高中数学第三章导数应用3.2导数在实际问题中的应用教材基础素材北师大版选修2_2
北京师范大学第一附属中学高中数学选修2-2第三章《导数应用》检测卷(含答案解析)
一、选择题1.已知定义在[1,)+∞上的函数()f x 满足()ln ()0f x x xf x '+<且(2021)0f =,其中()'f x 是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( )A .(1,2021)B .(2021,)+∞C .(1,)+∞D .[1,2021)2.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( )A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-3.等差数列{a n }中的a 2、a 4030是函数321()4613f x x x x =-+- 的两个极值点,则log 2(a 2016)=( ) A .2B .3C .4D .54.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .5.已知函数()f x '是函数()f x 的导函数,()11f e=,对任意实数都有()()0f x f x '->,设()()x f x F x e=则不等式()21F x e <的解集为( ) A .(),1-∞B .()1,+∞C .()1,eD .(),e +∞6.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭7.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c 若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( ) A .6π B .4π C .3π D .2π 8.已知可导函数()()f x x R ∈满足()()f x f x '>,则当0a >时,()f a 和(0)a e f 的大小关系为( ) A .()(0)a f a e f > B .()(0)a f a e f <C .()(0)a f a e f =D .()(0)a f a e f ≤9.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤11.若121x x >>,则( ) A .1221x xx e x e > B .1221x xx e x e < C .2112ln ln x x x x >D .2112ln ln x x x x <12.已知函数()3242xx f x x x e e=-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.若函数f (x )cosx a sinx +=在(0,2π)上单调递减,则实数a 的取值范围为___. 14.已知||()cos x f x e x =+,则不等式(21)(1)f x f x -≥-的解集为__________. 15.函数()()2ln 23f x x x =++在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为____________.16.若函数()sin 2xxf x e ex -=-+,则不等式()()2210f x f x -+>的解集为________.17.记函数(),,2ln ,0,xx s eH x x x s x⎧≥⎪⎪=⎨⎪<<⎪⎩若对任意的实数k ,总存在实数m ,使得()=H m k成立,则实数s 的取值集合______.18.若函数的()1,2ln ,x m x e f x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.19.已知a R ∈,设函数()2,1,1x x ax a x f x ae x x ⎧-+≥=⎨-<⎩(其中e 是自然对数的底数),若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为______. 20.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 三、解答题21.已知函数)(21ln 2f x x ax x =-+有两个极值点)(1212,x x x x <. (1)求a 的取值范围; (2)求证:21>x 且)(2132f x x <-. 22.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)23.设函数()cos2sin f x x m x =+,()0,x π∈. (1)若函数()f x 在2x π=处的切线方程为1y =,求m 的值;(2)若()0,x π∀∈,()0f x >恒成立,求m 的取值范围. 24.已知函数()ln f x x ax =-,()2g x x =,a R ∈.(1)求函数()f x 的极值点;(2)若()()f x g x ≤恒成立,求a 的取值范围. 25.已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+.(1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 26.已知函数()xf x ax e =-(a R ∈,e 为自然对数的底数). (1)讨论()f x 的单调性;(2)当1x ≥-,()232f x a x ≤--恒成立,求整数a 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】令()ln ()g x xf x =,1≥x ,利用导数可知()g x 在[1,)+∞上为单调递减函数,将不等式()0f x >化为1x >且()(2021)g x g >,再利用()g x 的单调性可解得结果.【详解】令()ln ()g x xf x =,1≥x ,则1()ln ()()()()ln f x x xf x g x f x f x x x x'+''=+=, 因为1≥x ,()ln ()0f x x xf x '+<,所以()0g x '<,所以()g x 在[1,)+∞上为单调递减函数,当1x =时,由()ln ()0f x x xf x '+<可知(1)0f <,不满足()0f x >; 当1x >时,ln 0x >,所以()0f x >可化为()ln 0f x x >(2021)ln 2021f =,即()(2021)g x g >,因为()g x 在(1,)+∞上为单调递减函数,所以12021x <<, 所以不等式()0f x >的解集为(1,2021). 故选:A 【点睛】关键点点睛:根据已知不等式构造函数()ln ()g x xf x =,利用导数判断其单调性是本题解题关键.2.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.3.A解析:A 【解析】2240302016220162()86084,log log 42f x x x a a a a =-+=∴+=⇒='== ,选A.点睛:在解决等差、等比数列的运算问题时,注意利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.4.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.5.B解析:B 【解析】 ∵()()xf x F x e=∴2()()()()()x x x xf x e f x e f x f x F x e e''--'== ∵对任意实数都有()()0f x f x -'> ∴()0F x '<,即()F x 在R 上为单调减函数 又∵()11f e= ∴21(1)F e =∴不等式()21F x e <等价于()(1)F x F < ∴不等式()21F x e <的解集为(1,)+∞ 故选B点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x '<构造()()xf xg x e =,()()0f x f x '+<,构造()()x g x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等.6.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.7.C解析:C 【解析】 函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=- ,22222210cos 22a cb b ac ac B ac +-=--+≤⇒=≥()0,(0,].3B B ππ∈∴∈故最大值为:3π.故答案为C .8.A解析:A 【分析】根据条件构造函数()()x f x g x e=,求导可知()g x 单调递增,比较(),(0)g a g 的大小,可得()f a 和(0)a e f 的大小关系.【详解】解:令()()x f x g x e =,则'''2()()()()()x x x xf x e f x e f x f xg x e e--==,因为()()f x f x '>,所以'()0g x >,所以()g x 在(),-∞+∞上单调递增;因为0a >,所以()(0)g a g >,即0()(0)af a f e e>,即()(0)a f a e f >. 故选:A. 【点睛】本题考查构造函数法比较大小,考查利用导数求函数的单调性,属于基础题.9.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C10.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x =+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x =+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 11.A解析:A 【分析】根据条件构造函数,再利用导数研究单调性,进而判断大小. 【详解】①令()()1x e f x x x =>,则()()21'0x x e f x x-=>,∴()f x 在1,上单调递增,∴当121x x >>时,1212x x e e x x >,即1221x xx e x e >,故A 正确.B 错误. ②令()()ln 1x g x x x =>,则()21ln 'xg x x-=,令()0g x =,则x e =, 当1x e <<时,()'0g x >;当x e >时,()'0g x <,∴()g x 在()1,e 上单调递增, 在(),e +∞上单调递减,易知C ,D 不正确, 故选A . 【点睛】本题考查利用导数研究函数单调性,考查基本分析判断能力,属中档题.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦. 故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.a≥﹣1【分析】将函数f (x )在(0)上单调递减转化在(0)上恒成立即在(0)上恒成立再求最大值即可【详解】因为函数f (x )在(0)上单调递减所以在(0)上恒成立即在(0)上恒成立因为所以所以所以故解析:a ≥﹣1.【分析】 将函数f (x )cosx a sinx +=在(0,2π)上单调递减,转化()21cos 0sin a xf x x --'=≤在(0,2π)上恒成立 即1cos a x ≥-在(0,2π)上恒成立 再求1cos x -最大值即可.【详解】因为函数f (x )cosx asinx +=在(0,2π)上单调递减,所以()21cos 0sin a xf x x--'=≤在(0,2π)上恒成立 , 即1cos a x ≥-在(0,2π)上恒成立 , 因为0,2x π⎛⎫∈ ⎪⎝⎭, 所以()cos 0,1x ∈, 所以1(,1]cos x-∈-∞-, 所以1a ≥-. 故答案为:1a ≥- 【点睛】本题主要考查了导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.14.【分析】首先根据题意得到为偶函数利用导数求出的单调区间再根据单调区间解不等式即可【详解】又因为所以为偶函数当时因为所以故在为增函数又因为为偶函数所以在为减函数因为所以解得或故答案为:【点睛】本题主要解析:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 为偶函数,利用导数求出()f x 的单调区间,再根据单调区间解不等式即可. 【详解】又因为x ∈R ,()()()||||cos cos x x f x e x e x f x --=+-=+=,所以()f x 为偶函数.当0x >时,()cos x f x e x =+,()sin x f x e x '=-, 因为0x >,e 1x >,所以()sin 0x f x e x '=->, 故()f x 在()0,∞+为增函数.又因为()f x 为偶函数,所以()f x 在(),0-∞为减函数. 因为(21)(1)f x f x -≥-,所以211x x -≥-,解得23x ≥或0x ≤. 故答案为:2(,0],3⎡⎫-∞⋃+∞⎪⎢⎣⎭【点睛】本题主要考查利用导数研究函数的单调性,同时考查了函数的奇偶,属于中档题.15.【分析】利用导数求得函数的单调性进而求得极值和区间端点处的函数值值找出函数的最大值和最小值即可【详解】解:由题得的定义域为由得或因为所以时单调递增;时单调递减;所以为极小值点且又因为又所以所以所以故 解析:5ln 716+【分析】利用导数求得函数的单调性,进而求得极值和区间端点处的函数值值,找出函数的最大值和最小值即可. 【详解】解:由题得()f x 的定义域为3,2⎛⎫-+∞ ⎪⎝⎭, ()22(1)(21)22323x x f x x x x ++'=+=++ 由()0f x '=得,1x =-或12x =-,因为31,44x ⎡⎤∈-⎢⎥⎣⎦所以11,24⎛⎤- ⎥⎝⎦时,()0f x '>,()f x 单调递增;31,42x ⎡⎤∈--⎢⎥⎣⎦时,()0f x '<,()f x 单调递减;所以12x =-为极小值点,且11ln 224f ⎛⎫-=+ ⎪⎝⎭,又因为339ln 4216f ⎛⎫-=+ ⎪⎝⎭,171ln 4216f ⎛⎫=+ ⎪⎝⎭又13711ln ln 2044322f f ⎛⎫⎛⎫--=->->⎪ ⎪⎝⎭⎝⎭,所以max 171()ln 4216f x f ⎛⎫==+ ⎪⎝⎭所以()min 11ln 224f x f ⎛⎫=-=+ ⎪⎝⎭. 所以max min 7115()()ln ln 2ln 7216416f x f x +=+++=+. 故答案为:5ln 716+. 【点睛】本题主要考查用导数求函数的最值,属于中档题.16.【分析】根据奇偶性的定义可判断出为奇函数;利用导数可得到的单调性;将不等式转化为利用单调性可得自变量的大小关系解不等式可求得结果【详解】由题意得:为上的奇函数且不恒等于零在上单调递增等价于解得:故答解析:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【分析】根据奇偶性的定义可判断出()f x 为奇函数;利用导数可得到()f x 的单调性;将不等式转化为()()221f x f x ->-,利用单调性可得自变量的大小关系,解不等式可求得结果.【详解】由题意得:()()2sin2xx f x ee xf x --=--=- ()f x ∴为R 上的奇函数()2cos2x x f x e e x -'=++,2x x e e -+≥,2cos 22x ≤,()0f x '∴≥且不恒等于零 ()f x ∴在R 上单调递增()()2210f x f x -+>等价于()()()221f x f x f x ->-=-221x x ∴->-,解得:()1,1,2x ⎛⎫∈-∞-+∞ ⎪⎝⎭故答案为:()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭【点睛】本题考查利用函数的单调性和奇偶性解不等式的问题,关键是能够利用奇偶性的定义、导数的知识求得函数的单调性和奇偶性,从而将不等式转化为函数值的比较,利用单调性进一步得到自变量的大小关系.17.【分析】由题意得的值域为R 求出在单调递增其值域为然后求导求出函数的值域通过求解和的值域并分析是否满足题意可推出实数s 的取值集合【详解】因为对任意的实数总存在实数使得成立所以的值域为R 函数在单调递增其解析:【分析】由题意得()H x 的值域为R ,求出2x y e=在[,)s +∞单调递增,其值域为[,)2se +∞,然后求导,求出函数ln xy x=的值域,通过求解s e >和0s e <≤的值域,并分析是否满足题意,可推出实数s 的取值集合. 【详解】因为对任意的实数k ,总存在实数m ,使得()=H m k 成立, 所以()H x 的值域为R . 函数2x y e=在[,)s +∞单调递增,其值域为[,)2se +∞,函数ln x y x =,'21ln x y x -=, 当(0,)x e ∈时,'0y >,所以ln xy x=在(0,)e 单调递增; 当[,)x e ∈+∞时,'0y <,所以ln xy x=在(,)e +∞单调递减, ①当s e >时,函数ln x y x =在(0,)e 单调递增,(,)e s 单调递减,其值域为1(,]e-∞,又12s e e>,不符合题意; ②当0s e <≤时,函数ln xy x =在(0,)s 单调递增,其值域为ln (,]s s-∞,由题意得ln 2s se s≤,即22ln 0s e s -≤; 令22'222()2ln ,()2e s e u s s e s u s s s s-=-=-=,当s >'()0u s >,()u s 在)e 上单调递增;当0s <<'()0u s <,()u s 在上单调递减,所以当s =()u s 有最小值0u =,从而()0u s ≥恒成立,所以,()0u s =,所以s =故答案为:.【点睛】本题考查导数的综合应用,难点在于根据题意分析出()H x 的值域为R ,并由此求出2x y e=和ln x y x =的值域,进行分析,考查分类讨论的思想,属难题.18.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主解析:312e-【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x ef x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e-. 故答案为:312e-. 【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.19.【分析】考虑和两种情况分别计算得到利用均值不等式得到;证明单调递增得到得到答案【详解】当时即对恒成立当时符合题意;当时参变分离得:因为当时等号成立故上式恒成立时;当时即对恒成立参变分离得:令故单调递解析:14a e≤≤【分析】考虑1x ≥和1x <两种情况,分别计算得到211211x a x x x ≤=-++--,利用均值不等式得到4a ≤;x x a e ≥,证明()xx p x e =单调递增,得到1a e ≥,得到答案. 【详解】当1x ≥时,()0f x ≥,即20x ax a -+≥对1x ≥恒成立, 当1x =时,符合题意;当1x >时,参变分离得:211211x a x x x ≤=-++--,因为11241x x -++≥-,当2x =时等号成立,故上式恒成立时4a ≤; 当1x <时,()0f x ≥,即0x ae x -≥对1x <恒成立, 参变分离得:x x a e ≥,令()x x p x e =,()10xxp x e-'=>,故()p x 单调递增, ∴()()11x x p x p e e=<= 要使0x ae x -≥对1x <恒成立,则1a e≥. 综上所述:a 的取值范围为14a e≤≤. 故答案为:14a e≤≤. 【点睛】本题考查了恒成立问题,参数分离转化为函数的最值问题是解题的关键.20.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x+=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】()1ln2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-.∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==-当01x <<时,'()0g x >,当1x >时,'()0g x <,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<. 【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.三、解答题21.(1)2a >;(2)证明见解析. 【分析】(1)利用题中的条件函数有两个极值点,相当于导数等于零有两个解,对函数求导,对函数加以分析,最后求得结果;(2)构造相应的函数,研究函数的图像,找出其对应的最值,最后求得结果. 【详解】解:(1))(211x ax f x x a x x='-+=-+,即方程210x ax -+=有两相异正根,即方程1a x x =+有两相异正根,由1y x x=+图象可知2a >. (2)要证)(2132f x x <-,只要证2222113ln 22x ax x x -+<-, 1x 、2x 为方程210x ax -+=的两根,121=x x ,2221ax x =+.只要证)(2222221311ln 22x x x x -++<-;只要证3222213ln 22x x x x --+<-; 2x 为方程210x ax -+=的较大根,212ax >>. 令)()(32222221ln 12g x x x x x x =--+>. )()(222223ln 12g x x x x '=-+>,)()(222221301g x x x x =-+<'>';)(22223ln 2g x x x +'=-在)(1,+∞上单调减,所以)(()210g x g ''<<恒成立;)(2g x 在)(1,+∞上单调减,)(()2312g x g <=-.【点睛】:思路点睛:该题属于导数的综合题,在做题的过程中,紧紧抓住导数与函数性质的关系,导数大于零单调增,导数小于零,函数单调减,借用二阶导来进一步研究函数的性质,对于不等式的证明问题,注意转化为最值来处理. 22.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x a f x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点.综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 23.(1)2;(2)()1,+∞. 【分析】(1)利用已知条件求出切点坐标,代入到原函数即可得到m 的值;(2)利用已知条件得到cos 2sin x m x >-,令()cos 212sin sin sin x g x x x x=-=-,sin x t =,(]0,1t ∈,得到()12g t t t=-,求导分析函数()g t 的单调性即可得到m 的取值范围.【详解】(1)由题意,函数()cos2sin f x x m x =+,()0,x π∈, 且函数()f x 在2x π=处的切线方程为1y =,所以该函数过点,12π⎛⎫⎪⎝⎭,故cos 2sin 112222f m m m πππ⎛⎫⎛⎫=⨯+=-+=⇒=⎪ ⎪⎝⎭⎝⎭, 所以m 的值为2;(2)对()0,x π∀∈,()0f x >恒成立, 即cos 2sin 0x m x +>, 所以cos 2sin x m x >-,① 又因为()0,x π∈,所以sin 0x >, 故①可化简为cos 2sin xm x>-,② 令()2cos 212sin 12sin sin sin sin x x g x x x x x-=-=-=-,再令sin x t =,则(]0,1t ∈, 所以()12g t t t=-,()2120g t t '=+>, 所以()g t 在(]0,1上单调递增, 故()()max 1211g t g ==-=,又由②式可得,当(]0,1t ∈时,()m g t >恒成立, 所以()max 1m g t >=,综上所述:m 的取值范围是:()1,+∞. 【点睛】结论点睛:利用导数研究不等式恒成立问题.(1)()f x a ≥恒成立()min f x a ⇔≥;()f x a ≥成立()max f x a ⇔≥; (2)()f x b ≤恒成立()max f x b ⇔≤;()f x b ≤成立()min f x b ⇔≤; (3)()()f x g x >恒成立,令()()()F x f x g x =-,则()min 0F x >. 24.(1)答案见解析;(2)[)1,-+∞. 【分析】(1)对实数a 分情况讨论,求导得到导函数的正负,进而得到函数的单调性和极值; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立,令()()ln 0xh x x x x=->,对此函数求导得到函数的单调性和最值即可得到结果. 【详解】(1)函数()ln f x x ax =-的定义域为()0,∞+,()1f x a x'=-. 当0a ≤时,()10f x a x'=->,所以()y f x =在()0,∞+上单调递增,无极值点; 当0a >时,解()10f x a x '=->得10x a <<;解()10f x a x '=-<得1x a>. 所以()y f x =在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以函数()y f x =有极大值点是1a,无极小值点; (2)由条件可得()2ln 00x x ax x --≤>恒成立,则当0x >时,ln xa x x≥-恒成立,令()()ln 0x h x x x x =->,则()221ln x x h x x--'=,令()()21ln 0k x x x x =-->, 则当0x >时,()120k x x x'=--<,所以()y k x =在()0,∞+上为减函数. 又(1)0k =,所以,当()0,1x ∈时,()0h x '>;当()1,x ∈+∞上,()0h x '<. 所以()y h x =在()0,1上为增函数,在()1,+∞上为减函数. 所以()()max 11h x h ==-,所以1a ≥-. 因此,实数a 的取值范围是[)1,-+∞. 【点睛】对于函数不等式恒成立或者有解求参的问题,常用方法有:参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.25.(1)见解析;(2)[1,+∞);(3)证明见解析. 【分析】(1)求导数可得2244(1)(2)ax a y ax x +-'=++,当1a 时函数在[)0+∞,上单调递增;当01a <<时易得函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,不等式()()1f x g x +在[0x ∈,)+∞时恒成立,当01a <<时,不等式00()()1f x g x +不成立,综合可得a 的范围; (3)由(2)的单调性易得11[(1)]122ln k lnk k <+-+,进而可得11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+,将上述式子相加可得结论. 【详解】解:(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增;当01a <<时,由0y '>可得x >∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立,当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立,综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k ∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.【点睛】本题考查导数的综合应用,涉及函数的单调性和恒成立以及不等式的证明,属于中档题. 26.(1)见解析;(2)1.【分析】(1)按照0a ≤、0a >分类,结合导函数的正负即可得解;(2)转化条件为2231ex x ax a ++-≤在[)1,-+∞上恒成立,令()223,1x x ax a g x x e++-=≥-,按照4a ≥、4a <分类,结合导数确定函数()g x 的最大值即可得解.【详解】(1)当0a ≤时,()f x 在R 上单调递减;当0a >时,()xf x a e '=-, 故当ln x a <时,有()0f x '>,所以()f x 在(),ln a -∞单调递增;当ln x a >时,有()0f x '<,所以()f x 在()ln ,a +∞上单调递减;所以当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减;(2)因为当1x ≥-时,()232f x a x ≤--恒成立, 所以2231ex x ax a ++-≤在[)1,-+∞上恒成立,令()223,1x x ax a g x x e++-=≥-, 则()()()()22313e ex x x a x a x x a g x ⎡⎤-+-+--++-⎣⎦'==, ①当31a -≤-即4a ≥时,()0g x '≤,()g x 在[)1,-+∞单调递减, 则要使()()121g a e -=-≤,解得12a e ≤+(不合题意); ②当31a ->-即4a <时,则当()1,3x a ∈--时,()0g x '>,函数()g x 单调递增;当()3,x a ∈-+∞时,()0g x '<,函数()g x 单调递减;则要使()()()()233max 3323631a a a a a a a g x g a e e---+-+--=-==≤ 令31t a =->-,3a t =-,设()3,1t t h t t e +=>-,则要使()1h t ≤, 因为()20et t h t --'=<,所以()h t 在()1,-+∞单调递减, 而()11h >,()21h <,所以整数t 的最小值为2,故整数a 的最大值为1.【点睛】本题考查了利用导数研究函数的单调性及解决不等式恒成立问题,考查了运算求解能力与逻辑推理能力,属于中档题.。
北师大版高中数学选修22第三章导数应用导数在实际问题中的应用一课件41416
解: R q 收 p q 2 入 5 1 q 2q 5 1 q 2
8
8
利 润 LRC25q1q2(1004q)
8
1q2 8
21q10(00q20)0
L'
1 4
q
21
令 L' 0, 即 1q21 0 求得唯一的极值点
q 84
4
因为L只有一个极值点,所以它是最大值.
答:产量为84时,利润L最大.
答:设圆柱底面半径为r,可得r=R(H-h)/H.易得当h=H/3 时, 圆柱体的体积最大.
回顾总结:
1.利用导数解决优化问题的基本思路: 优化问题
建立数学 模型
优化问题的答案
作答
用函数表示的数学问题 解决数学模型
用导数解决数学问题
2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案, 使问题得到解决.在这个过程中,导数往往是一个有利的工具。
北师大版高中数学选修2-2第三章《导 数应用》导数在实际问题中的应用 (一)课件41416
一、教学目标:1、知识与技能:⑴让学生掌握在实际生活中问题的求解方法;⑵会利用导数求解最值。2、过程与方法:通过 分析具体实例,经历由实际问题抽象为数学问题的过程。3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的 思想方法 二、教学重点:函数建模过程
V(40)为极大值,且为最。 大值
答:当箱底边长为x=40时,箱子容积最大,最大值为16000cm3
在实际问题中,如果函数 f ( x )在某区间内 只有一个x0 使f ´(x0)=0,而且从实际问题本身又可 以知道函数在 这点有极大(小)值,那么不与端点 比较, f ( x0 )就是所求的最大值或最小值. (所说区间的也适用于开区间或无穷区间)
导数及其应用课件PPT
3
A. 6
B.0
解析 ∵f′(x)=( x)′=21 x,
1 C.2 x
∴f′(3)=2 1 3=
3 6.
12345
3 D. 2
解析答案
12345
3.设正弦曲线y=sin x上一点P,以点P为切点的切线为直线l,则直线l的
倾斜角的范围是( A ) A.[0,π4]∪[34π,π)
B.[0,π)
C.[π4,34π]
即 y=-12x+ 23+1π2.
解析答案
(2)求曲线 y=sinπ2-x在点 A-π3,12处的切线方程. 解 ∵sinπ2-x=cos x,
∴y′=(cos x)′=-sin x.
∴曲线在点
A-π3,12处的切线的斜率为
k=-sin-π3=
3 2.
∴切线方程为 y-12= 23x+π3,
即 3 3x-6y+ 3π+3=0.
代入y=ex,得y0=1,所以P(0,1).
所以点
P
到直线
y=x
|0-1| 的最小距离为 2 =
2 2.
解后反思
解析答案
返回
当堂检测
1.已知f(x)=x2,则f′(3)等于( C )
A.0
B.2x
C.6
D.9
解析 ∵f(x)=x2,
∴f′(x)=2x,
∴f′(3)=6.
12345
解析答案
2.函数 f(x)= x,则 f′(3)等于( A )
自主学习 重点突破 自查自纠
知识梳理
知识点一 几个常用函数的导数 原函数 f(x)=c f(x)=x f(x)=x2 f(x)=1x
f(x(x)=_1_ f′(x)=_2_x f′(x)=-x12 f′(x)=21 x
高三《导数的应用》说课稿
高三《导数的应用》说课稿以下是作者为大家准备的高三《导数的应用》说课稿(共含4篇),希望对大家有帮助。
篇1:高三《导数的应用》说课稿高三《导数的应用专题》说课稿导数是新课程教材中重要内容,是进一步刻画、研究函数的重要工具,为运用函数思想简捷地解决实际问题提供了广阔的前景。
纵观这几年的高考,考察的力度逐年加大,因此在高三复习中必须引起足够的重视。
在中学数学的新课程中,导数单元作为初等数学和高等数学重要的衔接点,显得格外引人瞩目。
导数的思想及其内涵丰富了对函数等问题的研究方法,已经成为近几年高考数学的一大热点。
另外,导数又具有很强的知识交汇功能,以其为载体的问题情景很多,给师生在复习内容和方法上的选择带来困惑。
从这个意义上说,高三师生采取什么样的策略复习,复习的重点落在何处?显得至关重要。
1、教材分析与考点分析在教材中,导数处于一种特殊的地位。
一方面它是沟通初、高等数学知识的重要衔接点,渗透和加强了对学生由有限到无限的辩证思想的教育,突破了许多初等数学在思想和方法上的障碍,拓宽、优化和丰富了许多数学问题解决的思路、方法和技巧;另一方面它具有很强的知识交汇功能,可以联系多个章节内容,如常与函数、数列、三角、向量、不等式、解析几何等内容交叉渗透,并成为解决相关问题的重要工具。
从高考关于导数单元的考查情况来看,以下两个特点非常明显:(1)循序渐进:从总体上看,高考考查导数的有关知识是循序渐进的过程。
导数的内容刚进入高考数学新课程卷时,其考试要求都是很基本的,以后逐渐加深,分析近几年的高考试题,可以看出高考对导数考查的思路已基本成熟。
考查的基本原则是重点考查导数的概念与应用。
这部分内容的考查一般分为三个层次:第一层次:主要考查导数的概念、求导公式、求导法则和与实际背景有关的问题(如瞬时速度,边际成本,加速度、切线的斜率)第二层次:主要考查导数的.简单应用,包括求函数的极值、最值,求函数的单调区间,证明函数的单调性等。
北师大版高中数学选修2-2第三章《导数应用》导数在实际问题中的应用(二) 课件
3
2
课堂小结:
1、解决优化问题的方法:通过搜集大量的统计数据,建 立与其相应的数学模型,再通过研究相应函数的性质, 提出优化方案,使问题得到解决.在这个过程中,导数 往往是一个有利的工具。 2、导数在实际生活中的应用主要是解决有关函数最大 值、最小值的实际问题, 主要有以下几个方面:(1)、与几何有关的最值问题; (2)、与物理学有关的最值问题;(3)、与利润及其 成本有关的最值问题;(4)、效率最值问题。
L( x ) x (3 x )2 1.52 (3 x ) x 2 1 (3 x )2 1.52 x2 1 0,
x (3 x )2 1.52 (3 x ) x 2 1 , 1.25 x 2 6 x 9 0. 解得 x 1.2 和 x 6 (舍去). 答: ……
2013-8-20
实际生活中的很多优化问题的解决都可归结 为寻求一个量的最值问题,一个量的最值问题转化 为数学问题通常都是求一个函数的最值问题,而函 数的最值问题的解决导数是一个强有力的工具.
利用导数解决优化问题的基本思路: 优化问题
建立数学模型
用函数表示数学问题
解决数学模型
优化问题的答案
2013-8-20
E A D 600 b C
分析:设法把湿周l 求出来,这是关键
B
h
2013-8-20
1 解:由梯形面积公式,得 S= (AD+BC)h,其中 AD=2DE+BC, 2 E D A 3 2 3 DE= h,BC=b∴AD= h+b, 3 3 h 1 2 3 3 600 h 2b)h ( h b)h ① ∴S= ( B C 2 3 3 b h 2 2 h ,AB=CD.∴l= h ×2+b② ∵CD= cos30 3 3
高中数学 课程标准素材 北师大版
一般高中数学课程标准〔实验〕第一局部前言数学是争辩空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。
数学科学是自然科学、技术科学等科学的根底,并在经济科学、社会科学、人文科学的进展中发挥越来越大的作用。
数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合在很多方面直接为社会制造价值,推动着社会生产力的进展。
数学在形成人类理性思维和促进个人智力进展的过程中发挥着独特的、不行替代的作用。
数学是人类文化的重要组成局部,数学素养是公民所必需具备的一种根本素养。
数学教育作为教育的组成局部,在进展和完善人的教育活动中、在形成人们生疏世界的态度和思想方法方面、在推动社会进步和进展的进程中起着重要的作用。
在现代社会中,数学教育又是终身教育的重要方面,它是公民进一步深造的根底,是终身进展的需要。
数学教育在学校教育中占有特殊的地位,它使同学把握数学的根底学问、根本技能、根本思想,使同学表达清楚、思考有条理,使同学具有实事求是的态度、锲而不舍的精神,使同学学会用数学的思考方式解决问题、生疏世界。
一、课程性质高中数学课程是义务教育后一般高级中学的一门主要课程,它包含了数学中最根本的内容,是培育公民素养的根底课程。
高中数学课程对于生疏数学与自然界、数学与人类社会的关系,生疏数学的科学价值、文化价值,提高提出问题、分析和解决问题的力气,形成理性思维,进展智力和创新意识具有根底性的作用。
高中数学课程有助于同同学疏数学的应用价值,增加应用意识,形成解决简洁实际问题的力气。
高中数学课程是学习高中物理、化学、技术等课程和进一步学习的根底。
同时,它为同学的终身进展,形成科学的世界观、价值观奠定根底,对提高全民族素养具有重要意义。
二、课程的根本理念1. 构建共同根底,供应进展平台高中教育属于根底教育。
高中数学课程应具有根底性,它包括两方面的含义:第一,在义务教育阶段之后,为同学适应现代生活和将来进展供应更高水平的数学根底,使他们获得更高的数学素养;其次,为同学进一步学习供应必要的数学预备。
高中数学 第三章 变化率与导数 3_3 计算导数 复合函数的求导法则素材 北师大版选修1-11
复合函数的求导法则(一)基本初等函数的导数公式表推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)(三)复合函数的概念 一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作()()y f g x =。
复合函数的导数 复合函数()()y f g x =的导数和函数()y f u =和()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若()()y f g x =,则()()()()()y f g x f g x g x ''''==⋅⎡⎤⎣⎦(四)典例分析例1求下列函数的导数:(1)2(23)y x =+;(2)0.051x y e -+=;(3)sin()y x πϕ=+(其中,πϕ均为常数).解:(1)函数2(23)y x =+可以看作函数2y u =和23u x =+的复合函数。
根据复合函数求导法则有x u x y y u '''=⋅=2''()(23)4812u x u x +==+。
(2)函数0.051x y e -+=可以看作函数u y e =和0.051u x =-+的复合函数。
根据复合函数求导法则有x u x y y u '''=⋅=''0.051()(0.051)0.0050.005u u x e x e e -+-+=-=-。
(3)函数sin()y x πϕ=+可以看作函数sin y u =和u x πϕ=+的复合函数。
根据复合函数求导法则有x u x y y u '''=⋅=''(sin )()s s()u x co u co x πϕπππϕ+==+。
新课程北师大版高中数学高考必考+选考内容教材目录
必考内容(必修+选修系列1,2)《数学1》(必修)全书共分四章:第一章集合;第二章函数;第三章指数函数和对数函数;第四章函数的应用全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题《数学2》(必修)本书是根据《普通高中数学课程标准(实验)》编写的,包括两部分内容:第一部分是立体几何初步,第二部分是解析几何初步。
全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题《数学3》(必修)本书是根据《普通高中数学课程标准(实验)》编写的。
共分三章:第一章统计,第二章算法初步,第三章概率。
全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率π的值《数学4》(必修)全书共三章:第一章三角函数;第二章平面向量;第三章三角恒等变形。
高中数学_导数及其应用教学设计学情分析教材分析课后反思
教学设计-------导数及其应用一.教学目标知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求最值极值过程与方法:1.通过本节的学习,掌握用导数研究单调性、最值的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
二.教学重难点对于函数导数及其应用,学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由数到形的翻译,从直观到抽象的转变,对学生是比较困难的。
根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。
教学重点:探索研究切线、单调区间、最值和极值。
教学难点:探索函数的单调性与导数的关系。
三.教法分析:1.教学方法的选择:为还课堂于学生,突出学生的主体地位,本节课拟运用“问题--- 解决”课堂教学模式,采用发现式、启发式、讲练结合的教学方法。
通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题,总结规律,培养积极探索的科学精神。
2.教学手段的利用:本节课采用多媒体课件等辅助手段以加大课堂容量,通过数形结合,使抽象的知识直观化,形象化,以促进学生的理解。
3.教学课堂结构知识回顾—问题情境—新课探究—知识运用(例题精讲—变式训练—拓展延伸—能力提升)—课堂小结—作业布置四.学法分析:为使学生积极参与课堂学习,我主要指导了以下的学习方法:1.合作学习:引导学生分组讨论,合作交流,共同探讨问题;2.自主学习:引导学生通过亲身经历,动口、动脑、动手参与数学活动;3.探究学习:引导学生发挥主观能动性,主动探索新知。
五.教学过程:(一)知识回顾从已学过的知识(导数几何意义、求导公式、判断二次函数的单调性、极值)入手,提出新的问题(判断三次函数的单调性、求极值),引起认知冲突,激发学习的兴趣。
高中数学选修2-2-2-3知识点
高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. '4.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=,4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•<3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'=3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )~319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() ° ° ° ° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:!在某个区间(,)a b内,如果()0f x'>,那么函数()y f x=在这个区间单调递增;如果()0f x'<,那么函数()y f x=在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x=的极值的方法是:(1)如果在x附近的左侧()0f x'>,右侧()0f x'<,那么()f x是极大值;(2)如果在x附近的左侧()0f x'<,右侧()0f x'>,那么()f x是极小值;4.函数的最大(小)值与导数`函数极大值与最大值之间的关系.求函数()y f x=在[,]a b上的最大值与最小值的步骤(1)求函数()y f x=在(,)a b内的极值;(2)将函数()y f x=的各极值与端点处的函数值()f a,()f b比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用<3、导数在极值、最值中的应用4、导数在恒成立问题中的应用一、题型一:导数在切线方程中的运用★1.曲线3xy=在P点处的切线斜率为k,若k=3,则P点为()A.(-2,-8)B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=xxy,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为()A.6πB.4πC.3πD.π43*二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x=-+是减函数的区间为( )A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=xxxf,下列说法不正确的是()A.在区间(∞-,0)内,)(xf为增函数B.在区间(0,2)内,)(xf为减函数C.在区间(2,∞+)内,)(xf为增函数D.在区间(∞-,0)),2(+∞⋃内,)(xf为增函数★★3.(05江西)已知函数()y xf x'=的图象如右图所示(其中'()f x是函数()f x的导函数),下面四个图象中()y f x=的图象大致是()(★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(Raxaaxnxxf∈--+-={(Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1fxfya=-=(Ⅱ)当12a≤时,讨论()f x的单调性.A B C D三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) , - 15 , 4 4 , - 15 , - 16★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.、(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。
北师大版高中数学课本目录(2021年整理)
北师大版高中数学课本目录(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版高中数学课本目录(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版高中数学课本目录(word版可编辑修改)的全部内容。
必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3。
2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2。
1 函数概念2。
2 函数的表示法2。
3 映射§3 函数的单调性§4 二次函数性质的再研究4。
1 二次函数的图像4。
2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2。
1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3。
3 指数函数的图像和性质§4 对数4。
1 对数及其运算4.2 换底公式§5 对数函数5。
1 对数函数的概念5。
2 y=log2x的图像和性质5。
3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1。
1 利用函数性质判定方程解的存在1。
2 利用二分法求方程的近似解§2 实际问题的函数建模2。
1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4。
高中数学目录
高中数学目录人教版高中数学分成7册,即选修2册,必修5册必修一第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1交集与并集3.2全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2.1函数的概念2.2函数的表示方法2.3映射§3 函数的单调性§4 二次函数性质的再研究4.1二次函数的图像4.2二次函数的性质§5 简单的幂函数第二章指数函数与对数函数§1 正指数函数§2 指数扩充及其运算性质2.1指数概念的扩充2.2指数运算是性质§3 指数函数3.1指数函数的概念3.2指数函数的图像和性质3.3指数函数的图像和性质§4 对数4.1对数及其运算4.2换底公式§5 对数函数5.1对数函数的概念5.2 的图像和性质5.3对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数的应用§1 函数和方程1.1利用函数性质判定方程解的存在1.2利用二分法求方程的近似解§2 实际问题的函数建模2.1实际问题的函数刻画2.2用函数模型解决实际问题2.3函数建模案例必修二第一章立体几何初步§1 简单几何体1.1简单旋转体1.2简单多面体§2 直观图§3 三视图3.1简单组合体的三视图3.2由三视图还原成实物图§4 空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理§5 平行关系5.1平行关系的判定5.2平行关系的性质§6 垂直关系6.1垂直关系的判定6.2垂直关系的性质§7 简单几何体的面积和体积7.1简单几何体的侧面积7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3球的表面积和体积第二章解析几何初步§1 直线和直线的方程1.1直线的倾斜角和斜率1.2直线的方程1.3两条直线的位置关系1.4两条直线的交点1.5平面直接坐标系中的距离公式§2 圆和圆的方程2.1圆的标准方程2.2圆的一般方程2.3直线与圆、圆与圆的位置关系§3 空间直角坐标系3.1空间直接坐标系的建立3.2空间直角坐标系中点的坐标3.3空间两点间的距离公式必修三第一章统计§1 从普查到抽样§2 抽样方法2.1简单随机抽样2.2分层抽样与系统抽样§3 统计图表§4 数据的数字特征4.1平均数、中位数、众数、极差、方差4.2标准差§5 用样本估计总体5.1估计总体的分布5.2估计总体的数字特征§6 统计活动:结婚年龄的变化§7 相关性§8最小二乘估计第二章算法初步§1 算法的基本思想1.1算法案例分析1.2排序问题与算法的多样性§2 算法框图的基本结构及设计2.1顺序结构与选择结构2.2变量与赋值2.3循环结构§3 几种基本语句3.1条件语句3.2 循环语句第三章概率§1 随机事件的概率1.1频率与概率1.2生活中的概率§2 古典概型2.1古典概型的特征和概率计算公式2.2建立概率模型2.3互斥事件§3 模拟方法——概率的应用必修四第一章三角函数§1 周期现象§2 角的概念的推广§3 弧度制§4 正弦函数和余弦函数的定义与诱导公式4.1任意角的正弦函数、余弦函数的定义4.2单位圆与周期性4.3单位圆与诱导公式§5 正弦函数的性质与图像5.1从单位圆看正弦函数的性质5.2正弦函数的图像5.3正弦函数的性质§6 余弦函数的图像和性质6.1余弦函数的图像6.2余弦函数的性质§7 正切函数7.1正切函数的定义7.2正切函数的图像和性质7.3正切函数的诱导公式§8 函数的图像§9 三角函数的简单应用第二章平面向量§1 从位移、速度、力到向量1.1位移、速度和力1.2向量的概念§2 从位移的合成到向量的加法2.1向量的加法2.2向量的减法§3 从速度的倍数到数乘向量3.1数乘向量3.2平面向量基本定理§4 平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示4.3向量平行的坐标表示§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例7.1点到直线的距离公式7.2向量的应用举例第三章三角恒等变形§1 同角三角函数的基本关系§2 两角和与差的三角函数2.1两角差的余弦函数2.2两角和与差的正弦、余弦函数2.3两角和与差的正切函数§3 二倍角的三角函数必修五第一章数列§1 数列1.1数列的概念1.2数列的函数特性§2 等差数列2.1等差数列2.2等差数列的前n项和§3 等比数列3.1等比数列3.2等比数列的前n项和§4 数列在日常经济生活中的应用第二章解三角形§1 正弦定理与余弦定理1.1正弦定理1.2余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式§1 不等关系1.1不等关系1.2不等关系与不等式§2 一元二次不等式2.1一元二次不等式的解法2.2一元二次不等式的应用§3 基本不等式3.1基本不等式3.2基本不等式与最大(小)值§4 简单线性规划4.1二元一次不等式(组)与平面区域4.2简单线性规划4.3简单线性规划的应用选修2—1第一章常用逻辑用语§1 命题§2 充分条件与必要条件2.1充分条件2.2必要条件2.3充要条件§3 全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定§4 逻辑连结词“且”“或”“非”4.1逻辑连结词“且”4.2逻辑连结词“或”4.3逻辑连结词“非”第二章空间向量与立体几何§1 从平面向量到空间向量§2 空间向量的运算§3 向量的坐标表示和空间向量基本定理3.1空间向量的标准正交分解与坐标表示3.2空间向量基本定理3.3空间向量运算的坐标表示§4 用向量讨论垂直与平行§5 夹角的计算5.1直线间的夹角5.2平面间的夹角5.3直线与平面的夹角§6 距离的计算第三章圆锥曲线与方程§1 椭圆1.1椭圆及其标准方程1.2椭圆的简单性质§2 抛物线2.1抛物线及其标准方程2.2抛物线的简单性质§3 双曲线3.1双曲线及其标准方程3.2双曲线的简单性质§4 曲线与方程4.1 曲线与方程4.2圆锥曲线的共同特征4.3直线与圆锥曲线的交点选修2—2第一章推理与证明§1 归纳与类比1.1归纳推理1.2类比推理§2 综合法与分析法2.1综合法2.2分析法§3 反证法§4 数学归纳法第二章变化率与导数§1 变化的快慢与变化率§2 导数的概念及其几何意义2.1导数的概念2.2导数的几何意义§3 计算导数§4 导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则§5 简单复合函数的求导法则第三章导数的应用§1 函数的单调性与极值1.1导数与函数的单调性1.2函数的极值§2 导数在实际问题中的应用2.1实际问题中导数的意义2.2最大值、最小值问题第四章定积分§1 定积分的概念1.1定积分的背景——面积和路程问题1.2定积分§2 微积分基本定理§3 定积分的简单应用3.1平面图形的面积3.2简单几何体的体积第五章数系的扩充与复数的引入§1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念§2 复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法。
高中数学苏教版教材目录
高中数学苏教版教材目录(必修+选修)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--苏教版-----------------------------------必修-----------------------第1章集合集合的含义及其表示子集、全集、补集交集、并集第2章函数函数的概念函数的概念和图象函数的表示方法函数的简单性质函数的单调性函数的奇偶性映射的概念第3章指数函数、对数函数和幂函数指数函数分数指数幂指数函数对数函数对数对数函数幂函数函数的应用函数与方程函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系 1.平行直线2.异面直线直线与平面的位置关系1.直线与平面平行2.直线与平面垂直平面与平面的位置关系1.两平面平行2.平面垂直空间几何体的表面积和体积空间几何体的表面积空间几何体的体积第2章平面解析几何初步直线与方程直线的斜率直线的方程1.点斜式2.两点式3.一般式两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间直角坐标系空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步算法的意义流程图顺序结构选择结构循环结构基本算法语句赋值语句输入、输出语句条件语句循环语句算法案例第2章统计抽样方法简单随机抽样1.抽签法2.随机数表法系统抽样分层抽样总体分布的估计频率分布表频率分布直方图与折线图茎叶图总体特征数的估计平均数及其估计方差与标准差线性回归方程第3章概率随机事件及其概率随机现象随机事件的概率古典概型几何概型互斥事件-----------------------------------必修4-----------------------------------第1章三角函数任意角、弧度任意角弧度制任意角的三角函数任意角的三角函数同角三角函数关系三角函数的诱导公式三角函数的图象和性质三角函数的周期性三角函数的图象与性质函数y=Asin(ωx+ψ)的图象三角函数的应用第2章平面向量向量的概念及表示向量的线性运算向量的加法向量的减法向量的数乘向量的坐标表示平面向量基本定理平面向量的坐标运算向量的数量积向量的应用第3章三角恒等变换两角和与差的三角函数两角和与差的余弦两角和与差的正弦两角和与差的正切二倍角的三角函数几个三角恒等式-----------------------------------必修5-----------------------------------23第1章 解三角形 1.1正弦定理 1.2余弦定理1.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列等差数列的概念等差数列的通项公式等差数列的前n 项和2.3等比数列等比数列的概念等比数列的通项公式等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题二元一次不等式表示的平面区域二元一次不等式组表示的平面区域 简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 基本不等式的证明基本不等式的应用-----------------------------------选修-------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念平均变化率瞬时变化率——导数3.2导数的运算常见函数的导数函数的和、差、积、商的导数 3.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修-------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏 2.2直接证明与间接证明直接证明间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程曲线与方程求曲线的方程曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算空间向量及其线性运算共面向量定理空间向量基本定理空间向量的坐标表示空间向量的数量积 3.2空间向量的应用直线的方向向量与平面的法向量空间线面关系的判定空间的角的计算-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数的概念平均变化率瞬时变化率——导数1.2导数的运算常见函数的导数函数的和、差、积、商的导数简单复合函数的导数1.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值1.4导数在实际生活中的应用1.5定积分曲边梯形的面积定积分微积分基本定理第二章推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏2.2直接证明与间接证明直接证明间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理二项式定理二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性条件概率事件的独立性2.4二项分布2.5随机变量的均值与方差离散型随机变量的均值离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4------------------------相似三角形的进一步认识平行线分线段成比例定理相似三角形圆的进一步认识圆周角定理圆的切线圆中比例线段圆内接四边形圆锥截线球的性质圆柱的截线圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------二阶矩阵与平面向量矩阵的概念二阶矩阵与平面列向量的乘法几种常见的平面变换恒等变换伸压变换反射变换旋转变换投影变换切变变换变换的复合与矩阵的乘法矩阵乘法的概念矩阵乘法的简单性质逆变换与逆矩阵逆矩阵的概念二阶矩阵与二元一次方程组特征值与特征向量矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------直角坐标系4直角坐标系极坐标系球坐标系与柱坐标系曲线的极坐标方程曲线的极坐标方程的意义常见曲线的极坐标方程平面坐标系中几种常见变换平面直角坐标系中的平移变换平面直角坐标系中的伸缩变换参数方程参数方程的意义参数方程与普通方程的互化参数方程的应用平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------不等式的基本性质含有绝对值的不等式含有绝对值的不等式的解法含有绝对值的不等式的证明不等式的证明比较法综合法和分析法反证法放缩法几个著名的不等式柯西不等式排序不等式算术-几何平均值不等式运用不等式求最大(小)值运用算术-几何平均值不等式求最大(小)值运用柯西不等式求最大(小)值运用数学归纳法证明不等式学习总结报告5。
最新北师大版高中数学高中数学选修2-2第三章《导数应用》测试题(有答案解析)
一、选择题1.已知函数()()ln 0f x ax x a =->有两个零点1x ,2x ,且122x x <,则a 的取值范围是( )A .2,ln 2⎛⎫+∞ ⎪⎝⎭ B .20,ln 2⎛⎫ ⎪⎝⎭C .23,ln 3⎛⎫+∞ ⎪ ⎪⎝⎭ D .230,ln 3⎛⎫⎪ ⎪⎝⎭2.已知函数()ln f x x x =-,则()f x 的图象大致为( )A .B .C .D .3.已知函数23,0()3,0xlnx x x f x x x x ->⎧=⎨+⎩的图象上有且仅有四个不同的点关于直线1y =-的对称点在1y kx =-的图象上,则实数k 的取值范围是( ) A .1(,1)2B .1(2,2)C .(1,2)-D .(1,3)-4.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( )A .(),8-∞-B .()8,-+∞C .(),8-∞D .()8,+∞5.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭6.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭ D .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭7.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <', 且(1)y f x =+为偶函数,(2)1f =,则不等式()x f x e <的解集为( ) A .4(,)e -∞B .4(,)e +∞C .(,0)-∞D .(0,)+∞9.已知f (x )=-x 3-ax 在(-∞,-1]上递减,且g (x )=2x-ax在区间(1,2]上既有最大值又有最小值,则a 的取值范围是( ) A .2a >-B .3a -≤C .32a -≤<-D .32a --≤≤10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.函数()21xy x e =-的图象大致是( )A .B .C .D .12.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.现有一块边长为3的正方形铁片,在铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,则该方盒容积的最大值是______.14.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .15.设()ln f x x =,若函数()()h x f x ax =-在区间()0,8上有三个零点,则实数a 的取值范围______.16.有如下命题:①函数sin y x =与y x =的图象恰有三个交点;②函数sin y x =与y x =③函数sin y x =与2y x 的图象恰有两个交点;④函数sin y x =与3y x =的图象恰有三个交点,其中真命题为_____ 17.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.设函数()f x '是奇函数()f x ()x R ∈的导函数, ()20f -=,当0x >时,()()0xf x f x '-<,则不等式()0f x >的解集为______________.20.已知函数()ln f x x x =-,若()10f x m -+≤恒成立,则m 的取值范围为__________.三、解答题21.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值. 22.已知函数()42ln af x ax x x=--. (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若函数()f x 在其定义域内为增函数,求实数a 的取值范围; (3)设函数6()eg x x=,若在区间[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数a 的取值范围.23.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m ,梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θ π(0)4θ<<. (1)求屋顶面积S 关于θ的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其 高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为何值时,总造价最低?24.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 25.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围. 26.已知函数(),xf x e kx x R =-∈.(1)若k e =,试确定函数()f x 的单调区间; (2)若0k >,且对于任意x ∈R ,()0fx >恒成立,试确定实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据已知可进行分离参数后,构造函数,两个零点1x ,2x ,求解a 的范围和切点,可得1201x x <<<,且()()12f x f x =,结合1x 与2x 的大小关系及函数的性质可求1x 的范围,然后结合函数单调性进行求解即可. 【详解】解:函数()()ln 0f x ax x a =-> 有两个零点1x ,2x , 令()0f x =,可得e xa x=令()e xg x x=即()()2e 1x x g x x-'=, 令()0g x '=,可得1x =, 可得当()0,1x ∈时,则()0g x '<, 当()1,x ∈+∞时,则()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,可得1201x x <<<, (i )若1102x <<,则21120x x >>>,符合题意; (ii )若1112x <<,则2121x x >>, 根据单调性,可得()()122f x f x <, 即()()112f x f x <,可得1111ln 22ln ax x ax x -<-,1ln 2x ∴>,综合(i )(ii )得,1x 的取值范围是()ln 2,1. 又()g x 在()ln 2,1上单调递减,可得()()ln 2g x g >, 即2ln 2a. 故选:A . 【点睛】本题主要考查了导数的几何意义的应用及利用导数求解参数的取值范围,体现了转化思想的应用.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.A解析:A 【解析】函数的定义域为0x ≠ ,当0()ln()x f x x x <⇒=-- ,为增函数,故排除B ,D ,当0()ln x f x x x >⇒=-,'111()x xf x x --==,当1,()0.01()0x f x x f x >'<<⇒'><故函数是先减后增; 故选A .3.C解析:C 【分析】先求出直线1y kx =-关于1y =-对称的直线方程,然后求函数()f x 再0,0x x >≤时的单调性及极值,进而求出k 得取值范围. 【详解】设函数1y kx =-任意一点00(,)P x y 关于直线1y =-对称的点为(,)P x y ', 则00,12y y x x +==-,所以02y y =--, 而P 在函数1y kx =-上,所以21y kx --=-,即1y kx =--, 所以函数1y kx =-恒过定点(0,1)A -,(1)当0x >时,()ln 3f x x x x =-,设直线1y kx =--与()f x 相切于点(,ln 3)C x x x x -,()ln 31ln 13ln 2x x x f x x x x k x-+'=+-=-=-=,整理可得ln 2ln 31x x x x x x -=-+,解得1x =, 所以ln122AC k k =-=-=-; (2)当0x ≤时,()23f x x x =+,设直线1y kx =--与函数()f x 相切于点B 点2(,3)x x x +,()23123x x f x x k x++'=+=-=,整理可得222331(0)x x x x x +=++≤,解得1x =-,所以2(1)31AB k k =-=-+=, 故21k -<-<,即12k -<<时,在0x >时,函数()y f x =与1y kx =--的图象相交有2个交点; 在0x ≤时,函数()y f x =与1y kx =--的图象相交有2个交点,故函数()y f x =与1y kx =--的图象相交有4个交点时的k 的范围是(1,2)-. 故选:C.【点睛】本题主要考查了直线关于直线对称,以及直线与曲线相切的斜率,以及函数与方程的关系的综合应用,着重考查数形结合思想,以及推理与运算能力,属于中档试题.4.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max 182g x g ⎛⎫==- ⎪⎝⎭, 所以8b >-,【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.5.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选.考点:1、导数在研究函数的单调性中的应用.7.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>”8.D解析:D 【详解】()()()()()0()x xf x f x f xg x g x g x e e '-'=∴=<∴单调递减(1)(1)(0)(2)1f x f x f f +=-+∴==因此()g()(0)0x f x e x g x <⇔<⇔> 故选:D9.C解析:C 【分析】利用()f x 导数小于等于零恒成立,求出a 的范围,再由()2'2ag x x x=+在(]1,2上有零点,求出a 的范围,综合两种情况可得结果. 【详解】因为函数()3f x x ax =--在(],1-∞-上单调递减,所以()2'30f x x a =--≤对于一切(],1x ∈-∞-恒成立,得23,3x a a -≤∴≥-, 又因为()2ag x x x=-在区间(]1,2上既有最大值,又有最小值, 所以,可知()2'2ag x x x=+在(]1,2上有零点, 也就是极值点,即有解220ax x+=,在(]1,2上解得32a x =-, 可得82,32a a -≤<-∴-≤<-,故选C. 【点睛】本题主要考查“分离常数”在解题中的应用以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间[],a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围. 10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.A解析:A 【分析】根据函数图象,当12x <时,()210xy x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案.【详解】 解:因为12x <时,()210xy x e =-<,所以C ,D 错误; 因为()'21xy x e =+, 所以当12x <-时,'0y <, 所以()21xy x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减, 所以A 正确,B 错误. 故选:A. 【点睛】本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.12.A解析:A【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解. 【详解】设函数()32f x nx x n =+-,则()232f x nx '=+,当n 时正整数时,可得()0f x '>,则()f x 为增函数, 因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A. 【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n nx n ∈+是解答的关键. 二、填空题13.【分析】根据题意得到方盒底面是正方形边长为高为建立方盒容积的函数模型为再用导数法求解最值【详解】由题意得:方盒底面是正方形边长为高为所以方盒的容积为当时时所以当时取得最大值最大值为2故答案为:2【点 解析:2【分析】根据题意得到方盒底面是正方形,边长为32x -,高为x ,建立方盒容积的函数模型为()2323324129,02V x x x x x x =-⨯=-+<<,再用导数法求解最值. 【详解】由题意得:方盒底面是正方形,边长为32x -,高为x ,所以方盒的容积为()2323324129,02V x x x x x x =-⨯=-+<<, 213122491222V x x x x ⎛⎫⎛⎫'=-+=-- ⎪⎪⎝⎭⎝⎭,当102x <<时,0V '>,1322x <<时,0V '<,所以当12x =时,V 取得最大值,最大值为2. 故答案为:2 【点睛】本题主要考查导数的实际问题中的应用,还考查了运算求解的能力,属于中档题.14.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可. 【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -==cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm ,所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.15.【分析】画出函数图像计算直线和函数相切时和过点的斜率根据图像得到答案【详解】故画出图像如图所示:当直线与函数相切时设切点为此时故解得;当直线过点时斜率为故故答案为:【点睛】本题考查了根据函数零点个数解析:3ln 21,8e ⎛⎫⎪⎝⎭ 【分析】()f x ax =,画出函数图像,计算直线和函数相切时和过点()8,ln8的斜率,根据图像得到答案. 【详解】()()0h x f x ax =-=,故()f x ax =,画出图像,如图所示:当直线与函数相切时,设切点为()00,x y ,此时()ln f x x =,()1'f x x=, 故01a x =,00y ax =,00ln y x =,解得0x e =,01y =,1a e=; 当直线过点()8,ln8时,斜率为3ln 28k =,故3ln 218a e<<. 故答案为:3ln 21,8e ⎛⎫⎪⎝⎭.【点睛】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和综合应用能力.16.②③④【分析】①构造函数求出函数的导数研究函数的导数和单调性进行判断即可;②利用与x 的关系进行转化判断;③设函数利用导数研究其单调性根据零点存在原理得出零点个数判断其真假④设函数利用导数研究其单调性解析:②③④ 【分析】①构造函数()sin f x x x =-,求出函数的导数,研究函数的导数和单调性,进行判断即可;②x 的关系进行转化判断;③设函数()2sin g x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假.④设函数()3sin h x x x =-,利用导数研究其单调性,根据零点存在原理得出零点个数,判断其真假. 【详解】①设()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 为减函数, ∵()0=0f ,∴函数()f x 只有一个零点,即函数sin y x =与y x =的图象恰有一个交点,故①错误, ②由①知当0x >时,sin x x <,当01x <≤sin x x >>,当1x >sin x >,当0x =sin x =,综上当0x >sin x >恒成立,函数sin y x =与y =②正确,③设函数()2sin g x x x =-,则()cos 2g x x x '=-, 又()sin 20g x x ''=--<,所以()g x '在R 上单调递减. 又()01g '=,02g ππ⎛⎫'=-< ⎪⎝⎭所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00g x '= 即当0x x <时,()0g x '>,函数()g x 单调递增. 当0x x >时,()0g x '<,函数()g x 单调递减. 由函数()g x 在()0,x -∞上单调递增且()00g =,所以函数()g x 在(]0-∞,上有且只有一个零点. 由()00g =,函数()g x 在()0,x -∞上单调递增,则()00g x >又21024g ππ⎛⎫=-< ⎪⎝⎭,且函数()g x 在()0x +∞,上单调递减. 所以()g x 在()0x +∞,上有且只有一个零点. 即()g x 在()0+∞,上有且只有一个零点. 所以()g x 有2个零点,即函数sin y x =与2yx 的图象恰有两个交点,故③正确.④设函数()3sin h x x x =-,()h x 为奇函数,且()00h =.所以只需研究()h x 在()0+∞,上的零点个数即可. 则()2cos 3h x x x '=-,则()sin 6h x x x ''=--,所以()cos 60h x x '''=--<,所以()h x ''在()0+∞,上单调递减. 所以当()0x ∈+∞,时,()()00h x h ''''<=,则()h x '在()0+∞,上单调递减. 又()01h '=,203024h ππ⎛⎫'=-⨯< ⎪⎝⎭. 所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00h x '=. 即当00x x <<时,()0h x '>,函数()h x 单调递增. 当0x x >时,()0h x '<,函数()h x 单调递减.()00h =,由函数()h x 在()00x ,上单调递增,则()00h x >又31028h ππ⎛⎫=-< ⎪⎝⎭,且函数()h x 在()0x +∞,上单调递减. 所以()h x 在()0x +∞,上有且只有一个零点. 即()h x 在()0+∞,上有且只有一个零点. 由()h x 为奇函数,所以()h x 在()0-∞,上有且只有一个零点,且()00h =. 所以()h x 有3个零点,即函数sin y x =与3y x =的图象恰有三个交点,故④正确. 故答案为:②③④. 【点睛】本题主要考查命题的真假判断,涉及函数零点个数,利用数形结合或构造函数,利用导数是解决本题的关键.属于中档题.17.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点,等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<, 函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m 的取值范围. 【详解】当0x >时,2ln ()xf x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →;作出函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2. 【点睛】本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】根据当时构造函数求导在上是减函数再根据是奇函数在上是增函数由写出的解集【详解】设所以因为当时则所以在上是减函数又因为是奇函数所以在上是增函数因为所以所以当或时所以不等式的解集为故答案为:【点 解析:(),2(0,2)-∞-⋃【分析】根据当0x >时,()()0xf x f x '-<,构造函数()()f x g x x=,求导 ()()()20xf x f x g x x'-'=<,()g x 在()0,∞+上是减函数,再根据()f x 是奇函数,()g x 在(),0-∞上是增函数,由()20f -=,()20f =,写出()0f x >的解集.【详解】 设()()f x g x x=, 所以()()()2xf x f x g x x '-'=,因为当0x >时,()()0xf x f x '-<,则()0g x '<, 所以()g x 在()0,∞+上是减函数,又因为()f x 是奇函数,所以()g x 在(),0-∞上是增函数, 因为()20f -=,所以()20f =, 所以当2x <- 或02x <<时,()0f x >, 所以不等式()0f x >的解集为(),2(0,2)-∞-⋃. 故答案为:(),2(0,2)-∞-⋃ 【点睛】本题主要考查构造函数,用导数研究函数的单调性解不等式,还考查了运算求解的能力,属于中档题.20.【分析】把代入即恒成立构造利用导数研究最值即得解【详解】则恒成立等价于令因此在单调递增在单调递减故故答案为:【点睛】本题考查了导数在不等式的恒成立问题中的应用考查了学生转化与划归数学运算的能力属于中 解析:[)0,+∞【分析】把()ln f x x x =-,代入()10f x m -+≤,即ln 1m x x ≥-+恒成立,构造()ln 1g x x x =-+,利用导数研究最值,即得解.【详解】()ln f x x x =-,则()10f x m -+≤恒成立,等价于ln 1m x x ≥-+令11()ln 1(0),'()1(0)x g x x x x g x x x x-=-+>=-=> 因此()g x 在(0,1)单调递增,在(1)+∞,单调递减, 故max ()(1)00g x g m ==∴≥ 故答案为:[)0,+∞ 【点睛】本题考查了导数在不等式的恒成立问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.三、解答题21.(1)0;(2)当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a ;(3)1.【分析】(1)令()32(113)x ax g x f x =-=-,根据函数()1y f x =-是奇函数,由()()g x g x -=-求解.(2)求导2()2f x x ax '=-,分0a =,0a >和0a <三种情况,由()0f x '<求解. (3)将()1f x ≥在区间[3,)+∞上恒成立,转化为13a x ≤在区间[3,)+∞上恒成立求解. 【详解】(1)已知函数321()13f x x ax =-+,所以()32(113)x ax g x f x =-=-, 因为函数()1y f x =-是奇函数, 所以()()g x g x -=-,即32321133x ax x ax ⎛⎫-=-- ⎪⎝⎭-, 所以220ax =, 解得0a =.(2)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增; 当0a >时,由()0f x '<得:02x a <<; 当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ; 当0a <时,()f x 的单调递减区间是(2,0)a . (3)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立. 所以13a x ≤在区间[3,)+∞上恒成立. 因为3x ≥,所以113x ≥. 所以1a ≤.所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<; 22.(1) 3y x = (2) 1[,)2+∞(3)28(,)41ee +∞- 【分析】(1)求出f (x )的导数,求出f′(1),f (1),代入切线方程即可;(2)求出函数的导数,通过讨论a 的范围结合二次函数的性质得到函数的单调性,从而求出a 的具体范围;(3)构造函数ϕ(x )=f (x )﹣g (x ),x ∈[1,e],只需ϕ(x )max >0,根据函数的单调性求出ϕ(x )max ,从而求出a 的范围. 【详解】(1)解: 当1a =时,()142ln f x x x x =--,()1412ln13f =--=, ()212'4f x x x=+-, 曲线()f x 在点()()1,1f 处的斜率为()'13f =, 故曲线()f x 在点()()1,1f 处的切线方程为()331y x -=-,即3y x =(2)解: ()222242'4a ax x a f x a x x x-+=+-=. 令()242h x ax x a =-+,要使()f x 在定义域()0,+∞内是增函数,只需()h x ≥0在区间()0,+∞内恒成立. 依题意0a >,此时()242h x ax x a =-+的图象为开口向上的抛物线,()211444h x a x a a a ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,其对称轴方程为()10,4x a =∈+∞,()min 14h x a a =-,则只需14a a -≥0,即a ≥12时,()h x ≥0,()'f x ≥0,所以()f x 定义域内为增函数,实数a 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. (3)解: 构造函数()()()x f x g x φ=-,[]1,x e ∈,依题意()max 0x φ>, 由(2)可知a ≥12时,()()()x f x g x φ=-为单调递增函数, 即()1642ln e x a x x x x φ⎛⎫=--- ⎪⎝⎭在[]1,e 上单调递增, ()()max 1480x e a e e φφ⎛⎫==--> ⎪⎝⎭,则2288214142eea e e e >>=>-,此时,()()()0e f e g e φ=->,即()()f e g e >成立. 当a ≤2841e e -时,因为[]1,x e ∈,140x x->, 故当x 值取定后,()x φ可视为以a 为变量的单调递增函数, 则()x φ≤281642ln 41e ex x e x x ⎛⎫--- ⎪-⎝⎭,[]1,x e ∈, 故()x φ≤281642ln 041e ee e e e e⎛⎫---= ⎪-⎝⎭, 即()f x ≤()g x ,不满足条件. 所以实数a 的取值范围是28,41e e ⎛⎫+∞ ⎪-⎝⎭. 【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题. 23.(1)1600cos 4S πθθ⎛⎫=<< ⎪⎝⎭;(2)当θ为π6时该别墅总造价最低 【分析】(1)由题知FH ⊥HM ,在Rt △FHM 中,所以5FM cos θ=,得△FBC 的面积25cos θ,从而得到屋顶面积FBC ABFE 160S 2S2S cos θ梯形=+=;(2)别墅总造价为y S k h 16k =⋅+⋅=2sin θ80k 96k cos θ-⎛⎫⋅+ ⎪⎝⎭,令()2sin θf θcos θ-=,求导求最值即可 【详解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM .在Rt △FHM 中,HM = 5,FMH θ∠=,所以5FM cos θ=. 因此△FBC 的面积为1525102cos θcos θ⨯⨯=. 从而屋顶面积FBC ABFE S 2S2S =+梯形 252516022 2.2cos θcos θcos θ=⨯+⨯⨯=. 所以S 关于θ的函数关系式为160S cos θ=(π0θ4<<). (2)在Rt △FHM 中,FH 5tan θ=,所以主体高度为h 65tan θ=-. 所以别墅总造价为y S k h 16k =⋅+⋅()160k 65tan θ16k cos θ=⋅+-⋅ 16080sin θk k 96k cos θcos θ=-+ 2sin θ80k 96k cos θ-⎛⎫=⋅+ ⎪⎝⎭记()2sin θf θcos θ-=,π0θ4<<, 所以()22sin θ1f θcos θ-=', 令()f θ0'=,得1sin θ2=,又π0θ4<<,所以πθ6=. 列表:θπ06⎛⎫ ⎪⎝⎭, π6ππ64⎛⎫ ⎪⎝⎭, ()f θ'-+()f θ3所以当πθ6=时,()f θ有最小值. 答:当θ为π6时该别墅总造价最低. 【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S 表示为θ函数是关键,求最值要准确,是中档题24.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+.令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.25.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间. (2)m <0 . 【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m,令:21()(2)022xxx e f x xe x e x x =+'=+=∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <026.(1)增区间是()1,+∞,递减区间是(),1-∞;(2)0k e <<. 【详解】试题分析:(1)借助题设条件运用导数与函数单调性之间的关系求解;(2)借助题设运用等价转化的思想及导数的知识求解. 试题(1)由k e =得()xf x e ex =-,所以()x f x e e '=-.由()'0fx >得1x >,故()f x 的单调递增区间是()1,+∞, 由()'0f x <得1x <,故()f x 的单调递减区间是(),1-∞.(2)由()()fx f x -=可知()f x 是偶函数. 于是等价于()0f x >对任意0x ≥成立.由()0xf x e k ='-=得ln x k =.①当(]0,1k ∈时,()()100xf x e k k x =->-≥≥',此时()f x 在[)0,+∞上单调递增. 故()()010f x f ≥=>,符合题意. ②当()1,k ∈+∞时,ln 0k >.当x 变化时()'fx ,()f x 的变化情况如下表:由此可得,在0,+∞上,ln ln f x f k k k k ≥=- 依题意,ln 0k k k ->,又1,1k k e >∴<<.<<.综合①②得,实数k的取值范围是0k e也可以分离用最值研究.考点:导数与函数的单调性之间的关系及分析转化法等有关知识和方法的综合运用.。
高中新课标课本目录
普通高中课程标准实验教科书教材目录数学(人教A版)语文(人教版)英语(人教版)物理(人教版)化学(人教版)生物(人教版)政治(人教版)地理(湘教版)历史(人民版)第 1 页共31 页(人教A版)普通高中课程标准实验教科书数学必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用(人教A版)普通高中课程标准实验教科书数学必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系(人教A版)普通高中课程标准实验教科书数学必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码(人教A版)普通高中课程标准实验教科书数学必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx(人教版)普通高中课程标准实验教科书语文必修ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换(人教A版)普通高中课程标准实验教科书数学必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列第 2 页共31 页阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式(人教A版)普通高中课程标准实验教科书数学选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分(人教A版)普通高中课程标准实验教科书数学选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4.1 流程图4.2结构图信息技术应用用Word2002绘制流程图(人教A版)普通高中课程标准实验教科书数学选修2 (系列2由3个模块组成)选修2-1常用逻辑用语圆锥曲线空间中的向量与立体几何选修2-2导数及其应用推理与证明数系的扩充与复数的引入选修2-3计数原理统计案例概率(人教A版)普通高中课程标准实验教科书数学选修3 (系列3由6个模块组成)选修3-1 数学史选讲选修3-2 信息安全与密码选修3-3球面上的几何选修3-4对称与群选修3-5欧拉公式与闭曲面分类选修3-6三等分角与数域扩充(人教A版)普通高中课程标准实验教科书数学选修4 (系列4由10专题组成)选修4-1几何证明选讲选修4-2矩阵与变换选修4-3数列与差分选修4-4坐标系与参数方程(人教A版)普通高中课程标准实验教科书数学选修4-5——不等式选讲第一章不等式的基本性质和证第 3 页共31 页明的基本方法第一节不等式的基本性质和一元二次不等式的解法第二节基本不等式第三节绝对值不等式的解法第四节绝对值的三角不等式第五节不等式证明的基本方法第二章柯西不等式与排序不等式及其应用第一节柯西不等式第二节排序不等式第三节平均值不等式(选学)第四节最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式第一节数学归纳法原理第二节用数学归纳法证明不等式,贝努利不等式选修4-6初等数论初步选修4-7优选法与试验设计初步选修4-8统筹法与图论初步选修4-9风险与决策选修4-10开关电路与布尔代数(人教版)普通高中课程标准实验教科书语文必修1第一单元1*、沁园春·长沙——毛泽东32、诗两首雨巷——戴望舒 6再别康桥——徐志摩 83、大堰河——我的保姆艾青10第二单元4、烛之武退秦师——《左传》165、荆轲刺秦王——《战国策》186、鸿门宴——司马迁 22第三单元7、记念刘和珍君——鲁迅278、小狗包弟——巴金 329*、记梁任公先生的一次演讲——梁实秋 36第四单元10、短新闻两篇别了,“不列颠尼亚”——周婷杨兴 39奥斯维辛没有什么新闻——罗森.塔尔 4111、包身工——夏衍 4412*、飞向太空的航程——贾永曹智白瑞雪 52(人教版)普通高中课程标准实验教科书语文必修2第一单元1、荷塘月色——朱自清2、故都的秋——郁达夫3*、囚绿记——陆蠡第二单元4、《诗经》两首《氓》《采薇》5、离骚——屈原6*、《孔雀东南飞》(并序)7*、诗三首涉江采芙蓉——《古诗十九首》短歌行——曹操归园田居(其一)——陶渊明第三单元8、兰亭集序——王羲之9、赤壁赋——苏轼10*、游褒禅山记——王安石第四单元11、就任北京大学校长之演说——蔡元培12、我有一个梦想——马丁·路德·金13*、在马克思墓前的讲话——恩格斯(人教版)普通高中课程标准实验教科书语文必修3第一单元1、林黛玉进贾府——曹雪芹2、祝福——鲁迅3 *、老人与海——海明威第二单元4、蜀道难——李白5、杜甫诗三首秋兴八首(其一)咏怀古迹(其三)登高6、琵琶行(并序)白居易7*、李商隐诗两首锦瑟马嵬(其二)第三单元8、寡人之于国也——《孟子》9、劝学——《荀子》10*、过秦论——贾谊第 4 页共31 页11*、师说——韩愈第四单元12、动物游戏之谜/周立明13、宇宙的边疆/卡尔·萨根14*、一名物理学家的教育历程/加来道雄(人教版)普通高中课程标准实验教科书语文必修4第一单元1、窦娥冤/关汉卿2、雷雨/曹禹3*、哈姆莱特/莎士比亚第二单元4、柳永词两首望海潮(东南形胜)雨霖铃(寒蝉凄切)5、苏轼词两首念奴娇·赤壁怀古定风波(莫听穿林打叶声)6、辛弃疾词两首水龙吟·登建康赏心亭永遇乐·京口北固亭怀古7*、李清照词两首醉花阴(薄雾浓云愁永昼)声声慢(寻寻觅觅)第三单元8、拿来主义/鲁迅9、父母与孩子之间的爱/弗罗姆10*、短文三篇热爱生命/蒙田人是一根能思想的苇草/帕斯卡尔信条/富尔格姆第四单元11廉颇蔺相如列传/司马迁12苏武传/班固13*张衡传/范晔(人教版)普通高中课程标准实验教科书语文必修5第一单元1、林教头风雪山神庙/施耐庵2、装在套子里的人/契诃夫3*、边城/沈从文第二单元4、归去来兮辞(并序/)陶渊明5、滕王阁序/王勃6*、逍遥游/庄周7*、陈情表/李密第三单元8、咬文嚼字 /朱光潜9*、说“木叶”/林庚10*、谈中国诗/钱钟书第四单元11、中国建筑的特征/梁思成12、作为生物的社会/刘易斯·托马斯13*、宇宙的未来/史蒂芬·霍金(人教版)普通高中课程标准实验教科书语文·选修1影视名作欣赏城南旧事——别样离愁,纯美格调魂断蓝桥——爱情地久天长阿甘正传——英雄源自凡人淘金记——含着眼泪的笑卧虎藏龙——侠与人,心与剑音乐之声——乘着歌声飞翔海底总动员——父子亲情的颂歌三国演义——历史是由人书写的故宫——中华文明的盛宴(人教版)普通高中课程标准实验教科书语文·选修2中国古代诗歌散文欣赏诗歌之部第一单元以意逆志,知人论世长恨歌/白居易5湘夫人/屈原9拟行路难(其四)/鲍照12蜀相/杜甫14书愤/陆游16咏怀八十二首(其一)/阮籍18杂诗十二首(其二)/陶渊明18越中览古/李白19一剪梅/李清照20今别离(其一)/黄遵宪20第二单元置身诗境,缘景明情春花江月夜/张若虚25夜归鹿门歌/孟浩然 28梦游天姥吟留别/李白30登岳阳楼/杜甫33菩萨蛮/(其二)/韦庄35积雨辋川庄作/王维36旅夜书怀/杜甫36新城道中(其一)/苏轼37扬州慢/姜夔37长相思/纳兰性德38第 5 页共31 页第三单元因声求气吟咏诗韵将进酒/李白41阁夜/杜甫43李凭箜篌引/李贺45虞美人/李煜47苏幕遮/周邦彦50国殇/屈原52燕歌行/高适53登柳州城楼寄漳汀封连四州/柳宗元54菩萨蛮/温庭筠55般涉调哨遍高祖还乡/睢景臣55中国古代诗歌发展概述散文之部第四单元创造形象诗文有别过小孤山大孤山/陆游68庖丁解牛/《庄子》71项羽之死/司马迁73阿房宫赋/杜牧77西门豹治邺/褚少孙80大铁椎传/魏禧81第五单元散而不乱,气脉中贯六国论/苏洵85伶官传序/欧阳修88祭十二郎文/韩愈91 文与可画筼筜谷偃竹记/苏轼94狱中杂记/方苞97陶庵梦忆序/张岱99第六单元文无定格,贵在鲜活种树郭槖驼传/柳宗元子路、曾晳、冉有、公西华侍坐/《论语》107春夜宴从弟桃花园序/李白110项脊轩志/归有光 111游沙湖/苏轼 114苦斋记/刘基 114中国古代散文发展概述117(人教版)普通高中课程标准实验教科书语文·选修3中国现当代散文鉴赏第一单元抨击时弊忧思家国1、灯下漫笔(节选)/鲁迅2、大连丸上/萧军3、道士塔/余秋雨第二单元峥嵘岁月挥斥方遒4、风景谈/茅盾5、娘子关前/周立波6、菜园小记/吴伯萧第三单元纵论快乐阐释哲理7、渐/丰子恺8、论快乐/钱钟书9、觅渡,觅渡,渡何处?/梁衡第四单元感悟自然陶冶性灵10、钓台的春昼/郁达夫11、荷塘月色/朱自清12、长江三日/刘白羽第五单元思亲忆友展示情怀13、我的母亲/老舍14、春联儿/叶圣陶15、应该有天堂/周国平第六单元天涯赤子心系中华16、听听那冷雨/余光中17、豆腐颂/林海音18、老家的/树郭枫(人教版)普通高中课程标准实验教科书语文·选修4中国文化经典研读第一单元入门四问今天为什么还要阅读经典?/刘梦溪(8)读《经典常谈》/叶圣陶(10)第二单元儒道互补1 《论语》十则(15)2 《老子》五章(16)孟子见梁惠王《孟子》(17)胠箧《庄子》(17)论中国文化梁漱溟(21)第三单元春秋笔法3 晋灵公不君《左传》(25)直书刘知几(26)怎样研究中国历史翦伯赞(30)第四单元修齐治平4 《大学》节选(35)《中庸》节选(36)院士谈做人(40)第五单元佛理禅趣5 《坛经》两则(43)《百喻经》六则(44)诗与禅(节选)/袁行霈(47)第六单元家国天下6 求谏吴兢(50)原君(节选)/黄宗羲(51)海瑞骂皇帝/吴晗(55)第七单元天理人欲7 《朱子语类》三则/朱熹(58)童心说/李贽(59)人生的境界/冯友兰(63)第八单元科学之光8 《天工开物》两则/宋应星(66)麻叶洞天/徐霞客(68)科学素养,你具备吗?/李将辉(71)第九单元经世致用第 6 页共31 页9 《日知录》三则/顾炎武(76)浙东学术/章学诚(77)鲁迅论读书王瑶(80)第十单元人文心声10 《人间词话》十则/王国维(85)红楼梦评论(节选)/王国维(87)人境庐诗草自序/黄遵宪(88)中国文化与现代化/张岱年(91)(每单元都由经典原文、相关读物、大视野组成)(人教版)普通高中课程标准实验教科书语文·选修5新闻阅读与实践第一章新闻是什么?第二章消息:带着露珠的新闻1 、动态消息两篇奥运会第一枚金牌为我夺得/孙杰(21)14名下岗工竞得道路保洁权/于晓波等(21)2、综合消息两篇课能否晚一点儿/邓兴军等(23)我国科学家首次确认雅鲁藏布江大峡谷为世界第一大峡谷/张继民(24)3、外国消息两篇东京宣布无条件投降美联社(26)周恩来总理逝世北京沉浸在悲痛之中/比昂尼克(26)4、广播电视消息两篇打工仔成为国家计委座上宾/邱建浩等(28)WTO第四次部长级会议审议通过中国加入WTO/肖振生等(29)第三章通讯:讲述新闻故事5、彭德怀印象/埃德加·斯诺(35)6 、世界选择北京/王军等(38)7 、中国市场:人人都想分享的蛋糕/吴晓东(42)8 、风雨入世路中国与WTO/郭亮等(46)第四章特写:镜头式的新闻片断9 、毛泽东先生到重庆/彭子冈(56)10、梦碎雅典杨明/马小林(59)11、漫步在无人区/理查德·克雷默(61)第五章新闻评论:媒体的观点12 社论两篇中华民族的百年盛事《人民日报》社论(68)时代的轴线在此拉开《大公报》社论(69)13短评两篇奴隶与盗贼/梁启超(72)台上他讲,台下讲他/王道衍(72)14 外国评论两篇车文明《朝日新闻》评论员(74)我们一定是疯了/理查德·艾里古德(74)第六章报告文学:交叉的新闻与文学15 儒学飞人/陈祖芬(82)16 澳星风险发射/李鸣生(88)(每章都由导引、阅读、实践组成)(人教版)普通高中课程标准实验教科书语文·选修6先秦诸子选读第一单元《论语》选读一、天下有道,丘不与易也二、当仁,不让于师三、知之为知之,不知为不知四、己所不欲,勿施于人五、不义而富且贵,于我如浮云*六、有教无类七、好仁不好学,其蔽也愚第二单元《孟子》选读一、王好战,请以战喻二、王何必曰利三、民为贵四、乐民之乐,忧民之忧*五、人和六、我善养吾浩然之气七、仁义礼智,我固有之第三单元《荀子》选读大天而思之,孰与物畜而制之第四单元《老子》选读有无相生第五单元《庄子》选读一、无端崖之辞二、鹏之徙于南冥*三、东海之大乐四、尊生五、恶乎往而不可第六单元《墨子》选读一、兼爱二、非攻*三、尚贤第七单元《韩非子》选读一、郑人有且买履者*二、子圉见孔子于商太宰第7 页共31 页(人教版)普通高中课程标准实验教科书语文·选修7中国现代诗歌散文欣赏诗歌部分第一单元生命的律动精读:天狗(郭沫若)(1)略读:井(杜运燮)(3)春(穆旦)(4)题(邹荻帆)(5)川江号子(蔡其矫)(7)走进诗的世界第二单元挚情的呼唤精读:贺新郎(毛泽东)(11)略读:也许——葬歌(闻一多)(12)一个小农家的暮(刘半农)(13)秋歌——给暖暖(痖弦)(15)妈妈(江非)(16)诗的发现第三单元爱的心语精读:蛇(冯至)(22)略读:预言(何其芳)(23)窗(陈敬容)(25)你的名字(纪弦)(27)神女峰(舒婷)(28)诗的意象第四单元大地的歌吟精读:河床(昌耀)(37)略读:金黄的稻束(郑敏)(39)地之子(李广田)(40)半棵树(牛汉)(42)边界望乡(洛夫)(43)诗的语言第五单元苦难的琴音精读:雪落在中国的土地上(艾青)(50)略读:老马(臧克家)(53)憎恨(绿原)(54)这是四点零八分的北京(食指)(56)雪白的墙(梁小斌)(57)诗的鉴赏散文部分第一单元那一串记忆的珍珠精读:动人的北平(林语堂)(64)略读:汉家寨(张承志)(67)特利尔的幽灵(梁衡)(70)现代散文的形与神第二单元心灵的独白精读:新纪元(李大钊)(78)略读:捉不住的鼬鼠——时间片论(周涛)(80)美(曹明华)(83)现代散文的情与理第三单元一粒沙里见世界精读:都江堰(余秋雨)(89)略读:Kissing the Fire(吻火)(梁遇春)(92)合欢树(史铁生)(93)现代散文的小与大第四单元如真似幻的梦境精读:森林中的绅士(茅盾)(99)略读:云霓(丰子恺)(101)埃菲尔铁塔的沉思(张抗抗)(103)现代散文的虚与实第五单元自然的年轮精读:葡萄月令(汪曾祺)(108)略读:光(杨必)(112)树(节选)(林燿德)(115)现代散文的疏与密(人教版)普通高中课程标准实验教科书语文·选修8中国民俗文化第一单元节日第二单元衣食住行第三单元琴棋书画第四单元风俗第五单元礼节第六单元神鬼故事第七单元传说故事(人教版)普通高中课程标准实验教科书语文·选修9中国小说欣赏第一单元历史与英雄1《三国演义》曹操献刀2《水浒传》李逵负荆第二单元谈神说鬼寄幽怀3《西游记》孙悟空大战红孩儿4《聊斋志异》香玉王六郎第三单元人情与世态5“三言”玉堂春6《红楼梦》情真意切释猜嫌第四单元从士林到官场7《儒林外史》匡超人8《官场现形记》兄弟阋墙第五单元家族的记忆9《家》祖孙之间10《白鹿原》家族的学堂第六单元女性的声音11《呼兰河传》小团圆媳妇之死12《长恨歌》围炉夜话第七单元情系乡土第8 页共31 页13《小二黑结婚》(节选)14《平凡的世界》做客第八单元人在都市15《子夜》吴老太爷进城16《骆驼祥子》高妈第九单元烽火岁月17《红旗谱》朱老巩护钟18《红高粱》罗汉大爷(人教版)普通高中课程标准实验教科书语文·选修10中外戏剧名作欣赏第一单元索福克勒斯与《俄狄浦斯王》第二单元莎士比亚与《罗密欧与茱丽叶》第三单元汤显祖与《牡丹亭》第四单元莫里哀与《伪君子》第五单元易卜生与《玩偶之家》第六单元契诃夫与《三姐妹》第七单元曹禺与《北京人》第八单元老舍与《茶馆》第九单元贝克特与《等待戈多》(人教版)普通高中课程标准实验教科书语文·选修11外国诗歌散文欣赏(每单元由导言、讲读、自主阅读思考与探究组成)诗歌欣赏第一单元诗歌是跳舞,散文是走路1、老虎/布莱克2、秋歌/魏尔伦3、三棵树米/斯特拉尔自主阅读1 我自己的歌(之一)/惠特曼2 严重的时刻/里尔克3 黑马布/罗茨基第二单元自然而然的情感流露1、故乡/荷尔德林2、西风/颂雪莱3、当你老了/叶芝自主阅读1秋颂/济慈2不是死,是爱/勃朗宁夫人3狗之歌/叶赛宁第三单元像闻玫瑰花一样闻到思想1、漫游者的夜歌/歌德292、石榴/瓦雷里303、雪夜林边驻脚/弗罗斯特31自主阅读1鲁拜六十六首(节选)/海亚姆322园丁集(节选)/泰戈尔343你无法扑灭一种火/狄金森35第四单元寻找文字的炼金术1、应和/波德莱尔392、刘彻/庞德403、窗前晨景/艾略特41自主阅读1元音/兰波422朦胧中所见的生活/帕斯433恋人/艾吕雅44散文欣赏第五单元让故事本身说话1、我与绘画的缘分/丘吉尔492、带着鲑鱼去旅游/艾柯52自主阅读1难忘的经历/茨威格542夜行的驿车巴/乌斯托夫斯基60第六单元准确把握人物精神1、自画像/蒙田712、贝多芬百年祭/萧伯纳73自主阅读1悼念乔治·桑/雨果772卡莱尔/爱默生79第七单元与自然为友1、英国乡村/欧文852、寂寞/梭罗89自主阅读1堤契诺秋日/黑塞952京都四季/水上勉98第八单元让生命沉思1、奴性/纪伯伦1042、懒惰哲学趣话/伯尔106自主阅读1、给罗曼罗兰的一封信/托尔斯泰1082、通向友人之路(节选)普里什文114(人教版)普通高中课程标准实验教科书语文·选修12语言文字应用第一课走进汉语的世界1第一节美丽而奇妙的语言——认识汉语第二节古今言殊——汉语的昨天和今天第三节四方异声——普通话和方言第二课千言万语总关“音” 16第一节字音档案——汉字的注音方法第9 页共31 页第二节耳听为虚——同音字和同音词第三节迷幻陷阱——“误读”和“异读”第四节声情并茂——押韵和平仄第三课神奇的汉字37第一节字之初,本为画——汉字的起源第二节规矩方圆——汉字的简化和规范第三节方块的奥妙——汉字的结构第四节咬文嚼字——消灭错别字第四课词语万花筒59第一节看我“七十二变”——多义词第二节词语的兄弟姐妹——同义词第三节每年一部“新词典”——新词语第四节中华文化的智慧之花——熟语第五课言之有“理” 80第一节“四两拨千斤”——虚词第二节句子“手牵手”——复句和关联词第三节有话“好好说”——修改病句第四节说“一”不“二”——避免歧义第六课语言的艺术97第一节语不惊人死不休——选词和炼句第二节语言表达的十八般武艺——修辞手法第三节淡妆浓抹总相宜——语言的色彩第四节入乡问俗——语言和文化(人教版)普通高中课程标准实验教科书语文·选修13外国小说欣赏(每单元由“阅读”、“话题”“思考与实践”组成)第一单元桥边的老人[美国]海明威(1)*墙上的斑点[英国]弗吉尼亚·伍尔芙(3)话题:叙述——叙述角度叙述人称 *叙述腔调 *速度控制第二单元炮兽[法国]雨果(11)*安东诺夫卡苹果[俄国]蒲宁(17)话题:场景——在场景中生活场景的功能 *风景的意义 *现代小说的场景观第三单元丹柯[苏联]高尔基(34)*炼金术士[巴西]保罗·戈埃罗(37)话题:主题——小说的灵魂主题的形成主题的实现*主题的选择与开掘 *主题观的演变第四单元娜塔莎 [俄国]列夫·托尔斯泰(49)*素芭[印度]泰戈尔(55)话题:人物——“贴着人物写”揣摩人物的心理描摹人物的语言与行动*“圆形人物”与“扁平人物” *人物在现代小说中的退隐第五单元清兵卫与葫芦[日本]志贺直哉(64)*在桥边 [德国]伯尔(67)话题:情节——以情节为主线的小说情节运行的方式 *情节运行的动力第六单元牲畜林[意大利]卡尔维诺(72)*半张纸[瑞典]斯特林堡(76)话题:结构——谋篇布局 *结构的“常”与“变”第七单元山羊兹拉特[美国]艾萨克·什维斯·辛格(80)*礼拜二午睡时刻[哥伦比亚]加西亚·马尔克斯(83)话题:情感——情感的魅力情感的处理 *情感是小说的动力 *现代小说:激情过后第八单元沙之书[阿根廷]博尔赫斯(91)*骑桶者 [奥地利]卡夫卡(94)话题:虚构——对虚构的确认虚构使我们富有 *事实与真实的区别(人教版)普通高中课程标准实验教科书语文·选修14演讲与辩论(每单元由范例学习、相关连接和综合实践组成)第一单元中国人民站起来了第10 页共31 页在岭南大学黄花岗纪念会的演说在葛底斯堡的演说第二单元爱国要培养完全的人格未有天才之前诺贝尔和平奖颁奖演说第三单元学做一个人书,知识的大厦在巴尔扎克葬礼上的演说第四单元演讲两篇数学的光彩走向社会毕业赠言告别演说第五单元支持物种起源的学说交朋友应多多益善还是少而精高中生出国利弊之辩第六单元蛊惑青年与鬼神的踪迹买刀的杀人要刀店负责吗?齐桓晋文之事(人教版)普通高中课程标准实验教科书语文·选修15中外传记作品选读精读第一课杜甫:“万方多难”中成就的“诗圣”冯至(1)第二课鲁迅:深刻与伟大的另一面是平和萧红(26)第三课毛泽东:忆往昔,峥嵘岁月稠埃德加·斯诺笔录(49)第四课贝多芬:扼住命运的咽喉罗曼·罗兰(67)第五课达尔文:兴趣与恒心是科学发展的动力欧文·斯通(86)第六课马克思:献身于实现人类理想的社会海因里斯·格姆科夫等(105)略读第七课沈从文:逆境也是生活的恩赐沈从文(126)第八课杨振宁:合壁中西科学文化的骄子学东等(141)课外阅读蒙哥马利:强者是不断挑战自己李政(154)比尔·盖茨:IT英雄的成功之道莫克李群(156)(人教版)普通高中课程标准实验教科书语文·选修16 文章写作与修改第一章写作的多样性与独特性第一节写出自己的个性第二节联想与想象第三节第三节学会沟通第二章材料的使用与处理第一节从素材到写作内容第二节材料的有机转化第三节材料的压缩与扩展第三章认识的深化与成篇第一节捕捉“动情点”第二节理性思维的深化第三节培养创新意识第四章文章的修改与完善第一节整体的调整第二节局部的完善第三节语言的锤炼[1](人教版)普通高中课程标准实验教科书英语Book1Unit 1 Friendship(直接引语变间接引语1)it强调句结构Unit 2 English around the world(直接引语变间接引语2)even if引导的让步状语从句Unit 3 Travel journal (现在进行时态表将来1)主语+ be +形容词+动词不定式Unit 4 Earthquakes (现在进行时态表将来2)as if状语从句;It isno wonder that从句Unit 5 Nelson Mandela - a modernhero(关系副词when, where, why引导的定语从句)There was a timewhen从句(人教版)普通高中课程标准实验教科书英语Book2Unit 1 Cultural relics(非限制性定语从句)There is no doubtthat从句Unit 2 The Olympic Games (一般将来时的被动语态)the+adj.比较级,the+adj.比较级第11 页共31 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 导数在实际问题中的应用
导数概念具有很强的实际背景,而我们在实际问题当中总是能够遇到大量的需要应用导数知识来解决的问题,可以说,导数的知识构成一种思路.
在生产建设和科学技术中,要求“用料最省”“体积最大”“效率最高”等问题时,往往可以归纳为求函数的最大值和最小值的问题.这就是导数知识应用的一个方面. 高手支招1细品教材
一、实际问题中导数的意义
1.导数在实际生活中的应用
(1)与几何有关的最值问题;
(2)与物理学有关的最值问题;
(3)与利润及其成本有关的最值问题;
(4)效率最值问题.
2.解决问题的思路
(1)审题:理解文字表达的题意,分清条件和结论,找出问题的主要关系;
(2)建模:将文字语言转化成数学语言,利用数学知识,建立相应的数学模型;
(3)解模:把数学问题化归为常规问题,选择合适的数学方法求解;
(4)对结果进行验证评估,定性、定量分析,作出正确的判断,确定其答案.
状元笔记
解应用题首先要在阅读材料、理解题意的基础上把实际问题抽象成数学问
【示例】在某种工业品的生产过程中,每日次品数y 是每日产量x 的函数:y=x
x -101,x≤100,该工厂售出一件正品可获利A 元,但生产一题,就是从实际问题出发,抽象概括,利用数学知识建立相应的数学模型,再利用数学知识对数学模型进行分析、研究,得到数学结论,然后再把数学结论返回到实际问题中去. 件次品就损失3
A 元,为了获得最大利润,日产量应为多少? 思路分析:最大利润等于正品获利减去次品损失,根据已知条件列出利润关于日产量的函数关系式,利用导数求出最值.
解:在每天生产的x 件产品中,x-y(x)是正品数,y(x)是次品数,每日获利总数为T(x)=A(x-y)- 31Ay,要使T(x)取最大值,则T′(x)=A(1-34y′).令T′(x )=0,得y′=43,又y=x x -101,x≤100,由y′=2)101(101x -=4
3⇒x≈89.4,因此产品个数应是89或90件.又由于T(89)≈79.11A,T(90)≈79.09A,所以每日生产89件将获得最大利润.
二、函数最大、最小值问题
状元笔记
极大、极小值与最大、最小值的区别:函数极大值和极小值是比较极值点附近的函数值
得出的,函数最大值、最小值是比较整个定义区间上的函数值得到的.
1.在闭区间[a,b ]上可导的函数f(x),在[a,b ]上必有最大值和最小值;但在开区间(a,b)内可导的函数f(x)不一定有最大值与最小值.
【示例】下列结论正确的是( )
A.在区间[a,b ]上,函数的极大值就是最大值
B.在区间[a,b ]上,函数的极小值就是最大值
C.在区间[a,b ]上,函数的最大值、最小值在x=a 和x=b 时达到
D.一般地,在[a,b ]上可导的函数f(x)在[a,b ]上必有最大值和最小值
思路分析:利用函数极值与最值的定义可直接判断.
答案:D
2.设f(x)在其定义域[a,b ]上可导,求f(x)的最值步骤如下:
(1)求函数f(x)在(a,b)内的极值;
(2)求出f(x)在区间端点的值f(a),f(b);
(3)将f(x)的极值与端点处函数值f(a),f(b)进行对比,其中最大的一个是最大值,最小的一个是最小值.
【示例】 求下列函数的最值:
(1)f(x)=3x-x 3(-3≤x≤3); (2)f(x)=6-12x+x 3,x∈[3
1-,1]. 思路分析:函数f(x)在给定区间上可导,必有最大值和最小值,因此,在求闭区间[a,b ]上函数的最值时,只需求出函数f(x)在开区间(a,b)内的极值,然后与端点处函数值比较即可.
解:(1)f′(x)=3-3x 2,令f′(x)=0,得x=±1,∴f(1)=2,f(-1)=-2.
又f(-3)=0,f(3)=-18,∴[f(x)]max =2,[f(x)]min =-18.
(2)f′(x)=-12+3x 2=0,∴x=±2.
∵当x∈(-2,2)时,f′(x)<0,f(x)为减函数.
∴当x∈[3
1-
,1]时,f(x)为减函数. ∴f(x)min =f(1)=-5,f(x)max =f(31-)=27269. 高手支招2基础整理
函数的“最值”是个整体概念,是整个定义域上的最大值和最小值,具有绝对性、唯一性,多项式函数在某一闭区间上一定存在最值.。