人教版八年级数学上第一次月考试题
人教版八年级上册数学第一次月考试题

AB C DEFO八年级上册第一次月考一.选择题(正确答案唯一,将其标号填入第二张的答题卡中。
每小题3分,共30分)1.在△ABC 和△A ’B ’C ’中, AB=A ’B ’, ∠B=∠B ’, 补充一个条件后仍不一定能 保证△ABC ≌△A ’B ’C ’, 则补充的这个条件是( )A .BC=B ’C ’ B .∠A=∠A ’ C .AC=A ’C ’D .∠C=∠C ’2。
如右图,AB ∥CD ,AD ∥BC,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 63。
已知下列各条件中,不能作出惟一三角形的是( )A. 两角和一边B. 两边及一角 C 。
两角夹边 D 。
三条边 4.下面4个汽车标志图案中,不是轴对称图形的是( )A B C D5.如右图,要测量河两岸相对两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在 同一条直线上,可以得到⊿EDC ≌⊿ABC ,所以ED =AB ,因此测得 ED 的长就是AB 的长,判定⊿EDC ≌⊿ABC 的理由是( ) A .SAS B .ASA C .SSS D .HL6。
如右图所示,亮亮书上的三角形被墨迹污染了一部分,很快他 就根据所学知识画出一个与书上完全一样的三角形,那么这两个 三角形完全一样的依据是( )A .SSSB 。
SASC .AASD .ASA7.如右图,从下列四个条件:①BC =B ′C , ②AC =A ′C , ③∠A ′CA =∠B ′CB ④AB =A ′B ′中,任取三个为条件, 余下的一个为结论,则最多可以构成正确的结论的个( ) A .1个 B .2个 C .3个 D .4个8. 某地为了发展旅游业,要在三条公路围成的一块平地上修建一个度假村,使度假村到三条公路的距离相等,这个度假村的选址地点共有( )处 A 1 B 2 C 3 D 49。
人教版八年级上册数学《第一次月考》考试题及答案【必考题】

人教版八年级上册数学《第一次月考》考试题及答案【必考题】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为(()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.65.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.因式分解:2218x -=__________.3.计算:()()201820195-252+的结果是________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.解不等式组513(1)131722x x x x +>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、B5、C6、C7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、72、2(x +3)(x ﹣3).324、45.5、46、AC=DF (答案不唯一)三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、11a -,1.3、24x -<≤,数轴见解析.4、答案略5、CD 的长为3cm.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。
人教版数学八年级上册第一次月考数学试卷带答案解析

人教版数学八年级上册第一次月考数学试卷一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.162.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.1010.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.参考答案与试题解析一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.2.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°【考点】三角形内角和定理.【分析】先根据角平分线定义得到∠ACD=45°,然后在△ACD中根据三角形内角和求∠1的度数.【解答】解:∵CD平分∠ACB,∴∠ACD=×90°=45°,在△ACD中,∵∠1+∠A+∠ACD=180°,∴∠1=180°﹣30°﹣45°=105°.故选B.4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选D.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④【考点】全等图形.【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.【解答】解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°【考点】三角形内角和定理.【分析】由∠BAC=40°,AD平分∠BAC可得∠BAD=∠CAD=20°,由BD∥AC可知∠D=∠CAD,从而求得∠D的度数.【解答】解:∵∠BAC=40°,AD平分∠BAC,∴∠BAD=∠CAD=20°.又∵BD∥AC,∴∠D=∠CAD.∴∠D=20°.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.10【考点】多边形内角与外角.【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.10.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D.15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°【考点】全等三角形的判定与性质.【分析】根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系.【解答】解:在△BDE和△CFD中,,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠A+∠B+∠C=180°,∴∠B=,∵∠BDE+∠EDF+∠CDF=180°,∴180°﹣∠B﹣∠BED+a+∠CDF=180°,∴∠B=a,即=a,整理得2a+∠A=180°.故选A.二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是7.【考点】多边形内角与外角.【分析】设内角的度数是5x°,则外角是2x°,根据内角与相邻的外角互补,即可求得外角的度数,然后根据外角和是360度,即可求得边数.【解答】解:设内角的度数是5x°,则外角是2x°,根据题意得:5x+2x=180,解得:x=,则2x=,故多边形的边数是:=7.故答案为7.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=74°.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据角平分线的定义求出∠BAC,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD⊥BC,∴∠BAD=90°﹣∠B=90°﹣26°=64°,∵∠DAE=24°,∴∠BAE=∠BAD﹣∠DAE=64°﹣24°=40°,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×40°=80°,在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣26°=74°.故答案为:74°.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=85°.【考点】方向角.【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.【解答】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故答案是:85°.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.【考点】勾股定理;三角形的面积.【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积计算出CD长即可.【解答】解:∵AC=5cm,BC=12cm,∴AB==13(cm),=AC•CB=AB•CD,∴S△ACB∴5×12=13×CD,解得:CD=,故答案为:.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.。
人教版八年级数学上册第一次月考试题(偏难)

人教版八年级数学上册第一次月考试题(偏难)(考试内容:三角形全等三角形)第I 卷(选择题)一、单选题1.要求画△ABC 的边AB 上的高.下列画法中,正确的是()A. B. C.D2.在△ABC 和△DEF 中,下列条件不能判断这两个三角形全等的是()A .A D ∠=∠,BC EF =,AB DE=B .A D ∠=∠,AB DE =,AC DF =C .AB DE =,AC DF =,BC EF =D .90C F ∠=∠=︒,AB DE =,AC DF=3.若一个多边形截去一个角后,变成四边形,则原来的多边形的边数可能为()A .4或5B .3或4C .3或4或5D .4或5或64.已知直线a ∥b ,把Rt △ABC 如图所示放置,点B 在直线b 上,∠ABC =90°,∠A =30°,若∠1=28°,则∠2等于()A .28°B .32°C .58°D .60°4题5题8题5.如图所示,点H 是△ABC 内一点,要使点H 到AB 、AC 的距离相等,且ABHBCH S S =△△,点H 是()A .BAC ∠的角平分线与AC 边上中线的交点B .BAC ∠的角平分线与AB 边上中线的交点C .ABC ∠的角平分线与AC 边上中线的交点D .ABC ∠的角平分线与BC 边上中线的交点6.多边形的每一个内角都等于它相邻外角的5倍,则该多边形的边数是()A .13B .12C .11D .107.具备下列条件的ABC V 中,不是直角三角形的是()A .A B C∠∠=∠+B .A B C ∠-∠=∠C .123A B C ∠∠∠=::::D .2A B C∠=∠=∠8.如图,将三角形纸片ABC 沿DE 折叠使点A 落在点A '处.且BA '平分ABC ∠,CA '平分ACB ∠.若107BA C ∠='︒,则12∠+∠=()A .44︒B .82︒C .88︒D .68︒9.如图,点D 是△ABC 的边BC 上的中线,6AB =,4=AD ,则AC 的取值范围为()A .214AC <<B .212AC <<C .14AC <<D .18AC <<10.如图,Rt ABC △中,90ACB ∠=︒,20A ∠=︒,A ABC B C '''≌△△,若A B ''恰好经过点B ,A C ''交AB 于D ,则BDC ∠的度数为()A .50︒B .60︒C .62︒D .64︒9题10题11题12题11.如图,四边形ABCD 中,AB CD ∥,C DAB ∠=∠,点E 在线段BC 上,DF 平分EDC ∠,交BC 于点M ,交AE 延长线于点F ,若90C ∠=︒,180AED AEC ∠+∠=︒,设AED x ∠=,FDC y ∠=,则x 与y 的数量关系是()A .90x y +=︒B .290x y +=︒C .4x y =D .45x y -=︒12.如图,在△ABC 中,BAC ∠和ABC ∠的平分线AE ,BF 相交于点O ,AE 交BC 于E ,BF 交AC 于F ,过点O 作OD BC ⊥于D ,下列三个结论:①90AOB C ∠=︒+∠;②若4AB =,1OD =,则2ABO S =△;③当60C ∠=︒时,AF BE AB +=;④若OD a =,2AB BC CA b ++=,则ABC S ab = .其中正确的个数是()A .1B .2C .3D .4二、填空题13.过n 边形的一个顶点可以画出10条对角线,将它分成m 个小三角形,则m n +的值是.14.如图,在△ABC 中,2BF FD =,EF FC =,若BEF △的面积为4,则四边形AEFD 的面积为.15.如图,CA AB ⊥,垂足为点A ,射线BM AB ⊥,垂足为点B ,15cm AB =,6cm AC =.动点E 从A 点出发以3cm/s 的速度沿射线AN 运动,动点D 在射线BM 上,随着E 点运动而运动,始终保持ED CB =.若点E 的运动时间为t 秒()0t >,则当t =秒时,△DEB 与△BAC 全等.14题15题16题16.把△ABC 和△ADE 如图放置,B ,D ,E 正好在一条直线上,AB =AC ,AD =AE ,∠BAC =∠DAE .则下列结论:①△BAD ≌△CAE ;②BE =CE +DE ;③∠BEC =∠BAC ;④若∠ACE +∠CAE +∠ADE =90°,则∠AEC =135°.其中正确的是.三、解答题17.(1)若两个多边形的边数之比为1∶2,两个多边形所有内角的和为1980°,求这两个多边形的边数.(2)在△ABC 中,9,2AB AC ==,若△ABC 的周长为偶数,求BC 的值及△ABC 的周长18.如图所示,在△ABC 中,AD 是高,AE BF 、是角平分线,它们相交于点O ,5070BAC C ∠=︒∠=︒,,求DAC BOA ∠∠、的度数.19.如图,在四边形OACB 中,CM OA ⊥于M ,12∠=∠,CA CB =.求证:(1)34180∠+∠=︒;(2)2OA OB OM +=.20.定义:如果一个三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC 是“准互余三角形”,90C ∠>︒,56A ∠=︒,则B ∠=_____°;(2)若△ABC 是直角三角形,90ACB ∠=︒.①如图,若AD 是BAC ∠的角平分线,请你判断ABD △是否为“准互余三角形”?并说明理由.②点E 是边BC 上一点,ABE 是“准互余三角形”,若28B ∠=︒,求AEB ∠的度数.21.如图1,在△ABC 中,∠ABC 的角平分线与∠ACB 的外角∠ACD 的平分线交于点A 1,(1)分别计算:当∠A 分别为700、800时,求∠A 1的度数.(2)根据(1)中的计算结果,写出∠A 与∠A 1之间的数量关系___________________.(3)∠A 1BC 的角平分线与∠A 1CD 的角平分线交于点A 2,∠A 2BC 的角平分线与∠A 2CD 的角平分线交于点A 3,如此继续下去可得A 4,…,∠A n ,请写出∠A 5与∠A 的数量关系_________________.(4)如图2,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时,有下面两个结论:①∠Q+∠A1的值为定值;②∠D-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.22.(12分)在平面直角坐标系中,点A的坐标为(3,3),AB=BC,AB⊥BC,点B在x 轴上.(1)如图1,AC交x轴于点D,若∠DBC=10 ,则∠ADB=.(2)如图1,若点B在x轴正半轴上,点C(1,﹣1),求点B坐标;(3)如图2,若点B在x轴负半轴上,AE⊥x轴于点E,AF⊥y轴于点F,∠BFM=45°,MF交直线AE于点M,若点B(﹣1,0),BM=5,求EM的长.。
人教版八年级上册数学《第一次月考》考试(必考题)

人教版八年级上册数学《第一次月考》考试(必考题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是( )A .4B .±4C .8D .±82.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm3.下列各式中,正确的是( )A .2(3)3-=-B .233-=-C .2(3)3±=±D .23=3± 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A.30°B.35°C.45°D.60°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)13的整数部分是a,小数部分是b3a b-=______.2.若关于x、y的二元一次方程3x﹣ay=1有一个解是32xy=⎧⎨=⎩,则a=_____.323(1)0m n-+=,则m-n的值为________.4.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y 轴上,则点C 的坐标是________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解分式方程: 2216124x x x --=+-2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、C5、C6、B7、B8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、43、44、(﹣5,4).5、(-2,0)6、120三、解答题(本大题共6小题,共72分)1、原方程无解2、13、(1)a≥2;(2)-5<x<14、略.5、(1)略(2)等腰三角形,理由略6、(1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.。
人教版八年级上册数学《第一次月考》考试题(及答案)

人教版八年级上册数学《第一次月考》考试题(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )A .12B .10C .8或10D .6 3.式子12a a +-有意义,则实数a 的取值范围是( ) A .a ≥-1 B .a ≠2 C .a ≥-1且a ≠2 D .a >24.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6410.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_______cm.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。
人教版八年级上册数学《第一次月考》试卷含答案

人教版八年级上册数学《第一次月考》试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .156.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,小明从A点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A点时,一共走的路程是()A.100米B.110米C.120米D.200米10.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD =AF ;④S △ABE =S △CDE ;⑤S △ABE =S △CEF .其中正确的是_______.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.已知关于x 的方程x 2 -(m+1)x+2(m-1)=0,(1)求证:无论m 取何值时,方程总有实数根;(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、C6、A7、D8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、12、如果两个角是同一个角的余角,那么这两个角相等3、14、8.5、①②⑤6、(-10,3)三、解答题(本大题共6小题,共72分)1、原方程无解2.3、()1略()24和24、(1) 65°;(2) 25°.5、(1)略(2)等腰三角形,理由略6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。
人教版八年级上册数学第一次月考试题

A.带①去B.带②去C.带③去D.带①17.等腰三角形是轴对称图形,它的对称轴是和②去5.下面4个汽车标志图案中,不是轴对称图形的是()I L pj-J 声八年级上册数学第一次月考试题、选择题(3' X 10=30')1、下列命题中正确的是() A .全等三角形的高相等 B .全等三角形的中线相等C.全等三角形周长相等 D .全等三角形的角平分线相等 2、如图2,直线a 、b 、c 表示三条公路,现要建一个货物中 转站,要求它到三条公路的距离相等,则可供选择的地址有 A. 一处 B.两处 C.三处D.四处 3、如图 3, ZXABC 中,AB= AC ADLBC,点 E 、F 分别是 BR DC 的中点,则图中全等三角形共有( A. 3对 B. 4对 C. 5对 4、如图4,某同学把一块三角形的玻璃不小心打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法 (第8题)(第9题) 9、如图9,在△ ABC 中,AB= AC= 20cm, DE 垂直平分 AR 垂足为 E,AC 于D,若△ DBC 的周长为35cm,则BC 的长为( )A 、5cmB 、10cmC 、15cmD 、17.5cm10、在直角坐标系中,A (1, 2)点的纵坐标乘以一1,横坐标不变,得到B 点,则A 与B 的关系是()A 关于x 轴对称B 关于y 轴对称C 关于原点轴对称D 不确定 二.填空题(2' X 12=24')11、已知:△ABC^^A' B' C' ,/A=/A' ,/B=/B' , Z C=70 ° , AB=15cm ,则/ C' =, A ' B' =。
12等腰三角形的一个角是 80。
,则它的底角是 . 13.如图13所示,五角星的五个角都是顶角为36。
的等腰三角形,则 /AMB的度数为 A. 144°OC.14.如图14,已知AC=DB,要使△ABC^zXDCB,则需要 补充的条件为 (填一个即可)15、已知等腰三角形的两边长分别为2cm, 4cm 则其周长为A B 6.已知等腰三角形的一个外角等于 是( ). A 80 ° B 20 ° C 80 或 定 CD100° ,则它的顶角 20° D 不能确 7.小明从镜子中看到对面电子钟示数如图所示,这时的时刻 应是() A. 21: 10 C. 10: 51 B. 10: 21 D. 12: 01 8、如图(8) AB ±BC, D 为BC 的中点,以下结论正确的有 ()个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双泉初中八年级第一次月考数学试卷总分150分考试时间120分钟
班级姓名学号
E,EF∥BD交CD于
F,则图中共有等腰三角形
[ ]
A.5个
B.6个
C.7个
D.8个
2.若一个等腰三角形的两边分别是3cm和6cm, 则它的周长为
[ ]
A.15cm
B.12cm
C.12cm或15cm
D.18cm
3.如图,已知:AB=AD,∠BAC=∠DAC,∠B=90°.则AD与DC的关系是
[ ]
A.相等
B.互相垂直
C.互相垂直平分
D.平行
4.等腰三角形的定义是
[ ]
A.三边都相等的三角形
B.两个角相等的三角形
C.三边中有两边相等的三角形
D.三个角都相等的三角形
5.下面四个图形中, 哪个不是轴对称图形
[ ]
A.有两个内角相等的三角形
B.有一个内角45°的直角三角形
C.有一个内角是30°,一个内角是120°的三角形
D.有一个内角是30°的直角三角形
6.已知:如图在△ABC中, AB=AC, CD为∠ACB平分线,DE∥BC,∠A=40°,则∠EDC的度数是
[ ]
A.30°
B.36°
C.35°
D.54°
7.如果两个三角形全等,则不正确的是
[ ]
A.它们的最小角相等
B.它们的对应外角相等
C.它们是直角三角形
D.它们的最长边相等
8.下列结论正确的是
[ ]
A.有一个角和两条边对应相等的两个三角形全等
B.有三个角对应相等的两个三角形全等
C.∆ABC和∆DEF中,AB=DE∠B=∠D,∠C=∠F,则这两个三角形全等
D.有一边和一锐角分别相等的两个直角三角形全等
9.下面的说法中 , 正确的是
[ ]
A.两边及一边对角对应相等的两三角形全等
B.三个角对应相等的两个三角形全等
C.面积相等的两个三角形全等
D.两边及第三边上的高对应相等的两个三角形全等
10.等腰三角形一底角为30°,底边上的高为9cm,则腰长为___cm.
[ ]
3
D.9
C.9
B.18
A.3
2.等腰三角形是轴对称图形,它的对称轴是_______.
3.如图,△ABD≌△ACE,则
AB的对应边是___,∠BAD的对应角是∠____.
4.
.
'
'
'
_______,
______
)5(
.
_______
,
_______
,
______
)4(
.
_______
______
,
_______
,
______
)3(
.
_______
______
_____,
______
,
______
,
______
)2(
________;
)1(:
'
'
'
'
'
'
:
,
就是所求的角
作射线
经过点
交前弧于点
长为半径作弧
以
为圆心
以点
于点
交
长为半径作弧
以
为圆心
以点
于点
交
于点
交
为半径作弧
以
为圆心
以点
作射线
作法
使
求作
如图
B
O
A
AOB
B
O
A
B
O
A
AOB
∠
∠
=
∠
∠
∠
5.在1."角"、2."等腰三角形"、3."不等边三角形"三个图形中, 是轴对称图形的有
________, .(用各图形对应的数字来表示)
6.△ABC中,AB=AC,∠A=40°,点O在△ABC内,且∠OBC=∠OCA,则∠BOC度数为_______.
7.两条直线平行,内错角相等的逆定理是_______________________.
8.Rt△ABC中,∠C=90°,CD是AB边中线,延长CD到E使DE=CD,连结AE,图中有________对全等三
角形,若AB=a,CD为________.
9.已知:如图 , AB=DE , AC=DF , 要证△ABC≌△DEF , 所缺一个条件是
∠_______=∠____________.
10.已知:如图,A、C、D、B四点共线,AC=BD,∠A=∠B,∠E=∠F,图中全等三角形有______对.
三.计算题(本题包括4小题,共40分。
)
a,求作△ABC,使其中一个内角等于a,且a的对边等于a,另一边等于
b(保留作图痕迹,标明顶点名称,其它均不作要求).注意:不得直接在已知的图上作所求作的
三角形.
2.如图,AB=AC,D为BC中点,DE⊥AB,DF⊥AC,
求证:DE=DF
3.如图所示,已知:∆ABC中AB=AC,∠BAC=90°,BD平分∠ABC交AC于D,DE⊥BC,
E为垂足,若BC=10cm,试求∆DEC的周长.
4.等腰三角形的底角等于15°,腰长为2a,求腰上的高.
求证:∠B=∠C
2.如图所示,BD 平分∠ABC ,AB =BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,M 、N 为垂足.求证:PM =PN .
3.已知:如图,在△ABC 中,D 为BC 边的中点,DE ⊥AB 于E,DF ⊥AC 于F;AB=AC.求证:DE=DF。