第一章命题逻辑14节
离散数学第一章命题逻辑知识点总结
离散数学第一章命题逻辑知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“⌝”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作⌝p. 符号⌝称作否定联结词,并规定⌝p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧⌝q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假. 例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧⌝u) ∨(⌝t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧⌝w)∨(⌝v∧w), 又可符号化为v∨w , 为什么4.蕴涵式与蕴涵联结词“→”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p→q,并称p是蕴涵式的前件,q为蕴涵式的后件. →称作蕴涵联结词,并规定,p→q为假当且仅当p 为真q 为假.p→q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p→q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“↔”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p↔q. ↔称作等价联结词.并规定p↔q为真当且仅当p与q同时为真或同时为假.说明:(1) p↔q 的逻辑关系:p与q互为充分必要条件(2) p↔q为真当且仅当p与q同真或同假联结词优先级:( ),⌝, ∧, ∨, →, ↔同级按从左到右的顺序进行以上给出了5个联结词:⌝, ∧, ∨, →, ↔,组成一个联结词集合{⌝, ∧, ∨, →, ↔},联结词的优先顺序为:⌝, ∧, ∨, →, ↔; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.⏹命题常项⏹命题变项1.2 命题公式及分类▪命题变项与合式公式▪命题常项:简单命题▪命题变项:真值不确定的陈述句▪定义合式公式 (命题公式, 公式) 递归定义如下:▪(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1▪是合式公式▪(2) 若A是合式公式,则 (⌝A)也是合式公式▪(3) 若A, B是合式公式,则(A∧B), (A∨B), (A→B), (A↔B)也是合式公式▪(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式▪说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=⌝B, B是n层公式;(b) A=B∧C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B∨C, 其中B,C的层次及n同(b);(d) A=B→C, 其中B,C的层次及n同(b);(e) A=B↔C, 其中B,C的层次及n同(b).例如公式p 0层⌝p 1层⌝p→q 2层⌝(p→q)↔r 3层((⌝p∧q) →r)↔(⌝r∨s) 4层▪公式的赋值▪定义给公式A中的命题变项p1, p2, … , p n指定▪一组真值称为对A的一个赋值或解释▪成真赋值: 使公式为真的赋值▪成假赋值: 使公式为假的赋值▪说明:▪赋值α=α1α2…αn之间不加标点符号,αi=0或1.▪A中仅出现p1, p2, …, p n,给A赋值α1α2…αn是▪指p1=α1, p2=α2, …, p n=αn▪A中仅出现p,q, r, …, 给A赋值α1α2α3…是指▪p=α1,q=α2 , r=α3 …▪含n个变项的公式有2n个赋值.▪真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q→p) ∧q→p的真值表例 B = ⌝ (⌝p∨q) ∧q的真值表例C= (p∨q) →⌝r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q→p)∧q→p,B =⌝(⌝p∨q)∧q,C= (p∨q)→⌝r1.3 等值演算⏹等值式定义若等价式A↔B是重言式,则称A与B等值,记作A⇔B,并称A⇔B是等值式说明:定义中,A,B,⇔均为元语言符号, A或B中可能有哑元出现.例如,在 (p→q) ⇔ ((⌝p∨q)∨ (⌝r∧r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p→(q→r) ⇔ (p∧q) →rp→(q→r) (p→q) →r⏹基本等值式双重否定律 : ⌝⌝A⇔A等幂律:A∨A⇔A, A∧A⇔A交换律: A∨B⇔B∨A, A∧B⇔B∧A结合律: (A∨B)∨C⇔A∨(B∨C)(A∧B)∧C⇔A∧(B∧C)分配律: A∨(B∧C)⇔(A∨B)∧(A∨C)A∧(B∨C)⇔ (A∧B)∨(A∧C) 德·摩根律: ⌝(A∨B)⇔⌝A∧⌝B⌝(A∧B)⇔⌝A∨⌝B吸收律: A∨(A∧B)⇔A, A∧(A∨B)⇔A零律: A∨1⇔1, A∧0⇔0同一律: A∨0⇔A, A∧1⇔A排中律: A∨⌝A⇔1矛盾律: A∧⌝A⇔0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A⇔B, 则Φ(B)⇔Φ(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p→(q→r) ⇔ (p∧q)→r证p→(q→r)⇔⌝p∨(⌝q∨r) (蕴涵等值式,置换规则)⇔(⌝p∨⌝q)∨r(结合律,置换规则)⇔⌝(p∧q)∨r(德⋅摩根律,置换规则)⇔(p∧q) →r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p→(q→r) (p→q) →r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q∧⌝(p→q)解q∧⌝(p→q)⇔q∧⌝(⌝p∨q) (蕴涵等值式)⇔q∧(p∧⌝q) (德⋅摩根律)⇔p∧(q∧⌝q) (交换律,结合律)⇔p∧0 (矛盾律)⇔ 0 (零律)由最后一步可知,该式为矛盾式.(2) (p→q)↔(⌝q→⌝p)解 (p→q)↔(⌝q→⌝p)⇔ (⌝p∨q)↔(q∨⌝p) (蕴涵等值式)⇔ (⌝p∨q)↔(⌝p∨q) (交换律)⇔ 1由最后一步可知,该式为重言式.问:最后一步为什么等值于1(3) ((p∧q)∨(p∧⌝q))∧r)解 ((p∧q)∨(p∧⌝q))∧r)⇔ (p∧(q∨⌝q))∧r(分配律)⇔p∧1∧r(排中律)⇔p∧r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A⇔0A为重言式当且仅当A⇔1说明:演算步骤不惟一,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词⌝, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ⌝A(p1,p2,…,p n) ⇔A* (⌝p1, ⌝p2,…, ⌝p n)(2) A(⌝p1, ⌝p2,…, ⌝p n) ⇔⌝A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A ⇔ B,则A*⇔ B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, ⌝q, p∨⌝q, p∨q∨r, …简单合取式:有限个文字构成的合取式如p, ⌝q, p∧⌝q, p∧q∧r, …析取范式:由有限个简单合取式组成的析取式A∨A2∨⋯∨A r, 其中A1,A2,⋯,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式A∧A2∧⋯∧A r , 其中A1,A2,⋯,A r是简单析取式1范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p∧⌝q∧r, ⌝p∨q∨⌝r既是析取范式,又是合取范式(为什么)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的→, ↔(若存在)(2) 否定联结词⌝的内移或消去(3) 使用分配律∧对∨分配(析取范式)∨对∧分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p→⌝q)∨⌝r解 (p→⌝q)∨⌝r⇔ (⌝p∨⌝q)∨⌝r(消去→)⇔⌝p∨⌝q∨⌝r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p→⌝q)→r解 (p→⌝q)→r⇔ (⌝p∨⌝q)→r(消去第一个→)⇔⌝(⌝p∨⌝q)∨r(消去第二个→)⇔ (p∧q)∨r(否定号内移——德⋅摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p∧q)∨r⇔ (p∨r)∧(q∨r) (∨对∧分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1≤i≤n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称i为极小项(极大项)的名称.m与M i的关系: ⌝m i ⇔M i , ⌝M i ⇔m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(⌝p∧⌝q∧r)∨(⌝p∧q∧r) ⇔m1∨m3是主析取范式(p∨q∨⌝r)∧(⌝p∨q∨⌝r) ⇔M1∧M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p→⌝q)→r的主析取范式与主合取范式.(1) 求主析取范式(p→⌝q)→r⇔ (p∧q)∨r , (析取范式)①(p∧q)⇔ (p∧q)∧(⌝r∨r)⇔ (p∧q∧⌝r)∨(p∧q∧r)⇔m6∨m7 ,r⇔(⌝p∨p)∧(⌝q∨q)∧r⇔(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)⇔m1∨m3∨m5∨m7 ③②, ③代入①并排序,得(p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7(主析取范式)(2) 求A的主合取范式(p→⌝q)→r⇔ (p∨r)∧(q∨r) , (合取范式)①p∨r⇔p∨(q∧⌝q)∨r⇔ (p∨q∨r)∧(p∨⌝q∨r)⇔M0∧M2,②q∨r⇔ (p∧⌝p)∨q∨r⇔ (p∨q∨r)∧(⌝p∨q∨r)⇔M0∧M4 ③②, ③代入①并排序,得(p→⌝q)→r⇔M0∧M2∧M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p→⌝q)→r⇔m1∨m3∨m5∨m6∨m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式⇔A的主析取范式含2n个极小项⇔A的主合取范式为1.A为矛盾式⇔A的主析取范式为0⇔A的主合取范式含2n个极大项A为非重言式的可满足式⇔A的主析取范式中至少含一个且不含全部极小项⇔A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p→q)(2) (s∨u)(3) ((q∧⌝r)∨(⌝q∧r))(4) ((r∧s)∨(⌝r∧⌝s))(5) (u→(p∧q))③ (1) ~ (5)构成的合取式为A=(p→q)∧(s∨u)∧((q∧⌝r)∨(⌝q∧r))∧((r∧s)∨(⌝r∧⌝s))∧(u→(p∧q))④ A ⇔ (⌝p∧⌝q∧r∧s∧⌝u)∨(p∧q∧⌝r∧⌝s∧u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A⇔ (⌝p∨q)∧((q∧⌝r)∨(⌝q∧r))∧(s∨u)∧(⌝u∨(p∧q))∧((r∧s)∨(⌝r∧⌝s)) (交换律) B= (⌝p∨q)∧((q∧⌝r)∨(⌝q∧r))1⇔ ((⌝p∧q∧⌝r)∨(⌝p∧⌝q∧r)∨(q∧⌝r)) (分配律)B= (s∨u)∧(⌝u∨(p∧q))2⇔ ((s∧⌝u)∨(p∧q∧s)∨(p∧q∧u)) (分配律)B∧B2 ⇔ (⌝p∧q∧⌝r∧s∧⌝u)∨(⌝p∧⌝q∧r∧s∧⌝u)1∨(q∧⌝r∧s∧⌝u)∨(p∧q∧⌝r∧s)∨(p∧q∧⌝r∧u) 再令B3 = ((r∧s)∨(⌝r∧⌝s))得A⇔B1∧B2∧B3⇔ (⌝p∧⌝q∧r∧s∧⌝u)∨(p∧q∧⌝r∧⌝s∧u) 注意:在以上演算中多次用矛盾律要求:自己演算一遍1.6 推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p→r, r→⌝s结论:s→q证明① s附加前提引入②p→r前提引入③r→⌝s前提引入④p→⌝s②③假言三段论⑤⌝p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
第1章 命题逻辑
上例中的或者是不可兼取的或,也称之为异或、排斥
例1.8 将下列命题符号化
(1) 2或4是素数.
(2) 2或3是素数.
(3) 4或6是素数.
(4) 小元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1976年.
解 令 p: 2是素数, q: 3是素数, r: 4是素数, s: 6是素数
则 (1), (2), (3) 均为相容或. 分别符号化为: p∨r , p∨q, r∨s, 它们的真值分别为 1, 1, 0.
#include <stdio.h> 否定连接词的程序实现 void main() { int z,p; printf("验证逻辑连接词'否定'"); printf("\t"); printf("z=!p"); while(p!=0 && p!=1) { printf("please input(0 or 1):P=" ); scanf("%d",&p); } if (p= =0) z=1; else z=0; printf("z=%d\n",z); }
谓词逻辑(对命题逻辑的深入研究)。
第一章 命题逻辑
这章是以“命题”为中心 主要讨论: 命题的表示、命题的演算 命题演算中的公式,及其应用 命题逻辑推理
1.1 命题符号化及联结词 1.1.1 命题的概念 命题:能够判断真假的陈述句。 命题的真值:命题的判断结果。真值只取 两个值: 真(1)、假(0)。 真命题:真值为真的命题。 假命题:真值为假的命题。 判断命题的两个步骤:) 1、是否为陈述句; 2、是否有确定的、唯一的真值。
第1章 命题逻辑
第一章 命题逻辑(Propositional Logic)
1.2逻辑联结词(Logical Connectives)
联结词“∨”的定义真值表
P
Q
P∨Q
0
0
0
0
1
1
1
0
1
1
1
1
29
第一章 命题逻辑(Propositional Logic)
1.2逻辑联结词(Logical Connectives)
1.2 逻辑联结词(Logical Connectives) 1.2.1 否定联结词(Negation) ┐ 1.2.2 合取联结词(Conjunction)∧ 1.2.3 析取联结词(Disjunction)∨ 1.2.4 条件联结词(蕴涵联结词Conditional)→ 1.2.5 双条件联结(等值联结词Biconditional)
1.2逻辑联结词(Logical Connectives)
例3. 将下列命题符号化. (1) 李平既聪明又用功. (2) 李平虽然聪明, 但不用功. (3) 李平不但聪明,而且用功. (4) 李平不是不聪明,而是不用功.
解: 设 P:李平聪明. Q:李平用功. 则 (1) P∧Q (2) P∧┐Q
个值:真(用 T(true)或1 表 示)、假 (用F(false) 或0表 示) 。 ✓ 真命题:判断为正确的命题,即真值为真的命题。 ✓ 假命题:判断为错误的命题,即真值为假的命题。
5
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示
因而又可以称命题是具有唯一真值的陈述句。
说明:“∧” 属于二元(binary)运算符. 合取运算特点:只有参与运算的二命题全为真 时,运算结果才为真,否则为假。
逻辑学第一章 逻辑、命题、推理ppt课件
二、逻辑学的研究对象 逻辑学是一门古老的科学,至今已有2000多年的
历史。它有三个发源地,这就是古代的中国、印度和 希腊。
其研究对象主要是思维的形式结构及其规律的简 单操作的逻辑方法。
表一:三种原创哲学的比较
印度哲学 中国哲学 古希腊哲学
研究内容 人生哲学 社会伦理哲学 自然哲学和认识论
研究及思维方式 说教
“如果……那么……”是不变的部分,是这一类命题所共同 具有的,不变部分是“p”和“q”所表示的各不相同的具体 思维内容间共同的联系方式。
[例7] 所有违法行为都是要受法律追究的, 所有偷税行为都是违法行为, 所以,所有偷税行为都是要受法律追究的。
[例8] 所有公民都是民事权利的主体, 超计划生育的孩子是公民, 所以,超计划生育的孩子是民事权利的主体。
思维形式结构本身无所谓真假,但其中的变项代入具体内容后,
便形成了逻辑上有真有假的具体思想。
同一思维形式结构在不同的代入下,成为有不同内容的具体思
想。这些具体思想事实上是真是假,即是否符合客观事物情况,逻
辑学并不能解决。
逻辑学关心的是,当变项代入具体内容时,基于思维形式结构
的不同,其真假情况所表现出的规律性。
例如“所有S是P”、“如果P,那么q”等。 逻辑学便是论证逻辑规律,分析逻辑矛盾,说明什么样的思维
具有形式结构上的正确性或可靠性,是合乎逻辑的。
综上所述,逻辑学是研究思维的形式结构及其规律和
简单的逻辑方法的学说。推理形式及其有效性的判定是它 的核心内容。
第二节 逻辑学的渊源
一、感性认识
Heraclitus(约前540年—前480年) 古希腊哲学家、爱非斯派的创始人
引论
逻辑
逻辑学 性质意义
《离散数学》课件-第1章命题逻辑基本概念
6
二、命题的分类
定义1.4 设p、q为任意命题,复合命题“如 果p,则q”称作p与q的蕴涵式,记作p→q,并称p 是蕴涵式的前件(hypothesis or premise),q为 蕴涵式的后件(conclusion or consequence)。 →称为蕴涵联结词。
规定:p→q为假当且仅当p为真q为假。即当 p为真q为假时,p→q为假;其它情况都为真。
(4)如果2是素数,则3也是素数。
简单命题:2是素数。3是素数。联结词:如果,则
(5)2是素数当且仅当3也是素数。
简单命题:2是素数。3是素数。联结词:当且仅当
17
解:简单命题的符号化为:
p:3是偶数。 q:2是偶数。 r:2是素数。 s:4是素数。
为了得到复合命题的符号化 形式,我们还必须对五个联 结词进行符号化!
(6)a能被4整除仅当a能被2整除。 p→q
(7)除非a能被2整除,a才能被4整除。 p→q
(8)除非a能被2整除,否则a不能被4整除。 p→q
(9)只有a能被2整除,a才能被4整除。 p→q
(1)3不是偶数。 Î 非3是偶数。
简单命题:3是偶数。
联结词:非
(2)2是偶素数。
Î 2是偶数并且2是素数。
简单命题:2是偶数。2是素数。 联结词:并且
(3)2或4是素数。
Î 2是素数或4是素数。
简单命题:2是素数。4是素数。 联结词:或
命题逻辑
第1章 命题逻辑
由定义可知, 下面的符号串
P→Q→R, ∧P, (PQ∨) 都不是公式。 而符号串
((P→Q)→R), (┐PQ)∨(R∧S))
都是公式。
为了简便起见, 我们常常省去公式最外层的圆括号。
第1章 命题逻辑
第1章 命题逻辑
1.1 命题与命题公式 1.2 重言式 1.3 命题演算的推理规则和证明方法 1.4 命题公式的标准形式
1.5 例题
习题1
第1章 命题逻辑
1.1 命题与命题公式
1.1.1 命题 人们的思维活动是靠自然语言来表达的。 然而, 由 于自然语言易产生二义性, 用它来表示严格的推理就不 合适了。 为了解决这个问题, 在数理逻辑中引进了一种 形式化的语言, 这是一种符号语言。
第1章 命题逻辑
定义 1.1―1 命题是能判断真假的陈述句。
例1 判断下列句子是不是命题: ((1) 人的血液是白色。 ((2) 上海是中国的一座城市。 ((3) 今年春节真热闹啊!
(4) 天在下雨。
(5) 你上网了吗? (6) 火星上有人。 (7) 王琳是学生党员。 8)6x+3=5-7x
复合命题PQ的真值表如表1―5。
等值词是自然语言中的连接词“当且仅当”等 的逻辑抽象。
第1章 命题逻辑
表1 ― 5
PQ真值表
P
0 0 1 1
Q
0 1 0 1
P Q
1 0 0 1
第1章 命题逻辑
例9 设有命题P, Q为
P: 实系数一元二次方程 ax2+bx+c=0 有两个不 相等的实根。 Q: 实系数一元二次方程 ax2+bx+c=0 的判别式 b2-4ac>0。 则等值式PQ为 PQ: 实系数一元二次方程ax2+bx+c=0 有两个 不相等的实根当且仅当其判别式b2-4ac>0。
1命题逻辑
6
命题表示法:可用 • 字母a,b,c,…,p,q,r… • 或带下标的字母,如p1,q4…表示命题。 例:p:今天下雨。 q:今天是晴天。 r :雪是黑的。
命题标识符:表示命题的符号。 如上例中的p,q和r就是标识符。
7
命题分类 1. 简单命题:不能分解为更简单命题的命题, 又称为原子命题。 2. 复合命题:由原子命题、联结词和标点符 号复合构成的命题。 例:(1) 黄色和蓝色都是常用的颜色。 (2) 李冰选学英语或法语。 (3) 如果4是偶数,则5也是偶数。 (4) 小王虽然没上过大学,但他自学成才。 符号逻辑下,联结词也要符号化。
例:公式 p pq (p q) ∧r ((pq)( q p)) 的层次分别为 0、1、3、4
33
1.4
真值表与等值公式
赋值/指派:设p1,p2,…,pn是出现在公 式A中的全部命题变元,给p1,p2,…,pn 各指定一个真值,称为对公式A的一个赋值。 若指定的一组值使A的真值为1,则称这组 值为A的成真赋值/指派,若使A的真值为0, 则称这组值为A的成假赋值/指派。 真值表:在命题公式中,对于分量指派真 值的各种可能组合,就确定了这个命题公 式的各种真值情况,把它汇列成表,就是 命题公式的真值表。
18
如:R:张三或者李四考了90分。 S:第一节课上数学或者上英语。
对于R,张三和李四可能都考了90分。张三和 李四中只要有一个考了90分,则命题R为真, 若张三和李四都考了90分,R当然也为真。
而对于S,第一节课不能既上数学又上英语, 因此,若p表示“第一节课上数学”,q表示“ 第一节课上英语”,当两个命题都真,S就不 真了。在将命题进行形式化的时候,我们不能 简单的符号化为p∨q,而应采用其他形式。如 可以写为(p∧┐q)∨(┐p∧q)。
离散数学第一章命题逻辑知识点总结
数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“Ø”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作Øp. 符号Ø称作否定联结词,并规定Øp为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧Øq.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧Øu) ∨(Øt∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧Øw)∨(Øv∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“®”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p®q,并称p是蕴涵式的前件,q为蕴涵式的后件. ®称作蕴涵联结词,并规定,p®q为假当且仅当p 为真q 为假.p®q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p®q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“«”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p«q. «称作等价联结词.并规定p«q为真当且仅当p与q同时为真或同时为假.说明:(1) p«q 的逻辑关系:p与q互为充分必要条件(2) p«q为真当且仅当p与q同真或同假联结词优先级:( ),Ø, Ù, Ú, ®, «同级按从左到右的顺序进行以上给出了5个联结词:Ø, Ù, Ú, ®, «,组成一个联结词集合{Ø, Ù, Ú, ®, «},联结词的优先顺序为:Ø, Ù, Ú, ®, «; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.⏹命题常项⏹命题变项1.2 命题公式及分类▪命题变项与合式公式▪命题常项:简单命题▪命题变项:真值不确定的陈述句▪定义合式公式 (命题公式, 公式) 递归定义如下:▪(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1▪是合式公式▪(2) 若A是合式公式,则 (ØA)也是合式公式▪(3) 若A, B是合式公式,则(AÙB), (AÚB), (A®B), (A«B)也是合式公式▪(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式▪说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=ØB, B是n层公式;(b) A=BÙC, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=BÚC, 其中B,C的层次及n同(b);(d) A=B®C, 其中B,C的层次及n同(b);(e) A=B«C, 其中B,C的层次及n同(b).例如公式p 0层Øp 1层Øp®q 2层Ø(p®q)«r 3层((ØpÙq) ®r)«(ØrÚs) 4层▪公式的赋值▪定义给公式A中的命题变项p1, p2, … , p n指定▪一组真值称为对A的一个赋值或解释▪成真赋值: 使公式为真的赋值▪成假赋值: 使公式为假的赋值▪说明:▪赋值a=a1a2…a n之间不加标点符号,a i=0或1.▪A中仅出现p1, p2, …, p n,给A赋值a1a2…a n是▪指p1=a1, p2=a2, …, p n=a n▪A中仅出现p,q, r, …, 给A赋值a1a2a3…是指▪p=a1,q=a2 , r=a3 …▪含n个变项的公式有2n个赋值.▪真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q®p) Ùq®p的真值表例 B = Ø (ØpÚq) Ùq的真值表例C= (pÚq) ®Ør的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q®p)Ùq®p,B =Ø(ØpÚq)Ùq,C= (pÚq)®Ør1.3 等值演算⏹等值式定义若等价式A«B是重言式,则称A与B等值,记作AÛB,并称AÛB是等值式说明:定义中,A,B,Û均为元语言符号, A或B中可能有哑元出现.例如,在 (p®q) Û ((ØpÚq)Ú (ØrÙr))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p®(q®r) Û (pÙq) ®rp®(q®r) (p®q) ®r⏹基本等值式双重否定律 : ØØAÛA等幂律:AÚAÛA, AÙAÛA交换律: AÚBÛBÚA, AÙBÛBÙA结合律: (AÚB)ÚCÛAÚ(BÚC)(AÙB)ÙCÛAÙ(BÙC)分配律: AÚ(BÙC)Û(AÚB)Ù(AÚC)AÙ(BÚC)Û (AÙB)Ú(AÙC)德·摩根律: Ø(AÚB)ÛØAÙØBØ(AÙB)ÛØAÚØB吸收律: AÚ(AÙB)ÛA, AÙ(AÚB)ÛA零律: AÚ1Û1, AÙ0Û0同一律: AÚ0ÛA, AÙ1ÛA排中律: AÚØAÛ1矛盾律: AÙØAÛ0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若AÛB, 则F(B)ÛF(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p®(q®r) Û (pÙq)®r证p®(q®r)ÛØpÚ(ØqÚr) (蕴涵等值式,置换规则)Û(ØpÚØq)Úr(结合律,置换规则)ÛØ(pÙq)Úr(德×摩根律,置换规则)Û(pÙq) ®r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p®(q®r) (p®q) ®r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) qÙØ(p®q)解qÙØ(p®q)Û qÙØ(ØpÚq) (蕴涵等值式)Û qÙ(pÙØq) (德×摩根律)Û pÙ(qÙØq) (交换律,结合律)Û pÙ0 (矛盾律)Û 0 (零律)由最后一步可知,该式为矛盾式.(2) (p®q)«(Øq®Øp)解 (p®q)«(Øq®Øp)Û (ØpÚq)«(qÚØp) (蕴涵等值式)Û (ØpÚq)«(ØpÚq) (交换律)Û 1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((pÙq)Ú(pÙØq))Ùr)解 ((pÙq)Ú(pÙØq))Ùr)Û (pÙ(qÚØq))Ùr(分配律)Û pÙ1Ùr(排中律)Û pÙr(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当AÛ0A为重言式当且仅当AÛ1说明:演算步骤不惟一,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词Ø, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ØA(p1,p2,…,p n) ÛA* (Øp1, Øp2,…, Øp n)(2) A(Øp1, Øp2,…, Øp n) ÛØA* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A Û B,则A*Û B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, Øq, pÚØq, pÚqÚr, …简单合取式:有限个文字构成的合取式如p, Øq, pÙØq, pÙqÙr, …析取范式:由有限个简单合取式组成的析取式AÚA2Ú¼ÚA r, 其中A1,A2,¼,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式AÙA2Ù¼ÙA r , 其中A1,A2,¼,A r是简单析取式1范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式pÙØqÙr, ØpÚqÚØr既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的®, «(若存在)(2) 否定联结词Ø的内移或消去(3) 使用分配律Ù对Ú分配(析取范式)Ú对Ù分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p®Øq)ÚØr解 (p®Øq)ÚØrÛ (ØpÚØq)ÚØr(消去®)Û ØpÚØqÚØr(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p®Øq)®r解 (p®Øq)®rÛ (ØpÚØq)®r(消去第一个®)Û Ø(ØpÚØq)Úr(消去第二个®)Û (pÙq)Úr(否定号内移——德×摩根律)这一步已为析取范式(两个简单合取式构成)继续: (pÙq)ÚrÛ (pÚr)Ù(qÚr) (Ú对Ù分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1£i£n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为i极小项(极大项)的名称.m与M i的关系: Øm i Û M i , ØM i Û m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(ØpÙØqÙr)Ú(ØpÙqÙr) Û m1Úm3是主析取范式(pÚqÚØr)Ù(ØpÚqÚØr) Û M1ÙM5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p®Øq)®r的主析取范式与主合取范式.(1) 求主析取范式(p®Øq)®rÛ (pÙq)Úr , (析取范式)①(pÙq)Û (pÙq)Ù(ØrÚr)Û (pÙqÙØr)Ú(pÙqÙr)Û m6Úm7 ,rÛ(ØpÚp)Ù(ØqÚq)ÙrÛ(ØpÙØqÙr)Ú(ØpÙqÙr)Ú(pÙØqÙr)Ú(pÙqÙr)Û m1Úm3Úm5Úm7 ③②, ③代入①并排序,得(p®Øq)®rÛ m1Úm3Úm5Ú m6Úm7(主析取范式)(2) 求A的主合取范式(p®Øq)®rÛ (pÚr)Ù(qÚr) , (合取范式)①pÚrÛ pÚ(qÙØq)ÚrÛ (pÚqÚr)Ù(pÚØqÚr)Û M0ÙM2,②qÚrÛ (pÙØp)ÚqÚrÛ (pÚqÚr)Ù(ØpÚqÚr)Û M0ÙM4 ③②, ③代入①并排序,得(p®Øq)®rÛ M0ÙM2ÙM4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p®Øq)®rÛ m1Úm3Úm5Ú m6Úm7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式ÛA的主析取范式含2n个极小项ÛA的主合取范式为1.A为矛盾式Û A的主析取范式为0Û A的主合取范式含2n个极大项A为非重言式的可满足式ÛA的主析取范式中至少含一个且不含全部极小项ÛA的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p®q)(2) (sÚu)(3) ((qÙØr)Ú(ØqÙr))(4) ((rÙs)Ú(ØrÙØs))(5) (u®(pÙq))③ (1) ~ (5)构成的合取式为A=(p®q)Ù(sÚu)Ù((qÙØr)Ú(ØqÙr))Ù((rÙs)Ú(ØrÙØs))Ù(u®(pÙq))④ A Û (ØpÙØqÙrÙsÙØu)Ú(pÙqÙØrÙØsÙu)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:AÛ (ØpÚq)Ù((qÙØr)Ú(ØqÙr))Ù(sÚu)Ù(ØuÚ(pÙq))Ù((rÙs)Ú(ØrÙØs)) (交换律) B= (ØpÚq)Ù((qÙØr)Ú(ØqÙr))1Û ((ØpÙqÙØr)Ú(ØpÙØqÙr)Ú(qÙØr)) (分配律)B= (sÚu)Ù(ØuÚ(pÙq))2Û ((sÙØu)Ú(pÙqÙs)Ú(pÙqÙu)) (分配律)BÙB2 Û (ØpÙqÙØrÙsÙØu)Ú(ØpÙØqÙrÙsÙØu)1Ú(qÙØrÙsÙØu)Ú(pÙqÙØrÙs)Ú(pÙqÙØrÙu)再令B3 = ((rÙs)Ú(ØrÙØs))得AÛ B1ÙB2ÙB3Û (ØpÙØqÙrÙsÙØu)Ú(pÙqÙØrÙØsÙu)注意:在以上演算中多次用矛盾律要求:自己演算一遍1.6 推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p®r, r®Øs结论:s®q证明① s附加前提引入②p®r前提引入③r®Øs前提引入④p®Øs②③假言三段论⑤Øp①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
The Foundations Logic and Proofs课后题答案
第1.1 节命题逻辑1第1章基础: 逻辑与证明第1.1 节命题逻辑2。
命题必须具有明确定义的真值, 因此命题必须是没有自由变量。
a)这不是一个命题, 而是一个命题。
它’这是一个命令。
(b)这不是一个命题, 而是一个命题。
它’这是个问题。
(c)这是一个错误的命题, 任何去过缅因州的人都知道。
d)这不是一个命题, 而是一个命题。
它的真值取决于x.e)这是一个错误的命题。
f)这不是一个命题, 而是一个命题。
它的真值取决于n.4. a)詹妮弗和泰雅不是朋友(b)面包师里没有13件’这是一打。
(或者: 面包师中的项目数’s 打是不是等于13.)(c)艾比昨天发的短信不到101条。
或者, Abby 最多发送100条短信昨天。
注意: 此版本的第一次打印错误地呈现了此练习。
“每天”在的地方“昨天。
”这使得它成为一个困难得多的问题, 因为日子是量化的, 也是量化的命题直到后面的一节才会被处理。
这将是不正确的说, 否定,情况下是“艾比每天最多发送100条短信。
”相反, 一个正确的否定将是“存在一个艾比发送的一天最多100条短信。
”说“艾比发送的短信没有超过 1 0 0条每天”是有点暧昧—我们的意思是¬!还是我们的意思是!¬?d)121不是一个完美的正方形。
6. a)是的, 因为288>256和288>128。
(b)确实正确, 因为与B 相比, C 的分辨率为5 MP’s 4 MP 分辨率。
请注意, 其中只有一个条件需要满足, 因为这个词或.(c)错误, 因为它的分辨率不是较高的(所有的语句都必须是真实的连接是真实的)。
d)错误, 因为这个条件陈述的假设是真实的, 结论是错误的。
e)错误, 因为这个二项陈述的第一部分是假的, 第二部分是真的。
8. a)这个星期我没有买彩票。
(b)要么我本周买了彩票, 要么(从包容性的意义上说) 我赢得了百万美元的头奖星期五。
(c)如果我这个星期买了彩票, 那么我周五就赢了百万的头奖。
4-第一章命题逻辑
第一章
命题逻辑
Propositional Logic
1.6 对偶与范式(复习)
二、范式 定义1-7.2 一个命题公式称为合取范式,当且仅当 它具有型式:
A1 A2 An (n 1) 其中 A1 , A2 ,, An 都是由命题变元或其否定所组成
的析取式。
合取范式的特点: (1)不出现 和 (2)否定符号出现在变元前 (3)总体看是合取式 (4)每个合取项是析取式 (5)每个合取项中只包含命题变元或其否定。
11命题及其表示法12联结词13命题公式与翻译14真值表与等价公式15重言式与蕴含式15重言式与蕴含式17对偶与范式18推理理论第一章命题逻辑propositionallogicpropositionallogic11命题及其表示法12联结词13命题公式与翻译14真值表与等价公式15重言式与蕴含式15重言式与蕴含式17对偶与范式18推理理论第一章命题逻辑propositionallogicpropositionallogic16对偶与范式复习二范式定义172一个命题公式称为合取范式当且仅当它具有型式
大连大学 信息工程学院
第20页
1.6 对偶与范式
例9:用真值表求 ( P Q) (P R) 的主合取范式。 例10:求 ( P Q) (P R) 的成真指派。 例11:某科研所要从3名科研骨干A,B,C中挑选1~2 名出国进修,由于工作需要,选派需满足如 下条件: 问:有几种 (1)若A去,则C同去; 选派方案 (2)若B去,则C不能去; 分别都是什 (3)若C不去,则A或B可以去。 么?
大连大学 信息工程学院
第18页
1.6 对偶与范式(复习)
二、范式 合取范式和析取范式的化归步骤:见书上31页 例3:求 ( P (Q R)) S 合取范式。 例4:求 ( P Q) ( P Q) 析取范式。
1-4 主范式
§1.4.2 主合取范式
方法一、真值表法
西安电子科技大学 软件学院
【例题】求命题公式A=¬P ∧ (Q → R)的主合取范式。
§1.4.2 主合取范式
方法二、等价推演法
西安电子科技大学 软件学院
【例题】求命题公式A=¬P∧(Q→R)的主合取范式。
A⇔ ⇔ ⇔
¬P∧(¬ Q ∨R) (¬P∨(Q∧¬Q)∨(R∧¬R) )∧((P∧¬P)∨¬Q∨R) (¬P∨Q∨R)∧(¬P∨Q∨¬R)∧(¬P∨¬Q∨R) ∧(¬P∨¬Q∨¬R )∧(P∨¬Q∨R)∧(¬P∨¬Q∨ R)
极小项
西安电子科技大学 软件学院
例如,以下是含有三个命题变元P,Q,R的极小项:
P1 ∧ ¬P2 ∧ P3
该极小项的编号为: 1 记为: 0 1
m5
含n个命题变元的极小项共有2n个, 编号为0~2n-1。
§1.4.1 主析取范式
000 001 010 011 100 101 110 111 m0 = m1 = m2 = m3 = m4 = m5 = m6 = m7 =
§1.4.2 主合取范式
极大项
西安电子科技大学 软件学院
例如,以下是含有三个命题变元P,Q,R的极大项:
P ∨ ¬Q ∨ R
该极大项的编号为: 0 记为: 1 0
M2
离散数学第一章命题逻辑PPT课件
如:
P: 明天下雪,
Q: 明天下雨
是两个命题, 利用联结词“不”, “并且”, “或”等可构成新
命题:
“明天不下雪”;
“明天下雪并且下雨”;
“明天下雪或下雨”等 。
11/20/2020
chapter1
8
1.2 联结词
即: “非P”; “P并且Q”; “P或Q”等 。 在代数式x+3 中, x , 3 叫运算对象, +叫运算符,
断言是一陈述语句。一个命题是一个或真或假而不能 两者都是的断言。如果命题是真, 我们说它的真值为真; 如果命题是假,我们说它的真值是假。
11/20/2020
chapter1
2
1.1 命题及其表示法
【例1 】判定下列各语句是否为命题:
(a) 巴黎在法国。
(是)
(b) 煤是白色的。(是)Biblioteka (c) 3+2=5
为方便起见,公式最外层的括号可省略。有时为了
看起来清楚醒目, 也可保留某些原可省去的括号。
11/20/2020
chapter1
18
1.3 命题公式
单个命题变元和命题常元叫原子公式。由以下形成
规则生成的公式叫命题公式 (简称公式):
(1) 单个原子公式A、B是命题公式。
(2) 如果A和B是命题公式, 则(┐A) , (A∧B) , (A∨B) ,
第一章 命题逻辑
Proposition Logic
1.1 命题及其表示法 1.2 联结词 1.3 命题公式与翻译 1.4 重言式、矛盾式、可满足公式 1.5 等价与蕴含 1.6 推理理论
1.1 命题及其表示法
1、命题 命题——非真即假的陈述句。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赋值,而001, 011, 100, 111是成假赋值.
2. 公式的类型 定义 1.9 (1)重言式(也称永真式) (2)矛盾式(也称为永假式) (3)可满足式(不是矛盾式的公式) 注意:重言式是可满足式,但反之不真. 易知 (pp)q, (pp)q, pq 分别为重言式、 矛盾式、可满足式. 问: (1)如何判断公式的类型? (2)如何求出公式 A 的全部成真与成假赋值?
例1:将命题符号化: 王小红是计算机系学生,她是三好学生,她不喜欢数学。 解:p:王小红是计算机系学生; q:王小红是三好学生 r:王小红喜欢数学 命题符号化:pq(r)
例2:设p: π是无理数,q: 3是奇数, r: 苹果是方的, s: 太阳绕地球转 则复合命题(pq) ((rs) p)是假命题.
5. 等价式与等价联结词“” 定义 1.5 设 p,q 为二命题,复合命题“p 当且仅当 q”称作 p 与 q 的 等价式,记作 pq,称作等价联结词. 并规定为真当且仅当 p 与 q 同时为真或同时为假. (1) pq 的逻辑关系:p 与 q 互为充分必要条件 (2) pq 为真当且仅当 p 与 q 同真或同假 例 求下列复合命题的真值 (1)2 + 2 = 4 当且仅当 3 + 3 = 6. (2)2 + 2 = 4 当且仅当 3 是偶数. (3)2 + 2 = 4 当且仅当太阳从东方升起. (4)2 + 2 = 4 当且仅当美国位于非洲. (5)2 + 2 ≠ 4 当且仅当美国位于非洲
第二节 命题公式及分类
一、 命题变项与合式公式 1.命题变项(或命题变元) (1)命题常项(简单命题) (2)命题变项 (真值可以变化的简单陈述句,不是命题) (3)常项与变项均用 p, q, r, …, pi, qi, ri, …, 等表示. 2.合式公式(也称为命题公式,简称公式) 定义 1.6 合式公式的递归定义: (1)原子合式公式(单个命题常项或变项是合式公式) (2)若 A 是合式,则 (A)也是合式 (3)若 A, B 是合式,则(AB), (AB), (AB), (AB)也是合式 (4)只有有限次地应用(1)—(3)形成的符号串才是公式
二、 联结词与复合命题 1.否定式与否定联结词“” 定义 1.1 设 p 为命题,符合命题“非 p” (或“p 的否定” )称 为 p 的否定式, 记作p, 符号称作否定联结词, 并规定p 为 真当且仅当 p 为假. 2. 合取式与合取联结词“∧” 定义 1.2 设 p,q 为二命题,复合命题“p 并且 q” (或“p 与
注意: pq与qp等值(真值相同)
例 设 p:2+2=4; q:太阳从东方升起;r:太阳从西方升起 (1)若 2+2=4,则太阳从东方升起。 (2)若 2+2≠4,则太阳从东方升起。 (3)若 2+2=4,则太阳从西方升起。 (4)若 2+2≠4,则太阳从西方升起
解:(1)符号化为为pq (2)符号化为pq (3)符号化为pr (4)符号化为pr
三、本章的重点和难点: 教学重点:五个基本联结词、等值演算及主析取范式。 教学难点:求主析取范式。 四、本章与后续各章的关系: 本章介绍数理逻辑最基本的内容命题逻辑,是本课程 以后各篇及后续相关课程学习的工具。
第一节 命题符号化与联结词
一、 命题及其分类 1. 命题与真值 (1) 命题—判断结果唯一的陈述句 (2) 命题的真值—判断的结果 (3) 真值的取值:真与假 (4) 真命题与假命题 注意: 感叹句、祈使句、疑问句都不是命题 陈述句中的悖论,判断结果不惟一确定的不是命题
C 是那种类型 ?
几点说明 熟练之后,真值表的中间有些层次可不写 真值表的用途 (1) 有了公式 A 的真值表就知道了 A 的一切信息 (2) 其它用途待续
第三节 等值演算
一、 等值式与基本的等值式 1.等值式 定义 1.10 设 A、B 是两命题公式,若等价式 A B 是重言 式,则称 A 与 B 等值,记作 A B,并称 AB 是等值式 几点说明: 定义中, A, B 是命题公式,不是命题变项 不是联结词,只是表示等值的简便记法。表示两个公式 之间的关系。 用真值表可验证两个公式是否等值: A、B 是否等值等价于 A、 B 的真值表是否相同 请验证:p(qr) (pq) r p(qr) ⇎ (pq) r
几点说明: 对命题变项p1,p2,…pn,给定赋值α1α2…αn(αi=0或1) 赋值α1α2…αn之间不加标点符号,分别指p1=α1… ,pn=αn,否则按字典顺序。 含n个变项的公式有2n个赋值. 注意区分复合命题与命题公式:复合命题有确定的 真假值,命题公式必须赋值 易知000, 010, 101, 110是(pq)r的成真
解: (1)p∨q;p:2 是素数;q:4 是素数. (2)p∨q;p:2 是素数;q:3 是素数. (3)p∨q;p:4 是素数;q:6 是素数. (4)(p∧ q)∨(p∧q);p:小元元拿一个苹果 q:. 小元元拿一个梨 (5)(p∧ q)∨(p∧q);p:王小红生于 1975 年 q:王小红生于 1976 年.
2. 命题的分类 (1)简单命题(也称原子命题) (2)复合命题:简单命题用联结词联结而成的命题。 3. 简单命题符号化 (1)用小写英文字母 p,q,r,…,pi,qi,ri (i≥1)表 示简单命题 (2)命题的真值符号化: 用“1”表示真,用“0”表示假 例如,令 p: 2是有理数,则 p 的真值为 0, q:2 + 5 = 7,则 q 的真值为 1 在本小节要弄清命题、命题的真值、真命题、假命题、 简单(原子)命题、复合命题等概念
第一章 命题逻辑
一、 主要内容 第一节 命题符号化及联结词 第二节 命题公式及分类 第三节 等值演算 第四节 析取范式与合取范式 第五节 命题逻辑的推理理论 第六节 例题分析 二、学习要求 通过本章学习,要求学生:熟悉命题的概念;熟悉命题公 式演算;掌握命题的公式符号化应用;熟悉真值表及其应用; 领会推理理论及其规则。
例:求下列命题公式的层次:其中p,q为单个命题
(1)A=p, (2) B=p, (3) C=pq, (4) D=(pq)r, (5) E=((pq) r) (rs)
解:分别为0层,1层,2层,3层,4层公式
二、 公式的赋值(或解释)与真值表 含有命题变项的公式的真值不确定, 变项用常项代) : 给出现在命题公式 A 中的命题变项 p1,p2,…pn 指定一组真真值,称为对 A 的一个赋值或解释。 (2)成真赋值(成假) : 若指定的一组值使 A 的值为真,称该组值为 A 的 成真赋值,否则为 A 的成假赋值
解: (1)1;(2)0;(3)1;(4)0; (5)1。
注: 联结词集{, , , , },称为真值联结词。其中 pq 最难理解,要特别注意。 使用{, , , , }中的联结词可将各种各样的复合命 题符号化。.步骤: (1)先分析出简单命题,将它们符号化 (2)使用合适的联结词,将简单命题逐个联结起来。 联结词也称为运算符,可以规定运算顺序:, , , , , 同级按先出现者先运算。遇到括号先进行括号中的运算。
3.真值表 定义 1.10 A 的真值表 A 的取值情况列成的表 (1)写真值表的过程(见下面例题) 例 写出下列公式的真值表 A = (pq) r B = (qp) qp C = (pq) q
A 的真值表 p 0 0 0 0 1 1 1 1 q 0 0 1 1 0 0 1 1 r 0 1 0 1 0 1 0 1 pq 0 0 1 1 1 1 1 1 r 1 0 1 0 1 0 1 0 (pq)r 1 1 1 0 1 0 1 0
例 下列句子中那些是命题? (1) 2 是有理数. (2)2 + 5 = 7. (3)x + 5 > 3. (4)你去教室吗? (5)这个苹果真大呀! (6)请不要讲话! (7)2010 年元旦下大雪. 不难看出: (1)是假命题, (2)是真命题.(7)是真命题, 它的真值现在不知道,到 2010 年元旦就知道了. 可见命 题的真值是客观存在的,不以我们是否知道而改变
例 设 p:天冷,q:小王穿羽绒服,将下列命题符号化 (1)只要天冷,小王就穿羽绒服. (2)因为天冷,所以小王穿羽绒服. (3)若小王不穿羽绒服,则天不冷. (4)只有天冷,小王才穿羽绒服. (5)除非天冷,小王才穿羽绒服.
解:(1),(2),(3),(6)符号化为pq (4),(5)符号化为qp
几点说明: 归纳或递归定义: (1)是基础, ( 2) (3)是归纳步骤 (4)是完备化 A,B 是任意命题公式 有限的符号串 (2)的括号可以省(¬的优先级高) , (3)的括号不能 省。
3.合式公式的层次 定义 1.7 (1)若公式 A 是单个的命题变项,则称 A 为 0 层合式. (2)称 A 是 n+1(n≥0)层公式是指下面情况之一: (a) A=B, B 是 n 层公式; (b) A=BC, 其中 B,C 分别为 i 层和 j 层公式,且 n=max(i,j); (c) A=BC, 其中 B,C 的层次及 n 同(b); (d) A=BC, 其中 B,C 的层次及 n 同(b); (e) A=BC, 其中 B,C 的层次及 n 同(b). (3)若公式 A 的层次为 k, 则称 A 为 k 层公式.
4. 蕴涵式与蕴涵联结词“” 定义 1.4 设 p, q 为二命题,复合命题“如果 p, 则 q”称作 p 与 q 的 蕴涵式,记作 pq,并称 p 是蕴涵式的前件,q 为蕴涵式的后件, 称作蕴涵联结词,并规定,pq 为假当且仅当 p 为真 q 为假. 说明: (1)pq 的逻辑关系:q 为 p 的必要条件 (2) “如果 p, 则 q 的不同表述法很多: 若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p (如果 p,则有 q) 除非 q, 才 p 或除非 q,否则非 p,…. (¬q¬p) (3)当 p 为假时,pq 为真,可称为空证明 (4) 常出现的错误:不分充分与必要条件