第十七章勾股定理作业题
17.1.1 勾股定理 人教版数学八年级下册分层作业(含答案)
人教版初中数学八年级下册17.1.1 勾股定理同步练习夯实基础篇一、单选题:1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2【答案】C【分析】利用勾股定理即可得到结果.【详解】解:在△ABC中,∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:.故选:C.【点睛】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.2.在△ABC中,∠C=90°,AB=3,则AB2+BC2+AC2的值为()A.6B.9C.12D.18【答案】D【分析】根据,利用勾股定理可得,据此求解即可.【详解】解:如图示,∴在中,∴,故选:D.【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,,满足是解题的关键.3.如图,是由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1【答案】B【分析】根据勾股定理可进行求解【详解】解:如图所示:根据勾股定理得出:,,阴影部分面积是,故选:B.【点睛】此题考查勾股定理,解决此题的关键是清楚阴影部分的两个正方形的面积和等于的平方.4.直角三角形两边长为3,4,则第三边长为()A.5B.C.5或D.不能确定【答案】C【分析】分两种情况,3,4为直角边时和4为斜边时,利用勾股定理求解即可.【详解】解:当3,4为直角边时,第三边的长为,当4为斜边时,第三边的长为,则第三边的长为或,故选:C【点睛】此题考查了勾股定理,解题的关键是掌握勾股定理,直角三角形的两个直角边的平方和等于斜边的平方,注意分类讨论.5.如图,在中,,,垂足为D .若,,则的长为( )A .2.4B .2.5C .4.8D .5【答案】A【分析】先由勾股定理求出的长,再运用等面积法求得的长即可.【详解】解:∵在中,,,,∴,∴,即.故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键.6.等腰三角形的腰长为5,底边上的中线长为4,它的面积为( )A .24B .20C .15D .12【答案】D【分析】根据等腰三角形的性质可知上的中线,同时也是边上的高线,根据勾股定理求出的长即可求得.【详解】解:如图所示,∵等腰三角形中,,是上的中线,,同时也是上的高线,,,,故选:D.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出底边上的中线是上的高线.7.在中,,,,则的长为( )A.3B.3或C.3或D.【答案】A【分析】在中,已知与的长,利用勾股定理求出的长即可;【详解】解:在中,,,,由勾股定理得:,∴的长为3;故选:A【点睛】本题考查了勾股定理,能灵活运用定理进行计算是解题的关键.二、填空题:8.在中,,,,则____.【答案】4【分析】直接根据勾股定理求解即可.【详解】解:∵在中,,,,.故答案为:4.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方和等于斜边长的平方是解答此题的关键.9.一直角三角形的两直角边长满足,则该直角三角形的斜边长为________.【答案】【分析】根据算术平方根的非负性,绝对值的非负性,得出的值,根据勾股定理即可求解.【详解】解:∵,∴,解得:,∴该直角三角形的斜边长为,故答案为:.【点睛】本题考查了算术平方根的非负性,绝对值的非负性,勾股定理,得出的值是解题的关键.10.在中,,.则的面积为______.【答案】60【分析】画出图形,过点作于,利用等腰三角形的三线合一性质得到,再利用勾股定理求得即可求解.【详解】解:如图,过点作于,则,∵,,∴,∴在中,,∴,故答案为:60.【点睛】本题考查等腰三角形的性质、勾股定理、三角形的面积公式,熟练掌握等腰三角形的三线合一性质解答的关键.11.如图,在中,.以、为边的正方形的面积分别为、.若,,则的长为______.【答案】3【分析】根据正方形的面积求得,,再根据勾股定理求解即可.【详解】解:∵以、为边的正方形的面积分别为、,,,∴,,在中,,由勾股定理得:,故答案为:3.【点睛】本题考查勾股定理、正方形的面积,熟练掌握勾股定理是解答的关键.12.若直角三角形的两边长为a、b,且满足,则该直角三角形的斜边长的平方为_____.【答案】25或16##16或25【分析】先根据非负数的性质求出两直角边长、,已知两直角边求斜边可以根据勾股定理求解.【详解】解:,,解得:,,,,解得,,①当a,b为直角边,该直角三角形的斜边长的平方为,②4也可能为斜边,该直角三角形的斜边长的平方为16,故答案为:25或16.【点睛】本题考查了非负数的性质,根据勾股定理计算直角三角形的斜边,正确的运用勾股定理是解题的关键.13.如图,为中斜边上的一点,且,过作的垂线,交于,若,,则的长为________.【答案】【分析】连接,根据已知条件,先证明,再根据全等三角形的性质,求得的长度,进而勾股定理即可求解.【详解】解:如图,连接.∵为中斜边上的一点,且,过作的垂线,交于,∴,∴在和中,,∴,∴,又∵,∴.在中,,∴故答案为:.【点睛】本题主要考查了直角三角形全等的判定()以及全等三角形的性质,勾股定理,连接是解决本题的关键.14.如图,Rt中,,现将沿进行翻折,使点A刚好落在上,则_____.【答案】##2.5【分析】设,将沿进行翻折,使点A刚好落在上,则.则直角中根据勾股定理,即可得到一个关于的方程,即可求得.【详解】解:设,则在Rt中,.则.在Rt中:.即:.解得:【点睛】此题考查了勾股定理的运用,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.三、解答题:15.如图,在△ABC中,AD⊥BC于点D,AB=3,BD=2,DC=1,求AC的长.解:在Rt△ABD中,AB=3,BD=2,由勾股定理得AD2=AB2-BD2=32-22=5.在Rt△ACD中,CD=1,由勾股定理得16.如图,在△ABC中,AB=AC,BC=10,CD⊥AB,垂足为D,CD=8.求AC的长.解∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△BCD中,设AC=AB=x,则AD=x-6.在Rt△ACD中,AC2=AD2+CD2,即x2=(x-6)2+82,解得x=,即AC的长为.17.、、是的三边,且有.若是直角三角形,求的值.【答案】或【分析】先根据完全平方公式把原式变形为,可得,,再分两种情况讨论,即可求解.【详解】解:∵∴∴∴∴,,解得:,,当,为直角边时,;当为斜边时,;综上所述,的值为或.【点睛】本题主要考查了完全平方公式的应用,勾股定理,熟练掌握完全平方公式的应用,勾股定理,利用分类讨论思想解答是解题的关键.18.已知:如图,在中,,点是中点,于点,求证:.【答案】见解析【分析】在、、中,运用三次勾股定理,然后利用等量代换即可证明结论.【详解】证明:在中,,在中,,∴,又∵是中点,∴,∴,即:.【点睛】题目主要考查勾股定理的重复运用,熟练掌握勾股定理且准确应用等量代换是解题关键.能力提升篇一、单选题:1.如图,在△ABC中,AB=AC=6,∠BAC=120°,过点A作AD⊥BA交BC于点D,过点D作DE⊥BC 交AC于点E,则AE的长为( )A.1B.2C.3D.4【答案】B【分析】根据等腰三角形的性质可得,根据含角的直角三角形的性质可得的长,再求出的长,即可确定的长.【详解】解:,,,,,设,则,根据勾股定理,可得,解得或(舍去),,,,,,,设,则,根据勾股定理,得,或(舍去),,,故选:B.【点睛】本题考查了等腰三角形的性质,勾股定理、直角三角形的性质,熟练掌握这些性质是解题的关键.2.如图,在四边形中,,,点是边上一点,,,.下列结论:①;②;③四边形的面积是;④;⑤该图可以验证勾股定理.其中正确的结论个数是()A.2个B.3个C.4个D.5个【答案】D【分析】利用可证,故①正确;由全等三角形的性质可得出,,求出,即可得到②正确;根据梯形的面积公式可得③正确;根据列式,可得④正确;整理后可得,即⑤正确.【详解】解:∵,,∴,∴,在和中,,∴,故①正确;∴,,∵,∴,∵,∴,故②正确;∵,,∴梯形的面积是,故③正确;∵,∴,故④正确;整理得:,∴该图可以验证勾股定理,故⑤正确;正确的结论个数是5个,故选:D.【点睛】本题考查了全等三角形的判定及性质的运用,梯形的面积计算,三角形的面积计算,勾股定理等知识,解答时证明三角形全等是关键.3.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列结论:①;②x﹣y=2;③2xy+4=49;④x+y=7.其中正确的结论是( )A.①②B.②④C.①②③D.①③【答案】C【分析】由题意知,①﹣②可得2xy=45记为③,①+③得到,由此即可判断.【详解】解:由题意知,①﹣②可得2xy=45记为③,①+③得到,∴,∴.∵x>y,由②可得x-y=2由③得2xy+4=49∴结论①②③正确,④错误.故选:C.【点睛】本题考查勾股定理中弦图的有关计算,准确找出图中的线段关系,并利用完全平方公式求出各个式子的关系是解题的关键.二、填空题:4.如图,点在边长为5的正方形内,满足,若,则图中阴影部分的面积为______.【答案】19【分析】根据勾股定理求出,分别求出和正方形的面积,即可求出答案.【详解】解:∵在中,,,,由勾股定理得:,∴正方形的面积是,∵的面积是,∴阴影部分的面积是,故答案为:19.【点睛】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.5.如图,在中,,AB的垂直平分线交AB于点D,交BC的延长线于点E.若,,则EC的长为______.【答案】【分析】连接,根据垂直平分线的性质得出,再由勾股定理确定,设,则,利用勾股定理求解即可.【详解】解:连接,如图所示:∵的垂直平分线交于点D,交的延长线于点E,∴,∵,,,∴,设,则,在中,,即,解得:,∴,故答案为:.【点睛】题目主要考查垂直平分线的性质,勾股定理解三角形等,理解题意,综合运用这些知识点是解题关键.6.如图,已知直角三角形的周长为24,且阴影部分的面积为24,则斜边的长为______.【答案】10【分析】根据阴影部分面积等于以为直径的半圆面积之和加上的面积减去以为直径的半圆面积进行求解即可.【详解】解;∵直角三角形的周长为24,∴,,∴,∵阴影部分的面积为24,∴,∴∴∴,∴,故答案为:10.【点睛】本题主要考查了勾股定理,完全平方公式,熟知相关知识是解题的关键.三、解答题:7.已知:在中,,、、所对的边分别记作a、b、c.如图1,分别以的三条边为边长向外作正方形,其正方形的面积由小到大分别记作、、,则有,(1)如图2,分别以的三条边为直径向外作半圆,其半圆的面积由小到大分、、,请问与有怎样的数量关系,并证明你的结论;(2)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2Sa,根据(2)中的探索,直接回答与有怎样的数量关系;(3)若中,,,求出图4中阴影部分的面积.【答案】(1),证明见解析(2)(3)24【分析】(1)由扇形的面积公式可知,,,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;(2)根据(1)中的求解即可得出答案;(3)利用(2)中的结论进行求解.(1)解:①,根据勾股定理可知:,;(2)解:由(1)知,同理根据根据勾股定理:,从而可得;(3)解:由(2)知.【点睛】本题考查勾股定理的应用,解题关键是对勾股定理的熟练掌握及灵活运用.。
小学数学 勾股定理 PPT+作业+答案
例题3
如图所示,有两个直角三角形,已知 AB 垂直于 BC,AC 垂直于 CD, AB=3 厘米,BC=4 厘米,CD=12 厘米,求 AD 的长。
练习3
如图所示,有两个直角三角形,已知 AB 垂直于 BC,AD 垂直 于 AC,AB=5 厘米,BC=12 厘米,DC²=178 平方厘米,求 AD 的 长。
练习1
如图所示,四个相同的长方形和一个小正方形拼成一个大正方 形。已知小正方形的面积是 4平方厘米,长方形的宽是 3 厘米 ,求大正方形的面积。
小正方形边长:2cm 大正方形边长:2+3+3=8(cm)、 大正方形面积:8×8=64(cm²)
例题2
下面的“赵爽弦图”是由四个完全一样的直角三角形与中间的小正方形拼成的一个大 正方形。其中 AE=3cm,ED=4cm ,请问:(1)大正方形的面积是多少?(2)直角 △AED 的三条边长有什么关系?
【答案】连接两棵树的顶端
作业7
7、四个一样的长方形和一个小的正方形(如下图)拼成了一个 大正方形,已知大正方形的边长是 6 米,一个长方形的面积是 8 平方米,小正方形的边长是多少? 【答案】2 米 【解析】小正方形的面积是: 6 ✖️6-4 ✖️ 8 = 4 (平方米),因 此边长是 2 米。
作业8 8、下图是一幅“赵爽弦图”,已知每个直角三角形的两条直角边 分别长 6 分米和 8 分米,那么大正方形的面积是多少?
例题1
如图所示,四个相同的长方形和一个小正方形拼成一个大正方 形。已知大正方形的边长是10 米,小正方形的边长是 4 米, 求每个长方形的面积。
边长为 10 米的正方形面积是:10 ×10=100(平方米) 边长为 4 米的正方形面积是: 4 × 4=16(平方米) 面积和是:100-16=84(平方米) 小长方形面积:84÷4=21(平方米)
人教版八年级数学下册优秀作业课件(RJ) 第十七章 勾股定理 勾股定理的逆定理
17.(呼和浩特中考)如图,在△ABC 中,内角 A,B,C 所对的边分别为 a, b,c.
(1)若 a=6,b=8,c=12,请直接写出∠A 与∠B 的和与∠C 的大小关系; (2)求证:△ABC 的内角和等于 180°; (3)若a-ab+c =12(a+cb+c) ,求证:△ABC 是直6,b=8,c=12,∴∠A+∠B<∠C
(2)如图,过点 A 作 MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两
直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠
B+∠BAC+∠C=180°(等量代换),即△ABC 的内角和等于 180° (3)∵
A.15 B.16 C.17 D.18
11.如图,△ABC的顶点在正方形网格的格点上 ,若小方格的边长为 1,则 △ABC是( B )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.以上都不对
12.木工师傅做一个长方形桌面,量得它的长为80分米,宽为60分米,对角线为 100分米,则这个桌面__合__格_.(填“合格”或“不合格”)
数学 八年级下册 人教版
第十七章 勾股定理 17.2 勾股定理的逆定理
1.下列各组数中的三个数,可作为三边长构成直角三角形的是( B ) A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1, 2 ,3
2.(教材P33练习T1变式)在△ABC中,∠A,∠B,∠C的对边分别是a,b,c, 下列说法中,不能推出△ABC是直角三角形的是(C )
解:(1)是,∠B是直角 (2)不是 (3)是,∠C是直角 (4)是,∠A是直角
5.如图,在△ABC 中,CD⊥AB 于点 D,AC=4,BC=3,AD=156 . (1)求 CD,BD 的长; (2)求证:△ABC 是直角三角形.
人教版八年级数学下册第十七章勾股定理练习(含答案)
第十七章勾股定理一、单选题1.在Rt△ABC中,△C=90°,AC=3,BC=4,则点C到AB的距离是()A.34B.35C.45D.1252.下列各组数中,不是勾股数的为()A.3,4,5B.6,8,10C.5,12,13D.5,7,103.以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2;(3)23,24,25;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4.如图,点A表示的实数是()A B C.1D.15.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD△AC于点D.则BD的长为()A B C D6.如图,三角形纸片ABC ,AB=AC ,△BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A .2B .C .3D .7.如图,圆柱形玻璃板,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的A 处,则蚂蚁到达蜂蜜的最短距离( )cm .A .14B .15C .16D .178.如图,一根长5米的竹竿斜靠在一竖直的墙AO 上,这时AO 为4米.如果竹竿的顶端A 沿墙下滑1米,竹竿底端B 外移的距离BD ( )A .等于1米B .大于1米C .小于1米D .以上都不对 9.如图,在四边形ABCD 中,12AB =,17BC =,8CD =,9AD =,15BD =,则四边形ABCD 的面积为( )A .122B .114C .110D .10010.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A .0.8米B .2米C .2.2米D .2.7米二、填空题 11.直角三角形的两条直角边分别为6cm 和8cm ,则这个直角三角形的周长为________cm . 12.在直角坐标系中,已知点A (0,2),B (1,3),则线段AB 的长度是_____. 13.如图,已知在Rt ABC △中,90ACB ∠=︒,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于____.14.如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为__,BC 的长为__,CD 的长为__,AD 的长为__;(2)连接AC ,通过计算△ACD 的形状是__;△ABC 的形状是__.三、解答题15.已知在ABC ∆中,D 是BC 的中点,DE BC ⊥,垂足为D ,交AB 于点E ,且222BE AE AC -=.(1)求A ∠的度数;(2)若3DE =,4BD =,求AE 的长.16.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A ′,那么梯子的底端在水平方向滑动了几米?17.如图,一艘船由A 港沿北偏东60°方向航行10km 至B 港,然后再沿北偏西30°方向航行10km 至C 港.(1)求A ,C 两港之间的距离(结果保留到0.1km ≈1.414);(2)确定C 港在A 港的什么方向.18.如图,把一块三角形()ABC △土地挖去一个直角三角形()90ADC ∠=︒后,测得6CD =米,8AD =米,24BC =米,26AB =米.求剩余土地(图中阴影部分)的面积.答案1.D2.D3.B4.B5.A6.B7.B8.A9.B10.D11.24.1213.2π14.(15,,(2)等腰三角形,直角三角形15.(1)90°(2)1.416.(1) 这个梯子的顶端距地面有24米;(2) 梯子的底端在水平方向滑动了8米17.(1)A、C两地之间的距离为14.1km;(2)C港在A港北偏东15°的方向上.96m 18.剩余土地(图中阴影部分)的面积为2。
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。
2020-2021学年八年级数学人教版下册《第17章勾股定理》章末综合课后提升作业题(附答案)
2021年度人教版八年级数学下册《第17章勾股定理》章末综合课后提升作业题(附答案)1.在△ABC中,AB=AC=10,BD是AC边上的高,DC=2,则BD等于()A.2B.4C.6D.82.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.9B.36C.27D.343.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE,EB在一条直线上,证明中用到的面积相等关系是()A.S△EDA=S△CEB B.S△EDA+S△CDE+S△CEB=S四边形ABCDC.S△EDA+S△CEB=S△CDE D.S四边形AECD=S四边形DEBC4.下面各图中,不能证明勾股定理正确性的是()A.B.C.D.5.下列条件中,使△ABC不是直角三角形的是()A.a=3,b=4,c=5B.a2+b2=c2C.a:b:c=2:2:3D.∠A:∠B:∠C=1:2:36.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5B.4或7C.4或5或7D.4或7或97.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是()A.8B.10C.64D.1368.如图,网格中每个小正方形的边长均为1,点A,B,C都在格点上,以A为圆心,AB 为半径画弧,交最上方的网格线于点D,则CD的长为()A.B.0.8C.3﹣D.9.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+10.在直角坐标系中,点P(﹣2,3)到原点的距离是()A.B.C.15D.211.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm212.直角三角形的周长为24,斜边长为10,则其面积为()A.96B.49C.24D.4813.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案.已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x﹣y=2;③x+y=9;④2xy+4=49;其中说法正确的是()A.①②B.①②③C.①②④D.①②③④14.下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23 15.下列各组数中,能作为直角三角形三边长度的是()A.5、12、23B.6、8、10C.2、3、4D.4、5、616.如图,在△ABC中,D是BC上一点,已知AB=13,AD=12,AC=15,BD=5,则DC的长为()A.13B.12C.9D.817.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm18.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形D.如果a2+b2≠c2,则△ABC不是直角三角形19.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14B.13C.14D.1420.如图,Rt△ABC中,∠C=90度.将△ABC沿折痕BE对折,C点恰好与AB的中点D 重合,若BE=4,则AC的长为.21.如图,有一四边形空地ABCD,AB⊥AD,AB=3,AD=4,BC=12,CD=13,则四边形ABCD的面积为.22.如图,图中的所有三角形都是直角三角形,所有四边形都是正方形,正方形A的边长为,另外四个正方形中的数字8,x,10,y分别表示该正方形面积,则x与y的数量关系是.23.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为m.24.如图由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是m.25.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了cm.26.如图,在△ABC中,∠C=90°,AB=10,BC=8,AD是∠BAC的平分线,DE⊥AB 于点E,则△BED的周长为.27.已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为.28.已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a <21)个单位到△DEF的位置.(1)求BC边上的高;(2)若AB=10,①求线段DF的长;②连接AE,当△ABE时等腰三角形时,求a的值.29.如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:a2+b2=c2(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.①请在坐标轴上找一点C,使△ABC为等腰三角形.写出一个满足条件的在x轴上的点的坐标:;写出一个满足条件的在y轴上的点的坐标:,这样的点有个.30.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.31.如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?32.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称,;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)33.如图,在△ABD中,AC⊥BD于C,点E为AC上一点,连接BE、DE,DE的延长线交AB于F,已知DE=AB,∠CAD=45°.(1)求证:DF⊥AB;(2)利用图中阴影部分面积完成勾股定理的证明,已知:如图,在△ABC中,∠ACB=90°,BC=a,AC=b,AB=c,求证:a2+b2=c2.34.已知:在△ABC中,CD⊥AB于D,且CD2=AD•BD.求证:△ABC总是直角三角形.35.如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.36.已知:如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动的时间为t秒,(1)当△ABP为直角三角形时,求t的值:(2)当△ABP为等腰三角形时,求t的值.(本题可根据需要,自己画图并解答)37.在△ABC中,AB=15cm,AC=13cm,高AD=12cm.求△ABC的面积.38.在△ABC中,(1)如图1,AC=15,AD=9,CD=12,BC=20,求△ABC的面积;(2)如图2,AC=13,BC=20,AB=11,求△ABC的面积.39.如图,△ABC中,AB的垂直平分线DE分别交AC、AB于点D、E,且AD2﹣DC2=BC2.(1)求证:∠C=90°;(2)若AC=16,CD:AD=3:5,求BC的长.40.如图,某港口O位于南北延伸的海岸线上,东面是大海.远洋号、长峰号两艘轮船同时离开港O,各自沿固定方向航行,“远洋”号每小时航行12海里,“长峰”号每小时航行16海里,它们离开港口1小时后,分别到达A,B两个位置,且AB=20海里,已知“远洋”号沿着北偏东60°方向航行,请判断“长峰”号航行的方向,并说明理由.41.我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.42.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?43.如图,把一块三角形(△ABC)土地挖去一个直角三角形(∠ADC=90°)后,测得CD=6米,AD=8米,BC=24米,AB=26米.求剩余土地(图中阴影部分)的面积.44.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?45.如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.46.(1)已知在△ABC中,AB=,AC=,BC=5,则△ABC的形状为.(直接写出结果)(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上.(每个小方格的边长为1)47.如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.(1)求AD的长;(2)求AE的长.48.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四边形ABCD的周长为32.(1)求∠BDC的度数;(2)四边形ABCD的面积.49.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.50.如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等.求E应建在距A多远处?参考答案1.解:∵AB=AC=10,CD=2,∴AD=10﹣2=8,∵BD是AC边上的高,∴∠BDA=90°,由勾股定理得:BD===6,故选:C.2.解:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,45﹣9=36.故选:B.3.解:根据勾股定理可得:S△EDA+S△CDE+S△CEB=S四边形ABCD.故选:B.4.解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故选:C.5.解:A、∵32+42=52,∴△ABC是直角三角形,不符合题意;B、∵a2+b2=c2,∴△ABC是直角三角形,不符合题意;C、∵22+22≠32,∴△ABC不是直角三角形,符合题意;D、∵∠A:∠B:∠C=1:2:3,∴∠C=90°,∴△ABC是直角三角形,不符合题意;故选:C.6.解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC﹣AE=(8﹣t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.7.解:由勾股定理得,AC2+CD2=AD2,则字母B所代表的正方形的面积=CD2=AC2﹣AD2=100﹣36=64,故选:C.8.解:如图,连接AD,则AD=AB=3,由勾股定理可得,Rt△ADE中,DE==,又∵CE=3,故选:C.9.解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选:A.10.解:过P作PE⊥x轴,连接OP,∵P(﹣2,3),∴PE=3,OE=2,∴在Rt△OPE中,根据勾股定理得:OP2=PE2+OE2,∴OP==,则点P在原点的距离为.故选:B.11.解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.12.解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为x,则另一边14﹣x,根据勾股定理可知:x2+(14﹣x)2=100,解得x=6或8,所以面积为6×8÷2=24.故选:C.13.解:①∵△ABC为直角三角形,∴根据勾股定理:x2+y2=AB2=49,故本选项正确;②由图可知,x﹣y=CE==2,故本选项正确;③由2xy+4=49可得2xy=45①,又∵x2+y2=49②,∴①+②得,x2+2xy+y2=49+45,整理得,(x+y)2=94,x+y=≠9,故本选项错误;④由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积,列出等式为4××xy+4=49,即2xy+4=49;故本选项正确.∴正确结论有①②④.故选:C.14.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.15.解:A、因为52+122≠232,故不能作为直角三角形三边长度;B、因为62+82=102,故能作为直角三角形三边长度;C、因为22+32≠42,故不能作为直角三角形三边长度;D、因为42+52≠62,故不能作为直角三角形三边长度.故选:B.16.解:∵AB=13,AD=12,BD=5,∴AD2+BD2=AB2,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,在Rt△ADC中,由勾股定理得:DC===9,故选:C.17.解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选:C.18.解:A、∠C﹣∠B=∠A,即∠A+∠B=∠C,又∵∠A+∠B+∠C=180°,则∠C=90°,那么△ABC是直角三角形,说法正确;B、c2=b2﹣a2,即a2+c2=b2,那么△ABC是直角三角形且∠B=90,说法正确;C、∠A:∠B:∠C=1:2:3,又∵∠A+∠B+∠C=180°,则∠C=90°,则△ABC是直角三角形,说法正确;D、a=3,b=5,c=4,32+52≠42,但是32+42=52,则△ABC可能是直角三角形,故原来说法错误.故选:D.19.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.20.解:根据题意,得DE垂直平分AB,则AE=BE.得∠A=∠ABE根据折叠,得∠ABE=∠CBE再根据直角三角形的两个锐角互余得∠A=∠ABE=∠CBE=30°∴CE=BE=2则AC=4+2=6.21.解:如图,连接BD,∵在Rt△ABD中,AB⊥AD,AB=3,AD=4,根据勾股定理得,BD=5,在△BCD中,BC=12,CD=13,BD=5,∴BC2+BD2=122+52=132=CD2,∴△BCD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=AB•AD+BC•BD=×3×4+×12×5=36.故答案为:36.22.解:∵正方形A的边长为,∴S A=37,根据勾股定理的几何意义,得x+10+(8+y)=S A=37,∴x+y=37﹣18=19,即x+y=19.故答案为x+y=19.23.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.故答案是:12.24.解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10(米).所以大树的高度是10+6=16(米).故答案为:16.25.解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.26.解:∵∠C=90°,AB=10,BC=8,∴由勾股定理可得,Rt△ABC中,AC=6,∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,AD=AD,∴△ADE≌△ADC(AAS),∴CD=ED,AE=AC=6,又∵AB=10,∴BE=4,∴△BED的周长=BD+CD+BE=BD+CD+BE=BC+BE=8+4=12,故答案为:12.27.解:分两种情况:①当△ABC是锐角或直角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2;综上所述,BC的长为2或2.故答案为:2或2.28.解:(1)作AM⊥BC于M,∵△ABC的面积为84,∴×BC×AM=84,解得,AM=8,即BC边上的高为8;(2)①在Rt△ABM中,BM==6,∴CM=BC﹣BM=15,在Rt△ACM中,AC==17,由平移的性质可知,DF=AC=17;②当AB=BE=10时,a=BE=10;当AB=AE=10时,BE=2BM=12,则a=BE=12;当EA=EB=a时,ME=a﹣6,在Rt△AME中,AM2+ME2=AE2,即82+(a﹣6)2=a2,解得,a=,则当△ABE时等腰三角形时,a的值为10或12或.29.解:(1)由图可得,×(a+b)(a+b)=ab+c2+ab,整理得=,∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.(2)一个满足条件的在x轴上的点的坐标:(﹣1,0);一个满足条件的在y轴上的点的坐标:(0,2+),这样的点有4个.故答案为:(﹣1,0);(0,2+),4.30.证明:连接BD,过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.31.解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,解得x=8.∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.32.(1)解:∵直角梯形和矩形的角都为直角,所以它们一定为勾股四边形.(2)证明:连接CE,∵BC=BE,∠CBE=60°∴△CBE为等边三角形,∴∠BCE=60°又∵∠DCB=30°∴∠DCE=90°∴△DCE为直角三角形∴DE2=DC2+CE2∵AC=DE,CE=BC∴DC2+BC2=AC233.解:(1)∵AC⊥BD,∠CAD=45°,∴AC=DC,∠ACB=∠DCE=90°,在Rt△ABC与Rt△DEC中,,∴Rt△ABC≌Rt△DEC(HL),∴∠BAC=∠EDC,∵∠EDC+∠CED=90°,∠CED=∠AEF,∴∠AEF+∠BAC=90°,∴∠AFE=90°,∴DF⊥AB.(2)∵S△BCE+S△ACD=S△ABD﹣S△ABE,∴a2+b2=•c•DF﹣•c•EF=•c•(DF﹣EF)=•c•DE=c2,∴a2+b2=c2.34.证明:∵CD⊥AB,∴∠ADC=∠BDC=90°,∴在RT△ACD中,根据勾股定理,得AC2=AD2+CD2,在RT△ACD中,根据勾股定理,得BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD•BD+BD2=(AD+BD)2=AB2,∴∠ACB=90°.∴△ABC总是直角三角形.35.解:根据题意得;AC=30海里,AB=40海里,BC=50海里;∵302+402=502,∴△ABC是直角三角形,∠BAC=90°,∴180°﹣90°﹣35°=55°,∴乙船的航行方向为南偏东55°.36.解:(1)∵∠C=90°,AB=5cm,AC=3cm,∴BC=4 cm.①当∠APB为直角时,点P与点C重合,BP=BC=4 cm,∴t=4÷2=2s.②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3 cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,∴52+[32+(2t﹣4)2]=(2t)2,解得t=s.综上,当t=2s或s时,△ABP为直角三角形.(2)①当BP=BA=5时,∴t=2.5s.②当AB=AP时,BP=2BC=8cm,∴t=4s.③当PB=P A时,PB=P A=2t cm,CP=(4﹣2t)cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2,∴(2t)2=32+(4﹣2t)2,解得t=s.综上,当△ABP为等腰三角形时,t=2.5s或4s或s.37.解:(1)如图1,锐角△ABC中,AB=15,AC=13,BC边上高AD=12在Rt△ACD中AB=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中,AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC的长为BD+DC=9+5=14,△ABC的面积:×BC×AD=×14×12=84;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12在Rt△ACD中,AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,在Rt△ABD中,AB=15,AD=12,由勾股定理得BD2=AB2﹣AD2=152﹣122=81,∴BD=9,∴BC=DB﹣CD=9﹣5=4.△ABC的面积:×BC×AD=×4×12=24;综上所述:△ABC的面积为84cm2或24cm2.38.解:(1)∵CD2+AD2=144+81=225,AC2=225,∴CD2+AD2=CA2,∴△△ADC是直角三角形,∴∠ADC=90°,∴CD⊥AB,∴∠ADC=90°,∴BD==16,∴AB=AD+DB=16+9=25,∴△ABC的面积=×25×12=150;(2)过C作CD⊥BA的延长线于点D,∵CD⊥AB,∴∠CDB=90°,设AD为x,DB=(x+11),由勾股定理得:CD2=AC2﹣AD2,CD2=BC2﹣DB2,即AC2﹣AD2=BC2﹣DB2,则132﹣x2=202﹣(x+11)2,解得:x=5,∴CD===12,∴△ABC的面积=•AB•CD=×11×12=66.39.(1)证明:连接BD,∵AB的垂直平分线DE分别交AC、AB于点D、E,∴AD=BD,∵AD2﹣DC2=BC2,∴BD2﹣DC2=BC2,即DC2+BC2=BD2,∴∠C=90°;(2)解:∵AC=16,CD:AD=3:5,∴CD=6,AD=10,∵AD=BD,∴BD=10,在Rt△DCB中,由勾股定理得:BC===8.40.解:由题意得:OA=12,OB=16,AB=20,∵122+162=202,∴OA2+OB2=AB2,∴△OAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COB=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°.41.解:连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积﹣△ACD的面积==24(m2).42.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC===10m,故小鸟至少飞行10m.43.解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).答:剩余土地(图中阴影部分)的面积为:96米2.44.解:∵AC⊥BC,∴∠ACB=90°;根据勾股定理,得BC===12,∴BD=12+2=14(米);答:发生火灾的住户窗口距离地面14米.45.解:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=90°.在Rt△ACD中,AD=5,CD=12,AC===13.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BE=AB=×10=5.在Rt△CAE中,CE===12.∴S四边形ABCD=S△DAC+S△ABC=×5×12+×10×12=30+60=90.46.解:(1)在△ABC中,∵AB=,AC=,BC=5,∴AB2+AC2=5+20=25=BC2,∴△ABC为直角三角形.(2)如图所示:故答案为:直角三角形.47.解:(1)如图所示:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=10,∵DE垂直平分AB,∴AD=BD=5.(2)∵DE垂直平分AB,∴BE=AE,设EC=x,则AE=BE=8﹣x,故62+x2=(8﹣x)2,解得:x=,∴AE=8﹣=.48.解:(1)∵AB=AD=8cm,∠A=60°,∴△ABD是等边三角形,∵∠ADC=150°∴∠BDC=150°﹣60°=90°;(2)∵△ABD为正三角形,AB=8cm,∴其面积为××AB×AD=16,∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,解得BC=10,CD=6,∴直角△BCD的面积=×6×8=24,故四边形ABCD的面积为24+16.49.解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.50.解:设AE=x,则BE=25﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=102+x2,在Rt△BCE中,CE2=BC2+BE2=152+(25﹣x)2,由题意可知:DE=CE,所以:102+x2=152+(25﹣x)2,解得:x=15km.(6分)所以,E应建在距A点15km处31。
(汇总)人教版八年级下册数学第十七章 勾股定理含答案
人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、一架长的梯子斜靠在培上,梯子底端到墙的距高为.若梯子顶端下滑,那么梯子底端在水平方向上滑动了()A. B.小于 C.大于 D.无法确定2、如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,于点D,则AD的长为()A.1B.2C.D.3、如图,在中,,,,将绕点逆时针旋转得到,使得点落在上,则的值为()A. B. C. D.4、如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则的正弦值是()A. B. C. D.5、如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13mB.17mC.18mD.25m6、如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG 的长为A. B. C. D.7、如图1,在中,于点.动点从点出发,沿折线方向运动,运动到点停止.设点的运动路程为的面积为与的函数图象如图2,则的长为()A.3B.6C.8D.98、如图,正方形ABCD和正方形DEFG的边长分别是5和3,且点E、C分别在AD、CD边上,H为BF的中点,连接HG,则HG的长为()A.4B.C.D.29、如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A. πB. πC. πD. π10、如图,Rt△OAB的直角边OA=2,AB=1,OA在数轴上,在OB上截取BC=BA,以原点O为圆心,OC为半径画弧,交数轴于点P,则OP的中点D对应的实数是()A. B. C. D.11、已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形12、如图:是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连结PA,PB,那么使△ABP为等腰直角三角形的点P的个数是( )A.2个B.3个C.4个D.5个13、若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为( )A.12cmB.10cmC.8cmD.6cm14、如图,用8块相同的小长方形拼成一个大长方形,则大长方形对角线的长为()A.10 cmB.72cmC.10 cmD.10cm15、△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5二、填空题(共10题,共计30分)16、如图,已知矩形ABCD,P、R分别是BC和DC上的动点,E、F分别是PA、PR的中点.如果DR=5,AD=12,则EF的长为________.17、如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为________.18、如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,AD⊥BC于点D,则△ACD与△ABC的面积比为________19、一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为________.20、如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将△ABE折叠,点A刚好落在BF上,若AB=2,则AD=________.21、己知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的最小值为________.22、如图,为等边三角形,过点作,且,连接,,过点作的垂线交于点,交延长线于点.若,则________.23、如图,菱形的边长为2,,点Q是的中点,点P是对角线上一动点,则最小值为________.24、如图,在□ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则□ABCD的面积为________cm2.25、如图,在ABCD中,对角线AC,BD交于点O,AC⊥BC,若AB=5,AD=3,则BD的长为________三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、如图,每个小正方形的边长为1,A、B、C为小正方形的顶点,求证:∠ABC=45°.28、如图,Rt△ABC中,∠C = 90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上.(1)若∠BDA = 70°,求∠BAC的度数.(2)若BC = 8,AC = 6,求△ABD中AD边上的高.29、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.30、如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,求梯子顶端A下落了多少米?参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、B6、D7、B8、C9、A10、A11、B13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)
微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。
勾股定理作业
勾股定理作业一.填空题:1.小华和小红都从同一点O 出发,小华向北走了9米到A 点,小红向东走了12米到了B 点,则________=AB 米;2.三角形三个内角的度数之比为3:2:1,它的最小边为a ,则它的最大边是 ;3.直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 ;4.有六根细木棒,它们的长分别是12,10,8,6,4,2(单位:cm ),首尾连结能搭成直角三角形的三根细木棒分别是 ;5.一个直角三角形的三边长为连续整数,则它的各边长为 ;6.等腰三角形底边长为cm 6,腰长为cm 5,它的面积为 ;7.请写出三组以整数为边长的直角三角形的三边长: , , ;8.若一块直角三角板,两直角边分别为cm 12和cm 5,不移动三角板,能画出的线段最长是cm ________;9.如图,明明散步从A 到B 走了41米,从B 到C 走了 40米,从A 到C 走了9米,则B A ∠+∠的度数是 ;10.如图,利用三个正方形可以拼成一个三角形,如果有三个面积为5,x ,y 的正方形,能拼围成一个直角三角形,则x ,y 之间的关系是 ;二.选择题;1下列命题中真命题的个数 ( )(1)已知直角三角形面积为4,两直角边的比为2:1,则它的斜边为5;(2)直角三角形的最大边长为26,最短边长为10,则另一边长为24;(3)在直角三角形中,两条直角边长为12-n 和n 2,则斜边长为12+n ;(4)等腰三角形面积为12,底边上的底为4,则腰长为5;A 1个B 2个C 3个D 4个2.一直角三角形的斜边长比一直角边长大2,另一直角边产为6,则斜边长为 ( ) A 4 B 8 C 10 D 123.在⊿ABC 中,若1,2,122+==-=n c n b n a ,则⊿ABC 是 ( ) A 锐角三角形 B 钝角三角形 C 等腰三角形 D 直角三角形4.有长度分别为5,7,9,12,13,15,16,20,24,25的木棒,用它来摆成直角三角形,可以重复使用,问可摆成不同的直角三角形的个数为 ( ) A 2个 B 3个 C 4个 D 5个5.如图:有一圆柱,它的高等于cm 8,底面直径等于cm 4(3=π)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点 处的食物,需要爬行的最短路程大约是 ( )A cm 10B cm 12C cm 19D cm 20ABCB6.边长分别为下列各组长度的三角形中,不能构成直角三角形的是 ( )A 3.0,4.05.0B 4,5,6C 1,53,54D 1,512,513 三.解答题:1.如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?2.如图,在一块6边长为cm 20的地砖铺设的广场上,一只飞来的鸽子落在A 点处,,鸽子套吃完小朋友洒在B 、C 处的鸟食,最少需要走多远?3.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米处,过了2秒后,测得小汽车与车速检测仪间距离为50米,这辆小汽车超速了吗?4.小明要外出旅游,他带的行李箱长cm 40,宽cm 30,高cm 60,一把cm 70长的饿雨伞能否装进这个行李箱?2.8米9.6米。
人教版八下数学第十七章《勾股定理》单元测试卷及答案
人教版八下数学第十七章《勾股定理》单元测试卷及答案【一、选择题(每小题4分,共40分)BC 21、在厶ABC 中,/ C=90° , BC=2 , AB = ^,则边AC 的长是()A、 5B、3C、3D、13C、4倍6、如图2,正方形网格中的厶ABC,若小方格边长为1,则△ ABC是()1】3、4、3 2~2~55To-3 5~5~4. 5-5-如果△ ABC 中,/ A:/ B:Z C=1 :A、锐角三角形B、直角三角形把直角三角形两直角边同时扩大到原来的2: 3,那么这个三角形是(C、钝角三角形等腰三角形3倍,则斜边扩大到原来的5、对于任意两个正整数m、n (m> n), F列各组三个数为勾股数的一组是(2 2A、m +mn, m —1, 2mn C、m+n , m—n, 2mn2 2 2 2B、m —n , 2mn, m +n2 2D、n —1, n +mn , 2mn2、A、直角三角形B、锐角三角形C 、钝角三角形D、以上答案都不对7、如图3, 一轮船以16海里/小时的速度从港口里/小时的速度同时从港口A出发向东南方向航行,则离开港口2h后,两船相距()A 、25海里B 、30海里C 、35海里D 、40海里&下列叙述中,正确的是()A 、 直角三角形中,两条边的平方和等于第三边的平方B 、 如果一个三角形中两边的平方差等于第三边的平方,那么这个三角形是直角三角形C 、 △ ABC 中,/ A 、/ B 、/ C 的对边分别为 a 、b 、c ,若 a 2+b 2=c 2,则/ A=90°D 、 如果△ ABC 是直角三角形,且/C=90°那么c 2=b 2— a 29、CD 是 Rt △ ABC 斜边 AB 上的高,若 AB=2 , AC : BC=3 : 1,贝U CD 为( )1 2 3 4 A 、5B 、 5C 、 5D 、 510、如图4,矩形ABCG (AB V BC )与矩形CDEF 全等,点B 、C 、D 在同一直线上,/ APE的顶点在线段BD 上移动,使/ APE 为直角的点P 的个数是()11、如图5,将Rt △ ABC 绕点C 按顺时针方向旋转 90 °仏A B'的位置,次开发已知斜边 AB=10cm , BC=6cm ,设 A B 勺中点是 M ,连结 AM ,贝U AM= ________ cm .13、已知|x — 12|+(y —13)2和z 2— 1(图+$5互为相反数,则以x 、y 、z 为三边的三角形为 _角形(填锐角、直角、钝角)图4二、填空题(每小题 3分,共30分)12、如图6,直线I 过正方形 ABCD 的顶点B ,点A 、C 到直线I 的距离分别是A '正方形的边长是 __________1和2,则14、 如图 7, △ ABC 中,CE 平分/ ACB , CF 平分/ ACD ,且 EF // BC 交 AC 于 M ,若 EF=5,则 CE 2+CF 2= _________ .15、 在厶ABC 中,若AB=5cm , BC=6cm , BC 边上的中线 AD=4cm ,则/ ADC 的度数是 _____ . 16、 直角三角形的三边长为连续偶数,则其周长为 _______________ .17、 某人要登上6m 高的建筑物,为确保安全, 梯子底端要离开建筑物 2.5m ,且顶端不低于建筑物顶部,则梯子长应不少于 ___________ m .18、 若直角三角形两直角边的比为 3: 4,斜边长20cm ,则斜边上的高为 _______________ . 19、 如图8,在厶ABC 中,/ B=90° D 是斜边 AC 的垂直平分线与 BC 的交点,连接 AD ,/ DAC :/ DAB=2 : 5,则/ DAC= _____________ .20、 如图 9,在四边形 ABCD 中,AB : BC : CD : DA=2 : 2: 3: 1,且/ ABC=90°,贝U/ DAB 的度数是 _____________ . 三、解答题(每小题 7分,共28分)21、 如图10,在4>4的正方形网格中,每个小正方形的边长都是1,线段AB 和CD 分别是 图中1X 3的两个矩形的对角线, 显然AB // CD ,请你用类似的方法画出过点 E 且垂直于AB图10CD 9的直线,并证明.22、台球是一项高雅的体育运动,其中包含了许多物理、几何学知识,图 球桌,目标球F 与本球之间有一个 G 球阻挡.C BEG'FCC图11-①(1) 击球者想通过击打 E 球,让E 球先撞球台的AB 边,经过一次反弹后再撞击 F 球, 他应将E 球打到AB 边上的哪一点?请在图 10—①中用尺规作出这一点 H ,并作出E 球的 运行路线;(不写画法,保留作图痕迹)(2) 如图11—②,现以D 为原点,建立直角坐标系,记 A ( 0, 4), C ( 8, 0), E ( 4, 3), F ( 7, 1),求E 球按刚才方式运行到球的路线长度(忽略球的大小)23、如图12,已知在△ ABC 中,AD 、AE 分别是BC 边上的高和中线, AB=9cm , AC=7cm ,11—①是一个台C BE-DC图11-②BC=8m ,求DE 的长.ED图1224、如图13 所示的一块地ABCD,已知AD=4m , CD=3m , / ADC=90° ,AB=13m , BC=12m ,,求这块地的面积.图13四、综合应用题(每小题11分,共22分)25、观察下列勾股数:3, 4, 5; 5, 12, 13; 7 24, 25; 9, 40, 41;…,a, b, c根据你发现的规律,请写出(1)当a=19时,求b、c的值.(2)当a=2n+1时,求b、c的值.(3)用(2)的结论判断15, 111, 112是否为一组勾股数,并说明理由.26、如图14,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我国反走私A艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的私艇C的速度不变,最早会在什么时候进入我国领海?距离是13海里,A、B两艇的距离是5海里;反走私艇B测得距离C艇12海里,若走一、 选择题1 〜10 ACBBB ADBCCAC=AB= .. 22 T 2 =/5 , BC= .. 12「12= •、. 2 ,若P 在BC 上,且/ APE 为直角,有AP 2+PE 2=AE 2= ( a+b ) 2+ ( b — a ) 2=2 (a 2+b 2) (1)又 AP 2+PE 2=a 2+ (b — PC ) 2+b 2+ (a+PC ) 2=2 ( a 2+b 2) +2P (a+PC )— 2bpc (2)当a+PC=b 时,(1 )、(2)两式相等,此时,/ APE 为直角 当P 在C 时也适合,故选C .填空题参考答案提示:2、如图1,5、 6、 9、 作AD 丄BC 于D ,AD= #5 - 碍)2设AC 边上的贝UBD=DC ,BC AD 2; h= AC.5h , 可代m=2 , n=1,检验 1 1则 2 AC-h= 2 BC-AD2 2 2 2 2 2 2AC =3 +2 =13 AB =6 +4 =52 2 2 2 2 2BC =8 +1 =65•/ AC +AB =BC2 2设 AC=3x , BC=x ,贝U 9x +x =4ACBC.3xx由为直角三角形10、如图 2,作 EH // BD , BH // BD 交于 H ,设 AB=a , DE=b图111 〜20 .41 5 直角25 90 °24 20 9.6cm 20 °135 °提示:11、如题图,过M作MN // BA,因为M为A B勺中点,所以N为B'C勺中点在Rt△ACB 中,由AB=10, BC=6 得AC=8 /-Z A =8B' C=6 /• B' N=NC=3 AB' =AC- B' C=& 6=21/• AN=2+3=5MN= 2 CA' =4在Rt△ ANM 中,AM 2=25+16=41 /• AM= ,4112、如题图,易证含边长为1和2的两个直角三角形全等/•正方形边长 =J 22八52 213、由题意知,|x —12|+ (y —13) =0, z - 10z+25=0•/ x=12 , y=13 , z=5 ,••• 122+52=132/•为直角△14、证Z ECF=90°20、连接AC,在△ ABC 中,•••/ ABC=90°, AB=BC=2DA ,/•Z BAC=45 AC 2=AB 2+BC2=8DA 2在厶ACD 中,T AC2=8DA2, CD=3DA•/ AC2+DA 2=CD2/.z CAD=90°/•Z DAB= Z CAD+ Z BAC=135三、解答题21、解:直线AE为所画的直线如图4二 AE 2+AB 2=BE 2 •••/ BAE=90 ,即 EA 丄 AB22、解:(1 )画出正确的图形.如图 3 (可作点3关于直线AB 的对称点E i ,连结E 1F 、E i F 与AB 交于点H ,球E 的运动路线就是 EHKHF )C BE-(2 )过F 作AB 的平行线,交 E i E 的延长线于点 N ,由题意可知,E i N=4 , FN=3,在 Rt △ FNE i 中,E i F^ E 1N 2 NF 2 =5 因为是点E i 是点E 直线AB 的对称点,所以 EH=E i H ,所以EH+HF=E i F=5所以E 球运行到F 球的路线长度为 5Rt △ ABC 中,AD 2=AB 2 — BD 2,即 AD 2=92—( 4+DE )• 8i —( 4+DE ) 2=49—( 4 — DE )24、解:连接AC•••△ ADC 为直角三角形••由勾股定理,得 AC 2=32+42=522 2 2 2 2 2 又 AC +BC =5 +12 =13 =AB• △ ACB 为直角三角形2、.• S 四边形 ABCD =S ^ACB — S AACD = 2 M 2 ><5 — 2 $ >4=24 ( m ) 25、解:(1) b=180, c=181(2)通过观察知 b — a=1,又(2n +1) 2+a 2=b 223、解:在在 Rt △ ADC 中,AD 2=AC 2— DC 2即 AD 2=72—( 4 — DE )(4+DE ) 2—( 4— DE ) 2=32 8 2DE=32 DE=2(b+a ) ( b — a ) = (2n+1)• b+a= (2n+1)2 2• b — a = (2n+1)学习好资料欢迎下载2(2n 1)21 --b= 2(2n 1)2-1 a= 2(3)由(2)知,2 2(2n 书)2」(2n+1)2412n+1, 2=2n ( n+1), 2=2n ( n+1) +1 为一组勾股数,当n=7 时,2n+仁15 , 112- 11 仁1,但2n(n+1) =2X 7X 8=112工11仁・15, 111, 112 不是一组勾股数26、解:设MN与AC相交于E,则/ BEC=90°2 2 2 2 2 2-AB +13 =5 +12 =13 =AC•••△ ABC为直角三角形,/ ABC=90由于MN丄CE,所以走私艇C进入我领海的最的距离是CE”CE2+BE2=144 ①* AB 汉BC = 2 AC 汉BE = S出BC②解得CE=詈144 14473 日3= 169 ~ 0.85( h) =51 ( min)9时50分+51分=10时41分即走私艇C最早在10时41分进入我领海.。
(人教版)哈尔滨八年级数学下册第十七章《勾股定理》经典习题(含答案解析)
一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°3.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .14.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = 5.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 6.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒ 7.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE8.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠ 9.如图,在Rt ABC 中,C 90∠=,AD 是BAC ∠的平分线,若AC 3=,BC 4=,则ABD ACD S :S 为( )A .5:4B .5:3C .4:3D .3:410.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°11.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =34°,那么∠BED =( )A .134°B .124°C .114°D .104°12.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 13.如图,在下列条件中,不能判断△ABD ≌△BAC 的条件是( )A .∠D=∠C , ∠BAD=∠ABCB .BD=AC , ∠BAD=∠ABC C .∠BAD=∠ABC , ∠BAD=∠ABCD .AD=BC ,BD=AC 14.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD 15.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题16.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.17.如图,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O .若AB AC =,AD AE =,60A ∠=︒,80ADC ∠=︒,则B 的度数为______.18.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.19.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.20.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.21.如图所示,已知点A 、D 、B 、F 在一条直线上,∠A=∠F ,AC=FE ,要使△ABC ≌△FDE ,还需添加一个条件,这个条件可以是___________________ .(只需填一个即可)22.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.23.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).24.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.25.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.26.如图,在△ABC 中,∠C =90°,∠A 的平分线交BC 于D ,若20ABD S ∆=cm 2,AB =10cm ,则CD 为__________cm .三、解答题27.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.28.在平面直角坐标系中,点A 坐标(5,0)-,点B 坐标(0,5),点 C 为x 轴正半轴上一动点,过点A 作AD BC ⊥交y 轴于点E .(1)如图①,若点C 的坐标为(3,0),求点E 的坐标;(2)如图②,若点C 在x 轴正半轴上运动,且5OC <,其它条件不变,连接DO ,求证:DO 平分ADC ∠;(3)若点C 在x 轴正半轴上运动,当OC CD AD +=时,则OBC ∠的度数为________. 29.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .30.如图,AB CB ⊥,DC CB ⊥,点E 、F 在BC 上,BE CF =,再添加一个什么条件后可推出AF DE =,写出添加的条件并完成证明.。
(完整版)人教版第十七章勾股定理测试题(含答案)
1人教版第十七章勾股定理测试题(含答案)一、选择题1. 在直角三角形ABC 中, ∠C =90°,BC =24,CA =7,AB = .2. 下列说法中, 不正确的是( )A .三个角的度数之比为1∶3∶4的三角形是直角三角形B .三个角的度数之比为3∶4∶5的三角形是直角三角形C .三边长度之比为3∶4∶5的三角形是直角三角形D .三边长度之比为9∶40∶41的三角形是直角三角形3. 如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .644. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)( ) A .锐角 B .直角 C .钝角 D .不能确定 5. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,则阴影部分的面积是( )A .16B .18C .19D .216. 在直角三角形中,斜边与较小直角边的和、差分别为18、8,则较长直角边的长为( )A .20B .16C .12D .87. 在△ABC 中,若AB =15,AC =13,高AD =12,则△ABC 的周长是( )A .42B .32C .42或32D .37或338. 如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )A.60∶13B.5∶12C.12∶13D.60∶1699. 等腰直角三角形的周长为22+)A .1B .12C .14 D .1810. 如图,数轴上的点A 所表示的数为x ,则x 2-10的立方根为( )A 210B .210-C .2D .2-11. 分别以下列五组数为一个三角形的边长:①6、8、10;②13、12、5;③1、2、3;④3.5、4.5、5.5;⑤8、10、12,其中能够组成直角三角形的有()A.4组B.3组C.2组D.1组二、填空题12. 若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为 .13. 已知两条线段的长分别为11cm和60cm,当第三条线段的长为 cm时,这3条线段能组成一个直角三角形.14. 如图,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.15. 如图,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.16. 如图,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.17. 如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_____________18. 如图,折叠长方形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则EC= .2032AB2319. 如果直角三角形两条直角边的长分别为5cm 和12cm ,那么斜边上的高是 cm .三、计算题20. 如图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段AB 和一条长度是无理数13的线段CD .21. 如图,在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且CF =41CD . 求证:△AEF 是直角三角形.四、应用题22. 如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?23. 一架秋千当它静止不动时,踏板离地1尺,将它向前推10尺,秋千的踏板就和人一样高,此人身高5尺,如果这时秋千的绳索拉得很直,请问绳索有多长?24. 如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B 距C点的距离为1.5米,当端点B向右移动0.5米时到达D点,而A到达E点,求滑杆顶端A下滑多少米?五、猜想探究题25. 已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:三边a、b、c a+b-c S l3、4、5 25、12、13 48、15、17 6(2)如果a+b-c=m,观察上表猜想:l(用含有m的代数式表示).(3)证明(2)中的结论.45答案一、选择题1. 252. B3. D4. B5. C6. C7. C8. D9. B 10. D 11. C二、填空题12. 120 13. 6114. 1415. 1216. 10 17. 15dm 18. 3cm 19.6013三、计算题20. 画一个直角三角形,使两条直角边分别是3和4,斜边长即为5;画一个直角三角形,使两条直角边分别是2和321. 设正方形ABCD 的边长为a 则,BE =CE =21a , CF =41a. DF =43a ,在Rt △ABE 中,由勾股定理得AE 2=AB 2+BF 2=a 2+224521a a =⎪⎭⎫ ⎝⎛,同理Rt △ADF 中,AF 2=AD 2+DF 2=a 2+22162543a a =⎪⎭⎫ ⎝⎛,在Rt △CEF 中,EF 2=CE 2+CF 2=2221654121a a a =⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛,∴AF 2=AE 2+EF 2,∴△AEF 是直角三角形.四、应用题22.最长的线段长为4条23. 设绳索长x 尺,根据勾股定理,有222[(51)]10x x --+=,解得x =14.5,答:绳索长14.5尺.24. 0.5米五、猜想探究题25. 解:(1)从上往下依次填12,1,32; (2)4S ml =; (3)证明略.。
第17章 勾股定理 课后作业 -2022-2023学年人教版八年级数学下册
第17章勾股定理(课后作业)人教新版数学八年级下册一.选择题1.如图,设小方格的面积为1,则图中以格点为端点且长度为的线段有()A.2条B.3条C.4条D.5条2.△ABC的三边长分别为a,b,c.下列条件,其中能判断△ABC是直角三角形的个数有()①∠A=∠B﹣∠C②a2=(b+c)(b﹣c)③∠A:∠B:∠C=3:4:5④a:b:c=5:12:13A.1个B.2个C.3个D.4个3.已知直角三角形两边的长分别为3和4,则此三角形的周长为()A.5B.7+C.12D.12或7+4.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则CD的值为()A.B.C.D.5.四边形ABCD中,△ACD是边长为10的等边三角形,△ABC是以AC为斜边的直角三角形,则对角线BD最大值是()A.10B.C.D.6.在Rt△ABC中,∠A,∠B,∠C的对边分别为a,b,c,a=3,b=5,则c的长为()A.2B.C.4D.4或7.直角三角形的两条直角边为a、b,斜边为c,斜边上的高为h,下列结论:①a2+b2=c2;②ab=ch;其中正确的是()A.①正确B.②正确C.①②都正确D.①②都不正确8.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°9.在棱长为1的正方体中,顶点A,B的位置如图所示,则A、B两点间的距离为()A.1B.C.D.10.有长为5cm,13cm的两根木条,现想找一根木条和这两根木条首尾顺次相连组成直角三角形,则下列木条长度适合的是()A.10cm B.12cm C.18cm D.20cm二.填空题11.点P(﹣5,12)到原点的距离是.12.如图,已知∠B=45°,AB=2cm,点P为∠ABC的边BC上一动点,则当BP=cm时,△BAP为直角三角形.13.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=9,AC=11.5,则边BC的长为.14.一棵大树被风刮断后折倒在地面上,如图,如果量得AC=6m,CB=8m.则树在刮断之前有高.15.一个直角三角形的模具,量得其中两直角边的长分别为4cm、3cm,则斜边的长是.三.解答题16.阅读下列材料,并回答问题,事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为.(2)如图1,AD⊥BC于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是多少?请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).17.如图,在△ABC中,AB=7cm,AC=25cm,BC=24cm,动点P从点A出发沿AB方向以1cm/s的速度运动至点B,动点Q从点B出发沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求∠B的度数;(2)连接PQ,若运动2s时,求P、Q两点之间的距离.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.点A,B,C都是格点.(1)求证:AC⊥BC.(2)△ABC的面积等于.19.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,点P从点A出发,在△ABC的边上以2cm/秒的速度沿A→C→B→A运动一周,设运动时间为t(t>0)秒.(1)如图,点P运动到BC边上,且AP恰好平分∠BAC,求t的值;(2)在点P运动过程中,当△CBP是以CB为腰的等腰三角形时,求t的值.20.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?。
勾股定理作业设计
《第17章勾股定理》一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,132.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.504.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或85.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.326.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.1237.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)16.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.17.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.。
八年级数学下册第十七章勾股定理专题三勾股定理与折叠作业新版新人教版
解:由题意可得 DE=FE,AD=AF,∵BC=20 cm,AB=16 cm,∴CD=16 cm, AD=AF=20 cm,∴在 Rt△ABF 中,由勾股定理,得 BF= AF2-AB2 = 202-162 =12(cm),∴CF =BC-BF=20-12=8(cm).∵四边形 ABCD 是长方形,∴∠C=90°. 设 CE=x(cm),则 DE=EF=(16-x)cm.在 Rt△CEF 中,由勾股定理,得 EF2=CF2+ CE2,即(16-x)2=82+x2,解得 x=6,∴EC=6 cm
类型三 正方形中的折叠问题 8.如图,将边长为 1 的正方形 ABCD 的一角折叠,折痕为 AE,使 AB 落在对角线 AC 上的 AB′处,则 B′C 的长为 ______2__-__1________.
9.(泰安中考)如图,四边形 ABCD 为正方形,点 E 是 BC 的中点,将正方形 ABCD 沿 AE 折叠,得到点 B 的对应点为点 F,延长 EF 交线段 DC 于点 P,若 AB=6,则 DP 的长度为_____2__________.
顶点 A 落在 BC 边的中点 D 处,折痕交 AC 边于点 E,交 AB 边于点 F,则 DE 的长为 13
________3________.
类型二 长方形中的折叠问题 4.如图,将长方形 ABCD 沿 EF 折叠,使顶点 C 恰好落在 AB 边的中点 C′上,若 AB=6,BC=9,则 BF 的长为( A ) A.4 B.3 2 C.4.5 D.5
专题(三) 勾股定理与折叠
类型一 三角形中的折叠问题 1.如图,有一块直角三角形纸片(△ACB),∠ACB=90°,AC=4 cm,BC=3 cm, 将斜边 AB 翻折,使点 B 落在直角边 AC 的延长线上的点 E 处,折痕为 AD,则 CE 的 长为( A ) A.1 cm B.1.5 cm C.2 cm D.3 cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理第1课时作业
姓名: 时间: 一、选择题 1、下列说法中,正确的是 ( ) A 、若AB 、BC 、AC 是△ABC 的三边,
则2
22AB BC AC =+
B 、若AB 、B
C 、AC 是Rt △ABC 的三边,
则2
22AB BC AC =+
C 、若AB 、BC 、AC 是Rt △ABC 的三边,∠A=900,
则2
22AB BC AC =+
D 、若AB 、BC 、AC 是Rt △ABC 的三边,∠C=900,
则2
22AB BC AC =+
2、一个直角三角形中,两直角边长分别为3和4,则下列说法中正确的是 ( ) A 、斜边长为25 B 、三角形的周长为25 C 、斜边长5 D 、三角形面积为20
3、 现有两根木棒,长度分别为30cm ,40cm,若要钉
成一个直角三角形框架,则所需的第三根木棒的长度可以
是 ( )
A 、30cm
B 、40cm
C 、50cm
D 、60cm
二、填空题
4、在Rt △ABC 中, ∠C=900.
(1)若AC=6,AB=10,则BC= .
(2)若BC=5,AB=13,则AC= .
5、如图,在△ABC 中,三边长a 、b 、c 的大小关系
是 第5题图 第6题图
三、计算题
6、如图,有一条小路穿过长方形草地ABCD ,若AB=60
米,BC=85米,AE=100米,试求出这条小路的面积。
7、如图,在△ABC 中,∠ACB=900,AB=5cm,BX=3cm, C D ⊥AB 于点D ,求: (1)AC 的长,; (2)△ABC 的面积; (3)CD 的长。
四、自我突破 8、如图,在边长为(a+b )的正方形中,有4个斜边长
为c 的全等直角三角形,它们的直角边长分别为a ,b ,你能利用这个图形推导出勾股定理吗?试一试?
五、错题订正
六、自我反思(注意些什么) A B C
c
b a F E D C
B A
D C
B
A c
c c c a a
a a
b b b
b
勾股定理第2课时作业
姓名:时间:
一、选择题
1、放学后,小林和小明从学校出发,分别沿东南方向和西南方向回家,他们行走的速度都是40米/分,小林用了15分钟到家,小明用了20分钟到家,则他们两家的直线距离是()A、600米B、800米
C、1000米
D、以上都不对
2、为了让大家了解流感的有关知识,某卫生部门准备用一架高2.5米的木梯把宣传材料贴到墙的离地面2.4米高的地方,则梯角与墙角的距离最长为()
A、0.7米
B、0.8米
C、0.9米
D、1.0米
3、如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只蚂蚁从A点爬到B点,那么这只蚂蚁爬行的最短路径为()A、3米B、4米C、5米D、6米
第3题图第4题图
二、填空题
4、如图,一只小鸭子要从长和宽分别为16m和6m的长方形水池一角M游到另一边中点N,则它游过的最短路程为m。
5、为维护正常的生活秩序,保证人民的人身及财产安全,监控设备走进我市每一个小区,幸福小区的“和谐号”居民楼高50米,其顶端装有监控设备,可清晰识别130米之内的任何目标,若要根据监控设备清晰辨别某人的相貌特征,则被监控人最远离该楼房米。
6、从电线杆离地面6米处向地面拉一条缆绳,这条缆绳在地面的固定点距电线杆底部8米,缆绳长10米,电线杆应该和地面垂直,不能倾斜才稳固安全,那么这根电线杆(填“稳固”或“不稳固”)
三、计算题
7、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A偏离欲到达的B点50米,该河的宽度BC为120米,求他在水中实际的路程比河的宽度多多少米?
四、自我突破
8、欲将一根长129cm的木棒放在长、高、宽分别是40cm、30cm、120cm的木箱中,能放得进去吗?
请说明理由。
五、错题订正
六、反思
B A
N
M
6m
16m
C
B A
勾股定理第3课时作业
姓名: 时间: 一、选择题
1、在△ABC 中,∠B=900,若BC=3,AC=5,则AB 等于 ( ) A 、3 B 、4 C 、5 D 、6
2、将直角三角形的三边长同时扩大相同的倍数,得到的三角形是 ( ) A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等腰三角形
3、如图,正方形ABCD 的面积为169cm 2, △ABP 为直角三角形,∠P=900,且PB=5cm ,则AP 的长为( )
A 、13cm
B 、9cm
C 、12cm
D 、无法确定 4、两只小鼹鼠在地下打洞,一只朝前挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟后,两只小鼹鼠相距 ( ) A 、50cm B 、80cm C 、100cm D 、140cm 5、在Rt △ABC 中,周长为60,斜边与一条直角边长之比为13:5,则这个三角形三边长分别是 ( ) A 、5,4,3 B 、13、12、5 C 、10、8、6 D 、26、24、10
6、如图,一圆柱高8cm ,底面半径为2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是
)
A 、20cm
B 、10cm
C 、14cm
D 、无法确定
7、在Rt △ABC 中,∠C=900,若BC+AC=14cm,AB=10cm,则该三角形的面积是 ( ) A 、24cm 2 B 、36 cm 2 C 、48 cm 2 D 、60 cm 2
8、在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长为 ( ) A 、14 B 、4 C 、14或4 D 、以上都不对
P D
C B A。