滨海2017_2018八年级数学下学期第一次月考试题苏科版

合集下载

2017—2018第二学期第一次月考试卷八年级数学(含答案)

2017—2018第二学期第一次月考试卷八年级数学(含答案)

2017—2018八年级数学第二学期第一次月考试卷班级:姓名:一.选择题(每小题3分,共计30分,请将正确答案写到指定位置)1.下列各式中是二次根式的是( )A. B.C.D.(x<0)2.若式子有意义,则x的取值范围是( )A.B.x≥2 C.x≤2 D.3.下列各式是最简二次根式的是( ) A.B.C.D.4.化简的结果是( ) A.5 B.﹣5 C.±5 D.255.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为( )A.4 B.8 C.16 D.64(5题图)(10题图)6.下列各式计算正确的是( )A.B.C.D.=47.下列计算:①()2=2;②=2;③(﹣2)2=12;④()()=﹣1.其中正确的有( ) A.1个B.2个C.3个D.4个8.下列计算正确的是( )A.B.•=C.D.9.已知一个直角三角形的两直角边长分别为3和4,则斜边长是( )A.5 B.C.D.或510.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,OC长为半径画弧交数轴于点M,则点M对应的实数为A.B.4 C.5 D.2.5二.填空题(共5小题,每小题3分,共计15分,请将正确答案写到横线上)11.若式子有意义,则x的取值范围是.12.若是整数,则满足条件的最小正整数n为.13.如图,大正方形的面积可以表示为,又可以表示为,由面积相等的等量关系,整理后可得:.(13题图)(15题图)14.一直角三角形的两边长分别为5和12,则第三边的长是.15.如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为.三.解答题(共计55分,除特殊说明外,要写出必要的步骤或文字说明,否则不得分)16.直接写出答案(每小题1分,共6分)=.=.=.(2)2=.÷=.= .17.(4分)在数轴上作出表示的点(保留作图痕迹,不写作法).(1)2.(2).(3).19.计算或化简(每小题4分,共计8分):(1)﹣+.(2).20.(6分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?(1)(2﹣6+3)÷2; (2)+5)(2﹣5)-(﹣)2.22.(4分)已知x=2+,y=2﹣,求代数式x 2﹣y 2的值.23.(5分)观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n 为正整数,请你猜想= ; (2)计算:(++…+2017-20181)×(12018 )2017—2018第二学期第一次月考试卷八年级数学参考答案一.选择题(共10小题,每小题3分,共计30分)1.C.2.B.3.C.4.A.5.D.6.D.7.D.8.B.9.A.10.A.二.填空题(共5小题,每小题3分,共计15分,请将正确答案写到横线上)11.x≥﹣2且x≠0.12.7.13.(a+b)2,2ab+c2,a2+b2=c2.14.13或.15..三.解答题(共计55分,除特殊说明外,要写出必要的步骤或文字说明,否则不得分)16.每小题1分,共6分(1)x.(2)3.(3)=5.(4)(2)2=12.(5)÷=.(6)72.17.(4分)解:因为10=9+1,则首先作出以1和3为直角边的直角三角形,则其斜边的长即是=;如图所示.18.每小题4分,共计12分解:(1)原式=2××=××=6.(2)原式===.(3)原式===2a.19.计算或化简(每小题4分,共计8分):解:(1)﹣+=3﹣4+=0.(2)2+3+×4﹣15×=2+3+﹣5=.20.(6分)解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.21.每小题5分,共计10分解:(1)(2﹣6+3)÷2;=(4﹣2+12)÷2=14÷2=7(2)(2+5)(2﹣5)﹣(﹣)2.=(2)2﹣(5)2﹣(5﹣2+2)=20﹣50﹣(7﹣2)═﹣37+2.22(4分).解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=4×2=8.23.(5分)(1)﹣;(2)原式=(﹣1+﹣+﹣+…+2018﹣2017)(2018+1)=(2018﹣1)(2018+1)=(2018)2﹣12=2018﹣1=2017.。

八年级下学期第一次月考数学试卷含答案解析(苏科版)

八年级下学期第一次月考数学试卷含答案解析(苏科版)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共24分)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查3.如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形4.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形5.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3 B.0.4和9 C.12和0.3 D.12和96.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C.6 D.37.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°8.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定二、填空题(每空3分,共30分)9.学校为了考察我校八年级同学的视力情况,从八年级的17个班共850名学生中,每班抽取了5名进行分析.在这个问题中.样本是,样本的容量是.10.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是(将命题的序号填上即可).11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=5cm,则AB=cm.12.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是.13.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是.14.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD 于E,则△ABE的周长为cm.15.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅B(2,0),∠DOB=60°,点P 是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.三、解答题(共96分)18.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.19.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.20.用反证法证明:等腰三角形的底角是锐角.21.在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.22.如图,将△ABC绕点C顺时针方向旋转40°得△A′B′C′,若AC⊥A′B′,求∠BAC的度数.23.我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了“”根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b= c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.25.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】(1)如图①,当点H与点C重合时,猜想FG与FD的数量关系,并说明理由.【探究】(2)如图②,当点H为边CD上任意一点时,(1)中结论是否仍然成立?不需要说明理由.【应用】(3)在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.26.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.2.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全球人类男女比例情况,人数众多,范围较广,应采用抽样调查,故此选项错误;B、了解一批灯泡的平均使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C、调查20~25岁年轻人最崇拜的偶像,人数众多,范围较广,应采用抽样调查,故此选项错误;D、对患甲型H7N9的流感患者同一车厢的乘客进行医学检查,人数较少,意义重大,必须采用普查,故此选项正确;故选:D.3.如图,▱ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B.AC=BDC.AC⊥BD D.▱ABCD是轴对称图形【考点】平行四边形的性质.【分析】由▱ABCD的对角线AC、BD相交于点O,根据平行四边形的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴S□ABCD=4S△AOB,AC与BD互相平分(OA=OC,OB=OD),▱ABCD是中心对称图形,不是轴对称图形.故A正确,B,C,D错误.故选:A.4.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形【考点】矩形的判定;三角形中位线定理.【分析】此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.5.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3 B.0.4和9 C.12和0.3 D.12和9【考点】频数(率)分布表.【分析】根据比例关系由频数=总数×频率即可得出第二、三组的频数,进而得出各组的频率.【解答】解:∵样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,∴第二小组和第三小组的频数为:30×=12,30×=9,∴第二小组和第三小组的频率分别为:=0.4,=0.3.故选:A.6.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C.6 D.3【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=3.故选D.7.如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°【考点】三角形中位线定理.【分析】根据中位线定理和已知,易证明△EPF是等腰三角形.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°.故选:D.8.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【考点】正方形的性质;勾股定理.【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S1>S2,故选:A.二、填空题(每空3分,共30分)9.学校为了考察我校八年级同学的视力情况,从八年级的17个班共850名学生中,每班抽取了5名进行分析.在这个问题中.样本是85名学生的视力情况,样本的容量是85.【考点】总体、个体、样本、样本容量.【分析】根据样本、样本的容量的定义即可解决.【解答】解:17×5=85在这个问题中.样本是85名学生的视力情况,样本的容量是85.故答案分别为85名学生的视力情况,85.10.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是②(将命题的序号填上即可).【考点】平行四边形的判定;命题与定理.【分析】根据平行四边形的判定定理进行判断.定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组邻角分别相等的四边形可能为梯形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:①一组对边平行,另一组对边相等的四边形不一定是平行四边形,等腰梯形也满足该条件.故①错误;②对角线互相平分的四边形是平行四边形.故②正确;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD不一定是平行四边形,筝形也满足该条件.故③错误;④一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行.故④错误;故填:②.11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,CD=5cm,则AB=10cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=10cm.故答案是:10.12.如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是1<OA<4.【考点】平行四边形的性质;三角形三边关系.【分析】根据三角形的三边关系定理得到AC的取值范围,再根据平行四边形的性质即可求出OA的取值范围.【解答】解:∵AB=3cm,BC=5cm,∴2<AC<8,∵四边形ABCD是平行四边形,∴AO=AC,∴1<OA<4,故答案为:1<OA<4.13.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是cm.【考点】菱形的性质.【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,==×6×8=24cm2,∴S菱形ABCD=BC×AE,∵S菱形ABCD∴BC×AE=24,∴AE==cm.故答案为:cm.14.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD 于E,则△ABE的周长为10cm.【考点】线段垂直平分线的性质;平行四边形的性质.【分析】要求周长,就要求出三角形的三边,利用垂直平分线的性质即可求出BE=DE,所以△ABE的周长=AB+AE+BE=AB+AD.【解答】解:∵AC,BD相交于点O∴O为BD的中点∵OE⊥BD∴BE=DE△ABE的周长=AB+AE+BE=AB+AD=×20=10cm△ABE的周长为10cm.故答案为10.15.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若PB=2,则PP′=2.【考点】旋转的性质.【分析】根据正方形的性质得到∠ABC=90°,再根据旋转的性质得∠PBP′=∠ABC=90°,PB=P′B=2,则△PBP′为等腰直角三角形,然后根据等腰直角三角形的性质求解.【解答】解:∵四边形ABCD为正方形,∴∠ABC=90°,∵△ABP绕点B顺时针方向旋转能与△CBP′重合,∴∠PBP′=∠ABC=90°,PB=P′B=2,∴△PBP′为等腰直角三角形,∴PP′=2PB=2.故答案为2.16.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅【分析】先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.【解答】解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.17.菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P 是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为().【考点】菱形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.【解答】解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(0,﹣1),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().三、解答题(共96分)18.如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,求CF的长.【考点】平行四边形的性质.【分析】由平行四边形ABCD中,AE平分∠DAB,可证得△ABF是等腰三角形,继而利用CF=BF﹣BC,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=3,∴∠DAE=∠F,∵AE平分∠DAB,∴∠DAE=∠BAF,∴∠BAF=∠F,∴AB=BF=5,∴CF=BF﹣BC=5﹣3=2.19.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】通过全等三角形(△AEB≌△DFC)的对应边相等证得BE=CF,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF是平行四边形.【解答】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.20.用反证法证明:等腰三角形的底角是锐角.【考点】反证法.【分析】根据反证法的步骤进行证明.【解答】证明:用反证法.假设等腰三角形的底角不是锐角,则大于或等于90°.根据等腰三角形的两个底角相等,则两个底角的和大于或等于180°.则该三角形的三个内角的和一定大于180°,这与三角形的内角和定理相矛盾,故假设不成立.所以等腰三角形的底角是锐角.21.在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,试判定四边形DEBF是何种特殊四边形?并说明理由.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】(1)通过“平行四边形的对边相等、对角相等”的性质推知AD=BC,且∠A=∠C,结合已知条件,利用全等三角形的判定定理SAS证得结论;(2)首先判定四边形DEBF是平行四边形,然后根据“邻边相等的四边形是平行四边形”推知四边形DEBF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.∵在△ADE与△CBF中,,∴△ADE≌△CBF(SAS);(2)四边形DEBF是菱形.理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形.又∵DF=BF,∴四边形DEBF是菱形.22.如图,将△ABC绕点C顺时针方向旋转40°得△A′B′C′,若AC⊥A′B′,求∠BAC的度数.【考点】旋转的性质.【分析】根据旋转的性质得∠ACA′=40°,∠A=∠A′,然后利用AC⊥A′B′可得到∠A′=50°,于是可得到∠BAC=50°.【解答】解:∵△ABC绕点C顺时针方向旋转40°得△A′B′C′,∴∠ACA′=40°,∠A=∠A′,∵AC⊥A′B′,∴∠A′=90°﹣40°=50°,∴∠BAC=50°.23.我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了“”根据图表解决下列问题:(1)本次共抽取了50名学生进行体育测试,表(1)中,a=0.2,b=7c=0.32;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【解答】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.24.如图,已知菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积.【考点】菱形的性质;矩形的判定.【分析】(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC(等腰三角形三线合一),∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∴AD∥BC且AD=BC,∴AF∥EC且AF=EC,∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)解:在Rt△ABE中,AE==3,=6×3=18.所以,S菱形ABCD25.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】(1)如图①,当点H与点C重合时,猜想FG与FD的数量关系,并说明理由.【探究】(2)如图②,当点H为边CD上任意一点时,(1)中结论是否仍然成立?不需要说明理由.【应用】(3)在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.【考点】四边形综合题.【分析】[感知]连接AF,由折叠的性质可得AB=AG=AD,再结合AF为△AGF和△ADF 的公共边,从而证明△AGF≌△ADF,从而得出结论FD=FG.[探究]连接AF,根据图形猜想FD=FG,由折叠的性质可得AB=AG=AD,再结合AF为△AGF 和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.[应用]设AB=x,则BE=EG=x﹣5,FE=x﹣2,FC=x﹣3,在RT△ECF中利用勾股定理可求出x的值,进而可得出答案.【解答】[感知]解:猜想FD=FG.证明:如图1,连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴Rt△AGF≌Rt△ADF(HL).故可得FG=FD.[探究]解:猜想FD=FG.证明:如图2,连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,,∴Rt△AGF≌Rt△ADF(HL).故可得FG=FD.[应用]设AB=x,则BE=EG=x﹣5,FE=x﹣2,FC=x﹣3,在Rt△ECF中,EF2=FC2+EC2,即(x﹣2)2=(x﹣3)2+52,解得x=15.即AB的长为15.26.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.【考点】正方形的判定;全等三角形的判定与性质;平行四边形的判定;菱形的判定;矩形的判定.【分析】(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)若四边形ADEF是菱形,则AD=AF,所以AB=AC,则△ABC是等腰三角形;(4)若四边形ADEF是正方形,则AD=AF,且∠DAF=90°,所以△ABC是等腰三角形,且∠BAC=150°.【解答】证明:(1)∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)∵四边形ADEF是平行四边形,∴当AD=AF时,四边形ADEF是菱形,又∵AD=AB,AF=AC,∴AB=AC时,四边形ADEF是菱形;(4)综合(2)、(2)知,当△ABC是等腰三角形,且∠BAC=150°时,四边形ADEF是正方形.。

八年级下册第一次月考数学试卷含答案+解析(苏科版)

八年级下册第一次月考数学试卷含答案+解析(苏科版)

八年级(下)第一次月考数学试卷一.选择题(每题3分,共30分)1.下列计算正确的是()A.(﹣2)0=0 B.3﹣2=﹣9 C.D.2.下列二次根式中与是同类二次根式的是()A. B.C.D.3.化简二次根式得()A.﹣5B.5C.±5D.304.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD5.如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A.18°B.36°C.72°D.108°6.如图,直线EF过平行四边形ABCD对角线的交点O,分别交AB、CD于E、F,那么阴影部分的面积是平行四边形ABCD面积的()A.B.C.D.7.若二次根式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x>2 D.x>﹣28.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.109.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.610.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014二、填空题:(每小题6分,共26分)11.计算:=;=;=.12.已知a<2,则=.13.若成立,则x满足.14.在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有个.15.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.16.若菱形的两条对角线分别为10和24,则该菱形的边长是,菱形的面积是,菱形的高是.17.已知矩形ABCD的两条对角线AC、BD交于点O,若AC+BD=8cm,∠AOD=120°.则AB的长为cm.18.在平面直角坐标系中,矩形OABC的顶点O在标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=6,OB=8,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标为;(2)若E、F为边OA上的两个动点,且EF=3,当四边形CDEF的周长最小时,则点E的坐标为.三、解答题(共44分)19.计算(1)(2).20.已知:,,求代数式x2+y2的值.21.如图,在平行四边形ABCD中,AE、CF分别平分∠BAD和∠DCB,交BC、AD于点E和点F.试说明(1)△ABE是等腰三角形;(2)四边形AECF是平行四边形.22.如图,已知△ABC中,∠C=90°AD平分∠BAC,ED⊥BC交AB于E,DF∥AB交AC 于F,求证:四边形AFDE是菱形.23.如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.24.如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°(1)求B、C两点的坐标;(2)过点G(0,﹣6)作GF⊥AC,垂足为F,直线GF分别交AB、OC于点E、D,求直线DE的解析式;(3)在(2)的条件下,若点M在直线DE上,平面内是否存在点P,使以O、F、M、P 为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.八年级(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.下列计算正确的是()A.(﹣2)0=0 B.3﹣2=﹣9 C.D.【考点】实数的运算;算术平方根;零指数幂;负整数指数幂.【分析】利用零指数幂、负指数幂和开平方的运算法则计算.【解答】解:A、根据任何不等于0的数的0次幂都等于1,故A错误;B、根据正负指数的转换方法,得:,故B错误;C、==3,故C正确;D、根据只有同类二次根式才能合并,D错误.故选C.2.下列二次根式中与是同类二次根式的是()A. B.C.D.【考点】同类二次根式.【分析】根据同类二次根式的定义,先化简,再判断.【解答】解:A、=2,与的被开方数不同,不是同类二次根式,故A选项错误;B、=,与的被开方数不同,不是同类二次根式,故B选项错误;C、=,与的被开方数不同,不是同类二次根式,故C选项错误;D、=3,与的被开方数相同,是同类二次根式,故D选项正确.故选:D.3.化简二次根式得()A.﹣5B.5C.±5D.30【考点】二次根式的性质与化简.【分析】利用二次根式的意义化简.【解答】解:==5.故选B.4.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD【考点】平行四边形的判定.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.根据判定定理逐项判定即可.【解答】解:如图示,根据平行四边形的判定定理知,只有C符合条件.故选C.5.如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A.18°B.36°C.72°D.108°【考点】平行四边形的性质.【分析】因为平行四边形对边平行,由两直线平行,同旁内角互补,已知∠C,可求∠ABC,又BE平分∠ABC,故∠ABE=∠ABC.【解答】解:∵AB∥CD,∴∠ABC+∠C=180°,把∠C=108°代入,得∠ABC=180°﹣108°=72°.又∵BE平分∠ABC,∴∠ABE=∠ABC=•72°=36°.故选B.6.如图,直线EF过平行四边形ABCD对角线的交点O,分别交AB、CD于E、F,那么阴影部分的面积是平行四边形ABCD面积的()A.B.C.D.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得到OA=OC,OB=OD,AB∥DC,证出△AOE和△COF全等,△AOB和△COD全等,得到面积相等,即可得到选项.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,∴△AOE≌△COF,∴S△AOE=S△COF,∵∠AOD=∠COB,∴△COB≌△AOD,∴S△AOD=S△BOC,同理S△AOB=S△DOC∵0B=0D,∴S△AOB=S△DOC,∴阴影部分的面积是S△AOE+S△DOF=S△DOC=S.平行四边形ABCD故选:B.7.若二次根式在实数范围内有意义,则x的取值范围是()A.x≥2 B.x≤2 C.x>2 D.x>﹣2【考点】二次根式有意义的条件.【分析】二次根式无意义,那么二次根式的被开方数为负数,或者分母为0,列式求解即可.【解答】解:根据题意可知,当x﹣2>0时,二次根式有意义,解得x>2,故选C.8.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.9.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题);勾股定理.【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.10.在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是()A.()2014B.()2015C.()2015D.()2014【考点】正方形的性质.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】方法一:解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2015B2015C2015D2015的边长是:()2014.故选:D.方法二:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,∴D1E1=B2E2=,∵B1C1∥B2C2∥B3C3…∴∠E2B2C2=60°,∴B2C2=,同理:B3C3=×=…∴a1=1,q=,∴正方形A2015B2015C2015D2015的边长=1×.二、填空题:(每小题6分,共26分)11.计算:=3;=30;=.【考点】二次根式的乘除法;二次根式的加减法.【分析】根据二次根式的乘除计算即可.【解答】解:=3;=30;=3.故答案为:3;30;.12.已知a<2,则=2﹣a.【考点】二次根式的性质与化简.【分析】根据二次根式的性质解答.【解答】解:因为a<2,所以a﹣2<0,故=|a﹣2|=2﹣a.13.若成立,则x满足2≤x<3.【考点】二次根式的乘除法.【分析】根据二次根式有意义及分式有意义的条件,即可得出x的取值范围.【解答】解:∵成立,∴,解得:2≤x<3.故答案为:2≤x<3.14.在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有2个.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是轴对称图形又是中心对称图形的图形为:矩形、正方形,共2个.故答案为:2.15.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120度.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=×180°=120°,故答案为:120.16.若菱形的两条对角线分别为10和24,则该菱形的边长是13,菱形的面积是120,菱形的高是.【考点】菱形的性质.【分析】由菱形的性质以及两条对角线长可求出其边长;根据菱形的面积等于对角线乘积的一半即可求出该菱形的面积;继而求得菱形的高.【解答】解:∵菱形的两条对角线长分别为10和24,∴该菱形的面积是:×10×24=120;∴该菱形的边长为:=13,∴菱形的高=.故答案为:13,120,.17.已知矩形ABCD的两条对角线AC、BD交于点O,若AC+BD=8cm,∠AOD=120°.则AB的长为2cm.【考点】矩形的性质.【分析】由矩形的性质得出AC=BD,进而可求出OA=OB的长,再证明△AOB是等边三角形,即可得出AB=OA=2cm.【解答】解:∵四边形ABCD是矩形,∵AC=BD,∵AC+BD=8cm,∴AC=BD=4cm,∴OA=AC,OB=BD,BD=AC=4cm,∴OA=OB=2cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2cm.故答案为:2.18.在平面直角坐标系中,矩形OABC的顶点O在标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=6,OB=8,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标为(,0);(2)若E、F为边OA上的两个动点,且EF=3,当四边形CDEF的周长最小时,则点E的坐标为(1,0).【考点】轴对称-最短路线问题;坐标与图形性质.【分析】(1)由于C、D是定点,则CD是定值,如果△CDE的周长最小,即DE+CE有最小值.为此,作点C关于x轴的对称点C′,当点E在线段C′D上时,△CDE的周长最小;(2)由于DC、EF的长为定值,如果四边形CDEF的周长最小,即DE+FC有最小值.为此,作点D关于x轴的对称点D′,在CB边上截取CG=3,当点E在线段D′G上时,四边形CDEF的周长最小.【解答】解:(1)如图1,作点C关于x轴的对称点C′,连接C′D与x轴交于点E,连接CE.若在边OA上任取点E′(与点E不重合),连接CE′、DE′、C′E′,由DE′+CE′=DE′+C′E′>C′D=C′E+DE,可知△CDE的周长最小.∵在矩形OACB中,OA=6,OB=8,D为边OB的中点,∴BC=6,BD=OD=4,∵OE∥BC,∴△EOD∽△DBC,∴,∴OE===,即点E 的坐标为(,0).故答案为:(,0).(2)作点D 关于x 轴的对称点D ′,在CB 边上截取CG=3,连接D ′E 与x 轴交于点E ,在EA 上截取EF=3,如图2所示.∵GC ∥EF ,GC=EF ,∴四边形GEFC 为平行四边形,GE=CF .又∵DC 、EF 的长为定值,∴此时得到的点E 、F 使四边形CDEF 的周长最小,∵OE ∥BC ,∴△D ′OE ∽△D ′BG ,∴,BG=BC ﹣CG=6﹣3=3,D ′O=DO=4,D ′B=D ′O+OB=4+8=12,∴OE===1.即点E 的坐标为(1,0).故答案为:(1,0).三、解答题(共44分)19.计算(1)(2).【考点】二次根式的混合运算.【分析】(1)先将每一个二次根式化为最简二次根式,再合并同类二次根式即可;(2)先将3与化为最简二次根式,再合并括号内的同类二次根式,然后利用分配律计算即可.【解答】解:(1)=3+3﹣2+5=8+;(2)=6×(3﹣5﹣2)=6×(﹣5)=12﹣60.20.已知:,,求代数式x2+y2的值.【考点】二次根式的化简求值.【分析】先有,,易计算出x+y=4,xy=4﹣3=1,再把x2+y2变形为(x+y)2﹣2xy,然后利用整体思想进行计算.【解答】解:∵,,∴x+y=4,xy=4﹣3=1,∴x2+y2=(x+y)2﹣2xy=42﹣2×1=14.21.如图,在平行四边形ABCD中,AE、CF分别平分∠BAD和∠DCB,交BC、AD于点E和点F.试说明(1)△ABE是等腰三角形;(2)四边形AECF是平行四边形.【考点】平行四边形的判定与性质;等腰三角形的判定.【分析】(1)根据等腰三角形的判定,要证△ABE是等腰三角形,可证∠BAE=∠AEB,由已知和平行四边形的性质很容易证得∠BAE=∠AEB.(2)在(1)的基础上,可证AF=EC,AF∥EC,即证四边形AECF是平行四边形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠DCB,AD∥BC,∵AE、CF分别平分∠BAD和∠DCB,∴∠BAE=∠DAE=∠BAD,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴BA=BE,∴△ABE是等腰三角形;(2)同理可证△DCF是等腰三角形,∴DF=DC,由(1)知BA=BE,∵AB=CD,AD=BC,∴DF=BE,∴AF=EC,∵AF∥EC,∴四边形AECF是平行四边形.22.如图,已知△ABC中,∠C=90°AD平分∠BAC,ED⊥BC交AB于E,DF∥AB交AC 于F,求证:四边形AFDE是菱形.【考点】菱形的判定.【分析】首先判定该四边形是平行四边形,然后利用邻边相等的平行四边形是菱形判定菱形即可.【解答】证明:∵∠C=90°,ED⊥BC交AB于E,∴DE∥AC,∵DF∥AB,∴四边形AEDF为平行四边形.AD平分∠BAC,∴∠EAD=∠FAD.又∵AEDF为平行四边形,∴∠FAD=∠ADE,∴AE=ED,∴四边形AEDF是菱形.23.如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.【考点】矩形的性质;全等三角形的判定与性质;勾股定理.【分析】(1)根据矩形的性质和已知条件可证明△AEF≌△DCE,可证得AE=DC;(2)由(1)可知AE=DC,在Rt△ABE中由勾股定理可求得BE的长.【解答】(1)证明:在矩形ABCD中,∠A=∠D=90°,∴∠1+∠2=90°,∵EF⊥EC,∴∠FEC=90°,∴∠2+∠3=90°,∴∠1=∠3,在△AEF和△DCE中,,∴△AEF≌△DCE(AAS),∴AE=DC;(2)解:由(1)得AE=DC,∴AE=DC=,在矩形ABCD中,AB=CD=,在R△ABE中,AB2+AE2=BE2,即()2+()2=BE2,∴BE=2.24.如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°(1)求B、C两点的坐标;(2)过点G(0,﹣6)作GF⊥AC,垂足为F,直线GF分别交AB、OC于点E、D,求直线DE的解析式;(3)在(2)的条件下,若点M在直线DE上,平面内是否存在点P,使以O、F、M、P 为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)利用三角函数求得OA以及OC的长度,则C、B的坐标即可得到;(2)先求出直线DE的斜率,设直线DE的解析式是y=x+b,再把点G代入求出b的值即可;(3)分当FM是菱形的边和当OF是对角线两种情况进行讨论.利用三角函数即可求得P 的坐标.【解答】解:(1)在直角△OAC中,∵∠ACO=30°∴tan∠ACO==,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=144,解得:x=2.故C的坐标是:(6,0),B的坐标是(6,6);(2)∵直线AC的斜率是:﹣=﹣,∴直线DE的斜率是:.∴设直线DE的解析式是y=x+b,∵G(0,﹣6),∴b=﹣6,∴直线DE的解析式是:y=x﹣6;(3)∵C的坐标是:(6,0),B的坐标是(6,6);∴A(0,6),∴设直线AC的解析式为y=kx+b(k≠0),∴,解得.∴直线AC的解析式为y=﹣x+6.∵直线DE的解析式为y=x﹣6,∴,解得.∴F是线段AC的中点,∴OF=AC=6,∵直线DE的斜率是:.∴DE与x轴夹角是60°,当FM是菱形的边时(如图1),ON∥FM,则∠POC=60°或120°.当∠POC=60°时,过N作NG⊥y轴,则PG=OP•sin30°=6×=3,OG=OP•cos30°=6×=3,则P的坐标是(3,3);当∠NOC=120°时,与当∠POC=60°时关于原点对称,则坐标是(﹣3,﹣3);当OF是对角线时(如图2),MP关于OF对称.∵F的坐标是(3,3),∴∠FOD=∠POF=30°,在直角△OPH中,OH=OF=3,OP===2.作PL⊥y轴于点L.在直角△OPL中,∠POL=30°,则PL=OP=,OL=OP•cos30°=2×=3.故P的坐标是(,3).当DE与y轴的交点时G,这个时候P在第四象限,此时点的坐标为:(3,﹣3).则P的坐标是:(3,﹣3)或(3,3)或(﹣3,﹣3)或(,3).25.如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若∠1=∠2=∠3=∠4,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且AB=4,BC=8.理解与作图:(1)在图2,图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【考点】作图—应用与设计作图;全等三角形的判定与性质;勾股定理;矩形的性质.【分析】(1)根据网格结构,作出相等的角即可得到反射四边形;(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后即可得到周长,图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,从而得到四边形EFGH的周长是定值;(3)证法一:延长GH交CB的延长线于点N,再利用“角边角”证明Rt△FCE和Rt△FCM 全等,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,过点G作GK⊥BC于K,根据等腰三角形三线合一的性质求出MK=MN=8,再利用勾股定理求出GM的长度,然后即可求出四边形EFGH的周长;证法二:利用“角边角”证明Rt△FCE和Rt△FCM全等,根据全等三角形对应边相等可得EF=MF,EC=MC,再根据角的关系推出∠M=∠HEB,根据同位角相等,两直线平行可得HE∥GF,同理可证GH∥EF,所以四边形EFGH是平行四边形,过点G作GK⊥BC于K,根据边的关系推出MK=BC,再利用勾股定理列式求出GM的长度,然后即可求出四边形EFGH的周长.【解答】解:(1)作图如下:(2)在图2中,EF=FG=GH=HE===2,∴四边形EFGH的周长为4×2=8,在图3中,EF=GH==,FG=HE===3,∴四边形EFGH的周长为2×+2×3=2+6=8.猜想:矩形ABCD的反射四边形的周长为定值.(3)证法一:延长GH交CB的延长线于点N.∵∠1=∠2,∠1=∠5,∴∠2=∠5.而FC=FC,∴Rt△FCE≌Rt△FCM.∴EF=MF,EC=MC,同理:NH=EH,NB=EB.∴MN=2BC=16.∵∠M=90°﹣∠5=90°﹣∠1,∠N=90°﹣∠3,∴∠M=∠N.∴GM=GN.过点G作GK⊥BC于K,则KM=MN=8,∴GM===4,∴四边形EFGH的周长为2GM=8,证法二:∵∠1=∠2,∠1=∠5,∴∠2=∠5.而FC=FC,∴Rt△FCE≌Rt△FCM.∴EF=MF,EC=MC.∵∠M=90°﹣∠5=90°﹣∠1,∠HEB=90°﹣∠4,而∠1=∠4,∴∠M=∠HEB.∴HE∥GF.同理:GH∥EF.∴四边形EFGH是平行四边形.∴FG=HE,而∠1=∠4,∴Rt△FDG≌Rt△HBE.∴DG=BE.过点G作GK⊥BC于K,则KM=KC+CM=GD+CM=BE+EC=8.∴GM===4,∴四边形EFGH的周长为2GM=8.第21 页共21 页。

[推荐学习]2017-2018学年八年级数学下学期第一次月考试题(无答案) 苏科版

[推荐学习]2017-2018学年八年级数学下学期第一次月考试题(无答案) 苏科版

江苏省灌云县西片2017-2018学年八年级数学下学期第一次月考试题一、选择题(每小题4分,共32分)1.下面4个图案中,是中心对称图形的是( )A C2.“a 是实数,I a I ≥0”这一事件是 ( )A .必然事件B .不确定事件C .不可能事件D .随机事件3.为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,在这个问题中,总体是指 ( )A .1 000名学生B .被抽取的50名学生C .1 000名学生的身高D .被抽取的50名学生的身高 4.菱形具有而矩形不一定具有的性质是( ) A .对边平行 B .对角相等C .对角线互相平分D .对角线互相垂直5.下列条件之一能使菱形ABCD 是正方形的为( )①AC⊥BD ②∠BAD=90° ③AB=BC ④AC=BD. A .①③ B .②③ C .②④ D .①②③6.如图,在ABC ∆中,65CAB ∠=︒,将ABC ∆在平面内绕点A 旋转到AB C ''∆的位置,使//CC AB ',则旋转角的度数为( ).A. 35°B. 40°C. 50°D. 65°7.某工厂上半年生产总值增长率的变化情况如图所示,从图上看,下列结论中不正确的是 ( )A .1~5月份生产总值增长率逐月减少B .6月份生产总值的年增长率开始回升C .这半年中每月的生产总值不断增长D .这半年中每月的生产总值有增有减8.如图,在Rt ABC ∆中,,AB AC D =、E 是斜边BC 上两点,且45DAE ∠=︒,将ADC ∆ 绕点A 顺时针旋转90°后,得到AFB ∆,连接EF ,下列结论:①AED ∆≌AEF ∆;②ABE ∆≌ACD ∆; ③BE DC DE +=;④222BE DC DE += .其中正确的是( ).(第8题)A.②④B.①④C.②③D.①③ 二、填空题(每小题4分,共32分)9.已知平行四边形ABCD 的周长为32,AB=4,则BC 的长为 .10.在英语句子“Wish you success ”(祝你成功)中任选一个字母,这个字母为“s ”的概率是 .11.如图,□ABCD 的对角线相交于点O ,请你添加一个条件_______(只添一个即可),使□ABCD 是矩形.12.某课外兴趣小组为了了解所在地区老年人的健康状况,分别做了下列四种不同的抽样调查:①在公园调查了1 000名老年人的健康状况;②在医院调查了1 000名老年人的健康状况;③调查了10名老年邻居的健康状况;④利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.你认为抽样比较合理的是(填序号).13.已知菱形的两条对角线长为6cm 和8cm ,菱形的周长是_______. 14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:根据以上数据可以估计,该玉米种子发芽的概率为_________(精确到0.1). 15.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30 %,表示踢毽的扇形圆心角是60。

八年级数学 2017-2018第二学期第一次月考试卷

八年级数学  2017-2018第二学期第一次月考试卷

2017-2018学年第二学期第一次月考试卷八年级数学(考试时间:120分钟;满分:150分;)姓名:____________ 班级:_________ 座位:_____ 成绩:_________一、选择题(每小题4分,共40分。

每小题只有一个正确的选项。

)1.下列各组数是勾股数的为()B.a=5,b=12,c=13C. a=11,b=13,c=15D. a=4,b=5,c=62. 下列二次根式中属于最简二次根式的是()A.B.C.D.3. 下列各式中,计算不正确的是()A.B.C.D.4.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A.1组B.2组C.3组D.4组5.)6.在□ABCD中对角线AC、BD交于点O,AC=10,BD=8,则AD取值范围是()A.1≤AD≤9 B.1<AD<9 C.2<AD<18 D.2≤AD≤187.n的最小值是()A. 2B. 3C. 4D. 58.下列命题的逆命题是真命题的是()A.若a=b则|a|=|b|B.全等三角形的周长相等C.若a=0则ab=0D.有两边相等的三角形是等腰三角形9.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3 米10.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4的值为( )A. 1B. 2C. 3D. 4二、填空题(每空4分,共24分)11.要使代数式1+x 有意义,则x 的取值范围是_______________.12.如下图,在□ABCD 中,对角线AC, BD 相交于点0,点E 是AB 的中点,OE =5cm ,则AD 的长为_______cm.13.如下图,在□ABCD 中,BC =8cm ,AB =6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为__________ cm .14. 若一直角三角形的两边长为3、4,则第三边的长为_____________.15. 若x ,y 为实数,且y=12.则x+y 的值是 16. 如下图所示:数轴上点A 所表示的数为a ,则a 的值是三、解答题(本大题共9小题,共86分)17.计算:(每小题4分,共8分)(1))35)(35(-+ (2)02017)14.3(218)1(-π---+-第12题图 第13题图 第16题图18.(8分)先化简,再求值:4a 1a 2a )2a 31(22-+-÷+-,其中12a +=.19. (8分) 如图,在□ABCD 中,点E ,F 在对角线AC 上,且AE=CF .求证:四边形DEBF 是平行四边形.20. (8分) 如图,一个梯子AB 长10米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为6米,梯子滑动后停在DE 的位置上,测得BD 长为2米,求梯子顶端A 下落了多少米?21.(8分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.22.(10分)如图:四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF。

2017--2018学年度第二学期苏科版八年级第一次月考数学试卷

2017--2018学年度第二学期苏科版八年级第一次月考数学试卷

○…………………○…………装学校:___________姓……内………………装…………○…………订…绝密★启用前2017--2018学年度第二学期 苏科版八年级第一次月考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分 A. 调查一架“歼20”战机各零部件的产品质量 B. 调查某品牌圆珠笔芯的使用寿命C. 调查市场上酸奶的质量情况D. 调查我市市民对上届巴西奥运会吉祥物的知晓度 2.(本题3分)(2017甘肃兰州第7题)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( ) A. 20 B. 24 C. 28 D. 30 3.(本题3分)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )A. 45°B. 60°C. 72°D. 120° 4.(本题3分)某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是( )A. 七年级的合格率最高……订…………○…………线……线※※内※※答※※题※※…………○…C. 八年级的合格率高于全校的合格率D. 九年级的合格人数最少 5.(本题3分)自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )A. 18户B. 20户C. 22户D. 24户 6.(本题3分)“射击运动员射击一次,命中靶心”这个事件是( ) A. 随机事件 B. 必然事件 C. 不可能事件 D. 都不是 7.(本题3分)下列事件: ①在足球赛中,弱队战胜强队; ②抛掷一枚硬币,落地后正面朝上; ③任取两个整数,其和大于1;④长分别为2、4、8厘米的三条线段能围成一个三角形。

17—18学年下学期八年级第一次月考数学试题(附答案)

17—18学年下学期八年级第一次月考数学试题(附答案)

2017-2018学年第二学期第一次月考八年级数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。

测试时间90分钟,满分120分第Ⅰ卷(选择题)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.要使二次根式x 25-有意义,则x 的取值范围是 A 、x >25 B 、x ≥52 C 、x ≤25 D 、x ≤52 2.下列各式中一定是二次根式的是A 、7-B 、32mC 、12+xD 、3ab 3.下列二次根式中,最简二次根式是A 、51B 、5.0C 、5D 、504.在Rt △ABC 中,∠A =90°,BC =13cm ,AC =5cm ,则第三边AB 的长为 A 、18cmB 、12cmC 、8cmD 、6cm5.下列计算正确的是A 、623=B 、6486=⨯C 、2221= D 、576567=÷ 6.底边长为10cm ,底边上高为12cm 的等腰三角形的腰长为A BCDEFA 、12cmB 、13cmC 、8cmD 、9cm7.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是 A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等腰三角形8.下列各式中错误的式子是①1156=+;②71017=-;③683533=+;④b a b a +=+22 A 、4个B 、3个C 、2个D 、1个9.在△ABC 中,若12-=n a ,n b 2=,12+=n c ,则△ABC 是A 、锐角三角形B 、钝角三角形C 、等腰三角形D 、直角三角形10.已知,如图长方形ABCD 中,AB =3cm ,AD =9cm , 将此长方形折叠,使点B 与点D 重合,折痕为EF , 则△ABE 的面积为A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 2第Ⅱ卷(非选择题)90分二、填空题(共5个小题,共15分,请把答案填在题中的横线上) 11.计算:=⨯÷3133 。

八年级数学下学期第一次月考试题 苏科版

八年级数学下学期第一次月考试题 苏科版

江苏省启东市天汾初级中学2017—2018学年八年级数学下学期第一次月考试题一、选择题(每小题3分,共30分)1、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )。

26ﻩﻩ适合下列条件的△ABC中,直角三角形的个数为 ( )①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2;④∠A=38°,∠B=52°、A、1个ﻩB、2个C、3个ﻩD、4个3。

平行四边形ABCD中,∠A比∠B大40°,则∠D的度数为 ( )A、60°B、70° C。

100° D、110°4.在平行四边形ABCD中,对角线AC,BD相交于O点,AC=10,BD=8,则AD长的取值范围是( )A、 AD>1 B、 AD<9C、1<AD<9 D、 AD>10 5、已知直角三角形纸片的两条直角边分别为m和n( ),过锐角三角形顶点把该纸片剪成两个三角形若这两个三角形都为等腰三角形,则( )A。

B、C、D、6。

如图,已知四边形ABCD中,R、P 分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D 移动而点R不动时,那么下列结论成立的是( )A。

线段EF的长逐渐增大; B、线段EF的长逐渐减小;C、线段EF的长不变;D、线段EF的长与点P的位置有关。

7。

下列命题错误的是( )A. 对角线互相垂直平分的四边形是菱形; B、平行四边形的对角线互相平分C、矩形的对角线相等;ﻩD、对角线相等的四边形是矩形8、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是 ( )A、12 ﻩB。

24 C。

12 D、169、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=°,EF⊥AB,垂足为F,则EF的长为( )A、1ﻩB、ﻩ C、4﹣2ﻩ D、3﹣410。

八年级数学下学期第一次月考试题苏科版(1)word版本

八年级数学下学期第一次月考试题苏科版(1)word版本

江苏省兴化市2017-2018学年八年级数学下学期第一次月考试题一、单项选择题(每小题3分,共18分)1.在代数式221133122x x xy x x y mπ++、、、、、a+中,分式的个数有( ) A .4个 B .3个 C .2个 D .5个 2.下列函数中,是反比例函数的是( ) A. y=x﹣1 B. 23x y =C. xy 21= D.5=yx3.已知直线x y 21=与某反比例函数图象的一个交点的横坐标为4,则另一个交点的纵坐标是( )A .2B .21C .21- D .2- 4.已知反比例函数1y x=,下列结论不正确...的是 ( ) A.图象经过点(1,1) B. 当0x <时,y 随着x 的增大而增大 C.当1x >时,01y << D.图象在第一、三象限5.如果将分式yx x 332+中的字母x 与y 的值分别扩大为原来的10倍,且x 0≠,那么分式的值( )A .扩大为原来的20倍B .不变C .扩大为原来的100倍D .扩大为原来的10倍 6. 如图,直线y =x -a -2与双曲线xy 4=交A 、B 两点,则当线段AB 的长度最小时,a 的值( ) A .0 B .-1 C .-2 D .2二、填空题(每小题3分,共30分)7. 化简:-23b aa b⨯=_______. 8. 使分式()xx 01-有意义的x 的取值范围是__________.9.已知y=()221--ax a 是反比例函数,则a =. (第6题图)10.设有反比例函数xm y 5-=,(1x ,1y ),(2x ,2y )为其图象上两点,若1x <0<2x ,1y >2y ,则m 的取值范围是_____.11. 如果一个正比例函数的图象与反比例函数xy 6-=的图象交于A (1x ,1y ),B (2x ,2y )两点,那么))((1212y y x x --的值为.12.若分式)5)(3(252-+-x x x 的值为0,则x 的值是.13. ·已知x =2时,分式x bx a-+无意义;x =4时,分式的值为0,则a b =. 14. 对于非零的两个实数a ,b ,规定a ⊕b =11b a-,若2⊕(2x -1)=1,则x 的值为_________. 15. 如图,直线AB 与y 轴平行,且与反比例函数x y 6=和xy 1-=的图象分别交于A 、B 两点,若点P 是y 轴上任意一点,则△PAB 的面积是. 16.如图,在函数xy 2018=(x >0)的图象上有点1P 、2P 、3P 、…、n P 、1+n P ,点1P 的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点1P 、2P 、3P 、…、n P 、1+n P 分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为1S 、2S 、3S 、…、n S ,则n S =.(用含n 的代数式表示)(第15题图) (第16题图) 三、解答题(共102分)17.(每题4分,共8分)(1)计算:(1) 2x x y x y -++(2)211()1122xx x x -÷-+-18. (本题共6分)先化简,再求值⎪⎭⎫ ⎝⎛--+÷-+224442a a a a ,其中21-=a .x19. (本题共5分)解方程:114112=---+x x x20.(本题共7分)若21y y y +=,且1y 是x 的反比例函数,2y 是x 的正比例函数,当2=x 时,6-=y ;当1=x 时,3=y .那么当4-=x 时,求y 的值.21. (本题共6分)反比例函数x y 23=与xy 6=在第一象限内的图象 如图所示,过x 轴上点A 作y 轴的平行线,与函数x y 23=,xy 6=的图象交点依次为P 、Q 两点.若PQ=2,求PA 的长.22.(本题共6分) 关于x 的方程211224m m x x x -+=+--,当m 为何值时,方程有增根?23.(本题共10分)已知分式2222221211x x x x xx x x x ⎛⎫+--÷⎪--++⎝⎭,解答下列问题: (1)先化简,并求当x =2-时,原代数式的值; (2)原代数式的值能等于-1吗?为什么?24. (本题共10分)如图,在平面直角坐标系中,有一矩形ABCD ,边AB 在x 轴的正半轴上,AB=3,BC=1,直线y=x 21﹣1经过点C 交x 轴于点E ,若反比例函数y=xk的图象经过点D. (1)求k 的值(2)若CB 与反比例函数y=xk的图象交点为点F ,求证:CF=3FB25. (本题共10分)甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为_________元; (2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价是多少?26.(本题共10分)已知,如图,反比例函数xky =的图象与一次函数b ax y +=的图象交于点A (1,4),点B (m ,﹣1),(1)求一次函数和反比例函数的解析式;(2)求△OAB 的面积;(3)直接写出不等式b ax +>xk的解.27. (本题共10分) 工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min 时,材料温度降为600℃.煅烧时温度y (℃)与时间x (min )成一次函数关系;锻造时,温度y (℃)与时间x (min )成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并且写出自变量x 的取值范围; (2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?28. (本题共14分)如图,在平面直角坐标系中有Rt △ABC ,∠A =90°,AB =AC ,A(-2,0)、B(0,1)、C(a ,b).(1)求a ,b 的值;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式;(3)在(2)的条件下,直线B'C'交y 轴于点G .问是否存在x 轴上的点M 和反比例函数图象上的点P ,使得四边形PGMC'是平行四边形?如果存在,请求出点M 和点P 的坐标;如果不存在,请说明理由.参 考 答 案一、选择题(每题3分,共18分)二、填空题(每题3分,共30分)7. b 3- 8. 01≠≠x x 且 9. 1- 10. 5 m 11. 24- 12. 5 13. 161 14. 65 15.27 16. ()12018+n n17. yx y +2. x 4 18.()21--a a 34- 19. 无解 20. 1821.32 22. 41-45或 23. 11-+x x 31不能,0=x 时原分式无意义 24. 1=k 25. 1. 1 26.(1)3+=x y x y 4=(2)215(3)04 x -或1 x 27. (1)()()⎪⎩⎪⎨⎧≥≤+=648006032128x xx x y (2)3297小时 28. (1)3-=a 2=b (2)x y 6=331+-=x y (3)⎪⎭⎫ ⎝⎛5,56P ⎪⎭⎫ ⎝⎛0,59M。

2017_2018学年八年级数学下学期第一次月考试题苏科版(1)(1)

2017_2018学年八年级数学下学期第一次月考试题苏科版(1)(1)

江苏省扬州市2017-2018学年八年级数学下学期第一次月考试题一、选择题(每小题3分,共24分) 1.下列图形中,中心对称图形有( )A .1个B .2个C .3个D .4个2.下列分式中,属于最简分式的是 ( ) A.B.C.D.3.下列二次根式中与是同类二次根式的是( )A.B.C.D.4.下列各式计算正确的是( ) A.B.C.=5D.=5.如图,ABCD 是正方形,G 是BC 上(除端点外)的任意一点,DE ⊥AG 于点E , BF ∥DE ,交AG 于点F .下列结论不一定成立的是( ) A .△AED ≌△BFA B .DE ﹣BF=EFC .△BGF ∽△DAED .DE ﹣BG=FG6.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为( ) A .4<α<16B .14<α<26C .12<α<20 D .以上答案都不正确7.如图,在矩形ABCD 中,AB=2BC ,在CD 上取一点E ,使AE=AB ,则∠EBC 的度数( ) A .30°B .15°C .45°D .不能确定 8.已知直线与x 轴、y 轴分别相交于点A 、B ,C 是y 轴上一 个动点,D 是平面内一点,若以A 、B 、C 、D 为顶点的四边形是菱形,则这样的点D 共有() A 、3个 B 、4个 C 、5个 D 、6个 二、填空题(每小题3分,共30分) 9.如果若分式的值为0,则实数a 的值为. 10.计算的结果是。

11.若x ,y 为实数,且|x+2|+=0,则(x+y )2016的值为.12.分式最简公分母是 ______________.13.已知平行四边形ABCD 周长是54cm ,AC 和BD 相交于O ,且三角形AOB 的周长比三角形BOC 的周长大7cm ,则CD 的长是cm .14.如图,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE⊥BD 交B C于点E .若△CDE 的周长为8cm ,则平行四边形ABCD 的周长为. 15.已知+=3,则分式的值为。

(精品)17-18学年八年级下第一次月考--数学

(精品)17-18学年八年级下第一次月考--数学

绝密★启用前2017-2018学年第二学期第一次月考八年级数学试题卷2018.3本试卷共2页,23小题,满分100分.考试用时90分钟.注意事项:1.答卷前,考生检查试卷与答题卷是否整洁无缺损,用黑色字迹签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回一.选择题(每题3分,共36分)1.已知“①x+y=1;②x>y ;③x+2y;④x 2—y≥1;⑤x<0”属于不等式的有 个.A.2;B. 3;C.4;D. 5. 2. 若x >y ,则下列式子错误的是( )A .x-3>y-3B .-3x >-3yC .x+3>y+3 D.33x y> 3. 已知关于x 的不等式(1-a)x >3的解集为x<31-a ,则a 的取值范围是A .a >0B .a >1C .a <0D .a <1 4.不等式2x -7<5-2x 的正整数解有( )A. 1个B. 2个C. 3个D. 4个5.已知:=1x 不是不等式(5)(32)0x ax a --+<的解,则实数a 的取值范围( )A 1a > B.1a ≥ C. 2a ≤ D.2a <6.下列命题中,逆命题是真命题的是()A.对顶角相等B.等腰三角形的两底角相等C.全等三角形的对应角相等D.等边三角形是锐角三角形7.三角形中到三边的距离相等的点是()A.三条高的交点B.三条中线的交点C.三边的垂直平分线的交点D.三个角平分线的交点8. 如图1,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.59. 如图2 所示,在△ABC中,AB=AC,AD⊥BC于点D,∠BAD=30°,且AD=AE,则∠EDC=()A.12.5°B.15°C.16D.18°10.如图3,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.511.如图4,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=6,AE=8,则CH的长是()A. IB. 2C.3D.412.如图5,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=2,则△A6B6A7的边长为()CB图1图3图4图5二.填空题(每题3分,共12分)13.x 的3倍与8的和比y 的2倍小,用不等式表示为 14.不等式930x ->的非负整数解之和是15. 如图6,所示,BE 是△ABC 的内角平分线,CE 是△ABC 的外角平分线,若∠A =70°,则∠E = 16.如图7,等边△ABC 的边长为12,AD 是BC 边上的中线,M 是AD 上的动点,E 是AC 边上一点,若AE=4,EM+CM 的最小值为 .三.解答题 (共52分)17. 解下列不等式(每小题3分,共12分)(1) 5(2)12(1)x x +>-- (2) )1(281)2(3--≥-+y y 解: 解:(3) 223125+<-+x x (4)解: 解:图7图6D()1273212-≤-++xx x18.(6分)已知关于x 的方程21+32x m x m +-=的解是负数,求m 的取值范围。

2017-2018学年度第二学期苏科版八年级第一次月考数学试卷

2017-2018学年度第二学期苏科版八年级第一次月考数学试卷

………○……学校:____……装…………○……绝密★启用前 2017-2018学年度第二学期 苏科版八年级第一次月考数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分 1.(本题3分)下列统计图能够显示数据变化趋势的是() A. 条形图 B. 扇形图 C. 折线图 D. 以上都正确 2.(本题3分)下列调查中,最适合采用全面调查(普查)方式的是( ) A. 对重庆市初中学生每天自主学习时间的调查 B. 对渝北区市民观看电影《芳华》情况的调查 C. 对重庆八中男生311寝室本学期期末体育考试成绩的调查 D. 对江北区市民了解江北区创“全国文明城区”情况的调查 3.(本题3分)武汉市某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行评比,下面是将某年级60篇学生调查报告的成绩进行整理,分成五组画出的频数分布直方图.已知从左至右5个小组的频数之比为1:3:7:6:3,则在这次评比中被评为优秀的调查报告(分数大于或等于80分为优秀,且分数为整数)占百分之() A. 45 B. 46 C. 47 D. 48 4.(本题3分)已知某班有40名学生,将他们的身高分成4组,在160~165cm 区间的有8名学生,那么这个小组的人数占全体的( ) A. 10% B. 15% C. 20% D. 25% 5.(本题3分)“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是()线…………○……………A. 认为依情况而定的占27%B. 认为该扶的在统计图中所对应的圆心角是234C. 认为不该扶的占8%D. 认为该扶的占92%6.(本题3分)一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其他完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是27,则袋中红球约为 ( )A. 4个B. 25个C. 14个D. 35个7.(本题3分)某收费站在2 h内对经过该站的机动车统计如下表:若有一辆机动车经过这个收费站,利用上面的统计表估计它是轿车的概率为( )A.1825B.920C.917D.128.(本题3分)小明练习射击,共射击600次,其中有380次击中靶子,由此可估计,小明射击一次击中靶子的概率是( )A. 38%B. 60%C. 63%D. 无法确定9.(本题3分)下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长度分别为3 cm,5 cm,9 cm的三条线段能围成一个三角形.其中随机事件的个数是( )A. 1B. 2C. 3D. 410.(本题3分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A. 20B. 24C. 28D. 30二、填空题(计32分)11.(本题4分)初一(8)班共有学生54人,其中男生有30人,女生24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性____(填“大”或…………外……………订…___________考号:…内…………○…………装………○……………12.(本题4分)如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为________获胜的可能性更大. 13.(本题4分))在一个不透明的袋子中有2个白球和6个黑球,他们除了颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是_____. 14.(本题4分)下列事件:①在一个标准大气压下,水加热到100℃会沸腾;②射击运动员射击一次,命中靶心;③任意画一个三角形,其内角和为360°;其中是确定性事件的是__________(填写序号). 15.(本题4分)口袋中有红色、黄色、蓝色(除颜色外都相同)的玻璃球共120个,小明通过大量的摸球试验, 发现摸到红球的概率为40%,摸到蓝球的概率为25%,估计这个口袋中大约有__________个红球, __________个黄球,__________个蓝球. 16.(本题4分)不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出__球的可能性最大. 17.(本题4分)如图,是可以自由转动的一个转盘,转动这个转盘,当它停下时,指针落在标有号码 ________上的可能性最大. 18.(本题4分)(1)必然事件A 的概率为:P(A)=______________. (2)不可能事件A 的概率为:P(A)=______________. (3)随机事件A 的概率为P(A):______________. (4)随机事件的概率的规律:事件发生的可能性越大,则它的概率越接近于_____________;反之,事件发生的可能性越小,则它的概率越接近于_____________.从1~9这九个自然数中任取一个,是2的倍数的概率是_____________.方程5x=10的解为负数的概率是_____________. 三、解答题(计58分) 19.(本题8分)某校九年级(1)班所有学生参加2016年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题: (1)、九年级(1)班参加体育测试的学生有人; (2)、将条形统计图补充完整.(4)、若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?20.(本题8分)某电器厂对一批电器质量抽检情况如下表:抽检个数20406080100120正品个数1839576768961176(1)从这批电器中任选一个,是正品的概率是多少?(2)若这批电器共生产了14 000个,其中次品大约有多少个?21.(本题8分)王老汉为了与顾客签订购销合同,对自己鱼塘中鱼的总质量进行了估计,第一次捞出100条,称得质量为184千克.并将每条鱼做上记号后放入水中,当它们完全混合于鱼群后,又捞出200条,称得质量为416千克,且带有记号的鱼有20条,王老汉的鱼塘中估计有鱼多少条鱼?总质量为多少千克?22.(本题8分)从1,2,3,4,5这五个数中任意取两个相乘,问:(1)积为偶数,属于哪类事件?有几种可能情况?(2)积为奇数,属于哪类事件?有几种可能情况?(3)积为无理数,属于哪类事件?23.(本题8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n=1时,从袋中随机摸出1个球,摸到红球和摸到白球的可能性是否相同?(2)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,求n的值.24.(本题9分)不透明的口袋里装有2个红球2个白球(除颜色外其余都相同).事件A:随机摸出一个球后放回,再随机摸出一个球,两次都摸到红球;事件B:随机摸出一个球后不放回,再随机摸出一个球,两次都摸到相同颜色的球.试比较上述两个事件发生的可能性哪个大?请说明理由.……○…………线_______ …○…………内………… 25.(本题9分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:(1)计算并完成上述表格; (2)请估计当n 很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1) (3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?参考答案1.C【解析】易于显示数据的变化趋势和变化规律的统计图是折线统计图,故选C.2.C【解析】根据全面调查事件的特征,范围小,易操作.故选C.3.A【解析】试题解析:由于: 6391376320+=++++=45%. 故选A .4.C【解析】因为8÷40=0.2=20%,故选C.5.D【解析】试题解析:认为依情况而定的占27%,故A 正确;认为该扶的在统计图中所对应的圆心角是65%360234⨯= ,故B 正确;认为不该扶的占1−27%−65%=8%,故C 正确;认为该扶的占65%,故D 错误;故选D.6.B【解析】解:设盒子里有红球x 个,得: 102107x =+ 解得:x =25.经检验得x =25是方程的解.故选B .7.B【解析】由图表可得出,轿车的数量为:36,机动车的数量为:36+24+2+12=80,所以轿车的概率为: 3698020=,故选:B. 8.C【解析】根据频率=频数÷数据总数计算,因为小明练习射击,共射击600次,其中有380次击中靶子,所以射中靶子的频率=380÷600≈0.63,故小明射击一次击中靶子的概率是约63%,故选C.9.B【解析】①.在足球赛中,弱队可能战胜强队也可能输给强队,弱队战胜强队是随机事件。

2017_2018学年八年级数学下学期第一次月考试题无答案苏科版(4)

2017_2018学年八年级数学下学期第一次月考试题无答案苏科版(4)

江苏省盐城市2017-2018学年八年级数学下学期第一次月考试题(满分:100分 时间:100分钟)一、选择题:(本题共8小题,每小题2分,共16分)1.下列图形中,既是轴对称图形又是中心对称图形的是……………( )2.下列调查适合普查的是 ( )A .夏季冷饮市场上冰淇淋的质量B .某本书中某页的印刷错误C .公民保护环境的意识D .某批灯泡的使用寿命3.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做( )A. 组距B. 频数C. 频率D. 样本容量4. 下列事件中的不可能事件是( )。

A: 通常加热到100℃时,水沸腾 B: 抛掷2枚正方体骰子,都是6点朝上C: 经过有交通信号灯的路口,遇到红灯 D: 任意画一个三角形,其内角和是360°5.某校对初三年级1600名男生的身高进行了测量,结果身高(单位:m )在1.58~1.65这一小组的频率为0.4,则该组的人数为( )。

A. 640人B. 480人C. 400人D. 40人6.如图,□ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,,小于AD 的长为半径画弧,分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于1/2EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A.AG 平分∠DABB.AD=DHC.DH=BCD.CH=DH7.如图,□ABCD 中,AC 交BD 于点O ,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( )A .AB =AD B .OA =OBC .AC =BD D .DC ⊥BC8.如图,点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是 ( )A .B .C .D .不确定二、填空题:(本题共10小题,每小题3分,共30分)9.南洋中学数学教研组有20名教师,将他们按年龄分组,在38-45岁组内的教师有6名,那么这个小组的频率是10.一个口袋里装有只有颜色不同的红球和蓝球,已知红球3个,蓝球2个.闭上眼睛从口袋里拿出一个A. B. C. D.球是蓝球的可能性是11. 下列事件: 其中是随机事件①掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上;②抛出的篮球会下落;③任意选择电视的某一频道,正在播放动画片;④在同一年出生的367名学生中,至少有两人的生日是同一天.有 (只需填写序号).12.为估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞了50条鱼,每条鱼做好标记后放回,再从鱼塘中打捞出50条鱼,发现只有1条鱼是有记号的,假设鱼在鱼塘是均匀分布的,则可估计该鱼塘的条数约为.13.如图,在□ABCD中,∠A=120°,则∠D=_______°14.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件_______使四边形AECF 是平行四边形(只填一个即可).15.如图,在□ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1等于_______°16.如图,在□ABCD中,已知∠ODA=90°,AC=10 cm,BD=6 cm,则AD的长为 ______cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省盐城市滨海县2017-2018学年八年级数学下学期第一次月考
试题
一、选择题(每小题3分.)
1.下列交通标志中,是轴对称图形但不是中心对称图形的是()
A.B.C.D.
2.下列事件中,随机事件是()
A 太阳绕着地球转
B 小明骑车经过某个十字路口时遇到红灯
C 八月十五月儿圆
D 一个月有37天
3.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()
A.①,②B.①,④C.③,④D.②,③
4.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是,这个的含义是().
A.只发出5份调查卷,其中三份是喜欢足球的答卷;
B.在答卷中,喜欢足球的答卷与总问卷的比为3∶8;
C.在答卷中,喜欢足球的答卷占总答卷的;
D.在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球
5.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()
A.96 B.69 C.66 D.99
6.下列性质矩形不一定具备的是().
A.对角线相等 B.四个内角都相等
C.对角线互相平分 D.对角线互相垂直
7.下列调查中,适合进行普查的是()
A.《新闻联播》电视栏目的收视率
B.我国中小学生喜欢上数学课的人数
C.一批灯泡的使用寿命
D.一个班级学生的体重
8.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()
①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.
A.①②③. B.①②④C.②③④D.①③④
二、填空题(每小题3分)
9.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是
0.16,则第6组的频数是.
10.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若
干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验
后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个
11.从1到9这九个整数中取一个,既是2的倍数又是3的倍数的概率是
12.下列事件:①掷一枚六个面分别标有1~6的数字的均匀骰子,骰子停止转动后偶数点朝上;②抛出的篮球会下落;③任意选择电视的某一频道,正在播放动画片;④在同一
年出生的367名学生中,至少有两人的生日是同一天.其中是随机事件的有_______ (只需填写序号).
13.四边形ABCD中,AB∥DC,AB=DC,要想该四边形成为矩形,只需再加上一个条件是_______ .
14.矩形的两条对角线的夹角是60°,对角线长为8,那么矩形短边长为_______.
15.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.
第15题图第17题图第18题图
16.已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),
若以O,A,B,C为顶点的四边形是平行四边形,则x= .
17.如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为
18.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE
的周长是.
三、解答题
19.(12分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习
小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重
复,下表是活动进行中记下的一组数据
(1)请你估计,当很大时,摸到白球的频率将会接近(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.
20.(12分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)此次共调查了多少人?
(2)求文学社团在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整;
(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?
21.(12分)如图,在平行四边形ABCD中,点E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.
22.(12分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.
23.(12分).如图,
(1)请画出△ABC关于直线MN的对称图形△A1B1C1.
(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O成中心对称的图形△A2B2C2.
24.(12分)如图,的四个内角的平分线分别相交于点E、F、G、H。

求证:四边形EFGH是矩形。

25(12分)如图,在矩形ABCD中,BE平分∠ABC,交CD于点E,点F在边BC上,
①如果FE⊥AE,求证FE=AE.
②如果FE=AE 你能证明FE⊥AE吗?
26(12分)以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即
△ABD、△BCE、△ACF。

(1)请猜想四边形ADEF是什么特殊四边形?并说明理由。

(2)当△ABC满足条件___________时,四边形ADEF为矩形;。

相关文档
最新文档