数学人教版九年级下册复习专题
人教版九年级数学下册专题复习《函数学习经验》学习任务单(公开课导学案)及练习
人教版九年级数学下册专题复习《函数学习经验》学习任务单【学习目标】1.进一步理解函数的概念和三种表示法;2.会借助表格、图象分析函数性质;3.能用函数思维看待、思考、分析并解决问题.【学习准备】【学习准备】准备好铅笔,直尺.边观看边做记录.【学习任务】一、学习环节:复习函数学习经验→例题学习→课堂小结.二、观看视频课学习,适时控制播放,按老师指令完成相应的课上练习。
例题1.有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数的自变量 x 的取值范围是___________;(2)下表是 y 与 x 的几组对应值.求 m 的值;(3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其他性质(一条即可):________________.例题2.如图,在正方形 ABCD 中,AB=5cm,点 E 在正方形边上沿 B→C→D 运动(含端点),连接 AE,以 AE 为边,在线段右侧作正方形 AEFG,连接 DF、DG.小云根据学习函数的经验,在点 E 运动过程中,对线段 AE、DF、DG 的长度之间的关系进行了探究.下面是小云的探究过程,请补充完整:(1)对于点 E 在 BC、 CD 边上的不同位置,画图、测量,得到了线段 AE、 DF、DG 的长度的几组值,如下表:在 AE 、DF 和 DG 的长度这三个量中,确定__________ 的长度是自变量,__________的长度和__________的长度都是这个自变量的函数.(2)在同一平面直角坐标系 xOy 中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当△GDF 为等腰三角形时,AE 的长约为______________.【课后练习】小明根据学习函数的经验,对线段AP,BC,OD的长度之间的关系进行了探究.下面是小明的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段AP,BC,OD的长度的几组值,如下表:在AP,BC,OD的长度这三个量中确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,推断:当OD = 2BC时,线段AP的长度约为.【答案】(1)AP,BC,OD或 BC,AP,OD;(2)(3)4.67.【解析】解:(1)由图表观察,可看出随着AP的变化,BC和OD都在发生变化,且都有唯一确定的值和其对应,所以AP的长度是自变量,BC和OD的长度都是这个自变量的函数,故答案分别为:AP,BC,OD;同理,答案也可以为 BC,AP,OD;(2)先描点,再画出图象;(3)由图象可推断:当OD=2BC时,线段AP的长度约为4.67,故答案为:4.67.小明根据学习函数的经验,分别对函数y1、y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值.(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y1, y2的图象;(3)结合函数图象,解决问题:当中有一个角为30°时,AP的长度约为______cm.【答案】(1)3.02;(2)(3)5.49 或 2.50;3.已知y是x的函数,自变量x的取值范围x > 0,下表是y与x的几组对应值小腾根据学校函数的经验,利用上述表格所反映出的 y 与 x 之间的变化规律,对该函数的图象与性质进行了探究。
《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)
专题27.43《相似》全章复习与巩固(知识讲解)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【要点梳理】【知识点一】成比例线段1、定义:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。
2、性质:(1)基本性质:如果a cb d=,那么ad bc =;反之,若ad bc =(),,,0a b c d 都不等于,那么a c b d =(2)等比性质:如果()==0a c m b d n b d n =+++≠ ,那么a c m a b d n b +++=+++ (3)合比性质:如果a c b d =,那么a b c d b d ++=,a b c d b d --=【知识点二】平行线分线段成比例1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例【知识点三】相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方【知识点四】相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似(3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比(3)相似三角形的周长比等于相似比,面积比等于相似比的平方【知识点五】黄金分割点C 把线段AB 分成两条线段AC 和BC ()AC BC >,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即:0.618:1AC AB ≈【知识点六】位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ⋅≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:①确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数()0k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k【典型例题】类型一、成比例线段和平行线分线段成比例1.已知三条线段a b c ,,满足1324a b c +==,且17a b c ++=.(1)求a b c ,,的值;(2)若线段d 是线段a 和b 的比例中项,求d 的值.【点拨】本题考查了比例的性质,比例线段,利用“设k 法”用k 表示出a 、b 、c 可以使计算更加简便.【变式1】已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.解:∵:2:3a b =,:3:4b c =,∴设2a k =,3b k =,4c k =,∴()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∴24a k ==,36b k ==,48c k ==.【点拨】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.【变式2】如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF PD=,以AF为边作正方形AMEF,点M在AD上.,的长;(1)求AM DM(2)点M是AD的黄金分割点吗?为什么?【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.2.如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若25DE EF =,AC=14,(1)求AB 的长.(2)如果AD=7,CF=14,求BE 的长.【点拨】本题考查平行线分线段成比例的知识,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例.【变式1】如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.【变式2】如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.【点拨】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.类型二、相似三角形判定和性质3.如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析(2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅ ,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∵EF 垂直平分CD ,∴90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∴()EDF ECF SSS ≅ ,∴12∠=∠,∵90ACB ∠=︒,90EOC ∠=︒,∴233490∠+∠=∠+∠=︒,∴421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩,∴OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式1】如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.=.∴AF4【变式2】如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.【点拨】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.中,过点C作CD//AB,E是AC的中点,连接DE并延长,4.如图,在ABC交AB于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF=,求AB的长.2【变式1】已知:如图6,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为E,交AC于点F.求证:(1)△ABF∽△BED;(2)求证:AC BD BE DE=.【变式2】如图,已知▱ABCD.(1)用直尺和圆规在BC边上取一点E,使AB=AE,连结AE;(保留作图痕迹,不写作法)(2)在(1)的前提下,求证:AE=CD;∠EAD=∠D;(3)若点E为BC的中点,连接BD,交AE于F,直接写出EF:FA的值.【答案】(1)见分析(2)证明见分析(3)1:2分析:(1)以点A为圆心,AB为半径作圆,该圆与BC的交点即为所求的点E;(2)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(3)由四边形ABCD是平行四边形,可证得△BEF∽△AFD即可求得EF∶FA的值.解:(1)如图所示:;(2)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF ∽△AFD ,∴=,∵E 为BC 的中点,∴BE=BC=AD ,∴EF :FA=1:2.【点拨】此题考查了相似三角形的判定与性质与平行四边形的性质,熟练掌握平行四边形的性质是关键.5.如图,在ABC 中,点D 、点E 分别在AC 、AB 上,点P 是BD 上的一点,联结EP 并延长交AC 于点F ,且A EPB ECB ∠=∠=∠.(1)求证:BE BA BP BD ⋅=⋅;(2)若90ACB ∠=︒,求证:CP BD ⊥.【变式1】已知ADE C ∠=∠,AG 平分BAC ∠交DE 于F ,交BC 于G .(1)求证:ADF ∽ACG ;(2)连接DG ,若DG AC ∥,25AF AG =,6AD =,求CE 的长度.【点拨】本题考查了相似三角形的判定和性质、角平分线的性质、平行线的性质、等腰三角形的判定和性质,解决本题的关键是掌握以上的定理并熟练的运用.【变式2】如图,∠A=∠C=∠EDF,CF=4,CD=AD=6;(1)求AE的长.(2)求证:△ADE∽△DFE.【点拨】此题考查了相似三角形的判定和性质,掌握相似三角形的判定方法以及根据相似三角形性质列出比例式进行求解是解题的关键.类型三、相似三角形拓展与提升6.已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【点拨】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.【变式1】已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.【答案】(1)见分析(2)AE CF =(3)平行四边形,证明见分析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.解:(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.【点拨】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.【变式2】已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.正方形AFEG 绕A 点逆时针方向旋转DAG CAE∴∠=∠12AG AD AE AC == GAD EAC ∴ ∽ 82AB =,22AG =82AD AB ∴==,AG =,,G E C 三点共线,Rt AGC △中,GC AC =由(2)知△ADG∽△【点拨】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.类型三、位似7.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)【点拨】此题主要考查了位似图形的画法以及勾股定理等知识,利用位似比得出对应点位置是解题关键.【变式一】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(5,2).(1)以点B为位似中心,在网格内画出△ABC的位似△A1BC1,使得△A1BC1与△ABC的位似比为2;(2)直接写出点A1的坐标和△A1BC1的面积.(2)如图所示1A :()3,7;11Δ116846222A BC S =⨯-⨯⨯-⨯【点拨】此题考查了位似变换和三角形面积求法,【变式二】如图,ABC 在平面直角坐标系内,三个顶点的坐标分别为()1,3A ,()2,1B ,()5,2C (正方形网格中,每个小正方形的边长为1),以点O 为位似中心,把ABC 按相似比2:1放大,得到对应A B C '''V .(1)请在第一象限内画出A B C '''V ;(2)若以点A 、B 、C 、D 为顶点的四边形是平行四边形,请直接写出满足条件的点D 的坐标.【答案】(1)见分析(2)()14,4D ;()26,0D ;()32,2D -【分析】(1)根据点O 为位似中心,()1,3A ,()2,1B ,()5,2C ,把ABC 按相似比2:1放大,得到对应A B C '''V ,求出点'A ,'B ,'C 的坐标,在网格中描点顺次连线即得;C(2)设D(x,y),∵平行四边形的对角线互相平分,且综上,()14,4D ;()26,0D ;()32,2D -.【点拨】本题主要考查了位似三角形,平行四边形,解决问题的关键是熟练掌握位似三角形的定义及画法,平行四边形对角线的性质和线段中点坐标公式.。
《反比例函数》全章复习与巩固(巩固篇)九年级数学下册基础知识专项讲练(人教版)
专题26.27《反比例函数》全章复习与巩固(巩固篇)(专项练习)一、单选题(本大题共10小题,每小题3分,共30分)1.在反比例函数6y x=的图象上的点是()A .()2,3B .()4,2C .()6,1-D .()2,3-2.已知点A (﹣2,m ),B (2,m ),C (4,m +12)在同一个函数的图象上,这个函数可能是()A .y =xB .y =﹣2xC .y =x 2D .y =﹣x 23.若两个点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,且12x x <,则k 的值可以是()A .1B .2C .3D .44.已知抛物线221y x x m =--++与x 轴没有交点,则函数my x=和函数y mx m =-的大致图像是()A .B .C .D .5.已知点A (﹣2,y 1),B (﹣1,y 2),C (3,y 3)都在反比例函数y =3x的图象上,则y 1,y 2,y 3的大小关系正确的是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 36.如图,在平面直角坐标系中,菱形ABCD 的边BC 与x 轴平行,A 和B 两点的纵坐标分别为4和2,函数(0,0)k y k x x=>>的图象经过A 、B 两点.若菱形ABCD 的面积为则k 的值为()A .4B .8C .16D .7.如图,点A 是反比例函数y 1=1x(x >0)图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(x >0)的图象于点B ,连接OA 、OB ,若△OAB 的面积为1,则k 的值是()A .3B .4C .5D .68.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <29.对于反比例函数2y x=-,下列说法不正确的是()A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <10.如图,在平面直角坐标系中,一次函数443y x =+的图象与x 轴、y 轴分别相交于点B ,点A ,以线段AB 为边作正方形ABCD ,且点C 在反比例函数(0)ky x x=<的图象上,则k 的值为()A .12-B .42-C .42D .21-二、填空题(本大题共8小题,每小题4分,共32分)11.已知直线y =kx 与双曲线y =6k x+的一个交点的横坐标是2,则另一个交点坐标是_____.12.已知点A (1,2)在反比例函数ky x=的图象上,则当1x >时,y 的取值范围是______.13.已知点A (381a a --,)在第二象限,且a 为整数,反比例函数ky x=经过该点,则k 的值为_________.14.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.15.在平面直角坐标系xOy 中,反比例函数ky x=的图象经过点(4,)P m ,且在每一个象限内,y 随x 的增大而增大,则点P 在第______象限.16.如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.17.如图,平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为6,4,反比例函数y =kx(x >0)的图象经过A ,B 两点,若菱形ABCD的面积为k 的值为_____.18.如图,小华设计了一个探究杠杆平衡条件的实验:在一根匀质的木杆中点O 左侧固定位置B 处悬挂重物A ,在中点O 右侧用一个弹簧秤向下拉,改变弹簧秤与点O 的距离x(cm),观察弹簧秤的示数y(N)的变化情况,实验数据记录如下:则y 与x 之间的函数关系为______.三、解答题(本大题共6小题,共58分)19.(8分)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =-的图象相交于点A ,反比例函数ky x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x =的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.20.(8分)如图,正比例函数y kx =的图像与反比例函数()80y x x=>的图像交于点(),4A a .点B 为x 轴正半轴上一点,过B 作x 轴的垂线交反比例函数的图像于点C ,交正比例函数的图像于点D .(1)求a 的值及正比例函数y kx =的表达式;(2)若10BD =,求ACD △的面积.21.(10分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x (h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.23.(10分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当1b=-时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(12分)背景:点A在反比例函数kyx=(0k>)的图象上,AB x⊥轴于点B,AC y⊥轴于点C,分别在射线AC,BO上取点D,E,使得四边形ABED为正方形,如图1,点A在第一象限内,当4AC =时,小李测得3CD =.探究:通过改变点A 的位置,小李发现点D ,A 的横坐标之间存在函数关系,请帮助小李解决下列问题.(1)求k 的值;(2)设点A ,D 的横坐标分别为x ,z ,将z 关于x 的函数称为“Z 函数”.如图2,小李画出了0x >时“Z 函数”的图象.①求这个“Z 函数”的表达式.②过点(3,2)作一直线,与这个“Z 函数”图象仅有一个交点,求该交点的横坐标.参考答案1.A【分析】分别计算出各选项纵横坐标的乘积,判断是否等于6即可得解.解:A.23=6⨯,点(2,3)在反比例函数6y x=的图象上,故此选项符合题意;B.42=86⨯≠,点(4,2)不在反比例函数6y x=的图象上,故此选项不符合题意;C.61=66-⨯-≠,点(-6,1)不在反比例函数6y x=的图象上,故此选项不符合题意;D.23=66-⨯-≠,点(-2,3)不在反比例函数6y x=的图象上,故此选项不符合题意;故选:A【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.C【分析】根据正比例函数和反比例函数还有二次函数的图象的对称性进行分析即可.解:∵A (﹣2,m ),B (2,m ),∴点A 与点B 关于y 轴对称;由于y =x ,y =2x的图象关于原点对称,因此选项A 、B 错误;∵m +12>m ,y =a x 2的图象关于y 轴对称由B (2,m ),C (4,m +12)可知,在对称轴的右侧,y 随x 的增大而增大,对于二次函数只有a >0时,在对称轴的右侧,y 随x 的增大而增大,∴C 选项正确,故选:C .【点拨】考核知识点:正比例函数和反比例函数还有二次函数的图象.理解正比例函数和反比例函数还有二次函数的图象的对称性是关键.3.A【分析】根据点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,推出121k x -=,223k x --=,得到12x k =-,223k x -=,根据12x x <,得到223k k --<,求得k <2,推出k 的值可能是1,解:∵点()1,1x ,()2,3x -均在反比例函数2k y x-=的图象上,∴121k x -=,223k x --=,∴12x k =-,223k x -=,∵12x x<,∴223kk--<∴k<2,∴k的值可能是1,故选:A【点拨】本题主要考查了反比例函数,解题的关键是熟练掌握待定系数法求函数解析式,解不等式,反比例函数的图象和性质.4.C【分析】由已知可以得到m的取值范围,再根据反比例函数和一次函数的图象与性质即可得到解答.解:∵抛物线y=−x2−2x+m+1与x轴没有交点,∴方程−x2−2x+m+1=0没有实数根,∴Δ=4+4×1×(m+1)=4m+8<0,∴m<−2,∴−m>2,故函数y=mx的图象在第二、四象限,函数y=mx−m.故选:C.【点拨】本题考查函数的综合应用,熟练掌握二次函数与一元二次方程的关系、反比例函数与一次函数的图象与性质是解题关键.5.D【分析】把点A(-2,y1),B(-1,y2),C(3,y3)代入反比例函数的关系式求出y1,y2,y3,比较得出答案.解:把点A(﹣2,y1),B(﹣1,y2),C(3,y3)代入反比例函数3yx=的关系式得,y1=﹣1.5,y2=﹣3,y3=1,∴y2<y1<y3,故选:D.【点拨】本题考查反比例函数图象上点的坐标特征,把点的坐标代入函数关系式是常用的方法.6.D【分析】过点A 作AM x ⊥轴于点,M 交BC 于点,E 过点B 作BN x ⊥轴于点,N 求出2AE =,再由菱形的性质求出AD =,可得点A 的坐标,从而可得结论.解:过点A 作AM x ⊥轴于点M ,交BC 于点,E 过点B 作BN x ⊥轴于点N ,如图,∵BC //x 轴,∴,AE BC ⊥∴∠90,BEM EMN MNB ︒=∠=∠=∴四边形BEMN 是矩形,∴ME BN=∵,A B 点的纵坐标分别为4和2,∴4,2,AM BN ==∴2,ME =∴422,AE AM EM =-=-=∵四边形ABCD 是菱形,∴AD AE⊥∴2ABCD S AD AE AD =⋅==菱形,∴AD =,∵D 点在y 轴上,∴4)A∴4k ==故选:D【点拨】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.7.A【分析】延长BA ,与y 轴交于点C ,由AB 与x 轴平行,得到BC 垂直于y 轴,利用反比例函数k 的几何意义表示出三角形AOC 与三角形BOC 面积,由三角形BOC 面积减去三角形AOC 面积表示出三角形AOB 面积,将已知三角形AOB 面积代入求出k 的值即可.解:延长BA ,与y 轴交于点C ,∵AB //x 轴,∴BC ⊥y 轴,∵A 是反比例函数y 1=1x (x >0)图象上一点,B 为反比例函数y 2=k x(x >0)的图象上的点,∴S △AOC =12,S △BOC =2k ,∵S △AOB =1,即2211k -=,解得:k =3,故选:A .【点拨】本题考查了反比例函数k 的几何意义,熟练掌握反比例函数k 的几何意义是解本题的关键.8.C【分析】一次函数y1=kx+b 落在与反比例函数y 2=c x 图象上方的部分对应的自变量的取值范围即为所求.解:∵一次函数y1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y1>y2的解集是﹣3<x <0或x >2,故选C .【点拨】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9.D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.解:A.k=−2<0,∴它的图象在第二、四象限,故本选项正确;B.k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D.若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0<x2,则y2<y1,故本选项错误.故选:D.【点拨】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.10.D【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可;解:∵当x=0时,04=4y=+,∴A(0,4),∴OA=4;∵当y=0时,4043x=+,∴x=-3,∴B(-3,0),∴OB=3;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,CBE BAO BEC AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC ,∴BE=AO=4,CE=OB=3,∴OE=3+4=7,∴C 点坐标为(-7,3),∵点A 在反比例函数(0)k y x x=<的图象上,∴k=-7×3=-21.故选D .【点拨】本题考查了一次函数与坐标轴的交点、待定系数法求函数解析式、正方形的性质,以及全等三角形的判定与性质,解答此题的关键是正确作出辅助线及数形结合思想的运用.11.(-2,-4)【分析】根据交点的横坐标是2,得到622k k +=,求得k 值,确定一个交点坐标为(2,4),根据图像的中心对称性质,确定另一个交点坐标即可.解:∵交点的横坐标是2,∴622k k +=,解得k =2,故函数的解析式为y =2x ,y =8x ,当x =2时,y =4,∴交点坐标为(2,4),根据图像的中心对称性质,∴另一个交点坐标为(-2,-4),故答案为:(-2,-4).【点拨】本题考查了反比例函数与正比例函数的交点问题,函数图像的中心对称问题,熟练掌握交点的意义,灵活运用图像的中心对称性质是解题的关键.12.0<y <2【分析】根据图象结合反比例函数k y x =的图象性质,分析其增减以及其过点的坐标解答即可.解:点A (1,2)在反比例函数k y x =的图象上,∴反比例函数k y x=的图象在第一象限,k =2∴y 随x 的增大而减小;∴当x >1时,y 的取值范围时0<y <2;故答案为:0<y <2.【点拨】本题考查的是反比例函数图象上点的坐标特点,掌握数形结合的思想以及反比例函数的图象成为解答本题的关键.13.-2【分析】根据第二象限的符号特征,且a 为整数,求出a =2,得A (-2,1),将A (-2,1)代入k y x=,得k 的值.解:∵点A (3a −8,a −1)在第二象限,且a 为整数,∴38010a a -<->ìïíïî,解得1<a <83,∴a =2,∵3×2-8=-2,2-1=1,∴A (-2,1),∵反比例函数k y x=经过点A ,∴将A (-2,1)代入k y x =,得21k -=,∴k =-2,故答案为:-2.【点拨】本题考查了第二象限的符号特征和反比例函数,解题的关键是掌握第二象限的符号特征.14.-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x =≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点,∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点拨】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.15.四【分析】直接利用反比例函数的性质确定m 的取值范围,进而分析得出答案.解:∵反比例函数k y x=(k ≠0)图象在每个象限内y 随着x 的增大而增大,∴k <0,又反比例函数k y x =的图象经过点(4,)P m ,∴40m k =<∴0m <∴(4,)P m 在第四象限.故答案为:四.【点拨】此题主要考查了反比例函数的性质,正确记忆点的坐标的分布是解题关键.16.32-【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB 是等腰直角三角形,再根据BC =A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k .解:∵ABC 是等腰直角三角形,BC x ⊥轴.∴90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB =.∴AOB 是等腰直角三角形.∴BO AO =.故:A ,(C .(D .将D 点坐标代入反比例函数解析式.3222D D k x y =⋅=-⨯-.故答案为:32-.【点拨】本题考查平面几何与坐标系综合,反比例函数解析式;本体解题关键是得到AOB 是等腰直角三角形,用中点公式算出D 点坐标.17.12【分析】过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为6,4,可得出横坐标,即可表示AE ,BE 的长,根据菱形的面积为AE 的长,在Rt △AEB 中,计算BE 的长,列方程即可得出k 的值.解:过点A 作x 轴的垂线,交CB 的延长线于点E ,∵BC ∥x 轴,∴AE ⊥BC ,∵A ,B 两点在反比例函数y =k x (x >0)的图象,且纵坐标分别为6,4,∴A (6k ,6),B (4k ,4),∴AE =2,BE =4k ﹣6k =k 12,∵菱形ABCD 的面积为∴BC×AE =BC∴AB =BC在Rt △AEB 中,BE 1,∴112k=1,∴k=12,故答案为:12.【点拨】本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.18.300yx=【分析】通过表格我们可以得到表格中每组数据相乘为一个定值300,故我们可以猜想y与x之间是成反比例函数的关系,根据表格中的数据求出反比例函数的解析式,再将其余的点带入验证即可.解:由表格猜想y与x之间的函数关系为反比例函数解:设反比例函数解析式为k yx =把x=10,y=30代入得:k=300∴300 yx =将其余点带入均符合要求∴y与x之间的函数关系式为:300 yx =故答案为:300 yx =【点拨】本题主要考查的是反比例函数的性质以及解析式的求法,正确的掌握反比例函数的性质是解题的关键.19.(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.【分析】(1)联立两一次函数解出A点坐标,再代入反比例函数即可求解;(2)联立一次函数与反比例函数求出B点坐标,再根据反比例函数的性质求解三角形的面积.解:(1)由题意:联立直线方程1522y xy x⎧=+⎪⎨⎪=-⎩,可得24xy=-⎧⎨=⎩,故A点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8 yx =-(2)联立直线152y x =+与反比例函数8y x=-,1528x y x y ⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x =-=-,当8x =-时,1y =,故B (-8,1)如图,过A ,B 两点分别作x 轴的垂线,交x 轴于M 、N 两点,由模型可知S 梯形AMNB =S △AOB ,∴S 梯形AMNB =S △AOB =12121()()2y y x x +-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯=【点拨】此题主要考查一次函数与反比例函数综合,解题的关键是熟知一次函数与反比例函数的图像与性质.20.(1)a=2;y=2x ;(2)635【分析】(1)已知反比例函数解析式,点A 在反比例函数图象上,故a 可求;求出点A 的坐标后,点A 同时在正比例函数图象上,将点A 坐标代入正比例函数解析式中,故正比例函数的解析式可求.(2)根据题意以及第一问的求解结果,我们可设B 点坐标为(b ,0),则D 点坐标为(b ,2b),根据BD=10,可求b 值,然后确认三角形的底和高,最后根据三角形面积公式即可求解.解:(1)已知反比例函数解析式为y=8x,点A(a ,4)在反比例函数图象上,将点A 坐标代入,解得a=2,故A 点坐标为(2,4),又∵A 点也在正比例函数图象上,设正比例函数解析为y=kx ,将点A(2,4)代入正比例函数解析式中,解得k=2,则正比例函数解析式为y=2x .故a=2;y=2x .(2)根据第一问的求解结果,以及BD 垂直x 轴,我们可以设B 点坐标为(b ,0),则C 点坐标为(b ,8b)、D 点坐标为(b ,2b),根据BD=10,则2b=10,解得b=5,故点B 的坐标为(5,0),D 点坐标为(5,10),C 点坐标为(5,85),则在△ACD 中,()18105225S ⎛⎫=⨯-⨯- ⎪⎝⎭△ACD =635.故△ACD 的面积为635.【点拨】(1)本题主要考查求解正比例函数及反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法是解答本题的关键.(2)本题根据第一问求解的结果以及BD 垂直x 轴,利用待定系数法,设B 、C 、D 三点坐标,求出B 、C 、D 三点坐标,是解答本题的关键,同时掌握三角形面积公式,即可求解.21.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【分析】(1(2)观察图象可得;(3)代入临界值y =10即可.(1)解:设线段AB 解析式为y =k 1x +b (k ≠0)∵线段AB 过点(0,10),(2,14),代入得110214b k b ⎧⎨+⎩==,解得1210k b ⎧⎨⎩==,∴AB 解析式为:y =2x +10(0≤x <5).∵B 在线段AB 上当x =5时,y =20,∴B 坐标为(5,20),∴线段BC 的解析式为:y =20(5≤x <10),设双曲线CD 解析式为:y =2k x (k 2≠0),∵C (10,20),∴k 2=200.∴双曲线CD 解析式为:y =200x(10≤x ≤24),∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)解:由(1)恒温系统设定恒温为20°C ;(3)解:把y =10代入y =200x 中,解得x =20,∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.【点拨】本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.22.(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0)分析:(1)求得A (1,3),把A (1,3)代入双曲线y=k x ,可得y 与x 之间的函数关系式;(2)依据A (1,3),可得当x >0时,不等式34x+b >k x的解集为x >1;(3)分两种情况进行讨论,AP 把△ABC 的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P 的坐标.解:(1)把A (1,m )代入y 1=﹣x+4,可得m=﹣1+4=3,∴A (1,3),把A (1,3)代入双曲线y=k x,可得k=1×3=3,∴y 与x 之间的函数关系式为:y=3x ;(2)∵A (1,3),∴当x >0时,不等式34x+b >k x的解集为:x >1;(3)y 1=﹣x+4,令y=0,则x=4,∴点B 的坐标为(4,0),把A (1,3)代入y 2=34x+b ,可得3=34+b ,∴b=94,∴y 2=34x+94,令y 2=0,则x=﹣3,即C (﹣3,0),∴BC=7,∵AP 把△ABC 的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.23.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤.分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值;(2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.(1)解:∵点A (4,1)在k y x=(0x >)的图象上.∴14k =,∴4k =.(2)①3个.(1,0),(2,0),(3,0).②a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.(1)4(2)①4z x x=-;②2,3,4,6【分析】(1)利用待定系数法求解即可;(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,继而解得点D 的横坐标为4z x x =-,根据题意解题即可;②分两种种情况讨论,当过点3,2()的直线与x 轴垂直时,或当过点3,2()的直线与x 轴不垂直时,结合一元二次方程求解即可.解:(1)由题意得,1AB AD ==,∴点A 的坐标是(4,1),所以414k =⨯=;故答案为:4(2)①设点A 坐标为1,x x ⎛⎫ ⎪⎝⎭,所以点D 的横坐标为4z x x =-,所以这个“Z 函数”表达式为4z x x=-;②第一种情况,当过点3,2()的直线与x 轴垂直时,3x =;第二种情况,当过点3,2()的直线与x 轴不垂直时,设该直线的函数表达式为'(0)z mx b m =+≠,23m b ∴=+,即32b m =-+,'32z mx m ∴=-+,由题意得,432x mx m x-=-+22432x mx mx x ∴-=-+,2(1)(23)40m x m x ∴-+-+=(a )当1m =时,40x -+=,解得4x =;(b )当1m ≠时,2224(23)4(1)4928200b ac m m m m -=---⨯=-+=,解得12102,9m m ==,当12m =时,()2244020x x x -+=-=,.解得122x x ==;当2109m =时,()2221440,12360,6093x x x x x -+=-+=-=,解126x x ==所以x 的值为2,3,4,6.【点拨】本题考查反比例函数的图象与性质、求一次函数的解析式、解一元二次方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.。
人教版初中数学九年级下册27.2:相似三角形 解答题专项
人教版九年级下册27.2相似三角形解答题专项1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=cm,CP=cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.相似三角形专项练习参考答案与试题解析一.解答题(共20小题)1.如图,△ABC中,BD平分∠ABC,E为BC上一点,∠BDE=∠BAD=90°.(1)求证:BD2=BA•BE;(2)若AB=6,BE=8,求CD的长.【解答】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD,又∵∠BDE=∠BAD=90°,∴△ABD∽△DBE,∴,∴BD2=BA•BE;(2)∵AB=6,BE=8,BD2=BA•BE,∴BD=4,∴DE===4,∵∠BDC=∠A+∠ABD=∠BDE+∠EDC,∴∠ABD=∠CDE,∴∠CDE=∠DBC,又∵∠C=∠C,∴△BCD∽△DCE,∴,∴,∴EC=4,CD=4.2.如图,在正方形ABCD中,E是AD边的中点,AP⊥BE于点P,延长AP交CD于点F,连接CP.(1)求证:①BP=2AP;②PC=BC;(2)求的值.【解答】解:(1)证明:①∵在正方形ABCD中,E是AD边的中点,∴在Rt△EBA中,AB=2AE,∵AP⊥BE于点P,∴Rt△ABP∽Rt△EBA,∴==,∴BP=2AP.②如图,过点C作CH⊥BE于点H,则∠BCH+∠PBC=90°,又∠ABP+∠PBC=90°,∴∠BCH=∠ABP,又BC=AB,∴Rt△BCH≌Rt△ABP(AAS),∴BH=AP,又BP=2AP,∴BH=PH,又CH⊥BE,∴PC=BC.(2)如图,同(1)②可证:Rt△AFD≌Rt△BEA,∴AF=BE,在Rt△BEA中,若设AE=1,则AB=2,BE=,∵AP⊥BE于点P,∴AP•BE=AB•AE,∴AP==,则PF=AF﹣AP=BE﹣AP=﹣=,∴=.3.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若△MBN与△ABC相似,求t的值.(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5.分两种情况:①当△MBN∽△ABC时,则,即,解得:t=.②当△NBM∽△ABC时,同理可得:t=,综上所述:当t=或时,△MBN与△ABC相似;(2)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即=,解得:MD=t.设四边形ACNM的面积为y,y=×5×5﹣(5﹣t)t=(t﹣2.5)2+.根据二次函数的性质可知,当t=2.5时,y的值最小值为.4.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)判定△ABP与△PCD是否相似,说明理由;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【解答】解:(1)△BAP∽△CPD,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,又∵∠APD=∠B,∴∠DPC=∠BAP,∴△BAP∽△CPD;(2)∵PD∥AB,∴∠APD=∠BAP,又∵∠APD=∠B,∴∠BAP=∠B=∠C,又∵∠B=∠B,∴△ABC∽△PBA,∴,∴,∴BP=.5.如图,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若=3,求的值.【解答】解:如图,过点E作EH∥AB交BG于点H,则有△ABF∽△EHF,∴,∴AB=3EH.∵四边形ABCD是平行四边形,∴AB∥CD,又∵EH∥AB,∴EH∥CD,CD=AB=3HE,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH,∴==.6.如图,四边形ABCD内接于⊙O,AB是直径,C为的中点,延长AD、BC交于点E,连接AC、BD.(1)求证:AB=AE;(2)若AB=5,DE=2,求线段CE的长.【解答】证明:(1)∵C为的中点,∴=,∴∠BAC=∠CAD,∵AB是直径,∴∠BCA=90°=∠ACE,∴∠E=∠ABC,∴AB=AE;(2)∵AB=AE=5,∠ACB=90°,∴CE=BC=EB,∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,又∵∠ADC+∠EDC=180°,∴∠EDC=∠ABC,又∵∠E=∠E,∴△EDC∽△EBA,∴,∴,∴EC=.7.如图,在平行四边形ABCD中,过点A作AE垂直BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=6,AD=8,AF=4,求AE的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,AD=BC,∴∠ADE=∠DEC,∠B+∠C=180°,∵∠AFB=∠B,∠AFE+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC;(2)∵△ADF∽△DEC,∴,∴,∴DE=12,∵AE2=DE2﹣AD2=144﹣64=80,∴AE=4.8.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t 秒.(1)根据题意知:CQ=t cm,CP=(4﹣2t)cm;(用含t的代数式表示)(2)t为何值时,△CPQ与△ABC相似.【解答】解:(1)经过t秒后,CQ=t,CP=4﹣2t,故答案为:t;(4﹣2t).(2)设经过t秒后两三角形相似,则可分下列两种情况进行求解,①若Rt△ABC∽Rt△QPC则,即,解得t=1.2;②若Rt△ABC∽Rt△PQC则,即,解得t=;由P点在BC边上的运动速度为2cm/s,Q点在AC边上的速度为1cm/s,可求出t的取值范围应该为0<t<2,验证可知①②两种情况下所求的t均满足条件.答:要使△CPQ与△CBA相似,运动的时间为1.2或秒.9.如图,点P是菱形ABCD的对角线AC上一点,连接DP并延长,交AB于点F,交CB 的延长线于点E.求证:(1)△APB≌△APD;(2)PD2=PE•PF.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,在△ABP和△ADP中,,∴△ABP≌△ADP(SAS);(2)∵△ABP≌△ADP,∴PB=PD,∠ADP=∠ABP,∵AD∥BC,∴∠ADP=∠E,∴∠E=∠ABP,又∵∠FPB=∠EPB,∴△EPB∽△BPF,∴,∴PB2=PE•PF,∴PD2=PE•PF.10.如图,已知∠DAB=∠ECB,∠ABD=∠CBE.求证:△ABC∽△DBE.【解答】证明:∵∠DAB=∠ECB,∠ABD=∠CBE,∴△ABD∽△CBE,∴=,即,∵∠ABC=∠ABD+∠DBC,∠DBE=∠DBC+CBE,∵,∠ABC=∠DBE,∴△ABC∽△DBE.11.如图,AF,AG分别是△ABC和△ADE的高,∠BAF=∠DAG.(1)求证:△ABC∽△ADE;(2)若DE=3,,求BC的长.【解答】(1)证明:∵AF,AG分别是△ABC和△ADE的高,∴AF⊥BC,AG⊥DE,∴∠AFB=90°,∠AGD=90°,∴∠BAF+∠B=90°,∠DAG+∠ADG=90°,∵∠BAF=∠DAG,∴∠B=∠ADG,又∵∠EAD=∠BAC,∴△ABC∽△ADE;(2)解:∵△ADE∽△ABC,∴,∵,BC=3,∴,∴BC=.12.已知:如图,BF、CE分别是△ABC的边AC、AB上的高,BF与CE相交于点O,AN 是∠BAC的角平分线,交EF于点M,交BC于点N.(1)求证;△ABF∽△ACE;(2)求证:=.【解答】解:(1)证明:∵BF、CE分别是△ABC的边AC、AB上的高,∴BF⊥AC,CE⊥AB,∴∠AFB=∠AEC=90°,又∵∠CAE=∠BAF,∴△ABF∽△ACE;(2)证明:∵△ABF∽△ACE,∴=,∴=,又∵∠EAF=∠CAB,∴△EAF∽△CAB,∴=①,∠AEF=∠ACB,∵AN是∠BAC的角平分线,∴∠EAM=∠CAN,∴△EAM∽△CAN,∴=②,由①②可得:=.13.如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.(1)求证:△ABC∽△BGA;(2)若AF=5,AB=8,求FG的长;【解答】解:(1)∵∠ABC=90°,F是AC的中点,∴BF=AC=AF,∴∠F AB=∠FBA,∵AG⊥BE,∴∠AGB=90°,∴∠ABC=∠AGB,∴△ABC∽△BGA;(2)∵AF=5,∴AC=2AF=10,BF=5,∵△ABC∽△BGA,∴=,∴BG==,∴FG=BG﹣BF=﹣5=.14.如图,△ABC中,D为BC边上的一点,E在AD上,过点E作直线l分别和AB、AC 两边交于点P和点Q,且EP=EQ.(1)当点P和点B重合的时候,求证:;(2)当P、Q不与A、B、C三点重合时,求证:.【解答】证明:(1)如图,过点Q作QF∥BC交AD于F,∴△FQE∽△DPE,∴=,又∵QE=EP,∴BD=FQ,EF=DE,∵QF∥CD,∴△AFQ∽△ADC,∴,∴,∴;(2)如图,过点Q作QF∥BC交AD于F,过点P作PH∥BC交AD于H,∴QF∥PH,∴△FQE∽△HPE,∴,又∵QE=EP,∴PH=FQ,EF=HE,∵FQ∥BC,∴△AQF∽△ACD,∴,∵PH∥BC,∴△APH∽△ABD,∴,∴===.15.如图,△ADE∽△ABC,且=,点D在△ABC内部,连结BD、CD、CE.(1)求证:△ABD∽△ACE.(2)若CD=CE,BD=3,且∠ABD+∠ACD=90°,求DE的长.【解答】证明:(1)∵△ADE∽△ABC,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴,∠ABD=∠ACE,又∵BD=3,∴CE=2,∴CD=CE=2,∵∠ABD+∠ACD=90°,∴∠ACD+∠ACE=90°,∴∠DCE=90°,∴DE=CD=2.16.如图,⊙O中的弦AC、BD相交于点E.(1)求证:AE•CE=BE•DE;(2)若AE=4,CE=3,BD=8,求线段BE的长.【解答】(1)证明:由圆周角定理得,∠A=∠B,∠D=∠C,∴△ADE∽△BCE,∴=,∴AE•CE=BE•DE;(2)解:由(1)得,AE•CE=BE•DE,则4×3=BE×(8﹣BE),解得,BE1=2,BE2=6,即线段BE的长为2或6.17.如图,已知点D为△ABC内一点,点E为△ABC外一点,且满足.(1)求证:△ABD∽△ACE;(2)联结CD,如果∠ADB=90°,∠BAD=∠ACD=30°,BC=,AC=4,求CD 的长.【解答】证明:(1)∵,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,又∵,∴△ABD∽△ACE;(2)如图,∵△ABD∽△ACE,∴∠ADB=∠AEC=90°,∠BAD=∠CAE=30°,∴CE=AC=2,AE=CE=2,∠ACE=60°,∴∠DCE=∠ACD+∠ACE=90°,∵,∴=,∴DE=3,∴CD===.18.如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为2.(1)求证:△CDE∽△CBA;(2)求DE的长.【解答】(1)证明:∵∠ADE+∠B=180°,∠ADE+∠CDE=180°,∴∠CDE=∠B,而∠DCE=∠BCA,∴△CDE∽△CBA;(2)连接BD,如图,∵AB为直径,∵∠BDC=90°,∠C=60°,∴BC=2CD,∵△CDE∽△CBA;∴==,∴DE=AB=×4=2.19.如图,在矩形ABCD中,AB=4,BC=4,点E是AB上动点,以DE为直径的圆交对角线AC于F,EG⊥AC垂足为G.(1)求证:△EFD∽△EGA;(2)求FG的长;(3)直接写出DF+DG的最小值为2.【解答】解:(1)∵以DE为直径的圆交对角线AC于F,∴∠EAG=∠EDF,∠EFD=90°,∵EG⊥AC垂足为G,∴∠EGA=90°=∠EFD,∴△EFD∽△EGA;(2)∵在矩形ABCD中,AB=4,BC=4,∴∠EAD=90°=∠EFD,∴tan∠EAG===,∴在三角形EGA中,sin∠EAG==,∵∠EGF=∠EAD=90°,∵DE为圆的直径,∴∠GFE=∠ADE,∴△EGF∽△EAD,∴==,∵DA=BC=4,∴FG=2;(3)过点G作GM⊥AD于点M,如下图所示:设AE=2x,∵∠EAG=30°,∴∠GAM=60°,∴EG=x,GA=x,∴在直角三角形GAM中,AM=x,GM=x,∵AD=BC=4,∴MD=4﹣x,∴在直角三角形GMD中,GD2=GM2+MD2,∴GD2=x2+16+x2﹣4x=3x2﹣4x+16,∵在直角三角形AED中,直径ED=,∵在直角三角形EFD中,∠EDF=∠EAG=30°,∴DF=×ED,∴DF2=3x2+12,∵当DF=DG时,DF+DG取最小值,∴3x2﹣4x+16=3x2+12,∴x=,∴DF=,DG=,∴DF+DG取最小值为2.故答案为:2.20.如图,点E在△ABC的边AB上,过点B、C、E的⊙O切AC于点C,直径CD交BE 于点F,连接BD、DE,已知∠A=∠CDE.(1)求证:∠CDB=2∠A;(2)若AC=,BD=1,求BF的长.【解答】解:(1)证明:∵AC是⊙O的切线,∴AC⊥CF,∴∠ACF=90°,∴∠A+∠AFC=90°,∴∠A+∠BCD+∠ABC=90°,又∠CDE=∠ABC,∠A=∠CDE,∴2∠A+∠BCD=90°,∵CD是⊙O的直径,∴∠CBD=90°,∴∠BCD+∠CDB=90°,∴∠CDB=2∠A;(2)过C作CH⊥AB于H,交BD的延长线于G,如图:∵∠DCH+∠ACH=90°,∠A+∠ACH=90°,∴∠DCH=∠A,又∵∠CDB=2∠A;∴∠CDB=2∠DCH,∴∠G=∠DCH,∴CD=DG.∵BD=1,BC=,在Rt△BCD中,CD=,∴DG=3,∴BG=BD+DG=4,CG=,∴cos∠G=,∴cos∠A=,又cos∠A=,∴AH=AC•cos∠A=,AF=,∵∠A=∠CDE,∠ABC=∠CDE,∴∠A=∠ABC,∴AC=BC,∴AB=2AH=,∴BF=AB﹣AF=.。
人教版九年级下册数学自主复习9平面直角坐标系与一次函数练习(1)
9.平面直角坐标系与一次函数(七下第七章、八下第十九章)知识回顾1.各象限内点的坐标特征,象限内点(m ,n)的坐标特征为: 第一象限(+,+),即m>0,n>0; 第二象限(-,+),即m<0,n>0; 第三象限(-,-),即m<0,n<0; 第四象限(+,-),即m>0,n<0. 反之亦成立. 2.在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系式为分式形式:分母≠0;(3)函数关系式含算术平方根:被开方数≥0;(4)函数关系式含0指数:底数≠0.3.直线y =kx +b 由直线y =kx 平移|b|个单位长度得到,当b>0时,向上平移;当b<0时,向下平移.4.一次函数的性质:一次函数y =kx +b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.5.直线y =kx +b(k ≠0)中,k ,b 决定着直线的位置. ①k>0,b>0⇔直线经过第一、二、三象限; ②k>0,b<0⇔直线经过第一、三、四象限; ③k<0,b>0⇔直线经过第一、二、四象限; ④k<0,b<0⇔直线经过第二、三、四象限.6.用待定系数法确定一次函数〖解 析〗式的一般步骤是:(1)根据已知条件设含有待定系数的函数关系式;(2)将x ,y 的对应值或图象上的点的坐标代入〖解 析〗式中,得到以待定系数为未知数的方程(组);(3)解方程(组)求出未知的待定系数的值;(4)将求出的待定系数代回所设函数关系式中.7.对于一次函数y =kx +b ,它与x 轴的交点为(-bk ,0).当k>0时,不等式kx +b>0的解集为x>-b k ,不等式kx +b<0的解集为x<-b k ;当k<0时,不等式kx +b>0的解集为x<-bk ,不等式kx +b<0的解集为x>-bk.达标练习1.在平面直角坐标系中,点A(2,-3)所在象限为(D) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.(恩施中考)函数y =1x -2+x -2的自变量x 的取值范围是(B)A .x ≥2B .x >2C .x ≠2D .x ≤23.(成都中考)一次函数y =2x +1的图象不经过 (D) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.(遂宁中考)直线y =2x -4与y 轴的交点坐标是(D)A .(4,0)B .(0,4)C .(-4,0)D .(0,-4)5.一次函数y =kx +b(k ≠0)的图象如图所示,当y>0时,x 的取值范围是(C)A .x <0B .x >0C .x <2D .x >26.一次函数y =x -1的图象向上平移2个单位长度后,不经过(D) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如图,矩形ABCD 中,AB =1,BC =2,点P 从点B 出发,沿B →C →D 向终点D 匀速运动,设点P 走过的路程为x ,△ABP 的面积为S ,能正确反映S 与x 之间函数关系的图象是(C)8.已知一次函数y =kx +b 的图象经过A(1,-1),B(-1,3)两点,则k <0.(填“>”或“<”) 9.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是20升.10.(凉山中考)已知函数y =2x2a +b+a +2b 是正比例函数,则a =23,b =-13.11.如图,直线y =kx +b 经过A(3,1)和B(6,0)两点,则不等式0<kx +b <13x 的解集为3<x <6.12.(绍兴中考)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数关系如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间? (2)小敏几点几分返回到家?解:(1)小敏去超市途中的速度是3 000÷10=300(米/分). 在超市逗留的时间为40-10=30(分). (2)3 000÷3 000-2 00045-40=15(分),40+15=55(分).∴小敏8点55分返回到家.13.为响应国家节能减排的号召,鼓励市民节约用电,我市从2014年7月1日起,居民用电实行“一户一表”的阶梯电价,分三个档次收费,第一档是用电量不超过180千瓦时时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如折线图所示,请根据图象回答下列问题:(1)当用电量为180千瓦时时,电费是108元;(2)第二档的用电量范围是大于180千瓦时小于或等于450千瓦时; (3)“基本电价”是0.6元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?解:∵328.5>283.5,∴他家本月用电量超过450千瓦时.设直线BC 的〖解 析〗式为y =kx +b ,则⎩⎪⎨⎪⎧283.5=450k +b ,364.5=540k +b.解得⎩⎪⎨⎪⎧k =0.9,b =-121.5. ∴直线BC 的〖解 析〗式为y =0.9x -121.5. 当y =328.5时,328.5=0.9x -121.5. 解得x =500.∴小明家这个月用电500千瓦时.14.(甘孜中考)一水果经销商购进了A ,B 两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)(1)如果甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少. 解:(1)经销商能盈利:5×11+5×17+5×9+5×13=5×50=250(元).(2)设甲店配A 种水果x 箱,则甲店配B 种水果(10-x)箱,乙店配A 种水果(10-x)箱,乙店配B 种水果x 箱.∵9×(10-x)+13x ≥100,∴x ≥212.经销商盈利为w =11x +17(10-x)+9(10-x)+13x =-2x +260. ∵-2<0,∴w 随x 增大而减小.∴当x =3时,w 值最大,w 最大=-2×3+260=254.∴甲店配A 种水果3箱,B 种水果7箱,乙店配A 种水果7箱,B 种水果3箱,盈利最大,最大盈利为254元.。
《反比例函数》中考常考考点专题(1)(基础篇)九年级数学下册基础知识专项讲练(人教版)
专题26.29《反比例函数》中考常考考点专题(1)(基础篇)(专项练习)一、单选题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断1.(2022·湖北宜昌·中考真题)已知经过闭合电路的电流I (单位:A )与电路的电阻R (单位:Ω)是反比例函数关系.根据下表判断a 和b 的大小关系为()/A I 5…a………b…1/R Ω2030405060708090100A .a b >B .a b≥C .a b<D .a b≤2.(2021·北京石景山·一模)下列两个变量之间的关系为反比例关系的是()A .圆的周长与其半径的关系B .平行四边形面积一定时,其一边长与这边上的高的关系C .销售单价一定时,销售总价与销售数量的关系D .汽车匀速行驶过程中,行驶路程与行驶时间的关系【考点二】反比例函➽➸定义✮✮参数3.(2022·辽宁抚顺·二模)下列函数中,y 是x 的反比例函数的是()A .2xy =-B .21y x =C .13y x=D .12y x=-4.(2018·黑龙江哈尔滨·中考真题)已知反比例函数y =23k x-的图象经过点(1,1),则k 的值为()A .﹣1B .0C .1D .2【考点三】反比例函➽➸自变量✮✮因变量5.(2020·广西贺州·中考真题)在反比例函数2y x=中,当=1x -时,y 的值为()A .2B .2-C .12D .12-6.(2022·河南·郸城县光明学校二模)已知点A (x 1,﹣1),B (x 2,2),C (x 3,3)都在反比例函数y 1x=-的图象上,那么x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 2>x 1D .x 2>x 3>x 1【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式7.(2020·青海·中考真题)若0ab <,则正比例函数y ax =与反比例函数by x=在同一平面直角坐标系中的大致图像可能是()A .B .C .D .8.(2022·贵州黔西·中考真题)在平面直角坐标系中,反比例函数()0ky k x=≠的图象如图所示,则一次函数2y kx =+的图象经过的象限是()A .一、二、三B .一、二、四C .一、三、四D .二、三、四【考点五】反比例函数的图象和性质➽➸对称性9.(2018·浙江湖州·中考真题)如图,已知直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是()A .(﹣1,﹣2)B .(﹣1,2)C .(1,﹣2)D .(﹣2,﹣1)10.(2008·江苏连云港·中考真题)已知某反比例函数的图象经过点()m n ,,则它一定也经过点()A .()m n -,B .()n m ,C .()m n -,D .()m n ,【考点六】反比例函数的图象和性质➽➸位置✮✮参数11.(2021·山东济南·中考真题)反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是()A .B .C .D .12.(2020·黑龙江大庆·中考真题)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是()A .①②B .①④C .②③D .③④【考点七】反比例函数的图象和性质➽➸增减性✮✮参数13.(2021·贵州黔西·中考真题)对于反比例函数y =﹣5x,下列说法错误的是()A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大14.(2013·浙江衢州·中考真题)若函数2m y x+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是A .m <﹣2B .m <0C .m >﹣2D .m >0【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小15.(2020·天津·中考真题)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是()A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<16.(2020·山西·中考真题)已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数ky x=()0k <的图像上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .213y y y >>B .321y y y >>C .123y y y >>D .312y y y >>【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积17.(2022·吉林长春·中考真题)如图,在平面直角坐标系中,点P 在反比例函数ky x=(0k >,0x >)的图象上,其纵坐标为2,过点P 作PQ //y 轴,交x 轴于点Q ,将线段QP 绕点Q 顺时针旋转60°得到线段QM .若点M 也在该反比例函数的图象上,则k 的值为()AB C .D .418.(2021·甘肃兰州·中考真题)如图,点A 在反比例函数()0ky x x=>图象上,AB x ⊥轴于点B ,C 是OB 的中点,连接AO ,AC ,若AOC 的面积为2,则k =()A.4B.8C.12D.16【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式19.(2020·贵州黔东南·中考真题)如图,点A是反比例函数y6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为()A.2B.4C.6D.820.(2016·山东菏泽·中考真题)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36B.12C.6D.3二、填空题【知识点一】反比例函数定义的理解【考点一】反比例函➽➸描述性定义✮✮定义判断21.(2022·河南·柘城县实验中学一模)从1,2,3中任取一个数作为x,从4,6中任取一个数作为y ,则点(,)x y 在反比例函数12y x=图象上的概率为_________.22.(2019·黑龙江绥化·中考模拟)矩形的面积是240m ,设它的一边长为x (单位:m ),则矩形的另一边长y (单位:m )与x 的函数关系是__________.【考点二】反比例函➽➸定义✮✮参数23.(2012·山东滨州·中考真题)下列函数:①y=2x-1;②5y=x -;③y=x 2+8x-2;④22y=x;⑤1y=2x ;⑥a y=x中,y 是x 的反比例函数的有______(填序号)24.(2014·湖南邵阳·中考真题)若反比例函数的图象经过点(﹣1,2),则k 的值是_____【考点三】反比例函➽➸自变量✮✮因变量25.(2022·黑龙江哈尔滨·中考真题)已知反比例函数6y x=-的图象经过点()4,a ,则a的值为___________.26.(2022·北京石景山·一模)在平面直角坐标系xOy 中,点()2,A m ,(),3B n 都在反比例函数6y x=的图象上,则mn 的值为______.【知识点二】反比例函数的图象和性质【考点四】反比例函数的图象和性质➽➸图象✮✮解析式27.(2020·山东菏泽·中考真题)从1-,2,3-,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图象在二、四象限的概率是______.28.(2012·湖南益阳·中考真题)反比例函数ky=x的图象与一次函数y=2x+1的图象的一个交点是(1,k ),则反比例函数的解析式是____.【考点五】反比例函数的图象和性质➽➸对称性29.(2020·北京·中考真题)在平面直角坐标系xOy 中,直线y x =与双曲线my x=交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.30.(2019·北京·中考真题)在平面直角坐标系xOy 中,点A ()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2ky x =上,则12k k +的值为______.【考点六】反比例函数的图象和性质➽➸位置✮✮参数31.(2015·湖北黄石·中考真题)反比例函数21a y x-=的图象有一支位于第一象限,则常数a 的取值范围是______.32.(2022·四川成都·二模)有6张正面分别标有数字﹣2,﹣1,0,1,2,3的卡片,他们除了数字不同外,其余全部相同.现将他们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为k ,则使反比例函数y =1kx-的图象分布在第二、四象限的概率为_____.【考点七】反比例函数的图象和性质➽➸增减性✮✮参数33.(2021·湖南郴州·中考真题)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.34.(2021·甘肃武威·中考真题)若点()()123,,4,A y B y --在反比例函数21a y x+=的图象上,则1y ____2y (填“>”或“<”或“=”)【考点八】反比例函数的图象和性质➽➸增减性✮✮比较大小35.(2022·青海·中考真题)如图,一块砖的A ,B ,C 三个面的面积之比是5:3:1,如果A ,B ,C 三个面分别向下在地上,地面所受压强分别为1P ,2P ,3P ,压强的计算公式为FP S=,其中P 是压强,F 是压力,S 是受力面积,则1P ,2P ,3P 的大小关系为______(用小于号连接).36.(2022·山东滨州·中考真题)若点123(1,)(2,)(3,)A y B y C y --,,都在反比例函数6y x=的图象上,则123,,y y y 的大小关系为_______.【考点九】反比例函数的图象和性质➽➸比例系数✮✮特殊图形面积37.(2020·湖南株洲·中考真题)如图所示,在平面直角坐标系Oxy 中,四边形OABC为矩形,点A 、C 分别在x 轴、y 轴上,点B 在函数1ky x=(0x >,k 为常数且2k >)的图象上,边AB 与函数22(0)y x x=>的图象交于点D ,则阴影部分ODBC 的面积为________(结果用含k 的式子表示)38.(2009·黑龙江鸡西·中考真题)如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S +=_______.【考点十】反比例函数的图象和性质➽➸面积✮✮(比例系数)解析式39.(2022·广西河池·中考真题)如图,点P (x ,y )在双曲线ky x=的图象上,PA ⊥x 轴,垂足为A ,若S △AOP =2,则该反比例函数的解析式为_____.40.(2022·辽宁锦州·中考真题)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.三、解答题41.(2016·甘肃白银·中考真题)如图,函数y1=﹣x +4的图象与函数2ky x(x >0)的图象交于A (m ,1),B (1,n )两点.(1)求k ,m ,n 的值;(2)利用图象写出当x ≥1时,y1和y2的大小关系.42.(2013·云南德宏·中考真题)如图,是反比例函数m 5y x-=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m 的取值范围;(2)在这个函数图象的某一支上取点A (x 1,y 1)、B (x 2,y 2).如果y 1<y 2,那么x 1与x 2有怎样的大小关系?43.(2021·浙江杭州·中考真题)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围.(2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.44.(2021·湖北随州·一模)已知一次12y x a =-+的图象与反比例函数()20k y k x=≠的图象相交.(1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k ,且25a k +=.①求2y 的函数表达式.②当0x >时,比较1y ,2y 的大小.45.(2019·江西吉安·中考模拟)已知,如图,正比例函数y =ax 的图象与反比例函数图象交于A 点(3,2),(1)试确定上述正比例函数和反比例函数的表达式.(2)根据图象回答:在第一象限内,当反比例函数值大于正比例函数值时x的取值范围?(3)M(m,n)是反比例函数上一动点,其中0大于m小于3,过点M作直线MN平行x轴,交y轴于点B.过点A作直线AC平行y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.参考答案1.A【分析】根据电流I与电路的电阻R是反比例函数关系,由反比例函数图像是双曲线,在同一象限内x 和y 的变化规律是单调的,即可判断解:∵电流I 与电路的电阻R 是反比例函数关系由表格:5,20I R ==;1,100I R ==∴在第一象限内,I 随R 的增大而减小∵204080100<<<∴51a b >>>故选:A【点拨】本题考查双曲线图像的性质;解题关键是根据表格判断出双曲线在第一象限,单调递减2.B【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:A.圆的周长与其半径是正比例关系,不符合题意,B.平行四边形面积一定时,其一边长与这边上的高成反比例关系,符合题意,C.销售单价一定时,销售总价与销售数量成正比例关系,不符合题意,D.汽车匀速行驶过程中,行驶路程与行驶时间成正比例关系,不符合题意,故选B .【点拨】本题主要考查成反比例函数关系的量,关键就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.3.D 【分析】根据反比例函数的定义即形如k y x =(k 是常数,且k ≠0)的函数,对各选项进行判断即可.解:A 选项中函数是正比例函数,故不符合题意;B 选项中函数不是反比例函数,故不符合题意;C 选项中函数是正比例函数,故不符合题意;D 选项中函数符合反比例函数的定义,故符合题意;故选:D .【点拨】本题考查了反比例函数的定义.解题的关键在于对反比例定义与形式的熟练掌握与灵活运用.4.D【分析】把点的坐标代入函数解析式得出方程,求出方程的解即可.解:∵反比例函数y =23k x-的图象经过点(1,1),∴代入得:2k -3=1×1,解得:k =2,故选D .【点拨】本题考查了反比例函数图象上点的坐标特征,能根据已知得出关于k 的方程是解此题的关键.5.B【分析】把x=-1代入函数解析式可得y 的值.解:把=1x -代入2y x=得:=2y -,故选:B .【点拨】本题主要考查了反比例函数图象上点的坐标特征,图象上点的坐标适合解析式是关键.6.B【分析】根据函数解析式算出三个点的横坐标,再比较大小.解:∵点A (x 1,﹣1),B (x ,2),C (x 3,3)都在反比例函数y 1x =-的图象上,∴x 1=﹣1÷(﹣1)=1,x 2=﹣1÷212=-,x 3=﹣1÷313=-.∴x 1>x 3>x 2,故选:B .【点拨】本题考查反比例函数图象上点的坐标特征,熟练掌握根据函数析式,求点坐标.7.B【分析】由0ab <,得,a b 异号,若图象中得到的,a b 异号则成立,否则不成立.解:A.由图象可知:0,0a b >>,故A 错误;B.由图象可知:0,0a b <>,故B 正确;C.由图象可知:0,0a b ><,但正比例函数图象未过原点,故C 错误;D.由图象可知:0,0a b <<,故D 错误;故选:B .【点拨】本题考查了根据已知参数的取值范围确定函数的大致图象的问题,熟知参数对于函数图象的影响是解题的关键.8.B【分析】由图可知,反比例函数位于二、四象限,则根据反比例函数的性质可知k <0,再结合一次函数的图象和性质即可作答.解:由图可知,反比例函数位于二、四象限,∴k <0,∴y =kx +2经过一、二、四象限.故选:B .【点拨】本题主要考查了反比例函数的图象和性质以及一次函数的图象和性质,熟练掌握反比例函数和一次函数的图象和性质是解题的关键.9.A【分析】直接利用正比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.解:∵直线y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点,∴M ,N 两点关于原点对称,∵点M 的坐标是(1,2),∴点N 的坐标是(-1,-2).故选A .【点拨】此题主要考查了反比例函数与一次函数的交点问题,正确得出M ,N 两点位置关系是解题关键.10.B解:设反比例函数解析式为为y =k x .∵反比例函数的图象经过点(m ,n ),∴k=mn ,满足条件的是B .11.D【分析】根据题意可得0k >,进而根据一次函数图像的性质可得y kx k =-的图象的大致情况.解: 反比例函数()0k y k x =≠图象的两个分支分别位于第一、三象限,0k ∴>∴一次函数y kx k =-的图象与y 轴交于负半轴,且经过第一、三、四象限.观察选项只有D 选项符合.故选D【点拨】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得0k >是解题的关键.12.B【分析】根据正比例函数和反比例函数的图象逐一判断即可.解:观察图像①可得120,0k k >>,所以120k k >,①符合题意;观察图像②可得120,0k k <>,所以120k k <,②不符合题意;观察图像③可得120,0k k ><,所以120k k <,③不符合题意;观察图像④可得120,0k k <<,所以120k k >,④符合题意;综上,其中符合120k k ⋅>的是①④,故答案为:B .【点拨】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限.13.C【分析】可以判断各个选项中的说法是否正确,从而可以解答本题.解:反比例函数y =﹣5x,A 、当x =1时,y =﹣51=﹣5,图像经过点(1,-5),故选项A 不符合题意;B 、∵k =﹣5<0,故该函数图象位于第二、四象限,故选项B 不符合题意;C 、当x <0时,y 随x 的增大而增大,故选项C 符合题意;D 、当x >0时,y 随x 的增大而增大,故选项D 不符合题意;故选C .【点拨】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.14.A【分析】根据反比例函数的增减性列出关于的不等式,求出的取值范围即可.解:∵函数2m y x +=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,∴m +2<0,解得:m <﹣2.故选A .【点拨】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.15.C【分析】因为A ,B ,C 三点均在反比例函数上,故可将点代入函数,求解123,,x x x ,然后直接比较大小即可.解:将A ,B ,C 三点分别代入10y x=,可求得1232,5,2x x x =-==,比较其大小可得:132x x x <<.故选:C .【点拨】本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.16.A【分析】首先画出反比例函数k y x=()0k <,利用函数图像的性质得到当1230x x x <<<时,1y ,2y ,3y 的大小关系.解: 反比例函数k y x =()0k <,∴反比例函数图像在第二、四象限,观察图像:当1230x x x <<<时,则213y y y >>.故选A .【点拨】本题考查的是反比例函数的图像与性质,掌握反比例函数的图像与性质是解题的关键.17.C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(2k ,2),PQ =2,由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN =112QM =,QN ∴ON MN k = ,即:2k k =,解得:k =故选:C .【点拨】本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.18.B【分析】根据三角形中线的性质得出4AOB S =△,然后根据反比例函数k 的几何意义得解.解:∵点C 是OB 的中点,AOC 的面积为2,∴4AOB S =△,∵AB x ⊥轴于点B ,∴142AB OB ⋅=,∴8AB OB ⋅=,∴8k =,故选:B .【点拨】本题考查了反比例函数k 的几何意义以及三角形中线的性质,熟知反比例函数k 的几何意义是解本题的关键.19.A【分析】连接OA 、OB 、PC .由于AC ⊥y 轴,根据三角形的面积公式以及反比例函数比例系数k 的几何意义得到S △APC =S △AOC =3,S △BPC =S △BOC =1,然后利用S △PAB =S △APC ﹣S △APB 进行计算.解:如图,连接OA 、OB 、PC .∵AC ⊥y 轴,∴S △APC =S △AOC =12×|6|=3,S △BPC =S △BOC =12×|2|=1,∴S △PAB =S △APC ﹣S △BPC .故选:A .【点拨】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.20.D【分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数6y x =的第一象限图象上,∴(a +b )×(a ﹣b )=a 2﹣b 2=6.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×6=3.故选D.【点拨】本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.21.1 3【分析】画树状图可得所有xy的积的等可能结果,由点(x,y)在反比例函数12 yx=图象上可得xy=12,进而求解.解:画树状图如下,2×6=12,3×4=12,∵共有6种等可能的结果,点P在反比例函数12yx=的图象上的有2种情况,∴点(x,y)在反比例函数12yx=图象上的概率为2163=.故答案为:1 3.【点拨】本题考查反比例函数与概率的结合,解题关键是掌握反比例函数的性质,画树状图求概率的方法.22.40 yx =【分析】根据矩形面积等于矩形两邻边之积即可列出函数关系式.解:∵矩形的一边长为xm,另一边长ym,面积是240m,∴40xy=,即:40 yx =.故答案为40 yx =.【点拨】本题考查了列反比列函数关系式.从题中找出相等关系是解题的关键. 23.②⑤.解:反比例函数的定义.【分析】根据反比例函数的定义逐一作出判断:①y=2x ﹣1是一次函数,不是反比例函数;②5y=x-是反比例函数;③y=x 2+8x ﹣2是二次函数,不是反比例函数;④22y=x 不是反比例函数;⑤1y=2x 是反比例函数;⑥a y=x中,a≠0时,是反比例函数,没有此条件则不是反比例函数.故答案为②⑤.24.﹣2解:试题分析:解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为﹣2考点:待定系数法求反比例函数解析式25.32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可.解:把点()4,a 代入6y x=-得:6342a =-=-.故答案为:32-.【点拨】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.26.32【分析】把()2,A m ,(),3B n 代入反比例函数6y x =,求出m 、n 的值即可.解:∵点()2,A m ,(),3B n 都在反比例函数6y x=的图象上∴6263m n ⎧=⎪⎪⎨⎪=⎪⎩,解得32m n =⎧⎨=⎩∴32 mn=故答案为:3 2.【点拨】本题考查反比例函数解析式,把坐标代入解析式是解题的关键.27.23【分析】从1-,2,3-,4中任取两个数值作为a,b的值,表示出基本事件的总数,再表示出其积为负值的基础事件数,按照概率公式求解即可.解:从1-,2,3-,4中任取两个数值作为a,b的值,其基本事件总数有:共计12种;其中积为负值的共有:8种,∴其概率为:82 123=故答案为:2 3.【点拨】本题结合反比例函数图象的性质,考查了概率的计算,能准确写出基本事件的总数,和满足条件的基本事件数,是解题的关键.28.3 y= x解:将(1,k)代入一次函数y=2x+1得,k=2+1=3,则反比例函数解析式为3 y= x29.0【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y+=,故答案为:0.【点拨】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.30.0.【分析】由点A (a ,b )(a >0,b >0)在双曲线1k y x=上,可得k 1=ab ,由点A 与点B 关于x 轴的对称,可得到点B 的坐标,进而表示出k 2,然后得出答案.解:∵点A (a ,b )(a >0,b >0)在双曲线1k y x=上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,-b )∵点B 在双曲线2k y x =上,∴k 2=-ab ;∴k 1+k 2=ab+(-ab )=0;故答案为0.【点拨】考查反比例函数图象上的点坐标的特征,关于x 轴对称的点的坐标的特征以及互为相反数的和为0的性质.31.12a >【分析】由反比例函数的图象与性质可得210a ->,从而可得a 的取值范围.解:∵反比例函数的图象有一支位于第一象限,∴210a ->,解得:12a >.故答案为:12a >.【点拨】本题考查了反比例函数的图象与性质,掌握性质:对于反比例函数(0)k y k x=≠,当k >0时,函数图象位于第一、三象限,是解答的关键.32.13【分析】若双曲线y =1k x-过二、四象限,利用反比例函数的性质得出k >1,求得符合题意的数字为2,3,再利用随机事件的概率=事件可能出现的结果数÷所有可能出现的结果数即可求出结论.解:∵双曲线y =1k x -过二、四象限,∴1-k <0,即k >1∴符合题意的数字为2,3,∴该事件的概率为2163=,故答案为:13.【点拨】本题考查了概率公式,利用反比例函数的性质,找出使得事件成立的k 的值是解题的关键.33.m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解.解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点拨】本题主要考查反比例函数的性质,掌握反比例函数k y x =,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.34.<【分析】先确定21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,再利用反比例函数的性质可得答案.解:21a + >0,∴21a y x+=的图像在一,三象限,且在每一象限内,y 随x 的增大而减小,3- >4,-1y ∴<2,y 故答案为:<【点拨】本题考查的是反比例函数的性质,掌握利用反比例函数的图像与性质比较函数值的大小是解题的关键.35.123P P P <<【分析】先根据这块砖的重量不变可得压力F 的大小不变,且0F >,再根据反比例函数的性质(增减性)即可得.解: 这块砖的重量不变,∴不管,,A B C 三个面中的哪面向下在地上,压力F 的大小都不变,且0F >,P ∴随S 的增大而减小,,,A B C 三个面的面积之比是5:3:1,123P P P ∴<<,故答案为:123P P P <<.【点拨】本题考查了反比例函数的性质,熟练掌握反比例函数的增减性是解题关键.36.y 2<y 3<y 1【分析】将点A (1,y 1),B (-2,y 2),C (-3,y 3)分别代入反比例函数6y x =,并求得y 1、y 2、y 3的值,然后再来比较它们的大小.解:根据题意,得当x =1时,y 1=661=,当x =-2时,y 2=632=--,当x =-3时,y 3623==--;∵-3<-2<6,∴y 2<y 3<y 1;故答案是y 2<y 3<y 1.【点拨】本题考查了反比例函数图象与性质,此题比较简单,解答此题的关键是熟知反比例函数的性质及平面直角坐标系中各象限内点的坐标特点,属较简单题目.37.1k -【分析】根据反比例函数k 的几何意义可知:△AOD 的面积为1,矩形ABCO 的面积为k ,从而可以求出阴影部分ODBC 的面积.解:∵D 是反比例函数22(0)y x x=>图象上一点∴根据反比例函数k 的几何意义可知:△AOD 的面积为122⨯=1,∵点B 在函数1k y x=(0x >,k 为常数且2k >)的图象上,四边形OABC 为矩形,∴根据反比例函数k 的几何意义可知:矩形ABCO 的面积为k ,∴阴影部分ODBC 的面积=矩形ABCO 的面积-△AOD 的面积=k-1.故答案为:k-1.【点拨】本题考查反比例函数k的几何意义,解题的关键是正确理解k的几何意义,本题属于中等题型.38.4解:∵点A、B是双曲线3yx=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=3,∴S1+S2=3+3-1×2=4.故答案为:439.4 yx =-【分析】根据反比例函数比例系数的几何意义,即可求解.解:根据题意得:122AOPS k==,∴4k=,∵图象位于第二象限内,∴4k=-,∴该反比例函数的解析式为4 yx =-.故答案为:4 yx =-【点拨】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.40.2【分析】作A过x轴的垂线与x轴交于C,证明△ADC≌△BDO,推出S△OAC=S△OAB=1,由此即可求得答案.解:设A(a,b),如图,作A过x轴的垂线与x轴交于C,则:AC=b,OC=a,AC∥OB,∴∠ACD=∠BOD=90°,∠ADC=∠BDO,∴△ADC≌△BDO,∴S△ADC=S△BDO,∴S△OAC=S△AOD+S△ADC=S△AOD+S△BDO=S△OAB=1,∴12×OC×AC=12ab=1,∴ab=2,∵A(a,b)在y=kx上,∴k=ab=2.故答案为:2.【点拨】本题考查了反比例函数的性质,三角形的面积公式,全等三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线进行解题.41.(1)m=3,k=3,n=3;(2)当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.【分析】(1)把A与B坐标代入一次函数解析式求出m与n的值,将A坐标代入反比例解析式求出k的值;(2)利用图像,可知分x=1x=3,1<x<3与x>3三种情况判断出y1和y2的大小关系即可.解:(1)把A(m,1)代入y=-x+4得:1=﹣m+4,即m=3,∴A(3,1),把A(3,1)代入y=kx得:k=3,把B(1,n)代入一次函数解析式得:n=﹣1+4=3;(2)∵A(3,1),B(1,3),∴根据图像得当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.42.(1)函数图象位于第二、四象限,m<5.(2)①当y1<y2<0时,x1<x2;②当0<y1<y2,x1<x2.解:试题分析:(1)根据反比例函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此可以求得m的取值范围;(2)根据函数图象中“y值随x的增大而增大”进行判断.。
反比例函数与一次函数综合三类型(解析版)九年级数学下册常考点微专题提分精练(人教版)
专题03 反比例函数与一次函数综合三类型类型一反比例函数与一次函数图像综合判断1.如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数2kyx=的图象交于C(1,m),D(n,-1),连接OC、OD.(1)求k的值;(2)求COD的面积;(3)根据图象直接写出y1<y2时,x的取值范围.数y =kx(x >0)的图象交于点C (6,m ).(1)求直线和反比例函数的表达式;(2)连接OC ,在x 轴上找一点P ,使S △POC =2S △AOC ,请求出点P 的坐标.3.如图,一次函数15y k x =+(1k 为常数,且10k ≠)的图象与反比例函数2y x=(2k 为常数,且20k ≠)的图象相交于()2,4A -,(),1B n 两点.(1)求n 的值;(2)若一次函数1y k x m =+的图象与反比例函数2k y x=的图象有且只有一个公共点,求m 的值.【答案】(1)8n =- (2)4m =或4-【分析】(1)由待定系数法求出反比例函数的解析式,再由B 点坐标计算求值即可; (2)根据函数图象交点的意义,利用一次函数和反比例函数构建一元二次方程,令0∆=,4.一次函数y =﹣12x +3的图象与反比例函数y =x的图象交于点A (4,1).(1)画出反比例函数y =m x 的图象,并写出﹣12x +3>m x的x 取值范围; (2)将y =﹣12x +3沿y 轴平移n 个单位后得到直线l ,当l 与反比例函数的图象只有一个交点时,求n 的值.1m则()26=--解得12n =-当l 与反比例函数的图像只有一个交点时,则【点睛】本题考查了反比例函数、一次函数的综合.解题的关键在于了解不等式的意义,一次函数平移后解析式的表达,将交点转化为二次方程根的个数.易错点在于求解集时落解.5.如图:一次函数的图象与反比例函数y x=的图象交于()2,6A -和点()4,B n .(1)求点B 的坐标;(2)根据图象回答,当x 在什么范围时,一次函数的值大于反比例函数的值. )一次函数的值大于反比例函数的值表示的是一次函数的图象位于反比例函数的图象6.如图,已知双曲线y =kx与直线y =mx +5都经过点A (1,4).(1)求双曲线和直线的表达式;(2)将直线y =mx +5沿y 轴向下平移n 个单位长度,使平移后的图象与双曲线y =kx有且只有一个交点,求n 的值.47.如图所示,平面直角坐标系中,直线1y kx b =+分别与x ,y 轴交于点A ,B ,与曲线2my x=分别交于点C ,D ,作CE x ⊥轴于点E ,已知OA =4,OE =OB =2.(1)求反比例函数2y 的表达式; (2)在y 轴上存在一点P ,使ABPCEOS S=,请求出P 的坐标.12ABPCEOSSCE ==243a ⨯-⨯=,解出S=CEOS=3ABPP(0,BP=S=ABPa-22解得:a=交于A,B两点,其中A的坐标为8.如图,在平面直角坐标系中,直线y= x与双曲线yx(1,a),P是以点C(- 2,2)为圆心,半径长为1的圆上一动点,连接AP,Q为AP的中点.(1)求双曲线的解析式:(2)将直线y = x向上平移m(m > 0)个单位长度,若平移后的直线与∵C相切,求m的值(3)求线段OQ长度的最大值.(3)【点睛】本题主要考查了圆与函数综合,待定系数法求函数解析式,勾股定理,三角形中位9.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=(x<0)的x图象交于点A(﹣1,6),与x轴交于点B.点C是线段AB上一点,且∵OCB与∵OAB的面积比为1:2.(1)求k和b的值;(2)将∵OBC绕点O逆时针旋转90°,得到ΔOB′C′,判断点C′是否落在函数y=kx(k<0)的图象上,并说明理由.y x=-+y∴=时,(5,0)B∴OCB∆与C∴为AB(1,6)A-(2,3)C∴.如图,过点将OBC∆C'在第二象限,(3,2)C∴'-∴点C'是落在函数【点睛】本题考查了待定系数法求函数的解析式,三角形的面积,线段中点坐标公式,全等10.如图,一次函数y=-x+b与反比例函数y=x(x> 0)的图象交于点A(m,4)和B(4,1)(1)求b、k、m的值;(2)根据图象直接写出-x+b< kx(x> 0)的解集;(3)点P是线段AB上一点,过点P作PD∵x轴于点D,连接OP,若∵POD的面积为S,求S的最大值和最小值.)一次函数)一次函数14n≤≤S12 =-1 2a=-11.在平面直角坐标系xOy 中,已知点(1,2)P ,(2,2)Q -,函数y x=.(1)当函数my x=的图象经过点Q 时,求m 的值并画出直线y =-x -m . (2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组m y x y x m ⎧>⎪⎨⎪<--⎩(m <0),求m 的取值范围.(2)12.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,2),B(﹣2,xn)两点.(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.A,(1,2)∴△的ACPACP的面积是13.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(∵)与时间x(h)之间的函数关系,其中线段AB.BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求线段AB和双曲线CD的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10∵时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?20x小时,蔬菜才能避免受到伤害.本题考查一次函数和反比例函数的应用,.病人按规定的剂量服用某种药物,测得服药后值为4毫克,已知服药后,2小时前每毫升血液中的含药量y (毫克)与时间x (小时)成正比例,2小时后y 与x 成反比例(如图所示).根据以上信息解答下列问题. (1)求当02x ≤≤时,y 与x 的函数关系式; (2)求当2x >时,y 与x 的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?【答案】(1)2y x =8k , 与x 的函数关系式为第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图.并发现衰退时y 与x 成反比例函数关系.(1)=a ;(2)当5100x 时,y 与x 之间的函数关系式为 ;当100x >时,y 与x 之间的函数关系式为 ;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多久?5100x 时,设经过点(5,0),(100,19)019b =+= 0.21k b =⎧⎨=-⎩解析式为0.2y x =经过点堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段.空气中的含药量y(毫克)与药物点燃后的时间x(分)满足函数关系式y=2x,药物点燃后6分钟燃尽,药物燃尽后,校医每隔6分钟测一次空气中含药量,测得数据如下表:(1)在如图所示平面直角坐标系中描出以表格中数据为坐标的各点;(2)观察上述各点的分布规律,判断它们是否在同一个反比例函数图象上,如果在同一个反比例函数图象上,求出这个反比例函数图象所对应的函数表达式,如果不在同一个反比例函数图象上,说明理由;(3)研究表明:空气中每立方米的含药量不低于8毫克,且持续4分钟以上才能有效杀灭空气中的病菌,应用上述发现的规律估算此次消毒能否有效杀灭空气中的病菌?【答案】(1)见解析(2)温y (∵)与开机时间x (分)满足一次函数关系,当加热到100∵时自动停止加热,随后水温开始下降,此过程中水温y (∵)与开机时间x (分)成反比例关系,当水温降至20∵时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当010x ≤≤时,求水温y (∵)与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少∵?x时,20小丽散步70【点睛】本题考查了待定系数法求一次函数解析式、数值,解决本题的关键是熟练掌握待定系数法的应用.。
人教版九年级数学下册全册中考知识点梳理(共27讲)
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲 一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例 1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子. (2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a 与b 的差不大于1”用不等式表示为a -b≤1. 2.不等式的基本性质 性质1:若a >b,则 a ±c >b ±c ;性质2:若a >b,c >0,则ac >bc ,a c >b c ;性质3:若a >b,c <0,则ac <bc ,a c <b c. 牢记不等式性质3,注意变号. 如:在不等式-2x >4中,若将不等式两边同时除以-2,可得x <2.知识点二 :一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230m mx ++>是关于x 的一元一次不等式,则m 的值为-1. 4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x ≥a x >a x ≤a x <a知识点三 :一元一次不等式组的定义及其解法5.定义 由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示. (2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a的解集是x >-1,则a 的取值范围是a <1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a <b 解集 数轴表示 口诀x a x b ≥⎧⎨≥⎩ x ≥b 大大取大 x a x b≤⎧⎨≤⎩ x ≤a 小小取小 x a x b≥⎧⎨≤⎩ a ≤x ≤b 大小,小大中间找 x a x b≤⎧⎨≥⎩ 无解 大大,小小取不了 知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0.(2)坐标轴上点的坐标特征: ①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x=0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ).(5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限. (2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决. 3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |.(2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|;点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|.平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一确定的值与其对应,那么就称x 是自变量,y 是x 的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35x x +-中自变量的取值范围是x ≥-3且x ≠5. 5.函数的图象 (1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点; ②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法: ①设时间为t (或线段长为x ),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示, 再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y 随x 的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y 值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x 轴的线段.第10讲 一次函数知识点一 :一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念 (1)概念:一般来说,形如y =kx +b (k ≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y =kx +b 是一条经过点(0,b )和(-b/k ,0)的直线.特别地,正比例函数y =kx 的图象是一条恒经过点(0,0)的直线.例:当k =1时,函数y =kx +k -1是正比例函数,2.一次函数k ,b K >0, K >0, K >0,b=0 k <0, k <0, k <0,(1)一次函数y=kx+b 中,k 确定xy第四象限(+,-)第三象限 (-,-)第二象限 (-,+)第一象限 (+,+)–1–2–3123–1–2–3123O的性质 符号 b >0 b <0b >0b <0 b =0了倾斜方向和倾斜程度,b 确定了与y 轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法. 例:已知函数y =-2x +b ,函数值y 随x 的增大而减小(填“增大”或“减小”).大致 图象经过象限 一、二、三 一、三、四 一、三 一、二、四 二、三、四 二、四 图象性质y 随x 的增大而增大 y 随x 的增大而减小 3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x 轴的交点,只需令y=0,解出x 即可;求与y 轴的交点,只需令x=0,求出y 即可.故一次函数y =kx +b (k ≠0)的图象与x 轴的交点是⎝⎛⎭⎫-b k ,0,与y 轴的交点是(0,b );(2)正比例函数y =kx (k ≠0)的图象恒过点(0,0).例:一次函数y =x +2与x 轴交点的坐标是(-2,0),与y 轴交点的坐标是(0,2). 知识点二 :确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为: ①设:设函数表达式为y =kx +b (k ≠0); ②代:将已知点的坐标代入函数表达式,解方程或方程组; ③解:求出k 与b 的值,得到函数表达式. (2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式; ③平移转化型:如已知函数是由y=2x 平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可. (2)只要给出一次函数与y 轴交点坐标即可得出b 的值,b 值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2. 5.一次函数图象的平移 规律:①一次函数图象平移前后k 不变,或两条直线可以通过平移得到,则可知它们的k 值相同.②若向上平移h 单位,则b 值增大h ;若向下平移h 单位,则b 值减小h. 例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三 :一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b (k 、b 是常数,k ≠0)的图象与x 轴交点的横坐标.例:(1)已知关于x 的方程ax+b=0的解为x=1,则函数y=ax+b 与x 轴的交点坐标为(1,0). (2)一次函数y=-3x+12中,当x>4时,y 的值为负数.7.一次函数与方程组二元一次方程组 的解⇔两个一次函数y=k 1x+b 和y=k 2x+b 图象的交点坐标. 8.一次函数与不等式 (1)函数y=kx+b 的函数值y >0时,自变量x 的取值范围就是不等式kx+b >0的解集(2)函数y=kx+b 的函数值y <0时,自变量x 的取值范围就是不等式kx+b <0的解集知识点四 :一次函数的实际应用9.一般步骤 (1)设出实际问题中的变量;(2)建立一次函数关系式; (3)利用待定系数法求出一次函数关系式; (4)确定自变量的取值范围; (5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义; (6)做答.一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲 反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例y=k 2x+by=k 1x+b1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例13讲二次函数的应用第第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等.(3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ; ②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴. (2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD ⊥BC,D 为BC 的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC 的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形 (1)性质①边角关系:三边相等,三角都相等且都等于60°. 即AB =BC =AC ,∠BAC =∠B =∠C =60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴. (2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形. (1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为9.知识点二 :角平分线和垂直平分线3.角平分线 (1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB. (2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=6.4.垂直平分线图形 (1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上. 知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A +∠B =90°; (2) 30°角所对的直角边等于斜边的一半.即若∠B =30°则AC =12AB ;(3)斜边上的中线长等于斜边长的一半.即若CD 是中线,则CD =12AB. (4)勾股定理:两直角边a 、b 的平方和等于斜边c 的平方.即 a 2+b 2=c 2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b 为直角边,c 为斜边,h 是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定 (1) 有一个角是直角的三角形是直角三角形.即若∠C =90°,则△ABC 是Rt △; (2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD =BD =CD ,则△ABC 是Rt △(3) 勾股定理的逆定理:若a 2+b 2=c 2,则△ABC 是Rt △.第17讲 相似三角形十六、 知识清单梳理知识点一:比例线段关键点拨与对应举例21P COBAPC OBAD ABCa bc DABCa bc1. 比例线段 在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0) (3)等比性质:a cb d ==…=mn=k (b +d +…+n ≠0)⇔ ......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC =. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条 件中若有一对等角,可再找一对等角或再找 夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件 中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等 或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方. (3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.F E D CBA l 5l 4l 3l 2l 1ODCBAED CBAFE DC BAFE DC B AFE DC B A7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式角(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O 出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤 (1)弄清题中名词、术语,根据题意画出图形,建立数学模型; (2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元 四边形第19讲 多边形与平行四边形知识点一:多边形关键点拨与对应举例 1.多边形的相关概念 (1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n 边形的一个顶点可以引(n -3)条对角线,并且这些对角线把多边形分成了(n -2)个三角形;n 边形对角线条数为()32n n -. 多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解. 例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和 ( 1 ) 内角和:n 边形内角和公式为(n -2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n 边形的每个内角为()2180n n -⋅,每一个外角为360°/n.( 3 ) 正n 边形有n 条对称轴.(4)对于正n 边形,当n 为奇数时,是轴对称图形;当n 为偶数时,既是轴对称图形,又是中心对称图形.知识点二 :平行四边形的性质4.平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法: (1)平行四边形相邻两边之和等于周长的一半. (2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题. (3)过平行四边形对5.平行四边形的性质(1) 边:两组对边分别平行且相等.即AB ∥CD 且AB =CD ,BC ∥AD 且AD =BC.(2)角:对角相等,邻角互补.即∠BAD =∠BCD ,∠ABC =∠ADC , ∠ABC +∠BCD =180°,∠BAD +∠ADC =180°.(3)对角线:互相平分.即OA =OC ,OB =OD(4)对称性:中心对称但不是轴对称.ODCBA。
锐角三角函数(全章复习与巩固)(巩固篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)
专题28.16 锐角三角函数(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.已知6cos 33α=α是锐角,则α=( ) A .75︒B .60︒C .45︒D .302.如图,若点 A 的坐标为(1,2),则tan∠1=( )A .2B .12C .3D 33.在∠ABC 中,90C ∠=︒,若1tan 2A =,则sinB =( ) A 5B 3C 25D 234.如图,直线y =34x ﹣3与x 轴,y 轴分别交于A ,B 两点,则sin ∠OAB 的值为( )A .35 B .35C .45D .﹣455.如图是一段索道的示意图.若100AB =米,BAC α∠=,则缆车从A 点到B 点上升的高度BC 的长为( )A .1000sin α米B .1000sin α米 C .1000cos α米 D .1000cos α米 6.矩形ABCD 中AB =10,BC =8,E 为AD 边上一点,沿CE 将∠CDE 对折,使点D正好落在AB 边上,tan∠AFE 等于( )A .43B .34C .52D .257.ABC 中,231sin A cos B 022⎛⎫-= ⎪⎝⎭,则ABC 是( ) A .等腰但不等边三角形 B .等边三角形 C .直角三角形D .等腰直角三角形8.如图,在Rt ∠ABC 中,∠C =90°,AB =2CB =4.以点B 为圆心、适当长为半径作弧,分别交BC ,BA 于点D ,E ,再分别以点D ,E 为圆心、大于12DE 的长为半径作弧,两弧在∠ABC 内部交于点F ,作射线BF ;分别以点A ,C 为圆心、大于12AC 的长为半径作弧,两弧交于G ,H 两点,作直线GH 交BF 于点J ,交AB 于点K ,则∠JKB 的面积是( )A .2B .1C .23D 39.如图,在ABCD 中,4,10,60AB AD B ==∠=︒.作AE AB ⊥交BC 边于点E ,连接DE ,则sin EDC ∠的值为( )A 21B .12C 7D 21 10.已知△ABC 中,∠C =90°,tan A =12 ,D 是 AC 上一点, ∠CBD =∠A , 则 cos∠CDB的值为( )A .12B 5C 25D .2二、填空题11.计算:012(1)2tan 60-︒--=________.1221是方程2(3tan )20x x θ-的一个根,θ是三角形的一个内角,那么cos θ的值为________.13.如图,在∠ABC 中,∠ACB =90°,点D 在AB 的延长线上,连接CD ,若AB =2BD ,tan∠BCD =12,则AC BC 的值为 _____.14.如图,B 为地面上一点,测得B 到树底部C 的距离为10m ,在B 处放置1m 高的测角仪BD ,测得树顶A 的仰角为60︒,则树高AC 为___________m (结果保留根号).15.如图,矩形ABCD 的边长1,3AB AD ==ABCD 以B 为中心,按顺时针方向旋转到A BC D '''的位置(点A '落在对角线BD 上),则△BDD '的形状为________.16.如图,将一个矩形纸片OABC 放置在平面直角坐标系中,点O (0,0),点B (32).D 是边BC 上一点(不与点B 重合),过点D 作DE ∠OB 交OC 于点E .将该纸片沿DE 折叠,得点C 的对应点C′.当点C′落在OB 上时,点C′的坐标为________.17.在Rt∠ABC 中∠C =90°,AC =4,BC =3.如图∠,四边形DEFG 为Rt∠ABC 的内接正方形,则正方形DEFG 的边长为________;如图∠,若Rt∠ABC 内有并排的n 个全等的正方形,它们组成的矩形内接于Rt ∠ABC ,则正方形的边长为________.18.如图,11122233,,,AB A A B A A B A ⋅⋅⋅△△△是等边三角形,直线32y =+经过它们的顶点123,,,,A A A A ⋅⋅⋅,点123,,,B B B ⋅⋅⋅在x 轴上,则点2022A 的横坐标是____________.三、解答题 19.计算: (1)()1245201412-︒-;(2)()310.125π4tan 602-︒⎛⎫⨯-+-+ ⎪⎝⎭;(3)()()()12014cos 60128tan 30121-︒÷-+︒-+;20.已知:如图,在Rt ABC 中,90,30∠=︒∠=︒C A .()1 作AB 的垂直平分线DE 交AB 于点D ;交AC 于点E (要求:尺规作图,保留作图痕迹,不必写作法);()2 连接BE ,若1BC =,求BCE 的周长.21.已知:如图在ABC 中,AD 是边BC 上的高,E 为边AC 的中点,14BC =,12AD =,4sin 5B =.求: (1)线段DC 的长;(2)tan EDC ∠的值.22.如图,在平面直角坐标系xOy 中,函数y =x +b 的图像与函数ky x=(x >0)的图像相交于点B (1,6),并与x 轴交于点A .点C 是线段AB 上一点,∠OAC 与∠OAB 的面积比为2:3(1) 求k 和b 的值;(2) 若将∠OAC 绕点O 顺时针旋转,使点C 的对应点C ′落在x 轴正半轴上,得到∠OA ′C ′,判断点A ′是否在函数ky x=(x >0)的图像上,并说明理由.23.如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30(点A ,B ,C ,D 在同一平面内).(1) 求C ,D 两点的高度差;(2) 求居民楼的高度AB .(结果精确到1m 3 1.7≈)24.无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P 处,测得楼CD 楼顶D 处的俯角为45︒,测得楼AB 楼顶A 处的俯角为60︒.已知楼AB 和楼CD 之间的距离BC 为100米,楼AB 的高度为10米,从楼AB 的A 处测得楼CD 的D 处的仰角为30(点A 、B 、C 、D 、P 在同一平面内).(1) 填空:APD ∠=___________度,ADC ∠=___________度; (2) 求楼CD 的高度(结果保留根号); (3) 求此时无人机距离地面BC 的高度.参考答案1.D【分析】由6cos 33α=3cos α=然后再根据特殊角的三角函数值求角度即可. 解:∠6cos 33α=∠3cos α=∠α=30. 故选D .【点拨】本题主要考查了利用特殊角的三角函数值求角度、一元一次方程等知识点,将cos α整体当做未知数成为解答本题的关键.2.A【分析】过点A 作AB ∠x 轴,垂足为B ,根据点A 的坐标,得到OB =1,AB =2,根据正切的定义计算选择即可.解:过点A 作AB ∠x 轴,垂足为B ,根据点A 的坐标(1,2), ∠OB =1,AB =2, ∠ tan ∠1=221AB OB ==,故选A .【点拨】本题考查了坐标的意义,正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.3.C【分析】根据三角函数的定义,知tan 12BC A AC ==,设BC =x ,AC =2x ,根据勾股定理可求得AB ,再根据三角函数的定义就可以求出sin B 的值.解:在∠ABC 中,90C ∠=︒, ∠tan 12BC A AC ==, ∠设BC =x ,AC =2x ,()222225AB BC AC x x x ∴=++=,25sin 5AC B AB x=∴=,故选:C .【点拨】本题考查了锐角三角函数的定义及运用:在直角三角形中,一个锐角的正弦值为对边比斜边,余弦值为邻边比斜边,正切值为对边比邻边.4.B【分析】分别令x =0,y =0,由直线解析式可求解A 、B 的坐标,即可得OB 、OA 的长,再利用勾股定理可求解AB 的长,再根据正弦的定义可求解.解:直线y =34x ﹣3,令x =0,则y =0﹣3=﹣3,令y =0,34x ﹣3=0,解得x =4,∴A (4,0),B (0,﹣3), ∴OB =3,0A =4,∴AB 2222435++OA OB , ∴sin ∠OAB =35OB AB =, 故选:B .【点拨】本题主要考查一次函数图象与坐标轴的交点,勾股定理,锐角三角函数的定义,求解A 、B 两点坐标是解题的关键.5.A【分析】在Rt ABC 中,90ACB ∠=︒,斜边AB 是已知边,BAC ∠是已知角,而要求的是BAC ∠的对边BC 的长,所以选择BAC ∠的正弦,即可求出结果.解:如图,在Rt ABC 中,90ACB ∠=︒,BAC α∠=, ∠sin BCABα=, ∠sin BC AB α=⋅, ∠1000AB =米, ∠1000sin BC α=米. 故选:A .【点拨】此题考查了解直角三角形的应用,解题的关键是正确掌握锐角三角函数的定义,选择适当的锐角三角函数模型.6.B【分析】依据折叠的性质以及矩形的性质,易得∠AFE =∠BCF ;在Rt∠BFC 中,有BC =8,CF =10,由勾股定理易得BF 的长.根据三角函数的定义,易得tan∠BCF 的值,依据∠AFE =∠BCF ,可得tan∠AFE 的值.解:∠四边形ABCD 是矩形, ∠CD =AB =10,∠B =∠D =90°, ∠∠BCF +∠BFC =90°,根据折叠的性质得:∠EFC =∠D =90°,CF =CD =10, ∠∠AFE +∠BFC =90°, ∠∠AFE =∠BCF ,在Rt∠BFC 中,BC =8,CF =CD =10,由勾股定理得:BF 22CF CB -22108-6, 则tan∠BCF =BF BC =6384=, ∠tan∠AFE =tan∠BCF =34,故B 正确.故选:B .【点拨】本题主要考查了矩形的折叠问题,求三角函数值,勾股定理,余角的性质,根据折叠和勾股定理求出6BF =,是解题的关键.7.B【分析】由绝对值和完全平方的非负性可得:31sin 0,cos 022A B,再根据特殊角的锐角函数值可知60A B ∠=∠=︒ ,即可求解.解:3sin A 02-≥,21cos B 02⎛⎫-≥ ⎪⎝⎭,231sin A cos B 022⎛⎫-= ⎪⎝⎭,23sin 021cos 02A B ⎧=⎪⎪∴⎨⎪⎛⎫-= ⎪⎪⎝⎭⎩, 则可得:3sin 1cos 2A B ⎧=⎪⎪⎨⎪=⎪⎩,解得:6060A B ∠=︒⎧⎨∠=︒⎩ , 在ABC 中,18060C A B ∠=︒-∠-∠=︒ ,ABC ∴ 为等边三角形.故选:B .【点拨】本题考查了非负数的性质,绝对值和完全平方的非负性,由三角函数值求锐角的度数,三角形内角和以及等边三角形的判定;掌握非负数的性质,绝对值和完全平方的非负性是解题的关键.8.D【分析】如图,过点K 作KH ∠BJ 于H ,设KJ 交AC 于W .解直角三角形求出BJ ,KH ,可得结论.解:如图,过点K 作KH ∠BJ 于H ,设KJ 交AC 于W ,∠∠C =90°,AB =2BC ,∠2BC A AB==sin , ∠∠A =30°,∠ABC =60°,由作图可知,BJ 平分∠ABC ,KJ 垂直平分线段AC ,∠∠KBJ =∠CBJ =12∠ABC =30°,AW =WC ,∠WK ∠BC ,∠AK =KB =2,∠KJB =∠CBJ =30°,∠HK =12KB =1,BH 33∠∠KBJ =∠KJB =30°,∠KB =KJ ,∠KH ∠BJ ,∠HB =HJ 3∠S △KBJ =1233 故选:D .【点拨】本题考查作图-复杂作图、角平分线的定义、线段的垂直平分线的性质、解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9.A【分析】过点E 作EF AD ⊥于点F ,过点C 作CG ED ⊥于点G ,根据三角函数以及勾股定理求出,,,,,,BE AE AF EF FD ED EC 的长度,然后根据三角形面积公式得出CG 的长度,结果可得.解:过点E 作EF AD ⊥于点F ,过点C 作CG ED ⊥于点G ,AE AB ⊥,90BAE ∴∠=︒,4,60AB B =∠=︒,tan 6043AE AB ∴=︒=8cos60BE ==︒, 1082EC BC BE ∴=-=-=,四边形ABCD 是平行四边形,120BAD ∴∠=︒,1209030EAF BAD BAE ∴∠=∠-∠=︒-︒=︒,EF AD ⊥,90AFE ∴∠=︒,1232EF AE ∴== ∴cos306AF AE =︒=,1064FD AD AF ∴=-=-=,2222(23)427ED EF FD ∴++1122ECD S EC EF ED CG ∴==, 即112232722CG ⨯⨯⨯,221CG ∴ 221217sin 4CG EDC CD ∴∠==, 故选:A .【点拨】本题考查了平行四边形的性质,解直角三角形,勾股定理,含30的直角三角形的性质等知识点,熟练掌握解直角三角形以及勾股定理是解本题的关键.10.B【分析】由已知条件CBD A ∠=∠,可得1tan tan 2CBD A ∠==,设CD a =,由题意可得1tan 2CD CBD BC ∠==,即可算出2BC a =,在t ΔR CBD 中,根据勾股定理可得2222(2)BD CD BC a a ++解:CBD A ,1tan tan 2CBD A ∴∠==, 设CD a =,1tan 2CD CBD BC ∴∠==, 2BC a ∴=, 在Rt ΔCBD 中,2222(2)5BD CD BC a a a =+=+,5cos 5CD CDB BD a∴∠=. 故选:B 【点拨】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.11.12- 【分析】先计算零次幂、负整数指数幂、正切值的平方,再按照运算顺序计算就可以了.解:()012212tan 60113231212---︒=-⨯=-=-故答案为: 12-. 【点拨】本题考查了0指数幂()()010a a =≠、负整数指数幂()10q qa a a -=≠、特殊角的正切值、二次根式的性质(()20a a a =≥和实数的混合运算等知识.正确的计算是解决本题的关键.122【分析】21代入方程2(3tan )20x x θ-+=,得出tan θ的值,从而得出θ的度数,进而的解.解:21是方程2(3tan )20x x θ-=的一个根, ∠2(21)3tan (21)20θ-+=,解得:tan 1θ=,∠45θ=︒,∠2cos cos 45θ==° 2. 【点拨】考查三角函数值与一元二次方程根的应用,熟练掌握一元二次方程的根的意义以及特殊角三角函数值是解本题的关键.13.32【分析】过点D 作DM ∠CM ,交CB 的延长线于点M ,可得∠DMC =90°,在Rt∠DMC 中,利用锐角三角函数的定义可设DM =a ,则CM =2a ,然后证明8字模型相似三角形∠ACB ∠∠DMB ,从而利用相似三角形的性质可得AB BD =AC DM =CB BM =2,进而可得AC =2a ,CB =43a ,最后进行计算即可解答.解:过点D 作DM ∠CM ,交CB 的延长线于点M ,∠∠DMC =90°,在Rt∠DMC 中,tan∠BCD =12, ∠tan∠DCM =DM CM =12, 设DM =a ,则CM =2a ,∠∠ACB =∠DMC =90°,∠ABC =∠DBM ,∠∠ACB ∠∠DMB , ∠AB BD=AC DM =CB BM =2, ∠AC =2DM =2a ,∠2433CB CM a ==, ∠AC BC =243a a =32, 故答案为:32. 【点拨】本题考查了相似三角形的判定与性质,解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.14.31##1103+【分析】在Rt ADE △中,利用tan 310∠==AE AE ADE DE 103AE =1m 即为AC 的长.解:过点D 作DE AC ⊥交于点E ,如图:则四边形BCED 是矩形,∠BC =DE ,BD =CE ,由题意可知:60ADE ∠=︒,10m ==DE BC ,在Rt ADE △中,tan 310∠===AE AE ADE DE ∠103AE =∠()1031m +=AE EC ,故答案为:1031【点拨】本题考查了解直角三角形,解直角三角形的应用—仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.15.等边三角形【分析】根据特殊角三角函数值求出∠CDB 的度数,然后根据旋转的性质和等边三角形的判定即可解决问题.解:∠四边形ABCD 为矩形,∠DC =AB =1,BC =AD 3∠DCB =90°, ∠tan∠CDB 33=∠CDB =60°; 由旋转的性质可知:BD =BD ',∠∠BDD '为等边三角形.故答案为:等边三角形.【点拨】本题考查了矩形的性质,特殊角三角函数值,旋转的性质以及等边三角形的判定等知识,解题的关键是抓住旋转过程中的不变量,灵活运用有关性质来解题. 16.31()2【分析】根据B 点坐标可求出AB 、OB ,得到12AB OB =,所以30AOB ∠=︒,60BOC ∠=︒,再利用折叠与平行的性质,证明∠OEC ′是等边三角形,OE =CD =12AB ,然后可利用三角函数求出点C ′的坐标.解:∠点B 坐标为(32),∠AB =2,OA =3 ∠()222234OB + ∠12AB OB = ∠30AOB ∠=︒,60BOC ∠=︒∠C ′是C 关于DE 的对称点∠CED C ED '∠=∠, EC =EC ′∠DE ∠OB∠CED EOC '∠=∠=60°∠∠OE C ′=180°-2×60°=60°∠∠OE C ′是等边三角形∠OE = EC =EC ′=12AB =1112⨯= ∠C ′横坐标=31sin 60⨯︒==11sin302⨯︒= ∠C ′坐标为312⎫⎪⎪⎝⎭【点拨】本题考查了三角形,熟练运用特殊三角形的性质是解题的关键.17. 6037602512n + 【分析】在图∠中先解直角三角形ABC 得到3tan 4A =,4tan 3B =,=5AB ,再分别解直角三角形ADG 和直角三角形BEF 得到43AD DG =,34BE EF =,再由5AB AD DE BE =++=进行求解即可;对于图∠同图∠求解即可.解:如图∠所示,∠在Rt∠ABC 中∠C =90°,AC =4,BC =3,∠3tan 4BC A AC ==,4tan 3AC B BC ==,225AB AC BC +=, ∠四边形DEFG 是Rt∠ABC 的内接正方形,∠DG =DE =EF ,∠GDE =∠DEF =90°,∠∠ADG =∠BEF =90°,在Rt∠ADG 中,4tan 3DG AD DG A ==, 在Rt∠BEF 中,3tan 4EF BE EF B ==, ∠43534AB AD DE BE DG DG DG =++=++=, ∠6037DG =; 如图∠所示, 同理可得43AD DG =,34BE EF =,DE nDG =, ∠43534AB AD DE BE DG nDG DG =++=++=, ∠602512DG n=+, 故答案为:6037;602512n+.【点拨】本题主要考查了解直角三角形,勾股定理,正方形的性质,正确求出43AD DG =,34BE EF =是解题的关键. 18.(2023223-【分析】如图,设直线32y x =+与x 轴交于点C ,求出点A 、C 的坐标,可得OA =2,OC =23∠ACO =30°,可得1190CB A ∠=︒,130CB A =∠︒,然后求出12124323CB B O ===13228323CB CB ===324216323CB CB ===…,进而可得2023202223CB =2022OB 即可.解:如图,设直线32y x =+与x 轴交于点C , 在32y =+中,当x =0时,y =2; 当y =0320+=,解得:23x =- ∠A (0,2),C (23-0),∠OA =2,OC =23∠tan∠ACO =323OA OC == ∠∠ACO =30°,∠11AB A △是等边三角形,∠111160AA B AB A ∠=∠=︒,∠1190CB A ∠=︒,∠130CB A =∠︒,∠AC =1AB ,∠AO ∠1CB ,∠123O O C B == ∠12124323CB B O === 同理可得:13228323CB CB ==324216323CB CB ===…,∠2023202223CB = ∠(2023202320222323223OB =-∠点2022A 的横坐标是(2023223- 故答案为:(2023223-【点拨】本题考查了一次函数的图象和性质,等边三角形的性质,解直角三角形,等腰三角形的判定和性质等知识,通过解直角三角形求出∠ACO=30°是解题的关键.19.(1)12;(23;(3)2.【分析】(1) 先进行绝对值、三角函数、零指数幂计算,然后根据实数的运算法则求得计算结果;(2)先进行负整数指数幂、零指数幂、三角函数计算,然后根据实数的运算法则求得计算结果;(3)先进行三角函数、负整数指数幂、绝对值、零指数幂、二次根式计算,然后根据实数的运算法则求得计算结果;解:(1)原式=12212+=1112+-=12;(2)原式=0.125×(-8)33(3)原式=111222221-⎛⎫÷+-⎪+⎝⎭2222222+-=2.【点拨】本题考查实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、二次根式化简、绝对值等考点的运算.20.()1见分析;()213【分析】(1)分别以A、B两点为圆心,以大于12AB长度为半径画弧,在AB两边分别相交于两点,然后过这两点作直线即为AB的垂直平分线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得BE=AE,然后求出△BCE 的周长=AC+BC,根据直角三角形30°角所对的直角边等于斜边的一半求出AB,再利用勾股定理列式求出AC的长,即可得解.解:()1AB的垂直平分线DE如图所示;()2DE 垂直平分AB ,BE AE ∴=,BCE ∴△的周长BE EC BC AE EC BC AC BC =+-++=++.在Rt ABC 中,330BC AC tan =︒BCE ∴△的周长为13【点拨】本题考查了复杂作图,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.21.(1)5;(2)125【分析】(1)利用直角三角形中4sin 5B =求解,AB 再利用勾股定理求解,BD 从而可得答案; (2)先利用直角三角形斜边上的中线的性质证明,EDEA EC 可得,EDC ECD ∠=∠ 再求解12tan tan ,5ADEDC ECD CD 从而可得答案. 解:(1) AD 是边BC 上的高,12AD =,4sin 5B =, ∴ 90ADB ADC ∠=∠=︒,412sin ,5B AB== 2215,15129,AB BD14,BC 149 5.CD BC BD(2) E 为边AC 的中点,90ADC ∠=︒,ED EA EC,EDC ECD ∴∠=∠ 12tan tan .5ADEDC ECD CD 【点拨】本题考查的是锐角三角函数的应用,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,等腰三角形的性质,掌握“等角的三角函数值相等”是解题的关键.22.(1)b =5,k =6(2)不在,理由见详解【分析】(1)把点B 的坐标分别代入一次函数与反比例函数解析式进行求解即可;(2)由(1)及题意易得点C 的坐标,然后根据旋转的性质可知点C ′的坐标,则根据等积法可得点A ′的纵坐标,进而根据三角函数可得点A ′的横坐标,最后问题可求解.(1)解:由题意得:166b k +=⎧⎨=⎩, ∠b =5,k =6;(2)解:点A ′不在反比例函数图像上,理由如下:过点A ′作A ′E ∠x 轴于点E ,过点C 作CF ∠x 轴于点F ,如图,由(1)可知:一次函数解析式为5y x =+,反比例函数解析式为6y x =, ∠点()5,0A -,∠∠OAC 与∠OAB 的面积比为2:3,且它们都以OA 为底,∠∠OAC 与∠OAB 的面积比即为点C 纵坐标与点B 纵坐标之比,∠点C 的纵坐标为2643⨯=,∠点C 的横坐标为451x =-=-,∠点C 坐标为()1,4-,∠CF =4,OF =1, ∠221417OC +tan 4CF COF OF∠==, 由旋转的性质可得:17,OC OC A OC AOC '''==∠=∠,根据等积法可得:2017OA CF A E OC ⋅'=='∠517tan A E OE A OE '=='∠, ∠5172017A '⎝⎭, 5172017100617=≠, ∠点A ′不在反比例函数图像上.【点拨】本题主要考查反比例函数与一次函数的综合、三角函数及旋转的性质,熟练掌握反比例函数与一次函数的综合、三角函数及旋转的性质是解题的关键.23.(1)9m(2)24m【分析】(1)过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,可得()4cos 1512m 5CE CD α=⋅=⨯=,再利用勾股定理可求出DE ,即可得出答案. (2)过点D 作DF AB ⊥于F ,设m AF x =,在Rt ADF 中,330AF x tan DF DF ︒===,解得3DF x =,在Rt ABC 中,()9m AB x =+,()312m BC x =-,tan603312AB BC x ︒===-x 的值,即可得出答案. (1)解:过点D 作DE BC ⊥,交BC 的延长线于点E ,在Rt DCE 中,4cos 5α=,15m CD =, ()4cos 1512m 5CE CD α∴=⋅=⨯=. ()222215129m DE CD CE ∴=--=.答:C ,D 两点的高度差为9m .(2)过点D 作DF AB ⊥于F ,由题意可得BF DE =,DF BE =, 设m AF x =,在Rt ADF 中,3tan tan30AF x ADF DF DF ∠=︒=== 解得3DF x =, 在Rt ABC △中,()9m AB AF FB AF DE x =+=+=+,)312m BC BE CE DF CE x =-=-=-, tan603312AB BC x ︒===- 解得9632x =, ()963924m 2AB ∴=+≈. 答:居民楼的高度AB 约为24m .【点拨】本题考查解直角三角形的应用-仰角俯角问题、坡度坡角问题,熟练掌握锐角三角函数的定义是解答本题的关键.24.(1)75;60(2)1003103⎫⎪⎭米(3)110米 【分析】(1)根据平角的定义求APD ∠,过点A 作AE DC ⊥于点E ,再利用三角形内角和求ADC ∠;(2)在Rt AED △中,30DAE ∠=︒求出DE 的长度再根据CD DE EC =+计算即可; (3)作PG BC ⊥于点G ,交AE 于点F ,证明APF DAE △≌△即可.解:(1)过点A 作AE DC ⊥于点E ,由题意得:60,45,30,MPA NPD DAE ∠=︒∠=︒∠=︒∠18075APD MPA NPD ∠=︒-∠-∠=︒9060ADC DAE ∠=︒-∠=︒(2)由题意得:100AE BC ==米,10EC AB ==.在Rt AED △中,30DAE ∠=︒, ∠)3100tan 3010033DE AE =⋅︒==米, ∠()1003103CD DE EC =+米 ∠楼CD 的高度为1003103⎫⎪⎭米. (3)作PG BC ⊥于点G ,交AE 于点F ,则()90,10PFA AED FG AB ∠=∠=︒==米∠MN AE ∥,∠60PAF MPA ∠=∠=︒.∠60ADE ∠=︒,∠PAF ADE ∠=∠.∠30DAE ∠=︒,∠30PAD ∠=︒.∠75APD ∠=︒,∠75ADP ∠=︒.∠ADP APD ∠=∠.∠AP AD =.∠APF DAE △≌△(AAS ).∠100PF AE ==.∠()10010110PG PF FG =+=+=米∠无人机距离地面BC 的高度为110米.【点拨】此题考查了解直角三角形的应用-——仰角俯角问题的知识.此题难度适中,注意能借助仰角或俯角构造直角三角形并解直角三角形是解此题的关键.。
部编人教版数学九年级下册知识点汇总
部编人教版数学九年级下册知识点汇总
本文档汇总了部编人教版数学九年级下册的知识点。
以下是各个章节的概述:
第一章二次根式
- 了解二次根式的概念和性质
- 掌握二次根式的化简和运算方法
- 研究利用二次根式解决实际问题
第二章整式的乘法与因式分解
- 掌握整式的乘法和因式分解的基本方法
- 研究利用因式分解解决实际问题
- 了解整式乘法与因式分解在数学中的应用
第三章二次方程与一元二次方程式
- 了解二次方程的概念和性质
- 研究解二次方程和一元二次方程式的基本方法
- 掌握利用二次方程和一元二次方程式解决实际问题的能力第四章线段和角
- 掌握线段的概念和性质,了解线段的运算方法
- 了解角的概念和性质,研究角的运算方法
- 研究利用线段和角解决实际问题
第五章相似三角形
- 掌握相似三角形的判定方法
- 研究相似三角形的性质和运算规律
- 了解利用相似三角形解决实际问题的能力
第六章几何体的表面积和体积
- 了解几何体的表面积和体积的概念
- 掌握计算各种几何体表面积和体积的方法
- 研究应用表面积和体积解决实际问题
第七章概率
- 了解概率的基本概念和性质
- 研究计算概率的方法
- 掌握利用概率解决实际问题的能力
本文档仅包含了九年级下册的知识点概述,并不详细列出每个知识点的具体内容。
希望对学习九年级数学的同学们有所帮助。
人教版九年级数学下册专题复习:只用直尺的中考作图题赏析课件(16张ppt)
直尺作图题赏析
引申一: 已知线段BD的中点C及直线BD外一点P,只用直尺 过P作BD的平行线. 引申二:一道题的讨论 下列轴对称图形中,只用一把无刻度的直尺不能画出 对称轴的是( )
A.菱形 B.矩形 C.等腰梯形 D.正五边形
思考1:正A五B边是形的其顶点中与对一边中个点所小在的长直线方为对形称轴的。 对角线,请在大长方形中完成下列画图,
拓展:矩形和正方形的结合,平行四边形和圆的结合。
功能,发要挥“求转化:”的1威、力。仅用无刻度直尺,2、保留必要的画图痕迹.
思考2:轴对称图形的对称线段(或延长线)相交,交点必在对
思考2:在已(作1出)在的图图1中,(1P点)中是三画角形一中什个么线4段5的°交点角? ,使点A或点B是这个角的顶点,且AB
2、作图题的思考原则:假设图已作出,再分析图形应具备 的特征。
直尺作图题赏析
(2004,江西)如图,己知方格纸中的每个小方格都是相同 的正方形. AOB画在方格纸上,请在小方格的格点上 标出一个点P,使点P落在 AO的B平分线上.
思考:由于CA=CB,所以可考虑全等三角形、等腰三 角形三线合一、菱形。
就需要深入挖掘图形自身性质,用好直接的或潜在的固有
(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB (2015、南昌市).
直尺作图题赏析
(2012,江西)如图12,已知正五边形ABCDF,仅用无刻度的直 尺准确作出其一条对称轴.(保留作图痕迹)
思考1:正五边形的顶点与对边中点所在的直线为对称轴。 思考2:轴对称图形的对称线段(或延长线)相交,交点必在对 称轴上。 思考3:正多边形的对称轴都仅用直尺能作吗?
人教版九年级数学下册知识点总结
人教版九年级数学下册知识点总结单元1 代数的笔算和推理
- 一次函数
- 函数的应用
单元2 初步研究平面图形与坐标
- 平面直角坐标系
- 点的坐标
- 点的对称
- 图形的平移、旋转和翻转
单元3 整式的乘法和因式分解
- 整式的乘法
- 因式分解
- 公式的应用
单元4 相交线与视线
- 相交线
- 视线
单元5 探索三角形性质
- 三角形的定义和分类
- 三角形的内角和
- 三角形的外角和
- 三角形的性质
单元6 反比例函数
- 反比例函数的概念
- 反比例函数的图象与性质
单元7 进一步研究几何图形- 平面镜面对称
- 空间图形的投影
- 空间几何体
单元8 学会归纳与演绎
- 归纳与猜想
- 演绎与证明
单元9 统计与概率
- 数据的收集和整理
- 随机事件与概率
单元10 平面直角坐标系
- 坐标的变化
- 函数的图象
- 利用函数关系解决问题
单元11 函数的线性变换
- 函数的定义域和值域
- 函数的单调性和奇偶性
- 函数的线性变换
单元12 两个变量间关系的表示
- 直线方程
- 坐标轴上的点与直线方程关系
- 线性方程组
单元13 拓展:列表的进一步讨论
- 列表的加、减、乘运算
- 列表间的关系。
【人教版】九年级下册数学《锐角三角函数》全章知识点复习及同步习题
c ,则有: s in A = a = cos B , cos A = = sin B , tan A = ,这就是锐角三角函数所以 cos B = sin(90 - B) = sin A = .在 Rt△BCD 中, cos B = ,所以 = ., cos A = , =(sin 2A 、cos 2A 分别表示 sin A 、cos A 2 2锐角三角函数我们知道,在 Rt△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、b ac c b的定义.根据锐角三角函数的定义,再结合直角三角形的性质,我们可以探索出锐角三角函数之间的三个特殊关系.一、余角关系由上面的定义我们已得到 sin A =cos B ,cos A =sin B ,而在直角三角形中,∠A+∠B =90°,即∠B =90°-∠A .因此有:sin A =cos (90°-A ),cos A =sin (90°-A ).应用这些关系式,可以很轻松地进行三角函数之间的转换.例1 如图,在 Rt△ABC 中,∠C =90°,CD ⊥AB 于 D ,已知 sin A ==2,求 BC 的长.解:由于∠A +∠B =90°,12BD 2 1BC BC 2所以 BC =4.二、平方关系a b 由定义知 sin A = c c1 2 ,BD所以 sin 2 A + cos 2 A = a 2 b 2 a 2 + b 2+ c c c 2的平方).又由勾股定理,知 a 2+b 2=c 2,所以 sin 2A +cos 2A = c 2 c 2=1.应用此关系式我们可以进行有关锐角三角函数平方的计算.例 2 计算:sin256°+sin245°+sin234°.=⎪⎪ + 1 = 由定义中 sin A = a, cos A = ,得 = c = ⨯ = = tan A .所以原式 = = =- .5 12 5 12所以 sin B = = .应选(B).5解:由余角关系知 sin56°=cos(90°-56°)=cos34°.所以原式=sin245°+(sin234°+cos234°)⎛ 2 ⎫2 ⎝ 2 ⎭3 2 .三、相除关系b c casin A a c a cos A b c b bc利用这个关系式可以使一些化简求值运算过程变得简单.例 3 已知 α 为锐角,tan α =2,求 3sin α + cos α 4cos α - 5sin α的值.解:因为 tan α = sin α cos α= 2 ,所以 sin α =2cos α ,6cos α + cos α 6 + 1 74cos α - 10cos α 4 - 10 6求三角函数值的方法较多,且方法灵活.是中考中常见的题型.我们可以根据已知条件结合图形选用灵活的求解方法.四、设参数法例 4 如图 △1,在 ABC 中,∠C =90°,如果 t a n A =(A)(B) (C) (D)13 13 12 55 12 ,那么 sin B 等于( )分析:本题主要考查锐角三角函数的定义及直角三角形的有关性质.因为 tan A = a 5 =b 12,所以可设 a =5k ,b =12k (k >0),根据勾股定理得 c =13k ,图 1b 12c 13五、等线段代换法例 5如图 2,小明将一张矩形的纸片 ABC D 沿 C E 折叠,B 点恰好落在 A D 边上,设此点为 F ,若 BA :BC =4:,则 c os∠DCF 的值是______.分析:根据折叠的性质可知 E △B C ≌ EF C ,所以 C F=CB ,又 C D=AB ,AB :BC =4:5, 所以 C D :C F=4:5,图 2=.113911,即=,所以C E=,在Rt△A E C中,tan∠CA E==3=.所以tanα=.C3445所以DB==,所以tanα=,选(A).在Rt D△C F中,c os∠D C F=DC4 CF5六、等角代换法例6如图3,C D是平面镜,光线从A点出发经C D上点E反射后照射到B点,若入射角为α(入射角等于反射角),AC⊥C D,B D⊥C D,垂足分别为C、D,且AC=3,B D=6,C D=11,则tanα的值为()B(A)(B)(C)(D)311119A分析:根据已知条件可得∠α=∠CA E,所以只需求出tan∠CA E.α根据条件可知△A C E∽B DE,所以AC CE3CE=BD ED611-CEC E图3D11311CE11AC39119七、等比代换法例7如图4,在Rt△ABC中,ACB=90,D⊥AB于点D,BC=3,AC=4,设BC D=α,tanα的值为()(A)(B)(C)(D)435分析:由三角形函数的定义知tanα=DB DC,由Rt△C D△B∽Rt ACB,BC33DC AC44图4( :锐角三角函数测试1.比较大小:sin41°________sin42°. 2.比较大小:cot30°_________cot22°. 3.比较大小:sin25°___________cos25°. 4.比较大小:tan52°___________cot52°. 5.比较大小:tan48°____________cot41°. 6.比较大小:sin36°____________cos55°.7、下列命题①sin α 表示角α 与符号 sin 的乘积;② 在△ABC 中,若∠C=90°,则 c=α sinA 成立;③任何锐角的正弦和余弦值都是介于 0 和 1 之间实数.其正确的为()A 、②③B.①②③C.②D. ③8、若 △R t ABC 的各边都扩大 4 倍得到 △R t A ′B ′C ′,那么锐角 A 和锐角 A ′正切值的关系为()A.tanA ′=4tanA B.4tanA ′=tanAC.tanA ′=tanAD.不确定.9(新疆中考题) 1)如图(1)、 2),锐角的正弦值和余弦值都随着锐角的确定而确定, 变化而变化.试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律,试比较 18°,34°,50°,62°,88°,这些锐角的正弦值的 大小和余弦值的大小。
人教版九年级数学下册专题讲解:专训2 巧作平行线构造相似三角形
专训2 巧作平行线构造相似三角形 名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.巧连线段的中点构造相似三角形1.如图,在△ABC 中,E ,F 是边BC 上的两个三等分点,D 是AC 的中点,BD 分别交AE ,AF 于点P ,Q ,求BP PQ QD.(第1题)过顶点作平行线构造相似三角形2.如图,在△ABC 中,AC =BC ,F 为底边AB 上一点,BFAF =32,取CF 的中点D ,连接AD 并延长交BC 于点E ,求BE EC 的值.(第2题)过一边上的点作平行线构造相似三角形3.如图,在△ABC 中,AB >AC ,在边AB 上取一点D ,在AC 上取一点E ,使AD =AE ,直线DE 和BC 的延长线交于点P.求证:BP CP =BD EC.(第3题)过一点作平行线构造相似三角形4.如图,在△ABC 中,点M 为AC 边的中点,点E 为AB 上一点,且AE =14AB ,连接EM 并延长交BC 的延长线于点D.求证:BC =2CD.(第4题)答案1.解:如图,连接DF ,∵E,F 是边BC 上的两个三等分点,∴BE=EF =FC.∵D 是AC 的中点,∴AD=CD.∴DF 是△ACE 的中位线.∴DF∥AE,且DF =12AE.∴DF∥PE. ∴△BEP∽△BFD.∴BE BF =PE DF =BP BD. ∵BF=2BE ,∴DF=2PE ,BD =2BP.∴BP=PD.∵DF∥AE,∴△APQ∽△FDQ.∴PQ QD =AP DF. 设PE =a ,则DF =2a ,AP =3a.∴PQ QD =AP DF =32. ∴BP PQ QD =53 2.(第1题) (第2题)2.解:如图,过点C 作C G∥AB 交AE 的延长线于点G.∴△GCD∽△AFD.∴CG FA =CD FD. 又∵D 为CF 的中点,∴CD =FD.∴AF=CG.∵BF AF =32,∴AB AF =5 2.∵AB∥CG,∴△ABE∽△GCE.∴BE EC =AB CG =AB AF =52. 3.证明:如图,过点C 作CF∥AB 交DP 于点F ,∴△PCF∽△PBD.∴BP CP =BD CF. ∵AD∥CF,∴∠ADE=∠EFC.(第3题)∵AD=AE ,∴∠ADE=∠AED.∵∠AED =∠CEP,∴∠EFC=∠CE P.∴EC=CF.∴BP CP =BD EC.4.证明:(方法一)如图①,过点C 作CF∥AB,交DE 于点F ,(第4题①) ∴△CDF∽△BDE.∴CF BE =CD BD . ∵点M 为AC 边的中点, ∴AM=CM. 易证△AME≌△CMF.∴AE=C F.∵AE=14AB ,∴BE=3AE. ∴AE BE =13.∵CF BE =CD BD , ∴AE BE =CD BD =13,即BD =3CD.∴BC =2CD.(第4题②)(方法二)如图②,过点C 作CF∥DE,交AB 于点F ,∴AE AF =AM AC. 又∵点M 为AC 边的中点,∴AC=2AM.∴2AE=AF.∴AE=EF.又∵AE AB =14,∴BF EF=2. 又∵CF∥DE,∴BF FE =BC CD=2. ∴BC=2CD.(第4题③)(方法三)如图③,过点E 作EF∥BC,交AC 于点F ,∴△AEF∽△ABC.∴EF BC =AE AB =AF AC.由AE =14AB ,知EF BC =AF AC =AE AB =14, ∴EF=14BC ,AF =14AC. 由E F∥CD,得△EFM∽△DCM,∴EF CD =MF MC .又∵AM=MC ,∴MF=12MC. ∴EF=12CD.∴BC=2CD.(第4题④)(方法四)如图④,过点A 作AF∥BD,交DE 的延长线于点F ,∴△AEF∽△BED.∴AE BE =AF BD. ∵AE=14AB , ∴AE=13BE.∴AF=13BD. 由AF∥CD,AM =MC ,易证得△AFM≌△CDM.∴AF=CD.∴CD=13BD.∴BC=2CD. 点拨:由已知线段的比,求证另外两线段的比,通常添加平行线,构造相似三角形来求解.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.2.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(), 故选:D .【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系. 3.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,)B .(﹣12955,)C .(﹣161255,)D .(﹣121655,) 【答案】A 【解析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案.【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°,∠1=∠2=∠1,则△A 1OM ∽△OC 1N ,∵OA=5,OC=1,∴OA 1=5,A 1M=1,∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1,则(1x )2+(4x )2=9,解得:x=±35(负数舍去),则NO=95,NC 1=125, 故点C 的对应点C 1的坐标为:(-95,125). 故选A .【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键.4.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)【答案】A 【解析】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG=6,∴AD=BC=2, ∵AD ∥BG ,∴△OAD ∽△OBG , ∴OA OB =13, ∴2OA OA +=13, 解得:OA=1,∴OB=3,∴C 点坐标为:(3,2),故选A .5.下列各式计算正确的是( )A 633=B .1236=C .3535+=D 1025=【答案】B【解析】A 63、B 123=36=6,∴本选项正确;C 选项中,∵35=353+5D选项中,∵10102=52÷≠,∴本选项错误;故选B.6.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)【答案】C【解析】根据黄金分割点的定义,知BC为较长线段;则BC=512-AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则BC=2×512-=5-1.故答案为:5-1.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的352倍,较长的线段=原线段的512-倍.7.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A.B.C.D.【答案】B【解析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB、CB、AC2、210、只有选项B的各边为125B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.8.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.125【答案】B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则, 225AB BD -=,故tanB=512AD BD =. 故选B . 【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.9.学完分式运算后,老师出了一道题“计算:23224x x x x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的【答案】C 【解析】试题解析:23224x x x x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳.故选C .10.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,12C .1,13D .1,23【答案】D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定; B 、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定; C 、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定. 【详解】∵1+2=3,不能构成三角形,故选项错误; B 、∵12+12=(2)2,是等腰直角三角形,故选项错误; C 、底边上的高是2231-2()=12,可知是顶角120°,底角30°的等腰三角形,故选项错误; D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选D .二、填空题(本题包括8个小题)11.在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm ,则根据题意可得方程 .【答案】()240024008.120%x x -=+. 【解析】试题解析:∵原计划用的时间为:2400x, 实际用的时间为:()2400120%x +, ∴可列方程为:()240024008.120%x x -=+ 故答案为()240024008.120%x x-=+ 12.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.【答案】1【解析】首先连接BE ,由题意易得BF=CF ,△ACP ∽△BDP ,然后由相似三角形的对应边成比例,易得DP :CP=1:3,即可得PF :CF=PF :BF=1:1,在Rt △PBF 中,即可求得tan ∠BPF 的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.13.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.【答案】2 5【解析】解:根据题意可得:列表如下红1 红2 黄1 黄2 黄3红1 红1,红2 红1,黄1 红1,黄2 红1,黄3 红2 红2,红1 红2,黄1 红2,黄2 红2,黄3 黄1 黄1,红1 黄1,红2 黄1,黄2 黄1,黄3黄2 黄2,红1 黄2,红2 黄2,黄1黄2,黄3 黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为82205=. 【点睛】本题考查列表法和树状图法,掌握步骤正确列表是解题关键.14.如图,某小型水库栏水坝的横断面是四边形ABCD ,DC ∥AB ,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC 宽为2m ,坝高为6m ,则坝底AB 的长为_____m .【答案】(7+63)【解析】过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,得到两个直角三角形和一个矩形,在Rt △AEF 中利用DF 的长,求得线段AF 的长;在Rt △BCE 中利用CE 的长求得线段BE 的长,然后与AF 、EF 相加即可求得AB 的长.【详解】解:如图所示:过点C 作CE ⊥AB ,DF ⊥AB ,垂足分别为:E ,F ,∵坝顶部宽为2m ,坝高为6m , ∴DC=EF=2m ,EC=DF=6m , ∵α=30°, ∴BE=63tan30EC=︒(m ),∵背水坡的坡比为1.2:1, ∴1.2 1.21DF AF AF ==, 解得:AF=5(m ),则3(3m , 故答案为(3m . 【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 【答案】20【解析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得. 【详解】设原来红球个数为x 个, 则有1010x +=1030, 解得,x=20,经检验x=20是原方程的根. 故答案为20. 【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.16.如图,矩形ABCD ,AB=2,BC=1,将矩形ABCD 绕点A 顺时针旋转90°得矩形AEFG ,连接CG 、EG ,则∠CGE=________.【答案】45° 【解析】试题解析:如图,连接CE , ∵AB=2,BC=1, ∴DE=EF=1,CD=GF=2, 在△CDE 和△GFE 中,CD GF CDE GFE DE EF =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△GFE(SAS),∴CE=GE ,∠CED=∠GEF , 90AEG GEF ∠+∠=, 90CEG AEG CED ∴∠=∠+∠=,45.CGE ∴∠=故答案为45.17.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 . 【答案】-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解. 【详解】∵一元二次方程x 2+mx+1=0的一个根为-1,设另一根为x 1, 由根与系数关系:-1•x 1=1, 解得x 1=-1. 故答案为-1.18.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.【答案】(-2,-2)【解析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标. 【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2). 【点睛】考查了坐标确定位置,关键是正确确定原点位置. 三、解答题(本题包括8个小题) 19.先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 【答案】12-.【解析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++--- =12(1)(2)(1)(2)x x x x x -+----=()()112x x x ---=12x -, 当x=0时,原式=11022=--. 20.如图,某校教学楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22º时,教学楼在建筑物的墙上留下高2m 的影子CE ;而当光线与地面的夹角是45º时,教学楼顶A 在地面上的影子F 与墙角C 有13m 的距离(B 、F 、C 在一条直线上).求教学楼AB 的高度;学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离(结果保留整数). 【答案】(1)2m (2)27m【解析】(1)首先构造直角三角形△AEM ,利用0AMtan22ME=,求出即可. (2)利用Rt △AME 中,0MEcos22AE=,求出AE 即可. 【详解】解:(1)过点E 作EM ⊥AB ,垂足为M .设AB 为x .在Rt △ABF 中,∠AFB=45°, ∴BF=AB=x , ∴BC=BF +FC=x +1.在Rt △AEM 中,∠AEM=22°,AM=AB -BM=AB -CE=x -2, 又∵0AM tan22ME =,∴x 22x 135-≈+,解得:x≈2. ∴教学楼的高2m .(2)由(1)可得ME=BC=x+1≈2+1=3. 在Rt △AME 中,0MEcos22AE=, ∴AE=MEcos22°≈15252716⨯≈. ∴A 、E 之间的距离约为27m . 21.如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.【答案】(1),;(2)点的坐标为;(3)点的坐标为和【解析】(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;(2)先求F 的对称点,代入直线BE ,即可;(3)构造新的二次函数,利用其性质求极值. 【详解】解:(1)轴,,抛物线对称轴为直线点的坐标为解得或(舍去), (2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.直线经过点利用待定系数法可得直线的表达式为.因为点在上,即点的坐标为(3)存在点满足题意.设点坐标为,则作垂足为①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为综上所述:满足题意得点的坐标为和考点:二次函数的综合运用.22.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
人教版初三数学下册相似三角形的应用举例专题复习——影长问题
相似三角形的应用举例专题复习---影长问题武威第九中学:张天娥教学目标1.进一步巩固相似三角形的知识。
2.能够运用三角形相似的知识,利用影长来解决不能直接测量物体的长度和高度的一些实际问题.3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.重点、难点重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).难点的突破方法(1)本节主要探索的是应用相似三角形的判定、性质等知识去解决影长的实际问题(计算不能直接测量物体的长度和高度问题),学生已经学过了相似三角形的概念、判定方法及性质,在此基础上通过本课的学习将对前面所学知识进行全面应用。
九年级学生在思维上已具备了初步的应用数学的意识,在心理特点上则更依赖于直观形象的认识.(2)在实际生活中,面对不能直接测量出长度和宽度的物体问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解.在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。
另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力.(3)课上可以通过小问题自己的影长,旗杆的影长解决问题来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦.(4)运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时.例题的意图相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) .本节课使学生掌握测高和测距的方法.知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解.讲课时,可以让学生思考用不同的方法解这几个实际问题,以提高从实际生活中发现数学问题、运用所学知识解决实际问题的能力.应让学生多见些不同类型的有关相似三角形的应用问题,便于学生理解:世上许多实际问题都可以用数学问题来解决,而本节的应用实质是:运用相似三角形相似比的相关知识解决影长问题,并让学生掌握运用这方面的知识解决在自己生活中的一些实际问题的计算方法.教学过程:一、课堂引入回顾:1、判断两三角形相似有哪些方法?(1).定义: (2).定理(平行法):(3).判定定理一(边边边):(4).判定定理二(边角边):(5).判定定理三(角角):2、相似三角形有什么性质?对应角相等,对应边的比相等,对应高的比,对应中线的比,对应角平分线的比都等于相似比。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习课
专题一:动点动型题
1、(两个动点问题)如图,在三角形△ABC中,AC=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最小值是()
(A)1 (B)2 (C)1.5 (D)5/3
专题二:几何与函数结合题
2、(卷四-9)如图,菱形ABCD的对角线AC,BD交于点O,AC=6,BD=8,动点PC从点B出发,沿B-A-D在菱形ABCD的边上运动,运动到点D停止,点P’是关于点P关于BD的对称点,PP’交BD于点M,若BM=x,△OPP’的面积为y,求:
(1) y与x的函数关系式;
(2)画出y与x的函数图象;
专题二:几何与函数结合题
3、(卷五-9)如图,两个全等的等腰三角形(斜边长为2)如图放置,其中一块三角形45°角的顶点与另一块三角板ABC的直角顶点A重合。
若三角板ABC固定,当另一个三角板绕点A旋转时,它的直角边和斜边分别与边BC交于点E、F,设BF=x,CE=y,则y关于x的函数图象大致是()
专题三:几何证明题
4、(卷四-23)如图①,已知∠ACB= ∠DCE=90°,
AC=BC,CD=CE.
(1)求证:△ACD≌△BCE;
(2)若AC=6,AE=3,∠CAE=45°,求AD的长;
(3)如图②,若∠ACB= ∠DCE=90°, ∠ABC =
∠ CED=∠CAE=30 °AC=3, AE=8,求AD的长
5、如图所示,矩形ABCD中,点M在BC上,连接AM,作∠AMN= ∠AMB,点N在直线AD的延长线上,MN交CD边于点E.
(1)求证:MN=AN;
(2)求证:AM²=2AN·BM;
(3)若AB=3,BC=2,当M为BC的中点,试求ME的长。