高考数学二轮复习 第2部分 专题一 三角函数与解三角形 1 三角函数图象与性质限时速解训练 文
高考数学二轮复习 专题2 三角函数、三角变换、解三角形、平面向量 第一讲 三角函数的图象与性质 理-
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
高考总复习二轮文科数学精品课件 专题1 三角函数与解三角形 考点突破练1 三角函数的图象与性质
7.(2023 陕西榆林二模)已知函数
π
π
2 7π
f(x)=2sin(2x+6 )在[-4 , 6 ]和[ 5 , 12 ]上都是单调
的,则 a 的取值范围是( D )
π
f(x)=2sin(ωx+6 )(ω>0),若方程|f(x)|=1
在区间(0,2π)内恰有 5 个实
根,则 ω 的取值范围是( D )
7 5
A.( , ]
6 3
解析 由|f(x)|=
5 13
B.( , ]
3 6
π
|2sin(ωx+ )|=1
6
4
C.(1, ]
3
可得
π
1
sin(ωx+ )=± ,若
6
5
π·
=1,∴当
2
5
f(2)>f(1)=2,当
5
2
x=2时,f(x)< +sin
5
x=2时,得
πx 不成立,即
5
5 2
4
4
g(2)=f(2)- 5 >f(1)-5=2-5
2
=
6
>sin
5
5
5π
g(2)<sin 2 不成立,由此可在坐标系
中画出 g(x)与 y=sin πx 大致图象如图所示:
由图象可知,当 x∈(-∞,-1)∪(0,1)时,g(x)<sin πx,即
f(x)的单调递增区间为[kπ-
5π
π
2023年高考数学二轮复习第二篇经典专题突破专题一三角函数和解三角形第1讲三角函数的图象和性质
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
所以 ω=-16+23k,k∈Z, 所以 ω=52,f(x)=sin 52x+π4+2, 所以 fπ2=sin 54π+π4+2=1. 故选 A.
返回导航
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
2.(2022·全国甲卷)设函数 f(x)=sin ωx+π3在区间(0,π)恰有三个极
返回导航
【解析】 f′(x)=-sin x+sin x+(x+1)cos x=(x+1)cos x,所以 f(x) 在区间0,π2和32π,2π上 f′(x)>0,即 f(x)单调递增;在区间π2,32π上 f′(x)<0, 即 f(x)单调递减,又 f(0)=f(2π)=2,fπ2=π2+2,f32π=-32π+1+1=- 32π,所以 f(x)在区间[0,2π]上的最小值为-32π,最大值为π2+2.故选 D.
值点、两个零点,则 ω 的取值范围是
( C)
A.53,163
B.53,169
C.163,83
D.163,169
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
【解析】 依题意可得 ω>0,因为 x∈(0,π),所以 ωx+π3∈π3,ωπ+π3,
要使函数在区间(0,π)恰有三个极值点、两个零点,
又 y=sin x,x∈π3,3π的图象如下所示:
则52π<ωπ+π3≤3π,解得163<ω≤83,即 ω∈163,83.故选 C.
专题一 三角函数和解三角形
高考二轮总复习 • 数学
返回导航
3.(2022·全国甲卷)将函数 f(x)=sin ωx+π3(ω>0)的图象向左平移π2个 单位长度后得到曲线 C,若 C 关于 y 轴对称,则 ω 的最小值是 ( C )
新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件
的值
2
sin α
1
D.
2
C. 2
答案:D
α
解析:由tan
α
2
cos2 2
α
1+cos α 1+2 cos 2 −1
1
1
=2,则
=
α
α =
α
α=
α= .故选D.
2
sin α
2
2 sin cos
sin cos
tan
2
2
2
2
2
(2)[2023·安徽宣城二模]已知 3sin α-sin
=(
)
7
9
7
4
)
1
B.
2
D.-
3
2
答案:D
解析:由已知可得,sin
1−cos2α 3
= .
2
4
所以sin2α=
3π
(2α+ )=cos
2
(2α+π)=-cos
3
2
1
2α= ,所以cos
2
又角α在第四象限内,所以sin α=- sin2 α=- .故选D.
1
2α=- ,
2
2. (1)[2023·安徽安庆二模]已知第二象限角α满足sin
2
即sin2α+2sinαcos α+cos2α= ,所以2sinαcos
3
因为0<α<π,所以cos α<0<sin α,所以sin α-cos α>0.
1
4
2 3
.
3
因为(sin α-cos α)2=sin2α-2sinαcos α+cos2α=1+ = ,所以sinα-cos α=
2024届高考数学二轮复习专题1三角函数与解三角形课件
即 cos A=-12,
由 A 为三角形内角得 A=23π,
△ABC
面积
S=12bcsin
A=12×1×
23=
3 4.
专题一 三角函数与平面向量
类型四 平面向量及其应用
1.(2023·新课标Ⅰ卷)已知向量 a=(1,1),b=(1,-1).若(a+λb)⊥(a+μb),
则( )
A.λ+μ=1
B.λ+μ=-1
A.79 解析:因为
sin
B.19 (α-β)=sin
αcos
C.-19 β-sin βcos
α=13,
cos αsin β=16,
所以 sin αcos β=12,
所以 sin(α+β)=sin αcos β+sin βcos α=12+16=23,
则 cos(2α+2β)=1-2sin2(α+β)=1-2×49=19.
答案:-
3 2
专题一 三角函数与平面向量
3.(2023·全国甲卷)函数 y=f(x)的图象由函数 y=cos (2x+π6)的图象向左平移π6个
单位长度得到,则 y=f(x)的图象与直线 y=12x-12的交点个数为( )
A.1
B.2
C.3
D.4
解析:把函数 y=cos(2x+π6)向左平移π6个单位可得 函数 f(x)=cos(2x+π2)=-sin 2x 的图象, 而直线 y=12x-12=12(x-1)经过点(1,0),且斜率为12,
Bcos Bcos
AA-ssiinn
CB=1,所以ssiinn
((AA-+BB))-
sin sin
CB=sin
(A-sinBC)-sinB=1,
专题一 三角函数与平面向量
高考数学(理)二轮复习专题二第一节三角函数的图像与性质PPT课件
(3)数量积是平面向量中的一种重要运算,坐标运算是平面 向量的核心知识,涉及夹角、距离等的基本运算,是历年高考 命题的重点,要准确记忆相关公式;
三角函数与平面向量主要包括三部分内容——三角函 数、平面向量、解三角形,复习这三部分内容应牢牢把握 三个点:“角”、“关系”与“运算”,这三个点串成了该部分 知识复习的主线.
“角”,是三角函数复习线索的中心,该部分知识的复习要围 绕“角”这个中心,抓住四个基本点:三角函数的定义、同角三角 函数的基本关系与诱导公式、三角函数的图像与性质、三角恒等 变换.
=
()
A.-1
B.-
2 2
C.
2 2
解析:选 A
D.1 由 sin α-cos α= 2sin α-π4= 2,α∈(0,π),
解得 α=34π,所以 tan α=tan 34π=-1.
1
2.已知 α∈(-π,0),tan(3π+α)=aloga 3 (a>0,且 a≠1),则
[解析] tan θ=cos334π=-coπsπ4=-1, sin4π sin4
又 sin34π>0,cos34π<0, 所以 θ 为第四象限角且 θ∈[0,2π), 所以 θ=74π. [答案] D
练习:
1.(2012·辽宁高考)已知 sin α-cos α= 2,α∈(0,π),则 tan α
(3)测量问题是解三角形在实际应用中的主要内容,解决问题 的关键是把要测量的问题归入到相应的三角形中,然后利用正、 余弦定理求解相应的边角.
全国通用高考数学二轮复习第二层提升篇专题一三角函数与解三角形第1讲三角函数的图象与性质课件
答案:-1
3.(2019·西安师大附中模拟改编)将函数y=sin 2x+π6 的图象 π
向右平移 3 个单位长度,再向上平移1个单位长度,得到 g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[-2π,2π],则 g(x)=____________,x1-2x2的最大值为________.
的部分图象如图所示,则f(2 019)的值为
________. 解析:由题图易知,函数f(x)的最小正周期T=4× 52-1
=6,所以ω=
2π T
=
π 3
,所以f(x)=Asin
π3 x+φ
,将(0,
1)代入,可得Asin φ=1,所以f(2 019)=f(6×336+3)=
f(3)=Asinπ3 ×3+φ=-Asin φ=-1.
法二:由题设知,先将函数y=sin 3x-16π 的图象上所有点的
Hale Waihona Puke 横坐标缩短到原来的1 2
,再将所得图象向右平移
π 3
个单位长度
即得函数f(x)的图象,故f(x)=sin
3×2x-π3 -16π
=
sin6x-16π.故选B.
答案:B
2.(2019·湖南省五市十校联考)函数f(x)=
Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)
[答案] (1)B (2)C
[解题方略] 由“图”定“式”找“对应”的方法 由三角函数的图象求解析式y=Asin(ωx+φ)+B(A>0,
ω>0)中参数的值,关键是把握函数图象的特征与参数之间
的对应关系,其基本依据就是“五点法”作图. (1)最值定A,B:根据给定的函数图象确定最值,设最
大值为M,最小值为m,则M=A+B,m=-A+B,解得B
2022年高考数学二轮复习专题二三角函数、解三角形 第1讲三角函数的图象与性质
4
π
+
4
π
x的图象向左平移 个单位,得到的图象的函数解析
4
π
B.y=sin x-
4
π
D.y=sin x+
4
答案:C
π
π
解析:函数y=sin x的图象向左平移 个单位,得到y=sin (x+ )的图象.
4
4
故选C.
2.要得到函数y=cos
(
)
π
A.向右平移
6
π
C.向右平移
18
3x −
π
6
的图象,只需将y=cos 3x的图象
4
答案:A
解析:f x =sin
故选A.
1
1
x+cos x=
3
3
2cos
1
x
3
π
−
4
= 2cos
1
3
x
3π
−
4
.
2.[2021·山东潍坊学情调研]将函数f(x)=sin 2x +
移a(a>0)个单位得到函数g(x)=cos
(
)
5π
A.
12
7π
B.
12
2x
π
+
4
41π
D.
24
答案:C
解析:由题意知,g(x)=cos 2x
4
π
D.向右平移 个单位长度
12
3.设函数f x =sin ωx −
π
4
f 2 =0.则f x 的最小正周期为(
16
A.
9
1
C.
8
答案:A
B.16
9
高考二轮总复习课件(适用于老高考)数学专题一 三角函数与解三角形
4 =
1
2
2
,
即
< < 1,
=
,
42 -4+1+1-
=
42 -5+2
2
=4t+
-5≥2
2
2 +2
t= 2 时取等号.∴ 2 的最小值为
2
4· -5=4
4 2-5.
2-5,当且
(方法二)∵sin B=-cos
又
π
3π
C,B=C- ,∴A=π-(B+C)= -2C.
2
上篇
专题一 三角函数与解三角形
内
容
索
引
01
高考小题突破1
三角函数的图象与性质
02
高考小题突破2
三角恒等变换与解三角形
03
培优拓展❶ 三角变换与解三角形中的“变角”“变式”
04
◎高考满分大题一 三角函数与解三角形
1.从题型和题量上看,高考对本专题的考查基本稳定在“两小一大
”的方式,总分约20~22分.
3
2
2
2 2 2
c=3a,又由 b =ac,所以 b =3a .在△ABC 中,由余弦定理,得
2 +2 -2
cos∠ABC=
sin
2
=
4
9
2
3
2 + 2 - 2
2
2× 2
3
=
7
.故
12
7
cos∠ABC=12.
(方法四 构造辅助线利用相似的性质)
如图,作DE∥AB,交BC于点E,则△DEC∽△ABC.由AD=2DC,得
高考数学二轮复习第2部分专题1三角函数和解三角形第1讲三角函数的图象和性质教案(文科)
第1讲 三角函数的图象和性质[做小题——激活思维]1.已知tan α=-34,且α是第二象限角,那么cos α等于( )A.45 B .-45 C.35 D .-35 [答案] B2.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z[答案] D3.(2019·济宁一模)若sin x =3sin ⎝ ⎛⎭⎪⎫x -π2,则cos x ·cos ⎝⎛⎭⎪⎫x +π2=( )A.310 B .-310 C.34 D .-34A [由sin x =3sin ⎝⎛⎭⎪⎫x -π2=-3cos x ,解得tan x =-3,所以cos x cos ⎝ ⎛⎭⎪⎫x +π2=-sin x cos x =-sin x cos x sin 2x +cos 2x =-tan x tan 2x +1=310,故选A.] 4.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9 C [由题意知π3=2πω·k (k ∈Z ),解得ω=6k ,令k =1,即得ωmin =6.]5.下列函数中同时具有以下性质的是( )①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数;④图象的一个对称中心为⎝ ⎛⎭⎪⎫π12,0.A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x +π3C .y =sin ⎝ ⎛⎭⎪⎫2x -π6D .y =sin ⎝⎛⎭⎪⎫2x -π3 [答案] C[扣要点——查缺补漏]1.同角三角函数基本关系式与诱导公式(1)同角三角函数基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠π2+k π,k ∈Z ,如T 1.(2)诱导公式:角k2π±α(k ∈Z )的三角函数口诀:奇变偶不变,符号看象限,如T 3. 2.三角函数的图象及变换(1)五点法作简图:y =A sin(ωx +φ)的图象可令ωx +φ=0,π2,π,3π2,2π,求出x 的值,描出点作图.(2)图象变换:平移、伸缩、对称,如T 4.特别提醒:由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需平移⎪⎪⎪⎪⎪⎪φω个单位长度,而不是|φ|个单位长度.3.三角函数的性质(1)整体思想研究性质:对于函数y =A sin(ωx +φ),可令t =ωx +φ,考虑y =A sin t 的性质.如T 2,T 5.(2)数形结合思想研究性质.三角函数的定义、诱导公式及基本关系(5年4考)[高考解读] 高考对本部分内容的考查多以三角函数的定义、诱导公式、同角三角函数关系式间的综合利用为主,且常与简单的三角恒等变换相结合.1.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255 D .1 切入点:①终边上两点A (1,a ),B (2,b ); ②cos 2α=23.关键点:用A ,B 两点坐标表示α的正切值tan α,然后利用弦化切将cos 2α=23用|a-b |表示出来.B [由题可知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=56,sin α=±16,得|tan α|=55.由题意知|tan α|=a -b 1-2,所以|a -b |=55.] 2.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29 D.79切入点:sin α-cos α=43.关键点:利用平方关系sin 2α+cos 2α=1及倍角公式将sin 2α用sin α-cos α表示出来.A [∵(sin α-cos α)2=1-2sin αcos α=1-sin 2α=⎝ ⎛⎭⎪⎫432=169,∴sin 2α=-79. 故选A.] [教师备选题]1.(2014·全国卷Ⅰ)若tan α>0,则( ) A .sin 2α>0 B .cos α>0 C .sin α>0D .cos 2α>0A [利用tan α>0,求出角α的象限,再判断.∵tan α>0,∴α∈⎝⎛⎭⎪⎫k π,k π+π2(k ∈Z )是第一、三象限角.∴sin α,cos α都可正、可负,排除B ,C. 而2α∈(2k π,2k π+π)(k ∈Z ), 结合正、余弦函数图象可知,A 正确.取α=π4,则tan α=1>0,而cos 2α=0,故D 不正确.]2.(2018·浙江高考)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.[解] (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.三角函数求值与化简的3种方法弦切互化法:主要利用公式tan α=sin αcos α化成正弦、余弦;和积转换法:利用θ±cos θ2=1±2sin θcos θ进行变形、转化;巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ+tan 2θ=tan π4.1.(同角三角函数基本关系式的应用)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512D [∵sin α=-513,α为第四象限角,∴cos α=1-sin 2α=1213,∴tan α=sin αcos α=-512.故选D.]2.(三角函数的定义与诱导公式的应用)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=________.13[由角α与角β的终边关于y 轴对称,可得β=(2k +1)π-α,k ∈Z ,∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=13.] 3.[新题型](同角三角函数基本关系式及其应用)已知sin α+2cos α=0,则tan α=________,2sin αcos α-cos 2α=________.-2 -1 [由sin α+2cos α=0得tan α=-2. ∴2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=--1-2+1=-55=-1.] 4.(三角函数的意义与简单的三角恒等变换结合)在平面直角坐标系xOy 中,点P (x 0,y 0)在单位圆O 上,设∠xOP =α,且α∈⎝⎛⎭⎪⎫π4,3π4.若cos ⎝⎛⎭⎪⎫α+π4=-1213,则x 0的值为________. -7226[因为点P (x 0,y 0)在单位圆O 上,且∠xOP =α,所以由三角函数的定义知x 0=cos α.因为α∈⎝ ⎛⎭⎪⎫π4,3π4,所以α+π4∈⎝ ⎛⎭⎪⎫π2,π,又cos ⎝ ⎛⎭⎪⎫α+π4=-1213,所以sin ⎝ ⎛⎭⎪⎫α+π4=513,所以x 0=cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-π4=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=-7226.]三角函数的图象及应用(5年3考)[高考解读] 高考对该部分内容的考查主要有两种方式:考查三角函数图象变换;由图定式并与三角函数的性质相结合.预计2020年还会这样考查. 1.(2019·全国卷Ⅱ)若x 1=π4,x 2=3π4是函数f (x )=sin ωx (ω>0)两个相邻的极值点,则ω=( )A .2 B.32 C .1 D.12A [由题意及函数y =sin ωx 的图象与性质可知, 12T =3π4-π4,∴T =π,∴2πω=π,∴ω=2. 故选A.]2.(2016·全国卷Ⅰ)将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x +π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3C .y =2sin ⎝ ⎛⎭⎪⎫2x -π4D .y =2sin ⎝⎛⎭⎪⎫2x -π3 切入点:①y =2sin ⎝ ⎛⎭⎪⎫2x +π6;②向右平移14个周期.关键点:y =A sin(ωx +φ)的图象平移规律.D [先求出函数的周期,再根据函数图象的平移变换规律求出对应的函数解析式. 函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位长度,所得图象对应的函数为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4+π6=2sin ⎝ ⎛⎭⎪⎫2x -π3,故选D.]3.(2015·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 切入点:图象与x 轴交于点⎝ ⎛⎭⎪⎫14,0,⎝ ⎛⎭⎪⎫54,0.关键点:逆用五点作图求解析式.D [由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解.由题图知,周期T =2⎝ ⎛⎭⎪⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.][教师备选题]1.(2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.π3 [首先利用辅助角公式将函数y =sin x -3cos x 化为正弦型函数,再进行平移变换.∵y =sin x -3cos x =2sin ⎝⎛⎭⎪⎫x -π3,∴函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象向右平移π3个单位长度得到.]2.(2015·湖北高考)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )图象,求y =g (x )的图象离原点O 最近的对称中心.[解] (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎪⎫2x -π6, 因此,g (x )=5sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=5sin ⎝ ⎛⎭⎪⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z , 令2x +π6=k π,k ∈Z ,解得x =k π2-π12,k ∈Z ,即y =g (x )图象的对称中心为⎝⎛⎭⎪⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝ ⎛⎭⎪⎫-π12,0.1.图象变换抓“实质”图象变换的实质——点的坐标变换.三角函数图象的伸缩、平移变换,可以利用两个函数图象上的两个特征点之间的对应确定变换的方式,一般选取与y 轴最近的最高点或最低点,当然也可以选取在原点右侧的第一个中心点,根据这些点的坐标即可确定变换的方式、平移的长度与方向等.2.由“图”定“式”找“对应”由三角函数的图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)中参数的值,关键是把握函数图象的特征与参数之间的对应关系,其基本依据就是“五点法”作图.(1)最值定A ,B :根据给定的函数图象确定最值,设最大值为M ,最小值为m ,则M =A+B ,m =-A +B ,解得B =M +m2,A =M -m2.(2)T 定ω:由周期的求解公式T =2πω,可得ω=2πT.(3)点坐标定φ:一般运用代入法求解φ值,在求解过程中,可以代入图象上的一个已知点(此时A ,ω,B 已知),也可代入图象与直线y =B 的交点(此时要注意交点在上升区间上还是在下降区间上).注意在确定φ值时,往往以寻找“五点法”中的某一个点为突破口,即“峰点”“谷点”与三个“中心点”,利用“中心点”时要注意其所在单调区间的单调性,避免产生增解.1.(图象变换)为了得到函数y =2cos 2x 的图象,可以将函数y =cos 2x -3sin 2x 的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移π3个单位长度D .向右平移π3个单位长度B [因为y =cos 2x -3sin 2x =2cos ⎝ ⎛⎭⎪⎫2x +π3=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6,所以要得到函数y =2cos 2x 的图象,可以将函数y =cos 2x -3sin 2x 的图象向右平移π6个单位长度,故选B.]2.(由图定式)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6 B.56π C.π12 D.512π C [由题图知,T =2⎝⎛⎭⎪⎫11π12-5π12=π,∴ω=2πT=2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ), ∴f ⎝ ⎛⎭⎪⎫5π12+φ=-2cos ⎝ ⎛⎭⎪⎫5π6+2φ=2,故5π6+2φ=π+2k π(k ∈Z ), ∴φ=π12+k π(k ∈Z ).又0<φ<π2,∴φ=π12.故选C.]3.(由图定式与三角函数性质的综合问题)已知P ⎝ ⎛⎭⎪⎫12,2是函数f (x )=A sin(ωx +φ)(A>0,ω>0)图象的一个最高点,B ,C 是与P 相邻的两个最低点.若|BC |=6,则f (x )的图象的对称中心可以是( )A .(0,0)B .(1,0)C .(2,0)D .(3,0)C [由题设知,A =2,函数f (x )的最小正周期为6,所以2πω=6,解得ω=π3,所以f (x )=2sin ⎝⎛⎭⎪⎫π3x +φ,将P ⎝ ⎛⎭⎪⎫12,2代入,可得2sin ⎝ ⎛⎭⎪⎫π6+φ=2,故可取φ=π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +π3,令π3x +π3=k π(k ∈Z ),可得x =3k -1(k ∈Z ),结合选项,可知C 正确,故选C.]4.(图象与解析式)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.π2 [由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx消去y ,得sin ωx -cos ωx =0,即2sin ⎝⎛⎭⎪⎫ωx -π4=0,解得x =k πω+π4ω,k ∈Z . 取k =0,1,可得距离最短的两个交点的坐标为⎝⎛⎭⎪⎫π4ω,2,⎝ ⎛⎭⎪⎫5π4ω,-2,又两交点的距离为23,所以⎝ ⎛⎭⎪⎫π4ω-5π4ω2+(2+2)2=(23)2,解得ω=π2.]三角函数的性质及应用(5年9考)[高考解读] 高考对该部分的考查多与三角恒等变换相结合,考查三角函数的周期性、单调性和最值问题,预计2020年将会延续上述命题规律.1.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 切入点:对f (x )=2cos 2x -sin 2x +2恒等转化.关键点:将函数解析式转化为f (x )=A sin(ωx +φ)+B 的形式.B [易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3×1+cos 2x 2+1=32cos 2x +52,则f (x )的最小正周期为π,最大值为4.]2.[一题多解](2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4 B.π2 C.3π4D .π 切入点:①f (x )=cos x -sin x ;②减函数. 关键点:将解析式化为f (x )=A sin(ωx +φ)的形式.C [法一:f (x )=cos x -sin x =2cos x +π4.当x ∈[0,a ]时,x +π4∈π4,a +π4,所以结合题意可知,a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.法二:f ′(x )=-sin x -cos x =-2sin x +π4.于是,由题设得f ′(x )≤0,即 sin x+π4≥0在区间[0,a ]上恒成立.当x ∈[0,a ]时,x +π4∈π4,a +π4,所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.] 3.[一题多解](2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35 D.15切入点:f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6.关键点:利用三角恒等变换化简解析式为f (x )=A sin(ωx +φ)的形式. A [法一(辅助角公式法):∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6=15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝ ⎛⎭⎪⎫x +π3,∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A.法二(角度转换法):∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2,∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x =15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3 =65sin ⎝ ⎛⎭⎪⎫x +π3≤65.∴f (x )max =65.故选A.]4.(2019·全国卷Ⅰ)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________. -4 [∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x=-cos 2x -3cos x =-2cos 2x -3cos x +1, 令t =cos x ,则t ∈[-1,1], ∴f (x )=-2t 2-3t +1.又函数f (x )图象的对称轴t =-34∈[-1,1],且图像的开口向下,∴当t =1时,f (x )有最小值-4.][教师备选题]1.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24A [∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.∵f ⎝⎛⎭⎪⎫5π8=2, ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2, 得φ=2k π+π12,k ∈Z .又|φ|<π,∴取k =0,得φ=π12.故选A.]2.(2018·北京高考)已知函数f (x )=sin 2x +3sin x cos x . (1)求f (x )的最小正周期;(2)若f (x )在区间⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,求m 的最小值. [解] (1)f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12.所以f (x )的最小正周期为T =2π2=π.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6+12. 由题意知-π3≤x ≤m .所以-5π6≤2x -π6≤2m -π6.要使得f (x )在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为32,即sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π3,m 上的最大值为1. 所以2m -π6≥π2,即m ≥π3.所以m 的最小值为π3.函数y =Aωx +φ+B 的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A ωx +φ+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A ωx +φ+B 的单调性及奇偶性、最值、对称性等问题.1.[一题多解](求函数的单调区间)已知函数f (x )=3sin x -cos x ,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ) B [法一:由已知,得f (x )=2⎝⎛⎭⎪⎫32sin x -12cos x =2sin ⎝ ⎛⎭⎪⎫x -π6,由2k π-π2≤x -π6≤2k π+π2(k ∈Z ),得2k π-π3≤x ≤2k π+2π3(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),故选B.法二:由已知,得f (x )=2⎝⎛⎭⎪⎫32sin x -12cos x =-2cos ⎝ ⎛⎭⎪⎫x +π3,由2k π≤x +π3≤2k π+π(k ∈Z ),得2k π-π3≤x ≤2k π+2π3(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),故选B.]2.(已知函数的单调区间求参数)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( )A.π4 B.π2 C.3π8D .π C [由题意,得f (x )=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ),解得-π8+k π≤x ≤3π8+k π(k ∈Z ),k =0时,-π8≤x ≤3π8,即函数f (x )在⎣⎢⎡⎦⎥⎤-π8,3π8上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C.]3.(求函数的值域或最值)若函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位后关于原点对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-32 B .-12 C.12 D.32A [函数f (x )=sin(2x +φ)向左平移π6个单位得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,又其为奇函数,故π3+φ=k π,k ∈Z ,解得φ=k π-π3,又|φ|<π2,令k =0,得φ=-π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3.又∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π3∈⎣⎢⎡⎦⎥⎤-π3,23π,∴sin ⎝ ⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-32,1,当x =0时,f (x )min =-32,故选A.] 4.(函数性质的综合问题)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6+2x -2cos 2x 的图象向左平移π6个单位长度,得到y =g (x )的图象,则下列说法正确的是( )A .函数g (x )的最小正周期为2πB .函数g (x )的最小值为-1C .函数g (x )的图象关于x =π6对称 D .函数g (x )在⎣⎢⎡⎦⎥⎤2π3,π上单调递减C [函数f (x )=2×⎝⎛⎭⎪⎫32sin 2x +12cos 2x -2cos2x =3sin 2x +cos 2x -2cos 2x =3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6,将函数f (x )的图象向左平移π6个单位长度得y =g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6-π6=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象,则函数g (x )的最小正周期T =2π2=π,g (x )的最小值为-2,g (x )的图象的对称轴为2x +π6=π2+k π(k ∈Z ),即x =π6+k π2(k ∈Z ),当k=0时,x =π6为g (x )的图象的一条对称轴,令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ),解得π6+k π≤x ≤2π3+k π(k ∈Z ),当k =0时,函数g (x )在⎣⎢⎡⎦⎥⎤π6,2π3上单调递减,故选C.]。
高三数学(理)二轮专题复习文档:专题一三角函数与解三角形第1讲三角函数的图象与性质
第1讲 三角函数的图象与性质高考定位 三角函数的图象与性质是高考考查的重点和热点内容,主要从以下两个方面进行考查:1.三角函数的图象,涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2.利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查.真 题 感 悟1.(2018·全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 B2.(2017·全国Ⅲ卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误. 答案 D3.(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 答案 B4.(2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4.答案 A考 点 整 合1.常用三种函数的图象与性质(下表中k ∈Z )2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换热点一 三角函数的定义【例1】 (1)(2017·北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45,则sin 2α+cos 2α+11+tan α=________.解析 (1)法一 由已知得β=(2k +1)π-α(k ∈Z ). ∵sin α=13,∴sin β=sin[(2k +1)π-α]=sin α=13(k ∈Z ). 当cos α=1-sin 2α=223时,cos β=-223,∴cos(α-β)=cos αcos β+sin αsin β=223×⎝ ⎛⎭⎪⎫-223+13×13=-79. 当cos α=-1-sin 2α=-223时,cos β=223,∴cos(α-β)=cos αcos β+sin αsin β=-79.综上可知,cos(α-β)=-79. 法二 由已知得β=(2k +1)π-α(k ∈Z ), ∴sin β=sin[(2k +1)π-α]=sin α, cos β=cos[(2k +1)π-α]=-cos α,k ∈Z .当sin α=13时,cos(α-β)=cos αcos β+sin αsin β=-cos 2α+sin 2α=-(1-sin 2α)+sin 2α=2sin 2α-1=2×19-1=-79.(2)由三角函数定义,得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825. 答案 (1)-79 (2)1825探究提高 1.当角的终边所在的位置不是唯一确定的时候要注意分情况解决,机械地使用三角函数的定义就会出现错误.2.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.【训练1】 (1)(2018·潍坊三模)在直角坐标系中,若角α的终边经过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,则si n(π-α)=( ) A.12 B.32 C.-12D.-32(2)(2018·北京卷)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵解析 (1)∵角α的终边过点P ⎝ ⎛⎭⎪⎫sin 23π,cos 23π,且|OP |=1.∴由三角函数定义,知sin α=cos 2π3=-12.因此sin(π-α)=sin α=-12.(2)设点P 的坐标为(x ,y ),由三角函数的定义得yx <x <y ,所以-1<x <0,0<y <1.所以P 所在的圆弧是EF ︵. 答案 (1)C (2)C 热点二 三角函数的图象 考法1 三角函数的图象变换【例2-1】 (1)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A.向左平移π4个单位长度,再向上平移1个单位长度 B.向右平移π4个单位长度,再向上平移1个单位长度 C.向左平移π2个单位长度,再向下平移1个单位长度 D.向右平移π2个单位长度,再向下平移1个单位长度(2)(2018·湖南六校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,其图象相邻两条对称轴之间的距离为π2,将函数y =f (x )的图象向左平移π3个单位长度后,得到的图象关于y 轴对称,那么函数y =f (x )的图象( ) A.关于点⎝ ⎛⎭⎪⎫π12,0对称 B.关于点⎝ ⎛⎭⎪⎫-π12,0对称C.关于直线x =π12对称D.关于直线x =-π12对称解析 (1)因为y =sin 2x +1=cos ⎝ ⎛⎭⎪⎫2x -π2+1=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+1,故只需将函数y =cos 2x 的图象向右平移π4个单位长度,再向上平移1个单位长度,即可得到函数y =sin 2x +1的图象. (2)由题意,T =π,ω=2.又y =f ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫2x +φ+2π3的图象关于y 轴对称.∴φ+2π3=k π+π2,k ∈Z .由|φ|<π2,取φ=-π6,因此f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 代入检验f ⎝ ⎛⎭⎪⎫π12=0,A 正确.答案 (1)B (2)A探究提高 1.“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.2.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.考法2 由函数的图象特征求解析式【例2-2】 (1)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6B.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3 C.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π12D.f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6(2)(2018·济南调研)函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A.1B.12C.22D.32解析 (1)由题意知A =2,T =4⎝ ⎛⎭⎪⎫5π12-π6=π,ω=2,因为当x =5π12时取得最大值2,所以2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ, 所以2×5π12+φ=2k π+π2,k ∈Z ,解得φ=2k π-π3,k ∈Z ,因为|φ|<π2,得φ=-π3.因此函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3.(2)观察图象可知,A =1,T =π,则ω=2. 又点⎝ ⎛⎭⎪⎫-π6,0是“五点法”中的始点,∴2×⎝ ⎛⎭⎪⎫-π6+φ=0,φ=π3. 则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),所以x 1+x 22=π12,则x 1+x 2=π6, 因此f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32. 答案 (1)B (2)D探究提高 已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.【训练2】 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π8上的最小值.解 (1)设函数f (x )的最小正周期为T ,由题图可知 A =1,T 2=2π3-π6=π2,即T =π,所以π=2πω,解得ω=2,所以f (x )=sin(2x +φ),又过点⎝ ⎛⎭⎪⎫π6,0,由0=sin ⎝ ⎛⎭⎪⎫2×π6+φ可得π3+φ=2k π,k ∈Z , 则φ=2k π-π3,k ∈Z ,因为|φ|<π2,所以φ=-π3,故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.(2)根据条件得g (x )=sin ⎝ ⎛⎭⎪⎫4x +π3,当x ∈⎣⎢⎡⎦⎥⎤0,π8时,4x +π3∈⎣⎢⎡⎦⎥⎤π3,5π6,所以当x =π8时,g (x )取得最小值,且g (x ) min =12. 热点三 三角函数的性质 考法1 三角函数性质【例3-1】 (2018·合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0, 得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间),但是当A >0,ω<0时,需先利用诱导公式变形为y =-A sin(-ωx -φ),则y =A sin(-ωx -φ)的增区间即为原函数的减区间,减区间即为原函数的增区间. 考法2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调递增区间.(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 解 (1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π3. 由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,整理得k π-π12≤x ≤kx +5π12,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象; 所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可. 所以b 的最小值为4π+11π12=59π12.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【训练3】 (2018·湖南师大附中质检)已知向量m =(2cos ωx ,-1),n =(sin ωx -cos ωx ,2)(ω>0),函数f (x )=m·n +3,若函数f (x )的图象的两个相邻对称中心的距离为π2.(1)求函数f (x )的单调增区间;(2)若将函数f (x )的图象先向左平移π4个单位,然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )的图象,当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,求函数g (x )的值域.解 (1)f (x )=m·n +3=2cos ωx (sin ωx -cos ωx )-2+3 =sin 2ωx -cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx -π4. 依题意知,最小正周期T =π.∴ω=1,因此f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4.令-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,求得f (x )的增区间为⎣⎢⎡⎦⎥⎤-π8+k π,3π8+k π,k ∈Z .(2)将函数f (x )的图象先向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 然后纵坐标不变,横坐标缩短为原来的12倍,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4的图象.故g (x )=2sin ⎝ ⎛⎭⎪⎫4x +π4,由π4≤x ≤π2,知5π4≤4x +π4≤9π4.∴-1≤sin ⎝ ⎛⎭⎪⎫4x +π4≤22.故函数g (x )的值域是[-2,1].1.已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式 (1)A =y max -y min 2,B =y max +y min2.(2)由函数的周期T 求ω,ω=2πT . (3)利用“五点法”中相对应的特殊点求φ. 2.运用整体换元法求解单调区间与对称性类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.(1)令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程;(2)令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标;(3)将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号. 3.函数y =A sin(ωx +φ)+B 的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B (一角一函数)的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.一、选择题1.(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π解析 f (x )=tan x 1+tan 2x =sin x cos x 1+sin 2x cos 2x =sin x cos x cos 2x +sin 2x=sin x cos x =12sin 2x ,所以f (x )的最小正周期T =2π2=π. 答案 C2.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A3.(2018·湖南六校联考)定义一种运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,将函数f (x )=⎪⎪⎪⎪⎪⎪2 2sin x 3 cos x 的图象向左平移φ(φ>0)个单位,所得图象对应的函数为偶函数,则φ的最小值是( ) A.π6B.π3C.2π3D.5π6解析 f (x )=2cos x -23sin x =4cos ⎝ ⎛⎭⎪⎫x +π3,依题意g (x )=f (x +φ)=4cos ⎝ ⎛⎭⎪⎫x +π3+φ是偶函数(其中φ>0).∴π3+φ=k π,k ∈Z ,则φmin =23π. 答案 C4.偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中△EFG 是斜边为4的等腰直角三角形(E ,F 是函数与x 轴的交点,点G 在图象上),则f (1)的值为( )A.22B.62C. 2D.2 2解析 依题设,T 2=|EF |=4,T =8,ω=π4. ∵函数f (x )=A sin(ωx +φ)为偶函数,且0<φ<π. ∴φ=π2,在等腰直角△EGF 中,易求A =2. 所以f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +π2=2cos π4x ,则f (1)= 2. 答案 C5.(2018·天津卷)将函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增B.在区间⎣⎢⎡⎦⎥⎤3π4,π上单调递减C.在区间⎣⎢⎡⎦⎥⎤5π4,3π2上单调递增D.在区间⎣⎢⎡⎦⎥⎤3π2,2π上单调递减解析 把函数y =sin ⎝ ⎛⎭⎪⎫2x +π5的图象向右平移π10个单位长度得函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z )得-π4+k π≤x ≤π4+k π(k ∈Z ),令k =1,得3π4≤x ≤5π4,即函数g (x )=sin 2x 的一个单调递增区间为⎣⎢⎡⎦⎥⎤3π4,5π4.答案 A 二、填空题6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.因为-π2<φ<π2,所以π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.答案 -π67.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,其中|PQ |=2 5.则f (x )的解析式为________.解析 由题图可知A =2,P (x 1,-2),Q (x 2,2),所以|PQ |=(x 1-x 2)2+(-2-2)2=(x 1-x 2)2+42=2 5.整理得|x 1-x 2|=2,所以函数f (x )的最小正周期T =2|x 1-x 2|=4,即2πω=4,解得ω=π2.又函数图象过点(0, -3),所以2sin φ=-3,即sin φ=-32.又|φ|<π2,所以φ=-π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π3.答案 f (x )=2sin ⎝ ⎛⎭⎪⎫π2x -π38.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23.答案 23 三、解答题9.已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x ·cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.解 (1)f (x )的定义域为{x |x ≠π2+k π,k ∈Z },f (x )=4tan x cos x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=2sin x cos x +23sin 2x - 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3. 所以f (x )的最小正周期T =2π2=π. (2)由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得-π12+k π≤x ≤5π12+k π,k ∈Z .设A =⎣⎢⎡⎦⎥⎤-π4,π4,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-π12+k π≤x ≤5π12+k π,k ∈Z ,易知A ∩B =⎣⎢⎡⎦⎥⎤-π12,π4.所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在区间⎣⎢⎡⎦⎥⎤-π4,-π12上单调递减.10.(2018·西安模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3.当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π,k ∈Z , ∴当x ∈(0,π)时,对称轴为x =512π. 又方程f (x )=23在(0,π)上的解为x 1,x 2. ∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3,又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.11.设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3,已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.解 (1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx=3sin ⎝ ⎛⎭⎪⎫ωx -π3.由题设知f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z ,故ω=6k +2,k ∈Z . 又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范训练一 三角函数图象与性质
(建议用时45分钟)
解答题(解答应写出文字说明,证明过程或演算步骤)
1.已知函数f (x )=cos x (sin x +cos x )-12
. (1)若0<α<π2,且sin α=22
,求f (α)的值; (2)求函数f (x )的最小正周期及单调递增区间.
解:(1)因为0<α<π2,sin α=22,所以cos α=22
. 所以f (α)=22⎝
⎛⎭⎪⎪⎫22+22-12=12
. (2)因为f (x )=cos x (sin x +cos x )-12=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12=12sin 2x +12cos 2x =22sin ⎝
⎛⎭⎪⎫2x +π4,所以T =2π2=π. 由2k π-π2≤2x +π4≤2k π+π2
,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 所以f (x )的单调递增区间为⎣
⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z . 2.已知向量a =(cos x ,sin x ),向量b =(cos x ,-sin x ),f (x )=a·b .
(1)求函数g (x )=f (x )+sin 2x 的最小正周期和对称轴方程;
(2)若x 是第一象限角且3f (x )=-2f ′(x ),求tan ⎝ ⎛⎭
⎪⎫x +π4的值. 解:(1)∵g (x )=f (x )+sin 2x =cos 2x -sin 2x +sin 2x
=cos 2x +sin 2x
=2sin ⎝
⎛⎭⎪⎫2x +π4, ∴函数g (x )=f (x )+sin 2x 最小正周期T =2π2
=π. 当2x +π4=π2
+k π(k ∈Z )时, x =k π2+π8
. ∴函数g (x )=f (x )+sin 2x 的对称轴方程为x =
k π2+π8
(k ∈Z ). (2)由3f (x )=-2f ′(x ),得3cos 2x =4sin 2x .
3cos 2x -3sin 2x -8sin x cos x =0.
(3cos x +sin x )(cos x -3sin x )=0.
又x 是第一象限角,
∴cos x =3sin x ,故tan x =13
. ∴tan ⎝ ⎛⎭⎪⎫x +π4=tan x +tan π41-tan x tan π4=1+131-13=2. 3.(2016·山东枣庄质检)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6+sin ⎝ ⎛⎭
⎪⎫ωx -π6-2cos 2ωx 2,x ∈R (其中ω>0).
(1)求函数f (x )的值域;
(2)若函数f (x )的图象与直线y =-1的两个相邻交点间的距离为π2
,求函数f (x )的单调递增区间.
解:(1)f (x )=3
2sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1)
=2⎝ ⎛⎭⎪⎪⎫32sin ωx -12cos ωx -1 =2sin ⎝
⎛⎭⎪⎫ωx -π6-1. 由-1≤sin ⎝
⎛⎭⎪⎫ωx -π6≤1, 得-3≤2sin ⎝
⎛⎭⎪⎫ωx -π6-1≤1, 所以函数f (x )的值域为[-3,1].
(2)由题设条件及三角函数的图象和性质可知,
f (x )的周期为π,所以2πω
=π,即ω=2. 所以f (x )=2sin ⎝
⎛⎭⎪⎫2x -π6-1, 再由2k π-π2≤2x -π6≤2k π+π2
(k ∈Z ), 解得k π-π6≤x ≤k π+π3
(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎢⎡⎦
⎥⎤k π-π6,k π+π3(k ∈Z ). 4.已知函数f (x )=A sin(ωx +φ)⎝
⎛⎭⎪⎫x ∈R ,A >0,ω>0,0<φ<π2的部分图象如图所示,P 是图象的最高点,Q 为图象与x 轴的交点,O 为坐标原点.若OQ =4,OP =5,PQ =13.
(1)求函数y =f (x )的解析式;
(2)将函数y =f (x )的图象向右平移2个单位后得到函数y =g (x )的图象,当x ∈(-1,2)时,求函数h (x )=f (x )·g (x )的值域.
解:(1)由条件知cos ∠POQ =42+52-13
22×4×5=5
5,所以P (1,2).
由此可得A =2,周期T =4×(4-1)=12,又2πω=12,则ω=π6
.将点P (1,2)代入f (x )=2sin ⎝ ⎛⎭
⎪⎫π6x +φ, 得sin ⎝ ⎛⎭
⎪⎫π6+φ=1,∴π6+φ=2k π+π2,φ=2k π+π3(k ∈Z ). 因为0<φ<π2,所以φ=π3,于是f (x )=2sin ⎝ ⎛⎭
⎪⎫π6x +π3. (2)由题意得g (x )=2sin ⎣
⎢⎡⎦⎥⎤π6x -2+π3=2sin π6x . 所以h (x )=f (x )·g (x )=4sin ⎝ ⎛⎭⎪⎫π6x +π3·sin π6
x =2sin 2π6x +23sin π6x ·cos π6x =1-cos π3
x + 3sin π3x =1+2sin ⎝ ⎛⎭
⎪⎫π3x -π6. 当x ∈(-1,2)时,π3x -π6∈⎝ ⎛⎭
⎪⎫-π2,π2, 所以sin ⎝ ⎛⎭⎪⎫π3x -π6∈(-1,1), 即1+2sin ⎝ ⎛⎭
⎪⎫π3x -π6∈(-1,3).于是函数h (x )的值域为(-1,3).。