高中数学 1.1.1 数列的概念教案 北师大版必修5

合集下载

北师大版高中数学(必修5)1.1《数列》

北师大版高中数学(必修5)1.1《数列》

• 二、数列的分类 • 1.根据数列的项数,可以将数列分为两 类: • (1)有穷数列:项数⑥________的数列; • (2)无穷数列:项数⑦________的数列.
• 2.根据数列的增减性,可以将数列分为 以下几类: • (1)递增数列:从第2项起,每一项都大于 它前面的一项的数列叫做⑧________; • (2)递减数列:从第2项起,每一项都小于 它前面的一项的数列叫做⑨________; • (3)常数数列:数列的各项都是常数的数列 叫做⑩________; • (4)摆动数列:从第2项起,有些项大于它 的前一项,有些项小于它的前一项的数列
• 友情提示:关于数列概念的理解应注意的 几点事项: • (1)数列是按一定“次序”排成的一列数, 一个数列不仅与组成数列的“数”有关, 而且与这些数的排列顺序有关.因此,如 果组成数列的数相同而排列次序不同,那 么它们就是不同的数列; • (2)数列与数集的区别与联系:数列与数集 都是具有某种共同属性的数的全体.数列 中的数是有序的,而数集中的元素是无序 的,同一个数在数列中可以重复出现,而
• (3)数列的项与它的项数是不同的概念:数 列的项是指这个数列中的某一个确定的数, 是一个函数值,也就是相当于f(n);而项数 是指这个数在数列中的位置序号,它是自 变量的值,相当于f(n)中的n; • (4)次序对于数列来讲是十分重要的,若两 个数列中有几个相同的数,由于它们的排 列次序不同,构成的数列就不是一个相同 的数列,显然数列与数集有本质的区别.
• 1.1 数列的概念 • 1.2 数列的函数特性
• 一、数列的概念 • 按照①________排列着的一列数都和它的序号有 关,排在第一位的数称为这个数列的第1 项(通常也叫做③________),排在第二位 的数称为这个数列的第2项……排在第n位 的数称为这个数列的第n项.所以,数列 的一般形式可以写成a1,a2,a3,…,

高中数学 1.1.1 数列的概念 教案 北师大必修5

高中数学 1.1.1 数列的概念 教案 北师大必修5

1.1.1 数列的概念教学目标1、知识与技能:了解数列的概念和几种简单的表示方法(列表、图象、通项公式);了解数列是一种特殊的函数;2、过程与方法:通过三角形数与正方形数引入数列的概念;通过类比函数的思想了解数列的几种简单的表示方法(列表、图象、通项公式);3、情态与价值:体会数列是一种特殊的函数;借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。

教学重点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);难点:了解数列是一种特殊的函数;发现数列规律找出可能的通项公式。

教学方法:讲授法为主教学过程:一.揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.二.讲解新课:要研究数列先要知道何为数列,即先要给数列下定义,为帮助同学概括出数列的定义,再给出几列数:①自然数排成一列数:②3个1排成一列:③无数个1排成一列:④的不足近似值,分别近似到排列起来:⑤正整数的倒数排成一列数:⑥函数当依次取时得到一列数:⑦函数当依次取时得到一列数:⑧请学生观察8列数,说明每列数就是一个数列,数列中的每个数都有自己的特定的位置,这样数列就是按一定顺序排成的一列数.数列的定义:按一定次序排成的一列数叫做数列.为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中数列的第一项也称首项.通项-------数列的第n项叫数列的通项.以上述八个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.2.数列与函数的关系数列可以看作特殊的函数,项数是其自变量,项是项数所对应的函数值,数列的定义域是正整数集,或是正整数集的有限子集.于是我们研究数列就可借用函数的研究方法,用函数的观点看待数列.遇到数学概念不单要下定义,还要给其数学表示,以便研究与交流,下面探讨数列的表示法.3.数列的表示法数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法.相对于列表法表示一个函数,数列有这样的表示法:用表示第一项,用表示第一项,……,用表示第项,依次写出成为(1)列举法:.简记为.一个函数的直观形式是其图象,我们也可用图形表示一个数列,把它称作图示法.(2)图示法:启发学生仿照函数图象的画法画数列的图形.具体方法是以项数为横坐标,相应的项为纵坐标,即以为坐标在平面直角坐标系中做出点(以前面提到的数列为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在轴的右侧,而点的个数取决于数列的项数.从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.有些函数可以用解析式来表示,解析式反映了一个函数的函数值与自变量之间的数量关系,类似地有一些数列的项能用其项数的函数式表示出来,即,这个函数式叫做数列的通项公式.(3)通项公式法:如数列的通项公式为;的通项公式为;的通项公式为;数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列的通项公式,则.值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.除了以上三种表示法,某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.(4)递推公式法:如前面所举的钢管的例子,第层钢管数与第层钢管数的关系是,再给定,便可依次求出各项.再如数列中,,这个数列就是.像这样,如果已知数列的第1项(或前几项),且任一项与它的前一项(或前几项)间的关系用一个公式来表示,这个公式叫做这个数列的递推公式.递推公式是数列所特有的表示法,它包含两个部分,一是递推关系,一是初始条件,二者缺一不可.可由学生举例,以检验学生是否理解.三.小结: 1.数列的概念2.数列的四种表示四.作业习题1---1 P9 A组第4题;B组第1题。

1.1.1数列的概念课件ppt(2013-2014年北师大版必修五)

1.1.1数列的概念课件ppt(2013-2014年北师大版必修五)
课前探究学习 课堂讲练互动
题型二
求数列的通项公式
【例 2】 根据数列的前几项,写出下列数列的一个通项公式: (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…; 1 1 5 13 29 61 (3) , ,- , ,- , ,…; 2 4 8 16 32 64
3 7 9 (4) ,1, , ,…. 2 10 17
课前探究学习
课堂讲练互动
规律方法 用观察归纳法写出一个数列的通项公式,体 现了由特殊到一般的思维规律,具体可参考以下几个思 路: (1)先统一项的结构,如都化成分数、根式等. (2)分析这一结构中变化的部分与不变的部分,探索变化 部分的规律与对应序号间的关系式. (3)对于符号交替出现的情况,可先观察其绝对值,再以 (-1)k处理符号. (4)对于周期出现的数列,可考虑拆成几个简单数列和的 形式,或者利用周期函数,如三角函数等.
所以 1 不是数列{an}中的项. n2-21n (2)假设存在连续且相等的两项为 an =an + 1 ,则有 = 2 n+12-21n+1 , 解得 n=10, 所以, 存在连续且相等的两项, 2 它们分别是第 10 项和第 11 项.
课前探究学习 课堂讲练互动
误区警示
忽视数列的有序性而致错
( ). 【训练1】 下列叙述正确的是 A.数列1,3,5,7和数列3,1,5,7是同一个数列 B.同一个数在数列中可能重复出现 C.数列的通项公式是定义域为正整数集N+的函数 D.任何数列的通项公式都存在 解析 根据数列的定义,如果组成两个数列的数相同而排 列次序不同,那么它们就是不同的数列,因此,A是错误 的;数列的通项公式的定义域是正整数集N+或它的有限 子集{1,2,3,…,n},因此C是错误的;而一个数列有时不 存在通项公式,故D是错误的;对于一个数列,可以有重 复的数,故B正确. 答案 B

北师大版高中数学必修5第一章《数列》等比数列的前n项和1

北师大版高中数学必修5第一章《数列》等比数列的前n项和1

2、求数列1,x,x2,x3,…,xn,…的 前n项和。
1 1 1 2 n 3、求和:( x ) ( x 2 ) ( x n ) y y y
11
例3 某制糖厂第1年制糖5万吨,如果平均
每年的产量比上一年增加10%,那么 从第1年起,约几年内可使总产量达到 30万吨(保留到个位)?
北师大版高中数学必修5 第一章《数列》
1
一、教学目标:1、知识与技能:⑴了解现实生活中存在 着大量的等比数列求和的计算问题;⑵探索并掌握等比数列 前n项和公式;⑶用方程的思想认识等比数列前n项和公式, 利用公式知三求一;⑷体会公式推导过程中的分类讨论和转 化化归的思想。2、过程与方法:⑴采用观察、思考、类比、 归纳、探究得出结论的方法进行教学;⑵发挥学生的主体作 用,作好探究性活动。3、情感态度与价值观:⑴通过生活 中有趣的实例,鼓励学生积极思考,激发学生对知识的探究 精神和严肃认真的科学态度,培养学生的类比、归纳的能力; ⑵在探究活动中学会思考,学会解决问题的方法;⑶通过对 有关实际问题的解决,体现数学与实际生活的密切联系,激 发学生学习的兴趣。 二、教学重点 1.等比数列前n项和公式的推导;2.等比数 列前n项和公式的应用。教学难点 :等比数列前n项和公式的 推导。 三、教学方法:探究归纳,讲练结合 四、教学过程 2
13
答:约5年内可以使总产量达到30万吨.
印度还有一古老传说:在世界中心贝拿勒斯 (在印度北部)的圣庙里,一块黄铜板上插着三根宝 石针。印度教的主神梵天在创造世界的时候,在 其中一根针上从下到上地穿好了由大到小的64片 金片,这就是所谓梵塔。不论白天黑夜,总有一 个僧侣在按照下面的法则移动这些金片:一次只 移动一片,不管在哪根针上,小片必须在大片上

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

举例说明数列的组成,如自然数数列、等差数列等。

1.2 数列的项解释数列中的每一个数称为数列的项。

强调数列项的顺序和重复性质。

1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。

举例讲解如何写出简单数列的通项公式。

第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。

练习写出几个给定数列的列举表示。

2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。

举例说明如何用公式法表示等差数列和等比数列。

2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。

引导学生通过观察图形来理解数列的特点。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。

举例说明如何确定一个数列的项数。

3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。

举例说明如何判断一个数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。

举例说明如何判断一个数列的周期性。

第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。

推导等差数列的通项公式。

4.2 等比数列的通项公式讲解等比数列的定义和性质。

推导等比数列的通项公式。

4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。

举例讲解如何求解其他类型数列的通项公式。

第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。

推导等差数列的前n项和的公式。

5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。

推导等比数列的前n项和的公式。

5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。

举例讲解如何求解其他类型数列的前n项和。

第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。

北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)

北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选

2024-2025学年高二数学选择性必修第一册(配湘教版)课件1.1第1课时数列的概念

2024-2025学年高二数学选择性必修第一册(配湘教版)课件1.1第1课时数列的概念

就是数列的解析表达式
定义域特殊
2.数列与函数的关系.从函数的观点看,数列可以看作特殊的函数,关系如下
表:
定义域 正整数集N+(或它的有限子集{1,2,3,…,n})
解析式 数列的_____________
通项公式
值域
自变量按照从小到大的顺序依次取值时所对应的一列函数值
表示方

通项公式
列表
(1)__________(解析法);(2)
1 2 3 4 5 6
4.一个数列{an}的图象如图所示,由图象可知,该数列在n=
16
得最大值,该最大值是
.
解析 由图象可知,数列在n=4时取得最大值16.
1 2 3 4 5 6
4
时,取
5.数列{an}的构成如下表所示:
n
1
2
3
4
5
6
7
8

an
3
7
-1
-5
1
4
3
12

则由表格可知a3+a7=
2
,a1+a8=
名师点睛
数列中的项的性质:
(1)确定性:一个数是或不是某一数列中的项是确定的,集合中的元素也具
有确定性;
(2)可重复性:数列中的数可以重复,而集合中的元素不能重复出现(即互异
性);
(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列顺序
有关,而集合中的元素没有顺序(即无序性).
过关自诊
15
.
解析 由列表法表示数列可知a1=3,a3=-1,a7=3,a8=12,因此
a3+a7=2,a1+a8=15.

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案第一章:数列的定义1.1 学习目标:理解数列的定义,能够识别数列的基本特征。

1.2 教学内容:1.2.1 数列的定义:按照一定的顺序排列的一列数。

1.2.2 数列的项:数列中的每一个数称为项。

1.2.3 数列的顺序:数列中项的排列顺序称为数列的顺序。

1.3 教学活动:1.3.1 引入数列的概念,让学生通过观察实际例子来理解数列的定义。

1.3.2 引导学生分析数列的基本特征,如顺序、项等。

1.3.3 进行数列的实例练习,让学生能够识别和描述不同的数列。

第二章:数列的表示法2.1 学习目标:掌握数列的常见表示法,能够正确写出数列的前几项。

2.2 教学内容:2.2.1 列举法:将数列的每一项按顺序写出来。

2.2.2 描述法:用数学公式或文字描述数列的规律。

2.2.3 数列的通项公式:用公式表示数列中任意一项的值。

2.3 教学活动:2.3.1 介绍列举法和描述法,让学生通过实际例子学会用不同的方式表示数列。

2.3.2 引导学生理解数列的通项公式,并能够根据规律写出数列的前几项。

2.3.3 进行数列表示法的练习,让学生能够灵活运用不同的表示法。

第三章:数列的性质3.1 学习目标:理解数列的性质,能够运用数列的性质进行问题的解决。

3.2 教学内容:3.2.1 数列的项数:数列中项的个数称为数列的项数。

3.2.2 数列的项的公共性质:数列中所有项都具有的性质称为数列的项的公共性质。

3.2.3 数列的性质:数列的项的公共性质称为数列的性质。

3.3 教学活动:3.3.1 引导学生通过观察和分析数列的实例,发现数列的性质。

3.3.2 让学生通过实际的例题,学会运用数列的性质进行问题的解决。

3.3.3 进行数列性质的练习,让学生能够熟练运用数列的性质。

第四章:数列的分类4.1 学习目标:了解数列的分类,能够识别不同类型的数列。

4.2 教学内容:4.2.1 数列的分类:按照数列的性质和规律,将数列分为不同的类型。

北师大版高中数学必修5数列数列概念

北师大版高中数学必修5数列数列概念

项数无限的数列叫做无穷数列。
1, 例如:数列
1, 1,1, 1, 2 345
16
按项的大小分: 递增数列 —— a n <a n + 1 递减数列 —— a n >a n + 1
常数列 : a n = a n + 1
摆动数列 : a n -1 <a n 且 a n >a n + 1
17
数列的例题1
通2. 项数公列式2是,:4a,n 6,n8,3…(n≤7的) 通项
公式是: an 2n
3. 数列 1,4,7,10,… 的通
项公式是:an 3n 2
10
实质:从映射、函数的观点 看,数列可以看作是一个定
义域为正整数集N*(或它的 有限子集{1,2,…,n})
的函数,当自变量从小到大 依 次取值时对应的一列函数 值。
4
堆 放 的 钢 管
4,5,6,7,8,9,10.
5
正整数的的倒数:
1, 1 , 1 , 1 , 1 , 2 345
2精确到1,0.1,0.01,0.001, 的值:
1, 1.4, 1.41,1.414, …,
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:
-1, 1,-1, 1, -1, 1, …
(2)能力目标:学会观察、分析、猜测、归纳; 数形结合法的应用;数学归纳法的应用。
2
(3)认知目标:通过教学培养学生观察问题、分析 问题的能力,学习辩证的观点从特殊到一般的认识事 物规律,大胆猜测、归纳。
(4)德育目标:从德育方面进行教育、善比较、细 分析、做生活中的有心人,发现规律,不要马马虎虎、 似是而非,做符合时代的“创新型”的人才。
例1 根据数列 an 的通项公式,写出它的前5项。

课程导入—数列的概念

课程导入—数列的概念
3,4,5,6,7,8,9. ①
➢ 实例分析
(4) GDP为国内生产总值.分析各年GDP数据,找出增长规律, 是国家制定国民经济发展计划的重要依据.根据中华人民共和国 2002年国民经济和社会发展统计公报,我国(1998~2002年) 这五年GDP值(亿元)依次排列如下:
78 345,82 067,89 442,95 933,102 398. ②
a1, a2 , a3, , an ,
a 简记为数列 an,其中数列的第一项 也称1 首项; 是a数n列
的第n项,也叫数列的通项.
➢ 实例分析
如数列⑤中,首项 a1 1;第十项
1
第n项(通项)an
2n
.
1
1
a10

19
像数列①,②,③,⑥这样的项数有限的数列,称为有穷数 列;像数列④,⑤这样的项数无限的数列,称为无穷数列.
?? ?? ?? ?
格里的麦子是前一行最
后一格子里的麦粒数的2
倍,直到第64格。
?
➢ 实例分析
(2)庄子:一尺之棰,日取其半,万世不竭。
发现问题:大家在分段过程中会什么发现?
木棒
1
1 2

1
3
1 4 1 5
2
2
2 2 2
➢ 实例分析
(3)一个工厂把所生产的钢管堆成如图的形状. 从最上面的一排起,各排钢管的数量依次是
➢ 实例分析
(5) “人口问题”是我国最大的社会问题之一,对人口数量 的估计和发展趋势的预测是我们制定一系列相关政策的基础.新 中国成立后,我国已进行了五次全国人口普查,历次全国人口 普查公报数据资料见下表:
年份
1953
1964

高中数学必修5数列教案

高中数学必修5数列教案

高中数学必修5数列教案
教学内容:数列
教学目标:
1. 了解数列的概念和性质;
2. 能够求解数列的通项公式和前n项和;
3. 能够应用数列的知识解决实际问题。

教学重点:
1. 数列的定义和常见性质;
2. 求解数列的通项公式和前n项和;
3. 应用数列解决实际问题。

教学难点:
1. 应用数列的知识解决实际问题;
2. 思维拓展,提高问题解决能力。

教学方法:讲述、举例、练习
教学过程:
一、引入:
通过一道生活中的问题引入数列的概念,让学生了解数列在实际生活中的应用。

二、概念讲解:
1. 数列的定义:数列是按照一定规律排列成的一组数字的集合。

2. 数列的常见性质:等差数列、等比数列等。

三、求解数列的通项公式和前n项和:
1. 求解等差数列的通项公式和前n项和;
2. 求解等比数列的通项公式和前n项和。

四、应用实例:
通过一些实际问题,让学生应用数列的知识解决问题,培养他们的思维能力和解决问题的能力。

五、课堂练习:
让学生进行相关题目的练习,巩固所学知识。

六、作业布置:
布置相关的作业,让学生在家里进行巩固和复习。

七、小结:
总结本节课的内容,强调数列在数学中的重要性和应用价值。

教学反思:
本节课主要介绍了数列的概念和性质,以及如何求解数列的通项公式和前n项和。

通过实际例题的讲解和练习,帮助学生掌握数列的相关知识,并能够应用到实际问题中去解决。

同时也需要引导学生在学习数列的过程中,培养他们的思维能力和解决问题的能力。

2019-2020学年数学北师大版必修5课件:1.1.1 数列的概念

2019-2020学年数学北师大版必修5课件:1.1.1 数列的概念
(4)将数列中的项和 1 进行比较,就会发现 a1=0.9=1-110,a2=0.99=1-1100=1-1102,a3=0.999=1-1 0100=1-1103,……,因 此 an=1-110������.
-14-
1.1 数列的概念
探究一
探究二
探究三
首页 思维辨析
自主预习
合作学习
当堂检测
(5)数列给出前 6 项,其中奇数项为 3,偶数项为 5,所以通项公式
所以n2-21n=2,即n2-21n-2=0. 因为方程n2-21n-2=0不存在正整数解,所以1不是{an}中的项.
②假设{an}中存在第m项与第(m+1)项相等,即am=am+1,则解得
m=10. 所以数列{an}中存在连续的两项,第10项与第11项相等.
-23-
1.1 数列的概念
探究一
探究二
答案:②④
-12-
1.1 数列的概念
首页
自主预习
合作学习
当堂检测
探究一
探究二
探究三
思维辨析
探究二 根据数列的前几项写数列的一个通项公式
【例2】 写出下列数列的一个通项公式:
(1)1,3,7,15,…
(2)√23
,
4 √5
,
6 √7
,
√89,…
(3)-2,54,-190 , 1176,…
(4)0.9,0.99,0.999,0.999 9,…
探究三
首页 思维辨析
自主预习
合作学习
当堂检测
忽略了相邻正方形的公共边而致误 【典例】图中由火柴棒拼成的一列图形中,第n个图形由n个正方 形组成.
通过观察可以发现:第n个图形中,火柴棒的根数为 错解:第一个图形为正方形,火柴棒的根数为4;

高中数学课件-1-2-1-1等差数列的概念和通项公式 课件(北师大版必修5)

高中数学课件-1-2-1-1等差数列的概念和通项公式 课件(北师大版必修5)
§2 等差数列
第一章 数列
进入导航
2.1 等差数列
第一章 数列
进入导航
第1课时 等差数列的概念和通项公式
预习篇 课堂篇 提高篇
巩固篇 课时作业
第一章 数列
进入导航
学习目标
1.理解等差数列的特点与定义,掌握等差数列的判断 方法.
2.记住等差数列的概念、等差数列的通项公式,并能 运用通项公式解决一些简单问题.
第一章 数列
进入导航
进入导航
【尝试解答】 数列5,8,11,…记为{an},数列 3,7,11,…记为{bm},则an=5+(n-1)·3=3n+2,bm=3+ (m-1)·4=4m-1.
令an=bm,得3n+2=4m-1(n,m∈N+), 即n=43m-1(n,m∈N+). 要使n为正整数,m必须是3的倍数,记m=3k(k∈N+). ∴n=43·3k-1=4k-1.
第一章 数列
进入导航
理解等差数列的定义需注意以下问题: (1)注意定义中“从第2项起”这一前提条件的两层含 义:其一,第1项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且 必须从第2项起,以便保证数列中各项均与其前一项作差. (2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后 面的项减前面的项;其二是强调这两项必须相邻.
第一章 数列
进入导航
规律方法 求解时要紧紧抓住“同一个常数”这个条件,本例中 的第2小题是从第2项开始的等差数列,即1,2,3,…n构 成等差数列,但整个数列不是等差数列.
第一章 数列
进入导航
根据下列数列的通项公式an,判断各数列是否为等差 数列:
(1)an=3n+5;(2)an=n2.

高中数学_数列的概念及简单表示方法教学设计学情分析教材分析课后反思

高中数学_数列的概念及简单表示方法教学设计学情分析教材分析课后反思

《数列的概念及简单表示法》教学设计最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类函数.重点: 由数列的前几项求数列的通项; 利用S n 与a n 的关系求通项;由递推关系求通项.难点: 由递推关系求通项.一、知 识 梳 理1.数列的定义2.数列的分类3.数列的表示法4.数列的通项公式5.已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n =S n -S n -1.( )2.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n -1B .2n -1+1C .2n -1D .2(n -1)让学生回答做法,板书解题过程,总结推广到一般3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( )A .15B .16C .49D .644.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 注:数列{a n }是一个一以3为周期的周期数列,有些数列具备周期性。

5.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.考点突破考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)23,415,635,863,1099,…; (3)12,2,92,8,252,…;(4)5,55,555,5 555,….观察归纳规律方法:抓住以下几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【训练1】 (1)数列-11×2,12×3,-13×4,14×5,…的一个通项公式a n =________. (2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________. 考点二 利用S n 与a n 的关系求通项【例2】 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N +.(1) 求a 1的值;(2)求数列{a n }的通项公式.板书(2)的解题过程,指出易错点规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.【训练2】 (1)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1 D.12n -1(2)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 考点三 由递推关系求通项【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项a n =________;(2)若a 1=1,S n =n +23a n ,则通项a n =________.提示: 本题中a n +1-a n =n +1与a n +1a n=n +1n 中的n +1与n +1n 不是同一常数,由此想到推导等差、等比数列通项的方法:累加法与累乘法.规律方法 已知递推关系式求通项,一般用代数的变形技巧整理变形,然后采用累加法、累乘法、构造法转化为基本数列(等差数列或等比数列)等方法求得通项公式.【训练3】 (1)在数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________.(2)设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.[思想方法]1.由数列的前几项求数列通项,通常用观察法(对于交错数列一般有(-1)n 或 (-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.强调a n 与S n 的关系:a n =⎩⎨⎧S 1 (n =1),S n -S n -1(n ≥2). 3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有两种常见思路:(1)算出前几项,再归纳、猜想;(2)利用累加或累乘法或构造新数列(等比数列)求数列的通项公式.[易错防范]1.数列是一种特殊的函数,在利用函数观点研究数列时,一定要注意自变量的取值,如数列a n =f (n )和函数y =f (x )的单调性是不同的.2.数列的通项公式不一定唯一.3.在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形.《数列的概念及简单表示法》效果分析 本讲分两节课完成,这是第二课时。

北师大版高三数学必修5电子课本课件【全册】

北师大版高三数学必修5电子课本课件【全册】

第一章 数列
北师大版高三数学必修5电子课本 课件【全册】
1.数列
北师大版高三数学必修5电子课本 课件【全册】
1.1数列的概念
北师大版高三数学必修5电子课本 课件【全册】
北师大版高三数学必修5电子课本 课件【全册】
北师大版高三数学57页 0183页 0209页 0230页 0322页 0368页 0390页 0454页 0512页 0575页 0577页 0611页 0650页 0693页 0717页
第一章 数列 1.1数列的概念 习题1—1 2.1等差数列 习题1—2 3.1等比数列 习题1—3 习题1—4 复习题一 第二章 解三角形 1.1正弦定理 习题2—1 习题2—2 习题2—3 复习题二 1.不等关系 1.2比较关系
1.2数列的函数特性
北师大版高三数学必修5电子课本 课件【全册】
习题1—1
北师大版高三数学必修5电子课本 课件【全册】
2.等差数列

高中数学第1章数列111数列的概念课件北师大版必修5

高中数学第1章数列111数列的概念课件北师大版必修5
第7页
3.是否所有的数列都有通项公式?若有,通项公式是否唯 一?
答:①不是,如π的不足近似值组成的数列 1,1.4,1.41, 1.414,……就没有通项公式.
②若一个数列有通项公式,也不一定唯一,如数列:-1,1, -1,1,……的通项公式可以写成 an=(-1)n,也可以写成 an=(- 1)n+2,也可以写成 an=- 1(1n为(偶n为数奇).数),
(5)将数列各项写为93,939,9399,….
第17页
【解析】 所给五个数列的通项公式分别为 (1)an=2n2-n 1; (2)an=n22; (3)an=1+(2-1)n; (4)an=- 3n 1n((nn==22kk-)1,)其,中k∈N*
第18页
由于 1=2-1,3=2+1,所以数列的通项公式可合写成 an =(-1)n·2+(n-1)n;
第24页
【解析】 (1)an=n(n+1)=600=24×25,所以 n=24. (2)①a4=3×42-28×4=-64, a6=3×62-28×6=-60. ②由 3n2-28n=-49,解得 n=7 或 n=37(舍).所以-49 是 该数列的第 7 项;由 3n2-28n=68 解得 n=-2 或 n=334,均不 合题意,所以 68 不是该数列的项.
B.9
C.6
D.20
答案 C
第32页
3.数列 2, 5,2 2, 11,…,则 2 5是该数列的( )
A.第 6 项
B.第 7 项
C.第 10 项
D.第 11 项
答案 B
第33页
4.数列{n2+n}中的项不能是( )
A.56
B.72
C.60
D.132
答案 C
第34页

北师大版高中数学必修5第一章《数列》等差数列(二)

北师大版高中数学必修5第一章《数列》等差数列(二)

课堂小结 课堂小结 通过今天的学习,你学到了什么知识?有何体会 有何体会? 师 通过今天的学习,你学到了什么知识 有何体会? 通过今天的学习,明确等差中项的概念 明确等差中项的概念;进一步熟练 生 通过今天的学习 明确等差中项的概念 进一步熟练 掌握等差数列的通项公式及其性质. 掌握等差数列的通项公式及其性质 (让学生自己来总结,将所学的知识 结合获取知识的 让学生自己来总结, 让学生自己来总结 将所学的知识,结合获取知识的 过程与方法,进行回顾与反思, 过程与方法,进行回顾与反思,从而达到三维目标的 整合,培养学生的概括能力和语言表达能力 培养学生的概括能力和语言表达能力) 整合 培养学生的概括能力和语言表达能力 布置作业课本习题1-2 A组9,B组1 布置作业课本习题 组 , 组 预习内容:课本下节内容;预习提纲: 预习内容:课本下节内容;预习提纲:①等差数列的 项和公式; 等差数列前n项和的简单应用 项和的简单应用。 前n项和公式;②等差数列前 项和的简单应用。 项和公式 教后反思: 五、教后反思:
通项公式的应用: 通项公式的应用: ①可以由首项和公差求出 等差数列中的任意一项; 等差数列中的任意一项; ②已知等差数列的任意两 项,可以确定数列的任意 一项。 一项。
a+b A= ⇔ 2A = a + b 有 ____________________ 2
如果在 a 和 b 之间插入一个数 A,使 a、A、b 成等差数列, , 、 、 成等差数列, 等差中项 。 则 A 叫做 a、b 的__________。 、
(4). 1,2,3,2,3,4,……; 1, ……; 不是 (5). 0,0,0,0,0,0,…… 0, 是d=0 (6). a, a, a, a, ……; ……; 是d=0

北师大版高中数学必修5第一章《数列》数列的概念

北师大版高中数学必修5第一章《数列》数列的概念
(2)能力目标:学会观察、分析、猜测、归纳; 数形结合法的应用;数学归纳法的应用。
2
(3)认知目标:通过教学培养学生观察问题、分析 问题的能力,学习辩证的观点从特殊到一般的认识事 物规律,大胆猜测、归纳。
(4)德育目标:从德育方面进行教育、善比较、细 分析、做生活中的有心人,发现规律,不要马马虎虎、 似是而非,做符合时代的“创新型”的人才。
0(n为奇数) (1 n为偶1数9 )
例3 已知数数列列的例a题n 3的第1项是1,
以写后出的这各个项数由列公的式前5a项n 。1
1 给出, an1
a3
a1 1
1 1 a2

1

a2 1 13 22
1 1 a1
a4 1
1
1
1 1 a3
2

2 3
4
堆 放 的 钢 管
4,5,6,7,8,9,10.
5
正整数的的倒数:
1, 1 , 1 , 1 , 1 , 2 345
2精确到1,0.1,0.01,0.001,的值:
1, 1.4, 1.41,1.414, …,
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:
-1, 1,-1, 1, -1, 1, …
北师大版高中数学必修 5第一章《数列》
法门高中姚连省制1作
1、教学内容: 本节的主要内容是数列的概念和通项公式。掌握数 列函数集合三者的关系用函数观点理解序号与项的 关系,再分析给出项或通项公式,分析就深刻具体, 面面俱到,发现规律,了解递推公式也是数列的一 种表示方法。
2、教学目标: (1)知识目标:理解数列概念;给出前几项, 求通项的分析方法;数列的表示方法;递推公式 的定义及简单应用。

高中数学_数列的概念与简单表示法教学设计学情分析教材分析课后反思

高中数学_数列的概念与简单表示法教学设计学情分析教材分析课后反思

教学设计一、教材分析《数列的概念与简单表示法》是高中数学必修5第二章第一节的内容,起着承前启后的作用。

一方面,数列与前面学习的函数有着密切的联系。

数列是刻画离散现象的函数,是一种重要的数学模型;另一方面,数列概念的学习又为进一步学习等差数列、等比数列等内容作了准备。

作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。

二、教学目标1.理解数列的概念,认识数列是反映自然规律的基本数学模型;2.了解数列的分类,并会根据数列的前几项抽象归纳出数列的通项公式;3.体会数列是一种特殊的函数;了解数列的三种表示法。

三、教学重难点教学重点:理解数列的概念;教学难点:根据数列的前几项抽象归纳出数列的通项公式;将数列作为一种特殊函数去认识,了解数列和函数之间的关系。

四、教法与学法启发式教学——引导学生去思考,鼓励学生去探索,培养学生的创造性思维。

探究式学习——组织学生小组讨论,合作交流,共同解决问题。

五、教学过程(一)“国际象棋”小故事讲述“国际象棋”小故事,提问学生“国王有没有能力满足老人的要求?”,激发学生的学习兴趣。

然后,和学生一起探究,得到一组数:2363……通过对1,2,2,2,,2数的分析,让学生真正理解国王是没有能力满足老人的要求的。

从而最终,引入这节课的学习内容:《数列的概念与简单表示法》(二)创设情境,引入概念1.自然界中,花瓣的个数:2、3、5、8、132.古语:一尺之棰,日取其半,万世不竭。

3.古希腊毕达哥拉斯学派的基本观点:数是万物的本源。

他们曾经在沙滩上画点或用小石子来表示数,得到三角形数、正方形数。

以上事例涉及5组数,让学生观察并归纳其共同特点,引入数列及其有关概念。

活动:典例1你会判断吗?1.由无穷多个3所组成的一列数是数列吗?3,3,3,3,3, …2.以下两个数列是同一数列吗?54, 60, 55, 58, 64, 55, 58, 60, 57, 54.54, 60, 55, 58, 55, 64, 58, 60, 57, 54.3.由2,3,a,5,b,6,这几个元素能构成数列吗?讨论:结合这三个题目,讨论数列与集合的区别。

2018高中数学111数列的概念教案北师大版必修5 精品

2018高中数学111数列的概念教案北师大版必修5 精品

北师大版高中数学必修5第一章《数列》全部教案第一课时一.一.一数列的概念一、教学目标一、知识与技能:(一)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。

2、过程与方法:(一)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。

3、情感态度与价值观:(一).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.二、教学重点:数列及其有关概念,通项公式及其应用.教学难点根据一些数列的前几项抽象、归纳数列的通项公式.三、教学方法:探究、交流、实验、观察、分析四、教学过程(一)、揭示课题:今天开始我们研究一个新课题.先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有一00根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第一层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数象这样排好队的数就是我们的研究对象——数列.(二)、推进新课[合作探究]折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓).生一般折5、6次就不能折下去了,厚度太高了.师你知道这是为什么吗?我们设纸原来的厚度为一长度单位,面积为一面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生 随着对折数厚度依次为:2,4,8,一6,…,256,…;① 随着对折数面积依次为21,41 ,81 ,161 ,…,2561 ,…. 生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 一[]256式,再折下去太困难了.师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数.[教师精讲]一.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(一)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复 出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第一项(或首项),第2项,…,第n 项,….同学们能举例说明吗?生 例如,上述例子均是数列,其中①中,“2”是这个数列的第一项(或首项),“一6”是这个数列中的第4项.为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.3.数列的分类:一)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列一,2,3,4,5,6是有穷数列. 无穷数列:项数无限的数列.例如数列一,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列? 生 这六组数列分别是(一)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)一.递增数列,2.递减数列.4、通项公式法:如数列的通项公式为 ;的通项公式为 ;的通项公式为 ;数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一.[知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n .[例题剖析]例一.根据下面数列{a n }的通项公式,写出前5项:(一)a n =1n n ;(2)a n =(-一)n ·n . 师 由通项公式定义可知,只要将通项公式中n 依次取一,2,3,4,5,即可得到数列的前5项.生 解:(一)n =一,2,3,4,5.a 一=21;a 2=32;a 3=43;a 4=54;a 5=65. (2)n =一,2,3,4,5.a 一=-一;a 2=2;a 3=-3;a 4=4;a 5=-5.师 好!就这样解.例2.根据下面数列的前几项的值,写出数列的一个通项公式:(一)3,5,7,9,一一,…;(2)32,154,356,638,9910,…; (3)0,一,0,一,0,一,…;(4)一,3,3,5,5,7,7,9,9,…;(5)2,-6,一2,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)生老师,我写好了!解:(一)a n =2n +一;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n-+; (4)将数列变形为一+0,2+一,3+0,4+一,5+0,6+一,7+0,8+一,…, ∴a n=n +2)1(1n-+;(5)将数列变形为一×2,-2×3,3×4,-4×5,5×6,…, ∴a n =(-一)n +一n (n +一).师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.(三)、学生课堂练习:课本本节练习一、2、3、4补充题:已知数列{a n }的通项公式是a n =2n 2-n ,那么( ) A .30是数列{a n }的一项B .44是数列{a n }的一项 C.66是数列{a n }的一项 D .90是数列{a n }的一项分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决. 答案:C点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A . (四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版高中数学必修5第一章《数列》全部教案第一课时 1.1.1
数列的概念
一、教学目标
1、知识与技能:(1)理解数列及其有关概念;(2)了解数列的通项公式,并会用通项公式写出数列的任意一项;(3)对于比较简单的数列,会根据其前几项写出它的通项公式。

2、过程与方法:(1)采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学;(2)发挥学生的主体作用,作好探究性学习;(3)理论联系实际,激发学生的学习积极性。

3、情感态度与价值观:(1).通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;(2).通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣
二、教学重点:数列及其有关概念,通项公式及其应用
教学难点根据一些数列的前几项抽象、归纳数列的通项公式.
三、教学方法:探究、交流、实验、观察、分析
四、教学过程
(一)、揭示课题:今天开始我们研究一个新课题.
先举一个生活中的例子:场地上堆放了一些圆钢,最底下的一层有100根,在其上一层(称作第二层)码放了99根,第三层码放了98根,依此类推,问:最多可放多少层?第57层有多少根?从第1层到第57层一共有多少根?我们不能满足于一层层的去数,而是要但求如何去研究,找出一般规律.实际上我们要研究的是这样的一列数
象这样排好队的数就是我们的研究对象——数列.
(二)、推进新课
[合作探究]
折纸问题
师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试(学生们兴趣一定很浓
生一般折5、6次就不能折下去了,厚度太高了
师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次
折的次数,它的厚度和每层纸的面积依次怎样?
生 随着对折数厚度依次为:2,4,8,16,…,256,…;
随着对折数面积依次为21,41 ,81 ,161 ,…,256
1
生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的分 1[]256式,再折下去太困难了
师 说得很好,随数学水平的提高,我们的思维会更加理性化.请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?
生 均是一列数
生 还有一定次序
师 它们的共同特点:都是有一定次序的一列数
[教师精讲]
1.数列的定义:按一定顺序排列着的一列数叫做数列
注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不
同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现
2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首
项),第2项,…,第n 项,….同学们能举例说明吗?
生 例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项
为表述方便给出几个名称:项--------数列中的每一个数叫做这个数列的项.
首项-------其中数列的第一项也称首项.通项-------数列的第n 项叫数列的通项.
以上述两个数列为例,让学生练习指出某一个数列的首项是多少,第二项是多少,指出某一个数列的一些项的项数.由此可以看出,给定一个数列,应能够指明第一项是多少,第二项是多少,……,每一项都是确定的,即指明项数,对应的项就确定.所以数列中的每一项与其项数有着对应关系,这与我们学过的函数有密切关系.
3.数列的分类:1)根据数列项数的多少分:
有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列
无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列
2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列.递减数列:从第2项起,每一项都不大于它的前一项的数列.常数数列:各项相等的数列.摆动数
列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列
请同学们观察:课本的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?
生 这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列
4、通项公式法:如数列
的通项公式为 ;
的通项公式为 ;
的通项公式为 ;
数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.
例如,数列 的通项公式 ,则 . 值得注意的是,正如一个函数未必能用解析式表示一样,不是所有的数列都有通项公式,即便有通项公式,通项公式也未必唯一. [知识拓展]
师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项? 生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n [例题剖析]
例1.根据下面数列{a n }的通项公式,写出前5项:
(1)a n =1 n n ;(2)a n =(-1)n ·n
师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项
生 解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65 (2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-
师 好!就这样解
例2.根据下面数列的前几项的值,写出数列的一个通项公式:
(1)3,5,7,9,11,…;(2)32,154,356,638,99
10,…; (3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;
(5)2,-6,12,-20,30,-42,
师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间
生老师,我写好了!
解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2
)1(1n
-+; (4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…,
a n =n +2)1(1n -+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,a
n =(-1)n +1n (n +
师 完全正确!这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式
(三)、学生课堂练习:课本本节练习1、2、3、4
补充题:已知数列{a
n }的通项公式是a n =2n 2-n ,那么(
A
.30是数列{a n }的一项
B .44是数列{a n }的一项
C.66是数列{a n }的一项 D .90是数列{a n }的一项
分析:注意到30,44,66,90均比较小,可以写出这个数列的前几项,如果这前几项中出现了这四个数中的某一个,则问题就可以解决了.若出现的数比较大,还可以用解方程求正整数解的方法加以解决答案:
点评:看一个数A 是不是数列{a n }中的某一项,实质上就是看能不能找出一个非零自然数n ,使得a n =A (四)、课堂小结:对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意
一项,并会根据数列的前n 项求一些简单数列的通项公式。

(五)、布置作业课本习题1-1A 组1、2、3、4。

五、教后反思:。

相关文档
最新文档