人教版八年级数学上第一次月考试题
人教版八年级上册数学第一次月考试题
AB C DEFO八年级上册第一次月考一.选择题(正确答案唯一,将其标号填入第二张的答题卡中。
每小题3分,共30分)1.在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充一个条件后仍不一定能 保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’2。
如右图,AB ∥CD ,AD ∥BC,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 63。
已知下列各条件中,不能作出惟一三角形的是( )A. 两角和一边B. 两边及一角 C 。
两角夹边 D 。
三条边 4.下面4个汽车标志图案中,不是轴对称图形的是( )A B C D5.如右图,要测量河两岸相对两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在 同一条直线上,可以得到⊿EDC ≌⊿ABC ,所以ED =AB ,因此测得 ED 的长就是AB 的长,判定⊿EDC ≌⊿ABC 的理由是( ) A .SAS B .ASA C .SSS D .HL6。
如右图所示,亮亮书上的三角形被墨迹污染了一部分,很快他 就根据所学知识画出一个与书上完全一样的三角形,那么这两个 三角形完全一样的依据是( )A .SSSB 。
SASC .AASD .ASA7.如右图,从下列四个条件:①BC =B ′C , ②AC =A ′C , ③∠A ′CA =∠B ′CB ④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个( ) A .1个 B .2个 C .3个 D .4个8. 某地为了发展旅游业,要在三条公路围成的一块平地上修建一个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有( )处 A 1 B 2 C 3 D 49。
人教版八年级上册数学《第一次月考》考试题及答案【必考题】
人教版八年级上册数学《第一次月考》考试题及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.65.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.因式分解:2218x -=__________.3.计算:()()201820195-252+的结果是________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、B5、C6、C7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、72、2(x +3)(x ﹣3).324、45.5、46、AC=DF (答案不唯一)三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、11a -,1.3、24x -<≤,数轴见解析.4、答案略5、CD 的长为3cm.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
人教版数学八年级上册第一次月考数学试卷带答案解析
人教版数学八年级上册第一次月考数学试卷一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.162.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.1010.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.参考答案与试题解析一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.2.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°【考点】三角形内角和定理.【分析】先根据角平分线定义得到∠ACD=45°,然后在△ACD中根据三角形内角和求∠1的度数.【解答】解:∵CD平分∠ACB,∴∠ACD=×90°=45°,在△ACD中,∵∠1+∠A+∠ACD=180°,∴∠1=180°﹣30°﹣45°=105°.故选B.4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选D.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④【考点】全等图形.【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.【解答】解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°【考点】三角形内角和定理.【分析】由∠BAC=40°,AD平分∠BAC可得∠BAD=∠CAD=20°,由BD∥AC可知∠D=∠CAD,从而求得∠D的度数.【解答】解:∵∠BAC=40°,AD平分∠BAC,∴∠BAD=∠CAD=20°.又∵BD∥AC,∴∠D=∠CAD.∴∠D=20°.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.10【考点】多边形内角与外角.【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.10.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D.15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°【考点】全等三角形的判定与性质.【分析】根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系.【解答】解:在△BDE和△CFD中,,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠A+∠B+∠C=180°,∴∠B=,∵∠BDE+∠EDF+∠CDF=180°,∴180°﹣∠B﹣∠BED+a+∠CDF=180°,∴∠B=a,即=a,整理得2a+∠A=180°.故选A.二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是7.【考点】多边形内角与外角.【分析】设内角的度数是5x°,则外角是2x°,根据内角与相邻的外角互补,即可求得外角的度数,然后根据外角和是360度,即可求得边数.【解答】解:设内角的度数是5x°,则外角是2x°,根据题意得:5x+2x=180,解得:x=,则2x=,故多边形的边数是:=7.故答案为7.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=74°.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据角平分线的定义求出∠BAC,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD⊥BC,∴∠BAD=90°﹣∠B=90°﹣26°=64°,∵∠DAE=24°,∴∠BAE=∠BAD﹣∠DAE=64°﹣24°=40°,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×40°=80°,在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣26°=74°.故答案为:74°.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=85°.【考点】方向角.【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.【解答】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故答案是:85°.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.【考点】勾股定理;三角形的面积.【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积计算出CD长即可.【解答】解:∵AC=5cm,BC=12cm,∴AB==13(cm),=AC•CB=AB•CD,∴S△ACB∴5×12=13×CD,解得:CD=,故答案为:.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.。
人教版八年级数学上册第一次月考试题(偏难)
人教版八年级数学上册第一次月考试题(偏难)(考试内容:三角形全等三角形)第I 卷(选择题)一、单选题1.要求画△ABC 的边AB 上的高.下列画法中,正确的是()A. B. C.D2.在△ABC 和△DEF 中,下列条件不能判断这两个三角形全等的是()A .A D ∠=∠,BC EF =,AB DE=B .A D ∠=∠,AB DE =,AC DF =C .AB DE =,AC DF =,BC EF =D .90C F ∠=∠=︒,AB DE =,AC DF=3.若一个多边形截去一个角后,变成四边形,则原来的多边形的边数可能为()A .4或5B .3或4C .3或4或5D .4或5或64.已知直线a ∥b ,把Rt △ABC 如图所示放置,点B 在直线b 上,∠ABC =90°,∠A =30°,若∠1=28°,则∠2等于()A .28°B .32°C .58°D .60°4题5题8题5.如图所示,点H 是△ABC 内一点,要使点H 到AB 、AC 的距离相等,且ABHBCH S S =△△,点H 是()A .BAC ∠的角平分线与AC 边上中线的交点B .BAC ∠的角平分线与AB 边上中线的交点C .ABC ∠的角平分线与AC 边上中线的交点D .ABC ∠的角平分线与BC 边上中线的交点6.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是()A .13B .12C .11D .107.具备下列条件的ABC V 中,不是直角三角形的是()A .A B C∠∠=∠+B .A B C ∠-∠=∠C .123A B C ∠∠∠=::::D .2A B C∠=∠=∠8.如图,将三角形纸片ABC 沿DE 折叠使点A 落在点A '处.且BA '平分ABC ∠,CA '平分ACB ∠.若107BA C ∠='︒,则12∠+∠=()A .44︒B .82︒C .88︒D .68︒9.如图,点D 是△ABC 的边BC 上的中线,6AB =,4=AD ,则AC 的取值范围为()A .214AC <<B .212AC <<C .14AC <<D .18AC <<10.如图,Rt ABC △中,90ACB ∠=︒,20A ∠=︒,A ABC B C '''≌△△,若A B ''恰好经过点B ,A C ''交AB 于D ,则BDC ∠的度数为()A .50︒B .60︒C .62︒D .64︒9题10题11题12题11.如图,四边形ABCD 中,AB CD ∥,C DAB ∠=∠,点E 在线段BC 上,DF 平分EDC ∠,交BC 于点M ,交AE 延长线于点F ,若90C ∠=︒,180AED AEC ∠+∠=︒,设AED x ∠=,FDC y ∠=,则x 与y 的数量关系是()A .90x y +=︒B .290x y +=︒C .4x y =D .45x y -=︒12.如图,在△ABC 中,BAC ∠和ABC ∠的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD BC ⊥于D ,下列三个结论:①90AOB C ∠=︒+∠;②若4AB =,1OD =,则2ABO S =△;③当60C ∠=︒时,AF BE AB +=;④若OD a =,2AB BC CA b ++=,则ABC S ab = .其中正确的个数是()A .1B .2C .3D .4二、填空题13.过n 边形的一个顶点可以画出10条对角线,将它分成m 个小三角形,则m n +的值是.14.如图,在△ABC 中,2BF FD =,EF FC =,若BEF △的面积为4,则四边形AEFD 的面积为.15.如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,15cm AB =,6cm AC =.动点E 从A 点出发以3cm/s 的速度沿射线AN 运动,动点D 在射线BM 上,随着E 点运动而运动,始终保持ED CB =.若点E 的运动时间为t 秒()0t >,则当t =秒时,△DEB 与△BAC 全等.14题15题16题16.把△ABC 和△ADE 如图放置,B ,D ,E 正好在一条直线上,AB =AC ,AD =AE ,∠BAC =∠DAE .则下列结论:①△BAD ≌△CAE ;②BE =CE +DE ;③∠BEC =∠BAC ;④若∠ACE +∠CAE +∠ADE =90°,则∠AEC =135°.其中正确的是.三、解答题17.(1)若两个多边形的边数之比为1∶2,两个多边形所有内角的和为1980°,求这两个多边形的边数.(2)在△ABC 中,9,2AB AC ==,若△ABC 的周长为偶数,求BC 的值及△ABC 的周长18.如图所示,在△ABC 中,AD 是高,AE BF 、是角平分线,它们相交于点O ,5070BAC C ∠=︒∠=︒,,求DAC BOA ∠∠、的度数.19.如图,在四边形OACB 中,CM OA ⊥于M ,12∠=∠,CA CB =.求证:(1)34180∠+∠=︒;(2)2OA OB OM +=.20.定义:如果一个三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,90C ∠>︒,56A ∠=︒,则B ∠=_____°;(2)若△ABC 是直角三角形,90ACB ∠=︒.①如图,若AD 是BAC ∠的角平分线,请你判断ABD △是否为“准互余三角形”?并说明理由.②点E 是边BC 上一点,ABE 是“准互余三角形”,若28B ∠=︒,求AEB ∠的度数.21.如图1,在△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于点A 1,(1)分别计算:当∠A 分别为700、800时,求∠A 1的度数.(2)根据(1)中的计算结果,写出∠A 与∠A 1之间的数量关系___________________.(3)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于点A 2,∠A 2BC 的角平分线与∠A 2CD 的角平分线交于点A 3,如此继续下去可得A 4,…,∠A n ,请写出∠A 5与∠A 的数量关系_________________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.22.(12分)在平面直角坐标系中,点A的坐标为(3,3),AB=BC,AB⊥BC,点B在x 轴上.(1)如图1,AC交x轴于点D,若∠DBC=10 ,则∠ADB=.(2)如图1,若点B在x轴正半轴上,点C(1,﹣1),求点B坐标;(3)如图2,若点B在x轴负半轴上,AE⊥x轴于点E,AF⊥y轴于点F,∠BFM=45°,MF交直线AE于点M,若点B(﹣1,0),BM=5,求EM的长.。
人教版八年级上册数学《第一次月考》考试(必考题)
人教版八年级上册数学《第一次月考》考试(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±82.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm3.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3± 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)13的整数部分是a,小数部分是b3a b-=______.2.若关于x、y的二元一次方程3x﹣ay=1有一个解是32xy=⎧⎨=⎩,则a=_____.323(1)0m n-+=,则m-n的值为________.4.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y 轴上,则点C 的坐标是________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、C6、B7、B8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、43、44、(﹣5,4).5、(-2,0)6、120三、解答题(本大题共6小题,共72分)1、原方程无解2、13、(1)a≥2;(2)-5<x<14、略.5、(1)略(2)等腰三角形,理由略6、(1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.。
人教版八年级上册数学《第一次月考》考试题(及答案)
人教版八年级上册数学《第一次月考》考试题(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .6 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_______cm.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
人教版八年级上册数学《第一次月考》试卷含答案
人教版八年级上册数学《第一次月考》试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD =AF ;④S △ABE =S △CDE ;⑤S △ABE =S △CEF .其中正确的是_______.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知关于x 的方程x 2 -(m+1)x+2(m-1)=0,(1)求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、C6、A7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、如果两个角是同一个角的余角,那么这两个角相等3、14、8.5、①②⑤6、(-10,3)三、解答题(本大题共6小题,共72分)1、原方程无解2.3、()1略()24和24、(1) 65°;(2) 25°.5、(1)略(2)等腰三角形,理由略6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
人教版八年级上册数学第一次月考试题
A.带①去B.带②去C.带③去D.带①17.等腰三角形是轴对称图形,它的对称轴是和②去5.下面4个汽车标志图案中,不是轴对称图形的是()I L pj-J 声八年级上册数学第一次月考试题、选择题(3' X 10=30')1、下列命题中正确的是() A .全等三角形的高相等 B .全等三角形的中线相等C.全等三角形周长相等 D .全等三角形的角平分线相等 2、如图2,直线a 、b 、c 表示三条公路,现要建一个货物中 转站,要求它到三条公路的距离相等,则可供选择的地址有 A. 一处 B.两处 C.三处D.四处 3、如图 3, ZXABC 中,AB= AC ADLBC,点 E 、F 分别是 BR DC 的中点,则图中全等三角形共有( A. 3对 B. 4对 C. 5对 4、如图4,某同学把一块三角形的玻璃不小心打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法 (第8题)(第9题) 9、如图9,在△ ABC 中,AB= AC= 20cm, DE 垂直平分 AR 垂足为 E,AC 于D,若△ DBC 的周长为35cm,则BC 的长为( )A 、5cmB 、10cmC 、15cmD 、17.5cm10、在直角坐标系中,A (1, 2)点的纵坐标乘以一1,横坐标不变,得到B 点,则A 与B 的关系是()A 关于x 轴对称B 关于y 轴对称C 关于原点轴对称D 不确定 二.填空题(2' X 12=24')11、已知:△ABC^^A' B' C' ,/A=/A' ,/B=/B' , Z C=70 ° , AB=15cm ,则/ C' =, A ' B' =。
12等腰三角形的一个角是 80。
,则它的底角是 . 13.如图13所示,五角星的五个角都是顶角为36。
的等腰三角形,则 /AMB的度数为 A. 144°OC.14.如图14,已知AC=DB,要使△ABC^zXDCB,则需要 补充的条件为 (填一个即可)15、已知等腰三角形的两边长分别为2cm, 4cm 则其周长为A B 6.已知等腰三角形的一个外角等于 是( ). A 80 ° B 20 ° C 80 或 定 CD100° ,则它的顶角 20° D 不能确 7.小明从镜子中看到对面电子钟示数如图所示,这时的时刻 应是() A. 21: 10 C. 10: 51 B. 10: 21 D. 12: 01 8、如图(8) AB ±BC, D 为BC 的中点,以下结论正确的有 ()个。
人教版八年级数学上册第一次月考测试题(含答案)
八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。
人教版八年级数学上册第一次月考测试题(含答案)
第一次月考数学试卷一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( )A .1,2,6B .2,2,4C .1,2,3D .2,3,42.一个三角形的三条边长分别为1、2、x ,则x 的取值范围是( )A .1≤x ≤3B .1<x ≤3C .1≤x <3D .1<x <33.如图,AD 是△ABC 的中线,已知△ABD 的周长为25cm ,AB 比AC 长6cm ,则△ACD 的周长为()A .19cmB .22cmC .25cmD .31cm4.若AD 是△ABC 的中线,则下列结论错误的是( )A .AD 平分∠BACB .BD=DC C .AD 平分BC D .BC=2DC5.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°6.已知△ABC 中,∠A :∠B :∠C=2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7.如图,l 1∥l 2,∠1=120°,∠2=100°,则∠3=( )A .20°B .40°C .50°D .60°8.如下图,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,不正确的等式是( )A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为厘米.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 度.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 度.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 度.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.19.如图,AB∥CD,证明:∠A=∠C+∠P.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(共8小题,每小题3分,满分24分)1.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2<6,不能组成三角形,故此选项错误;B、2+2=4,不能组成三角形,故此选项错误;C、1+2=3,不能组成三角形,故此选项错误;D、2+3>4,能组成三角形,故此选项正确;故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.2.一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3 B.1<x≤3 C.1≤x<3 D.1<x<3【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.3.如图,AD是△ABC的中线,已知△ABD的周长为25cm,AB比AC长6cm,则△ACD的周长为()A.19cm B.22cm C.25cm D.31cm【考点】三角形的角平分线、中线和高.【分析】根据三角形中线的定义可得BD=CD,再表示出△ABD和△ACD的周长的差就是AB、AC的差,然后计算即可.【解答】解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD周长的差=(AB+BD+AD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD的周长为25cm,AB比AC长6cm,∴△ACD周长为:25﹣6=19cm.故选:A.【点评】本题主要考查了三角形的中线的定义,把三角形的周长的差转化为已知两边AB、AC的长度的差是解题的关键.4.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.5.如图,直线a∥b,则∠A的度数是()A .28°B .31°C .39°D .42°【考点】三角形内角和定理;平行线的性质.【专题】计算题;压轴题.【分析】本题主要利用平行线的性质和三角形的有关性质进行做题.【解答】解:∵a ∥b ,∴∠DBC=∠BCb=70°(内错角相等),∴∠ABD=180°﹣70°=110°(补角定义),∴∠A=180°﹣31°﹣110°=39°(三角形内角和性质).故选C .【点评】此题主要考查了学生的三角形的内角和定理:三角形的内角和为180°.及平行线的性质.6.已知△ABC 中,∠A :∠B :∠C=2:3:4,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【考点】三角形内角和定理.【专题】压轴题.【分析】根据比例,设三个内角为2k 、3k 、4k ,再根据三角形的内角和定理求出最大角的度数.【解答】解:根据题意,设∠A 、∠B 、∠C 分别为2k 、3k 、4k ,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选A .【点评】本题主要考查设“k”法的运用和三角形的内角和定理.7.如图,l 1∥l 2,∠1=120°,∠2=100°,则∠3=( )A .20°B .40°C .50°D .60°【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】先延长∠1和∠2的公共边交l1于一点,利用两直线平行,同旁内角互补求出∠4的度数,再利用外角性质求解.【解答】解:如图,延长∠1和∠2的公共边交l1于一点,∵l1∥l2,∠1=120°,∴∠4=180°﹣∠1=180°﹣120°=60°,∴∠3=∠2﹣∠4=100°﹣60°=40°.故选B.【点评】本题主要考查作辅助线构造三角形,然后再利用平行线的性质和外角性质求解.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.二.填空题(共6小题,每小题3分,满分18分)9.一个三角形的两边长分别为2厘米和9厘米,若第三边的长为奇数,则第三边的长为9 厘米.【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:第三边的取值范围是大于7而小于11.又第三边的长是奇数,故第三边的长是9厘米.【点评】考查了三角形的三边关系,还要注意第三边是奇数这一条件.10.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是钝角三角形.【考点】三角形的角平分线、中线和高.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.【点评】注意不同形状的三角形的高的位置.11.如图,AB∥CD,∠1=50°,∠2=110°,则∠3= 60 度.【考点】三角形内角和定理;对顶角、邻补角;平行线的性质.【专题】计算题.【分析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【解答】解:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,利用三角形的内角和定理,就可以求出∠3=180°﹣∠4﹣∠5=60°.【点评】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.12.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P= 30 度.【考点】三角形的外角性质;平行线的性质.【专题】计算题.【分析】要求∠P的度数,只需根据平行线的性质,求得其所在的三角形的外角,根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠A的同位角是70°.再根据三角形的外角的性质,得∠P=70°﹣40°=30°.故答案为:30°.【点评】特别注意根据平行线的性质以及三角形的一个外角等于和它不相邻的两个内角和,能够发现并证明此题中的结论:∠P=∠A﹣∠B.13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD= 95 度.【考点】全等三角形的性质.【分析】运用全等求出∠D=∠C,再用三角形内角和即可求.【解答】解:∵△OAD≌△OBC,∴∠OAD=∠OBC;在△OBC中,∠O=65°,∠C=20°,∴∠OBC=180°﹣(65°+20°)=180°﹣85°=95°;∴∠OAD=∠OBC=95°.故答案为:95.【点评】考查全等三角形的性质,三角形内角和及推理能力,本题比较简单.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三.解答题(满分25分)15.已知,如图,AE是∠BAC的平分线,∠1=∠D.求证:∠1=∠2.【考点】平行线的判定与性质;三角形的角平分线、中线和高.【专题】证明题.【分析】由∠1=∠D,根据同位角相等,两直线平行可证AE∥DC,根据两直线平行,内错角相等可证∠EAC=∠2,再根据角平分线的性质即可求解.【解答】证明:∵∠1=∠D,∴AE∥DC(同位角相等,两直线平行),∴∠EAC=∠2(两直线平行,内错角相等),∵AE是∠BAC的平分线,∴∠1=∠EAC,∴∠1=∠2.【点评】本题考查了平行线的判定与性质和三角形的角平分线的性质,有一定的综合性,但难度不大.16.如图,△ABC中,按要求画图:(1)画出△ABC中BC边上的中线AD;(2)画出△ABC中AB边上的高CH.【考点】作图—复杂作图;三角形的角平分线、中线和高.【分析】(1)作线段BC的垂直平分线,垂足为D,连接AD即可;(2)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.【解答】解:(1)如图,AD即为所求作的BC边上的中线;(2)如图,CH即为所求作的AB边上的高.【点评】本题考查了复杂作图,主要有线段垂直平分线的作法,过一点作已知直线的垂线,都是基本作图,需熟练掌握.17.如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB,求∠ACD的度数.【考点】三角形内角和定理.【专题】压轴题.【分析】本题考查的是三角形内角和定理,求出∠ACB的度数后易求解.【解答】解:∵∠A=70°,∠B=50°,∴∠ACB=180°﹣70°﹣50°=60°(三角形内角和定义).∵CD平分∠ACB,∴∠ACD=∠ACB=×60°=30°.【点评】此类题解答的关键为求出∠ACB后求解即可.18.如图,AB∥CD,∠A=60°,∠C=∠E,求∠C.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】根据两直线平行,内错角相等,可得∠DFE,由外角的性质,即可求得∠C.【解答】解:∵AB∥CD,∠A=60°,∴∠DFE=∠A=60°,∵∠DFE=∠C+∠E,∠C=∠E,∴∠C=30°.【点评】此题考查了平行线的性质与三角形外角的性质.19.如图,AB∥CD,证明:∠A=∠C+∠P.【考点】平行线的性质;三角形的外角性质.【专题】证明题.【分析】因为∠PED为△PCE的外角,所以∠P+∠C=∠PED;再根据两直线平行,同位角相等可得∠A=∠PED,即∠A=∠C+∠P.【解答】证明:∵AB∥CD,∴∠A=∠PED,(两直线平行,同位角相等)又∠PED为△PCE的外角,∴∠P+∠C=∠PED,∴∠P+∠C=∠A.【点评】本题考查三角形外角的性质及平行线的性质,解答的关键是沟通外角和内角的关系.四、解答题(共18分)20.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.【考点】多边形内角与外角.【分析】多边形的内角和比外角和的4倍多180°,而多边形的外角和是360°,则内角和是1620度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.【点评】此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.21.如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据角平分线的定义得到∠BAC=∠DAC,再利用SAS定理便可证明其全等.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】此题主要考查了全等三角形的判定,关键是找准能使三角形全等的条件.22.如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.【考点】全等三角形的判定.【专题】证明题.【分析】根据中点的定义可知AE=AB,AF=AC,可知AE=AF,根据SAS即可证明△AFB≌△AEC.【解答】证明:∵点E、F分别是AB、AC的中点,∴AE=AB,AF=AC,∵AB=AC,∴AE=AF,在△AFB和△AEC中,AB=AC,∠A=∠A,AE=AF,∴△AFB≌△AEC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.五、解答题(共15分)23.如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.24.已知,如图在△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连接AD、BF,则AD与BF之间有何关系?请证明你的结论.【考点】全等三角形的判定与性质.【分析】通过全等三角形的判定定理SAS证得△BCF≌△ACD,则由“全等三角形的对应边相等”推知AD=BF.【解答】解:AD=BF,理由如下:如图,∵AC⊥BC,∴∠BCF=∠ACD=90°,∴在△BCF与△ACD中,,∴△BCF≌△ACD(SAS),∴AD=BF.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON +AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y +5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON +AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y +5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)
2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。
人教版八年级(上)第一次月考数学试卷及答案
人教版八年级(上)第一次月考数学试卷一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(A.带①去B.带②去C.带③去D.带①和②去3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C 都可以4.下面四个图形中,线段BE 是△ABC 的高的图是()A.B.C.D.5.适合条件∠A= ∠B= ∠C 的△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.一个多边形的内角和比它的外角和的2 倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.87.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8° C.9° D.10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67° B.46° C.23° D.不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BFC.∠A=∠DD.AB=BC12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是15.三角形的三边长分别为5,1+2x,8,则x的取值范围是16.十边形的外角和是度;如果十边形的各个内角都相等,那么它的一个内角是度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于度.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=.cm,∠C=度.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=度.17题19题18题20题三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于E点.求证:∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.人教版八年级(上)第一次月考数学试卷答案一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.7.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3 条高,其中2 条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,【分析】由于AB=AC,∠BAD=∠CAD,利用等边对等角,等腰三角形三线合一定理,可知AD⊥BD,BD=CD,∠B=∠C,从而易证△ABD≌△ACD.【解答】解:∵在△ABC 中,AB=AC,∠BAD=∠CAD,∴AD⊥BD,BD=CD,∠B=∠C,∴△ABD≌△ACD(SSS).故选D.9.如图,在△ABC 中,AD 平分∠BAC 交BC 于D,AE⊥BC 于E,∠B=40°,∠BAC=82°,则∠DAE=()【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理可求得∠BAE 的度数,再根据角平分线的定义可求得∠BAD 的度数,从而不难求解.【解答】解:∵AE⊥BC 于E,∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°,∵AD 平分∠BAC 交BC 于D,∠BAC=82°,∴∠BAD=41°,∴∠DAE=∠BAE﹣∠BAD=9°.故选C.10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=(A.67° B.46° C.23° D.不能确定【考点】全等三角形的判定与性质.【分析】此题可先连接AC,由已知AB=CD,BC=AD,又AC=AC 证△ABC≌△ACD,得∠D=∠B=23°.【解答】解:连接AC,∵AB=CD,BC=AD(已知),AC=AC,∴△ABC≌△ACD,∴∠D=∠B=23°.故选:C.11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.16.十边形的外角和是360度;如果十边形的各个内角都相等,那么它的一个内角是144度.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.因而每个外角的度数是360°÷边数,内角与外角互为邻补角,即可求得它的一个内角.【解答】解:∵任何多边形的外角和都等于360度,∴十边形的外角和是360度;∵每个外角的度数是360°÷10=36°,∴它的一个内角是180°﹣36°=144度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于360度.【考点】三角形内角和定理.【分析】由题意知,这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可知.【解答】解:∵∠A+∠E+∠C=180°,∠D+∠B+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是AE=BF(此题答案不唯一).【考点】全等三角形的判定.【分析】要使△ADE≌△BCF,现有条件为二角分别对应相等,只要再添加一边对应相等即可,任意一边都可.【解答】解:∵AE∥BF,∴∠A=∠B,又∵∠E=∠F,AE=BF,∴△ADE≌△BCF(ASA).故填AE=BF(此题答案不唯一).19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=5cm,∠C= 40度.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等,全等三角形的对应角相等即可解决.【解答】解:∵△ABE≌△ACD,∴AE=AD=5cm;∠C=∠B=40°.故分别填5,40.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=70度.【考点】全等三角形的判定与性质.【分析】由SSS先证明△ABD≌△CDB,得出∠CBD=∠ADB=30°,再由SAS证明△ABE≌△CDF,得出∠DFC=∠AEB=100°,利用三角形的外角的性质得∠BCF=∠DFC﹣∠CBF=70°【解答】解:∵AB=DC,AD=BC,又BD=DB,∴△ABD≌△CDB,∴∠CBD=∠ADB=30°,∠ABD=∠CDB,又AB=CD,BE=DF,∴△ABE≌△CDF(SAS),∴∠DFC=∠AEB=100°,∴∠BCF=∠DFC﹣∠CBF=100°﹣30°=70°.故填空答案:70°.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.【考点】全等三角形的判定与性质.【分析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.【解答】证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【解答】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.,∴△ADF≌△【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.。
人教版八年级上册数学第一次月考试卷(完美版)
人教版八年级上册数学第一次月考试卷(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣98.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°10.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()A.38°B.39°C.42°D.48°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 3.4的平方根是 .4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是________.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、B5、D6、C7、D8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、43、±2.4、(-4,2)或(-4,3)5、156、7三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、1 23、(1)k<52(2)24、(1)略;(2)3.5、(5a2+3ab)平方米,63平方米6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版八年级上册数学《第一次月考》试卷及答案【完美版】
人教版八年级上册数学《第一次月考》试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.(-9)2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或73.式子12aa+-有意义,则实数a的取值范围是()A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>24.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.75.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁6.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°751-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米10.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.21a+8a=__________.3x2-x的取值范围是________.4.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________.5.如图,∠1,∠2,∠3的大小关系是________.6.如图,已知OA OB=,数轴上点A对应的数是__________。
人教版八年级上册数学《第一次月考》试卷(真题)
人教版八年级上册数学《第一次月考》试卷(真题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.计算32的结果估计在( )A .4至5之间B .5至6之间C .6至7之间D .4至6之间 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0B .1- 或0C .1或2-D .1或1- 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的和为( )A .0B .1C .4D .6 5.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .116.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,124.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程21212339x x x -=+--2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .5.在正方形ABCD 中,对角线BD 所在的直线上有两点E 、F 满足BE=DF ,连接AE 、AF 、CE 、CF ,如图所示.(1)求证:△ABE ≌△ADF ;(2)试判断四边形AECF 的形状,并说明理由.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、A7、A8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、如果两个角是同一个角的余角,那么这两个角相等3、3m .4、22.5°5、206、13 2三、解答题(本大题共6小题,共72分)1、无解2、-3.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)略(2)菱形6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。
人教版八年级上册数学《第一次月考》考试卷(附答案)
人教版八年级上册数学《第一次月考》考试卷(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( ) A .2B .12C .12-D .2-2.估计7+1的值( ) A .在1和2之间 B .在2和3之间 C .在3和4之间D .在4和5之间3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 4.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( )A .1201508x x =- B .1201508x x =+ C .1201508x x =- D .1201508x x =+ 5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)-7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( ) A .B .C .D .8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.如图,已知某广场菱形花坛ABCD 的周长是24米,∠BAD =60°,则花坛对角线AC 的长等于( )A .3米B .6米C .3D .3米二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________. 2.函数32y x x =-+x 的取值范围是__________. 3.若关于x 的分式方程2222x m m x x+=--有增根,则m 的值为_______. 4.如图,▱ABCD 中,AB =3cm ,BC =5cm ,BE 平分∠ABC 交AD 于E 点,CF 平分∠BCD 交AD 于F 点,则EF 的长为________m .5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数.(1)请写出x y +=_____________; (2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD =13S△BOC,求点D的坐标.5.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A在x轴上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y轴于M,(1)求点C的坐标;(2)连接AM,求△AMB的面积;(3)在x轴上有一动点P,当PB+PM的值最小时,求此时P的坐标.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、D5、D6、A7、D8、D9、C 10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4a <2、23x -<≤3、14、15、40°6、6三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-3.3、(1)1;(2)m >2;(3)-2<2m -3n <184、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、(1)C 的坐标是(﹣1,1);(2)154;(3)点P 的坐标为(1,0). 6、(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双泉初中八年级第一次月考数学试卷总分150分考试时间120分钟
班级姓名学号
E,EF∥BD交CD于
F,则图中共有等腰三角形
[ ]
A.5个
B.6个
C.7个
D.8个
2.若一个等腰三角形的两边分别是3cm和6cm, 则它的周长为
[ ]
A.15cm
B.12cm
C.12cm或15cm
D.18cm
3.如图,已知:AB=AD,∠BAC=∠DAC,∠B=90°.则AD与DC的关系是
[ ]
A.相等
B.互相垂直
C.互相垂直平分
D.平行
4.等腰三角形的定义是
[ ]
A.三边都相等的三角形
B.两个角相等的三角形
C.三边中有两边相等的三角形
D.三个角都相等的三角形
5.下面四个图形中, 哪个不是轴对称图形
[ ]
A.有两个内角相等的三角形
B.有一个内角45°的直角三角形
C.有一个内角是30°,一个内角是120°的三角形
D.有一个内角是30°的直角三角形
6.已知:如图在△ABC中, AB=AC, CD为∠ACB平分线,DE∥BC,∠A=40°,则∠EDC的度数是
[ ]
A.30°
B.36°
C.35°
D.54°
7.如果两个三角形全等,则不正确的是
[ ]
A.它们的最小角相等
B.它们的对应外角相等
C.它们是直角三角形
D.它们的最长边相等
8.下列结论正确的是
[ ]
A.有一个角和两条边对应相等的两个三角形全等
B.有三个角对应相等的两个三角形全等
C.∆ABC和∆DEF中,AB=DE∠B=∠D,∠C=∠F,则这两个三角形全等
D.有一边和一锐角分别相等的两个直角三角形全等
9.下面的说法中 , 正确的是
[ ]
A.两边及一边对角对应相等的两三角形全等
B.三个角对应相等的两个三角形全等
C.面积相等的两个三角形全等
D.两边及第三边上的高对应相等的两个三角形全等
10.等腰三角形一底角为30°,底边上的高为9cm,则腰长为___cm.
[ ]
3
D.9
C.9
B.18
A.3
2.等腰三角形是轴对称图形,它的对称轴是_______.
3.如图,△ABD≌△ACE,则
AB的对应边是___,∠BAD的对应角是∠____.
4.
.
'
'
'
_______,
______
)5(
.
_______
,
_______
,
______
)4(
.
_______
______
,
_______
,
______
)3(
.
_______
______
_____,
______
,
______
,
______
)2(
________;
)1(:
'
'
'
'
'
'
:
,
就是所求的角
作射线
经过点
交前弧于点
长为半径作弧
以
为圆心
以点
于点
交
长为半径作弧
以
为圆心
以点
于点
交
于点
交
为半径作弧
以
为圆心
以点
作射线
作法
使
求作
如图
B
O
A
AOB
B
O
A
B
O
A
AOB
∠
∠
=
∠
∠
∠
5.在1."角"、2."等腰三角形"、3."不等边三角形"三个图形中, 是轴对称图形的有
________, .(用各图形对应的数字来表示)
6.△ABC中,AB=AC,∠A=40°,点O在△ABC内,且∠OBC=∠OCA,则∠BOC度数为_______.
7.两条直线平行,内错角相等的逆定理是_______________________.
8.Rt△ABC中,∠C=90°,CD是AB边中线,延长CD到E使DE=CD,连结AE,图中有________对全等三
角形,若AB=a,CD为________.
9.已知:如图 , AB=DE , AC=DF , 要证△ABC≌△DEF , 所缺一个条件是
∠_______=∠____________.
10.已知:如图,A、C、D、B四点共线,AC=BD,∠A=∠B,∠E=∠F,图中全等三角形有______对.
三.计算题(本题包括4小题,共40分。
)
a,求作△ABC,使其中一个内角等于a,且a的对边等于a,另一边等于
b(保留作图痕迹,标明顶点名称,其它均不作要求).注意:不得直接在已知的图上作所求作的
三角形.
2.如图,AB=AC,D为BC中点,DE⊥AB,DF⊥AC,
求证:DE=DF
3.如图所示,已知:∆ABC中AB=AC,∠BAC=90°,BD平分∠ABC交AC于D,DE⊥BC,
E为垂足,若BC=10cm,试求∆DEC的周长.
4.等腰三角形的底角等于15°,腰长为2a,求腰上的高.
求证:∠B=∠C
2.如图所示,BD 平分∠ABC ,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,M 、N 为垂足.求证:PM =PN .
3.已知:如图,在△ABC 中,D 为BC 边的中点,DE ⊥AB 于E,DF ⊥AC 于F;AB=AC.求证:DE=DF。