆的面积公式:
S=πr²,其中r为圆的半径。
5、球体的表面积公式:
S=4πr²,其中r为球体的半径。
6、球体的体积公式:
V=4/3πr³,其中r为球体的半径。
二、代数公式
1、二次根式公式:
x1、x2=(-b±√b²-4ac)/2a,其中a、b、c分别为二次多项式ax²+bx+c的系数。
2、求和公式:
Sn=a1+a2+…+an,其中a1、a2、…、an分别为相加数,n为相加个数。
3、等比数列求和公式:
Sn=a1(1-qⁿ)/(1-q),其中a1为等比数列的首项,q为公比,n为项数。
4、等差数列求和公式:
Sn=n/2(a1+an),其中a1为等差数列的首项,an为末项,n为项数。
5、分式的乘积公式:
(a/b)(c/d)=ac/bd,其中a、b、c、d分别为分式的分母和分子。
三、数列公式
1、等比数列通项公式:
an=a1qⁿ-1,其中a1为等比数列的首项,q为公比,n为项数。
2、等差数列通项公式:
an=a1+(n-1)d,其中a1为等差数列的首项,d为公差,n为项数。
3、等比数列极限公式:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学考试技巧一、调理大脑思绪,提前进入数学情境2013,05制。
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1.先易后难。
就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2.先熟后生。
通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。
这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
3.先同后异。
先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。
高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。
小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。
即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
五、一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。
应该说,审题要慢,解答要快。
审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。
而思路一旦形成,则可尽量快速完成。
六、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小20道题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f ⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦ax x a ln 1)(log '=; ⑧xx 1)(ln '=5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是: 解方程()0f x '=得0x① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,(即:左增右减),那么()0f x 是极大值;② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,(即:左减右增),那么()0f x 是极小值. 7、分数指数幂(1)m na =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r s rsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
(2)对数的换底公式 :log log log m a m NN a=.( 3)对数恒等式:①log log n a a b n b =; ②log log m na a nb b m=; ③log a Na N =; ④log 10a =; ⑤log 1a a = 11、常见的函数图象12、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin .13、正弦、余弦的诱导公式诱导公式一: sin(2k π+α)=sin α; cos(2k π+α)=cos α tan(2k π+α)=tan α 诱导公式二: sin(πα+)=-sin α; cos(πα+)=-cos α; tan(πα+)=tan α. 诱导公式三: sin (α-)=-sin α; cos (α-)=cos α; tan (α-)=-tan α. 诱导公式四: sin(πα-)=sin α; cos(πα-)=-cos α; tan(πα-)=-tan α.诱导公式五: sin(2πα-)=cos α;cos(2πα-)=sin α; 诱导公式六: sin(2πα+)=cos α;cos(2πα+)=-sin α[上面六组诱导公式,最好用口诀:奇变偶不变,符号看象限记忆,但要理解其含义]14、和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±=. sin cos a b αα+=)αϕ+;(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).15、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=16、三角函数的周期函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+的周期2||T πω=,最大值为|A|;函数tan()y A x ωϕ=+(2x k ππ≠+)的周期||T πω=. 17.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔=== ::sin :sin :sin a b c A B C ⇔=18.余弦定理:2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.19.面积定理111sin sin sin 222S ab C bc A ca B ===.20、三角形内角和定理在△ABC 中,有A B C π++= ()C A B dx π⇔=-+222C A B π+⇔=- 222()C A B π⇔=-+.21、三角函数的性质22、a 与b 的数量积:a ·b =|a |⋅|b |cos θ. 23、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--uu u r uu u r uu r(2)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (3)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (4)设a =(,),x y R λ∈,则λa=(,)x y λλ. (5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.(6)设a =),(y x ,则22y x a +=24、两向量的夹角公式:cos a ba bθ⋅==⋅r r r r ;(a =11(,)x y ,b =22(,)x y ).25、平面两点间的距离公式:,A B d =||AB uu ur=26、向量的平行与垂直: 设a =11(,)x y ,b =22(,)x y ,则a ∥b ⇔b =λ a 12210x y x y ⇔-=. a ⊥b ⇔a ·b=012120x x y y ⇔+=. 27、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩;( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).28、等差数列的通项公式11(1)n a a n d dn a d =+-=+-;29、等差数列其前n 项和公式为 1()2n n n a a s +=1(1)2n n na d -=+. 30、等差数列的性质:①等差中项:2n a =1n a -+1n a +; ②若m+n=p+q ,则m a +n a =p a +q a ;③m S ,2m S ,3m S 分别为前m ,前2m ,前3m 项的和,则m S ,2m S -m S ,3m S -2m S 成等差数列。