第十七章勾股定理全章教案
第十七章勾股定理全章教案
八年级数学教学设计目标教学重点勾股定理的应用.教学难点实际问题向数学问题的转化.教学方法采取小组讨论、合作探究、拼图等方法。
教学过程思考:在八年级上册我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等。
学习了勾股定理后,你能证明这一结论吗?创设情境,以美引新:请同学们欣赏美丽的海螺图案,在数学中也有这样一幅美丽的“海螺”图案!同学们知道是怎么画出来的吗?它是依据什么数学知识画出来的?问题:如何在数轴上表示13?如何在数轴上表示 2 ?课堂练习:课本P27练习第1,2题课堂小结:今天这节课你有什么收获和小组内的同学交流一下。
作业设置:习题17.16,7,,11,12题。
板书设计17.1勾股定理(3)课题17.2勾股定理的逆定理(1)课型新授三维目标知识目标1.理解并掌握勾股定理的逆定理的证明方法.灵活应用勾股定理及逆定理解决实际问题.2.理解原命题、逆命题、逆定理的概念及关系.能力目标1.经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,渗透合情推理的数学意识.2.在解决问题的过程中,继续体验模型的思想方法,培养学生与他人交流、合作的意识.情感目标培养学生数学思维以及合情推理意识,感悟勾股定理及逆定理的应用价值.教学重点理解并掌握勾股定理的逆定理,并会应用其解决综合的实际问题.教学难点1.勾股定理的逆定理的证明.2.互逆命题和互逆定理的概念.教学方法采取小组讨论、合作探究、拼图等方法。
(注:可编辑下载,若有不当之处,请指正,谢谢!)。
人教版八年级数学下册第十七章勾股定理单元教学设计
1.关注学生对勾股定理概念的理解,引导他们从几何角度和代数角度去认识、理解勾股定理。
四、教学内容与过程
(一)导入新课
1.教学活动设计:以一个与勾股定理相关的实际问题导入新课,激发学生的兴趣和思考。
-提问:同学们,你们知道如何测量学校旗杆的高度吗?
-引导学生思考:如果我们知道旗杆底部到某一点的距离和该点到旗杆顶部的垂直距离,能否计算出旗杆的高度?
-揭示:今天我们就来学习一个与直角三角形有关的定理,它可以帮助我们解决这类问题,这就是勾股定理。
-通过课堂提问、课后作业、小测验等方式,了解学生的学习进度和掌握程度;
-给予学生积极的评价,鼓励他们克服困难,不断提高。
6.结合实际情境,开展课外实践活动,让学生在实际操作中感受勾股定理的魅力。
-例如,组织学生测量学校内的直角三角形物体,如楼梯、窗户等,将所学知识应用于实际,提高他们的数学应用能力。
1.勾股定理的理解与运用:学生需从几何和代数两个角度理解勾股定理,并将其应用于解决实际问题。
2.证明方法的掌握:学生需要掌握几何法、代数法等多种证明勾股定理的方法,提高逻辑思维和创新能力。
3.空间想象能力的培养:通过丰富的实例和操作活动,帮助学生建立直角三角形的空间概念。
教学设想:
1.采用情境导入法,以实际问题引入勾股定理,激发学生的学习兴趣和探究欲望。
人教版八年级数学下册第十七章勾股定理单元教学设计
一、教学目标
(一)知识与技能
人教版八年级下册数学17章《勾股定理》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
(1)理解并运用勾股定理的证明过程;
(2)将勾股定理应用于解决实际问题,特别是非标准直角三角形问题;
(3)掌握勾股定理的逆定理及其应用。
举例说明:
(1)勾股定理的证明过程:对于初学者来说,理解几何图形的构造和代数推导过程可能存在困难,需要教师通过生动的实例和详细的解释帮助学生理解。
(2)非标准直角三角形问题:在实际问题中,直角三角形可能不是标准的3:4:5比例,学生需要掌握如何将勾股定理应用于这些非标准问题。
3.勾股定理的逆定理及其应用;
4.实际问题中的勾股定理应用。
二、核心素养目标
1.培养学生的逻辑推理能力,通过勾股定理的证明过程,让学生理解数学结论的严谨性;
2.提高学生的空间想象力,运用勾股定理解决直角三角形问题时,能够直观想象三角形的形状和边长关系;
3.增强学生的数据分析能力,通过解决实际问题,学会收集、整理、分析数据,运用勾股定理进行计算;
人教版八年级下册数学17章《勾股定理》教案
第17章勾股定理整章教案
2014-2015学年初二下数学第17章单元计划授课时间: 年 月 日 第 周 星 期 课时序号 一.课前导学:学生自学课本22-24页内容,并完成下列问题: 1.【探究一】:观察图1,(1)你能找出图中正方形A 、B 、C 面积之间的关系吗?(2)图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?2.【探究二】:如图2,每个小方格的边长均为1, (1)计算图中正方形A 、B 、C 面积. 【讨论】如何求正方形C 的面积?(2)图中正方形A 、B 、C 面积之间有何关系?(3)图中正方形A 、B 、C 所围成的直角三角形三边之间有 什么特殊关系? 【猜想】:如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么 .二、合作、交流、展示:1.【探究三】:如图3,如何证明上述猜想? 【温馨提示】:用两种方法表示出大正方形的面积. 4.【探究四】:如图4,如何证明上述猜想?年级 八年级课题17.1勾股定理(1)课型新授教 学 目 标知识技能经历勾股定理的探索过程,掌握勾股定理的简单应用;过程 方法 在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
情感 态度 通过介绍中国古代勾股方面的成就,激发学生热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
教学重点 探索和证明勾股定理,勾股定理的简单应用. 教学难点 勾股定理的探索和证明. 教法学案导学学法探究、合作教学媒体多 媒 体教 学 过 程 设 计图1图3图25.勾股定理:如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么 . 文字叙述: .6.【探究五】:已知在Rt △ABC 中,∠C =90, (1)若5,12,a b 则c === ; (2)若10,8,c b a 则=== ; (3)若25,24,c a b ===则 . (4)若35a :=:c ,2b =a =则 ,c = .【勾股定理结论变形】: . 7.【探究六】:若一个直角三角形的三边长为8,15,x ,则x = . 三、巩固与应用1.如图5,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1m ),却踩伤了花草.2.如图6,分别以Rt △ABC 的三边向外作正方形,其面积分别为1S 、2S 、3S ,且15S =,212S =,则3S = .3.根据图7及提示证明勾股定理.:【提示】:三个三角形的面积和 = 一个梯形的面积. 四、小结:(1)勾股定理及其简单应用;(2)面积法证题与数形结合思想.五、作业:必做:P28习题T1、2、3;选做:《全效》第20-21页. 六、课后反思:图4图5图6图7授课时间: 年 月 日 第 周 星 期 课时序号 一.课前导学:学生自学课本25页内容,并完成下列问题:1. 勾股定理:如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么:2c = (或 c = )变形:2a = (或 a = )2b = (或b = )2.填空题:在Rt △ABC ,∠C=90°,⑴如果a=7,c=25,则b= ; ⑵如果∠A=30°,a=4,则b= ; ⑶如果∠A=45°,a=3,则c= ; (4)如果b=8,a :c=3:5,则c= . 3.【探究一】:一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过?为什么?思考:①薄木板怎样好通过? ;②在长方形ABCD 中, 是斜着能通过的最大长度; ③薄模板能否通过,关键是比较 与 的大小. 解:在Rt △AB C 中,根据勾股定理AC 2=( )2+( )2= 2+ 2= . 因此AC = ≈ .因为AC (填“>”、“<”、或“=”)木板的宽2.2m , 所以木板 从门框内通过.(填:“能:或“不能:) 4.【探究二】:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5 m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5 m 吗? 点拨:① 梯子底端B 随着梯子顶端A 沿墙下滑而外移到D ,那么的长度就是梯子外移的距离.②BD = - ,求BD ,关键是要求出 和 的长.年级 八年级课题17.1勾股定理(2)课型新授教 学 目 标知识技能能熟练运用勾股定理计算,会用勾股定理解决简单的实际问题。
新人教版第十七章 勾股定理全章教案
第十七章勾股定理
湛江市第二十八中学八年级数学备课组
大小关系?
AO上,这时AO
A
算一算,底端滑动的距离近似值(结果保留两位小数).
A
C
B
3. 如图所示,在△中,三边a,b,c的大小关系是(
A.a<b<c
B. c<a<b
C. c
.等边△ABC的高为3cm,以AB为边的正方形面积为
.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边
图18.2-2
图18.2-3
直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有: 勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22,b a c +=,2222,a c b b c a -=-=.
勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一
个等式,从而得出或验证勾股定理.
如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
5 D .4,721,8倍,那么斜边扩大到原来的。
最新RJ人教版 八年级数学 下册第二学期春 教学设计 教案 第十七章 勾股定理(第17单元 全章教案)
17.1 勾股定理第1课时 勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC ;(3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2); (3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2. 方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时 勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】 勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC ,AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米.6秒后,B ′C =13-0.5×6=10米,则AB ′=B ′C 2-AC 2=53(米),则船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】 利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了1003km 到达B 点,然后再沿北偏西30°方向走了100km 到达目的地C 点,求出A 、C 两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD ∥BE ,∴∠ABE =∠DAB =60°.∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =1003km ,BC =100km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km),∴A 、C 两点之间的距离为200km.方法总结:先确定△ABC 是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】 利用勾股定理解决立体图形最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM ,AM =102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM ,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】 运用勾股定理解决折叠中的有关计算如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:连接BM ,MB ′.设AM =x ,在Rt △ABM 中,AB 2+AM 2=BM 2.在Rt △MDB ′中,MD 2+DB ′2.∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x =2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】 勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=a m,AC=b m,AD =x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC=a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.17.2 勾股定理的逆定理第1课时 勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为()A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF =14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA=4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2,3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC +S △ACD =12×6×8+12×10×24=144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】 运用勾股定理的逆定理求角度如图,已知点P 是等边△ABC 内一点,P A =3,PB =4,PC =5,求∠APB 的度数. 解析:将△BPC 绕点B 逆时针旋转60°得△BEA ,连接EP ,判断△APE 为直角三角形,且∠APE =90°,即可得到∠APB 的度数.解:∵△ABC 为等边三角形,∴BA =BC .可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°.在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE 为直角三角形.【类型二】 运用勾股定理的逆定理求边长在△ABC 中,D 为BC 边上的点,AB =13,AD =12,CD =9,AC =15,求BD 的长.解析:根据勾股定理的逆定理可判断出△ACD 为直角三角形,即∠ADC =∠ADB =90°.在Rt △ABD 中利用勾股定理可得出BD 的长度.解:∵在△ADC 中,AD =12,CD =9,AC =15,∴AC 2=AD 2+CD 2,∴△ADC 是直角三角形,∠ADC =∠ADB =90°,∴△ADB 是直角三角形.在Rt △ADB 中,∵AD =12,AB =13,∴BD =AB 2-AD 2=5,∴BD 的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】 勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB =DC =8m ,AD =BC =6m ,AC =9m ,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB =DC =8m ,AD =BC =6m ,∴AB 2+BC 2=82+62=64+36=100.又∵AC 2=92=81,∴AB 2+BC 2≠AC 2,∴∠ABC ≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】 运用勾股定理的逆定理解决方位角问题如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分. 答:走私艇C 最早在10时41分进入我国领海. 方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数 2.利用勾股定理逆定理求线段的长 3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.第十七章勾股定理教学目标:1.会用勾股定理解决简单问题。
第17章勾股定理全章集体备课教案
第十七章 勾股定理 单元教学计划一、教材分析本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用.首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题.在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念.二、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
三、教学目标1.体验勾股定理的探索过程,会运用勾股定理解决简单的问题.2.会运用勾股定理的逆定理判定直角三角形.3.通过具体的例子,了解定理的含义;了解逆命题、逆定理的概念;知道原命题成了其逆命题不一定成立.四、本章知识结构网络图实际问题 → 勾股(直角三角形边长计算) ← 定理↓ 互逆定理实际问题 ← 勾股定理(判定直角三角形) → 的逆定理五、本章的重点:勾股定理及其逆定理的探索与运用.本章的难点:勾股定理的证明,勾股定理及其逆定理的运用。
六、课时安排本章教学时间约需9课时,具体安排如下:17.1 勾股定理(一) 2 课时17.1 勾股定理(二) 2 课时17.2 勾股定理的逆定理 3课时数学活动及小 结 2课时县二中集体备课教学设计学科八年级数学 教师(主备人): 张振兴 集体备课地点: 毓林楼204室 时间:2014年 3 月 11 日教学内容 17.1 勾股定理(一)教材分析 本节主要研究勾股定理与其应用,包括它们的发现、证明和应用.首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题.教学目标 1. 知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.2.过程与方法:通过拼图活动,体验数学思维的严谨性,发展形象思维.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.3.通过对勾股定理历史的了解,感受数学文化,激发学习热情.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神教学重点 探索和证明勾股定理教学难点 用拼图的方法证明勾股定理.教学准备 1、学生准备(有关勾股定理的材料)及四个直角边分别为a、b斜边为c 的直角三角形 一个腰长为c的等腰直角三角形2.PPT教学方法 讲授法,练习法,实验法课型课时 2课时学生分析 学生对几何图形的观察,几何图形的分析能力已初步形成。
第十七章勾股定理教案
第十七章勾股定理17. 1勾股定理第 1课时勾股定理(1)认识勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.要点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创建情境,引入新课让学生画一个直角边分别为 3 cm和 4 cm的直角△ ABC,用刻度尺量出斜边的长.再画一个两直角边分别为 5 和 12 的直角△ ABC,用刻度尺量出斜边的长.你能否发现了32+42与 52的关系, 52+ 122与 132的关系,即32+ 42= 52,52+ 122= 132,那么就有勾2+股2=弦2.关于随意的直角三角形也有这个性质吗?由一学生朗诵“毕达哥拉斯察看地面图案发现勾股定理”的传说,指引学生察看身旁的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,研究新知1.多媒体课件演示教材第22~ 23 页图 17.1 - 2 和图 17.1 - 3,指引学生察看思虑.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.指引学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这不过猜想,一个数学命题的成立,还要经过我们的证明.概括考证,得出定理(1) 猜想:命题1:假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.(2)能否是全部的直角三角形都有这样的特色呢?这就需要对一个一般的直角三角形进行证明.到当前为止,对这个命题的证明已有几百种之多,下边我们就看一看我国数学家赵爽是如何证明这个定理的.①用多媒体课件演示.②小组合作研究:a.以直角三角形ABC的两条直角边a, b 为边作两个正方形,你能经过剪、拼把它拼成弦图的样子吗?b.它们的面积分别如何表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验先人赵爽的证法.想想还有什么方法?师:经过拼摆,我们证明了命题 1 的正确性,命题 1 与直角三角形的边相关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题解说【例 1】填空题.(1)在 Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在 Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在 Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5) 已知等边三角形的边长为 2 cm,则它的高为________cm,面积为2________cm.【答案】 (1)17(2) 7 (3)68 (4)6 , 8, 10 (5) 33【例 2】已知直角三角形的两边长分别为 5 和 12,求第三边.剖析:已知两边中,较大边 12 可能是直角边,也可能是斜边,所以应分两种状况分别进行计算.让学生知道考虑问题要全面,领会分类议论思想.【答案】119或 13三、稳固练习填空题.在 Rt△ABC中,∠C=90°.(1)假如 a= 7,c= 25,则 b= ________;(2)假如∠ A= 30°, a= 4,则 b= ________;(3)假如∠ A= 45°, a= 3,则 c= ________;(4)假如 c= 10, a- b= 2,则 b= ________;(5)假如 a, b,c 是连续整数,则 a+ b+ c= ________;(6)假如 b= 8,a∶ c= 3∶ 5,则 c= ________.【答案】 (1)24(2)4 3 (3)3 2 (4)6(5)12(6)10四、讲堂小结1.本节课学到了什么数学知识?2.你认识了勾股定理的发现和考证方法了吗?3.你还有什么疑惑?本节课的设计关注学生能否踊跃参加研究勾股定理的活动,关注学生可否在活动中踊跃思虑、能够研究出解决问题的方法,可否进行踊跃的联想( 数形联合 ) 以及学生可否有条理地表达活动过程和所获取的结论等.关注学生的拼图过程,鼓舞学生联合自己所拼得的正方形考证勾股定理.第 2 课时勾股定理(2)能将实质问题转变为直角三角形的数学模型,并能用勾股定理解决简单的实质问题.要点将实质问题转变为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实质问题.一、复习导入问题 1:欲登 12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,起码需要多长的梯子?师生行为:学生疏小组议论,成立直角三角形的数学模型.教师深入到小组活动中,聆听学生的想法.生:依据题意,( 如图 )AC 是建筑物,则AC= 12 m, BC= 5 m, AB 是梯子的长度,所以在Rt△ ABC222222m.中, AB= AC+BC= 12 + 5 = 13,则 AB= 13所以起码需 13长的梯子.m师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就能够求出斜边 c 的长.由勾股定理可得2=ac2-b2或 b2=c2- a2,由此可知,已知斜边与一条直角边的长,就能够求出另一条直角边的长,也就是说,在直角三角形中,已知两边便可求出第三边的长.问题 2:一个门框的尺寸以下图,一块长 3 m、宽 2.2 m的长方形薄木板可否从门框内经过?为何?学生疏组议论、沟通,教师深入到学生的数学活动中,指引他们发现问题,找寻解决问题的门路.生 1:从题意能够看出,木板横着进,竖着进,都不可以从门框内经过,只好试一试斜着可否经过.生 2:在长方形 ABCD中,对角线 AC是斜着能经过的最大长度,求出 AC,再与木板的宽比较,就能知道木板能否能经过.师生共析:解:在 Rt△ABC中,依据勾股定理22222= 5. AC= AB+ BC=1+ 2所以 AC=5≈ 2.236.因为 AC>木板的宽,所以木板能够从门框内经过.二、例题解说【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是米,水平距离是________米.剖析:由∠ CAB= 30°易知垂直距离为 2 3米,水平距离是 6 米.【答案】2 36【例 2】教材第25 页例 2三、稳固练习________1.如图,欲丈量松花江的宽度,沿江岸取B, C 两点,在江对岸取一点BC= 50 米,∠ B= 60°,则江面的宽度为________.A,使AC垂直江岸,测得【答案】 50 3米2.某人欲横渡一条河,因为水流的影响,登岸地址 C 偏离欲抵达地址 B 200 米,果他在水中游了520 米,求河流的度.【答案】480 m四、堂小1.自己在的收有哪些?会用勾股定理解决的用;会结构直角三角形.2.本是从出,化直角三角形,并用勾股定理达成解答.是一用,程中要充足学生的主性,鼓舞学生手、,将化直角三角形的数学模型的程,激了学生的学趣,了学生独立思虑的能力.第 3勾股定理(3)1.利用勾股定理明:斜和一条直角相等的两个直角三角形全等.2.利用勾股定理,能在数上找到表示无理数的点.3.一步学将化直角三角形的数学模型,并能用勾股定理解决的.要点在数上找表示2,3,5,⋯的表示无理数的点.点利用勾股定理找直角三角形中度无理数的段.一、复入复勾股定理的内容.本研究勾股定理的合用.:在八年上册,我曾通画获取:斜和一条直角相等的两个直角三角形全等.你能用勾股定理明一?学生思虑并独立达成,教巡指,并.先画出形,再写出已知、求以下:已知:如,在Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求:△ ABC≌△ A′ B′ C′ .22明:在 Rt△ABC和 Rt△A′B′C′中,∠C=∠C′=90°,依据勾股定理,得BC=AB-AC,B′C′=A′ B′2- A′C′2. 又 AB= A′ B′, AC= A′ C′,∴ BC= B′ C′,∴△ ABC≌△ A′ B′C′ ( SSS) .:我知道数上的点有的表示有理数,有的表示无理数,你能在数上表示出13所的点?教可指学生找像度2,3,5,⋯的包括在直角三角形中的段.:因为要在数上表示点到原点的距离2, 3 ,5,⋯,所以只要画出2,3,5,⋯的段即可,我不如先来画出2,3,5,⋯的段.生:2的段是直角都 1 的直角三角形的斜,而5的段是直角 1 和 2 的直角三角形的斜.:13的段可否是直角正整数的直角三角形的斜呢?生: c=13,两直角分a, b,依据勾股定理a2+ b2= c2,即 a2+ b2=13. 若 a, b 正整数,13 必分解两个平方数的和,即13=4+9,a2=4,b2=9,a=2,b=3,所以13的段是直角分2, 3 的直角三角形的斜.:下边就同学在数上画出表示13的点.生:步以下:1.在数上找到点A,使 OA= 3.2.作直l 垂直于 OA,在 l 上取一点B,使 AB= 2.3.以原点O心、以OB半径作弧,弧与数交于点C,点 C 即表示13的点.二、例解【例 1】机在空中水平行,某一刻好到一个男孩正上方 4800 米,了 10 秒后,机距离个男孩 5000 米,机每小行多少千米?剖析:依据意,能够画出如所示的形, A 点表示男孩的地点,C, B 点是两个刻机的地点,∠ C 是直角,能够用勾股定理来解决这个问题.解:依据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得2=AB22222AC+ BC,即 5000= BC+ 4800 ,所以 BC= 1400 米.飞机飞翔 1400 米用了 10 秒,那么它 1 小时飞翔的距离为 1400× 6×60= 504000( 米 ) =504( 千米 ) ,即飞机飞翔的速度为504千米/时.【例 2】在沉静的湖面上,有一棵水草,它超出水面 3 分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草挪动的水平距离为 6 分米,问这里的水深是多少?解:依据题意,获取上图,此中D是无风时水草的最高点, BC为湖面, AB 是一阵风吹过水草的位22222置, CD= 3 分米, CB= 6 分米, AD= AB, BC⊥ AD,所以在Rt△ACB中, AB =AC+ BC,即 (AC+ 3)=AC 222分米.+ 6 , AC+ 6AC+ 9= AC+36,∴ 6AC= 27, AC= 4.5 ,所以这里的水深为【例 3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为 4 和 1 的直角三角形的斜边,所以,在数轴上画出表示17的点,以以下图:师生行为:由学生独立思虑达成,教师巡视指导.此活动中,教师应要点关注以下两个方面:①学生可否踊跃主动地思虑问题;②可否找到斜边为17,此外两条直角边为整数的直角三角形.三、讲堂小结1.进一步稳固、掌握并娴熟运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理获取一些无理数,并理解数轴上的点与实数一一对应.本节课的教课中,在培育逻辑推理的能力方面,做了仔细的考虑和精心的设计,把推理证明作为学生察看、实验、研究得出结论的自然持续,着重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到讲堂教课中间,很好地激发了学生学习数学的兴趣,培育了学生擅长提出问题、敢于提出问题、解决问题的能力.勾股定理的逆定理第 1 课时勾股定理的逆定理( 1)1.掌握直角三角形的鉴别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的研究方法.要点研究勾股定理的逆定理,理解并掌握互抗命题、原命题、抗命题的相关观点及关系.难点概括猜想出命题 2 的结论.一、复习导入活动研究(1)总结直角三角形有哪些性质;(2)一个三角形知足什么条件时才能是直角三角形?生:直角三角形有以下性质: (1) 有一个角是直角; (2) 两个锐角互余; (3) 两直角边的平方和等于斜边的平方; (4) 在含 30°角的直角三角形中, 30°的角所对的直角边是斜边的一半.师:那么一个三角形知足什么条件时,才能是直角三角形呢?生 1:假如三角形有一个内角是90°,那么这个三角形就为直角三角形.生 2:假如一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b 与斜边 c 拥有必定的数目关系即 a2+ b2=c2,我们能否能够不用角,而用三角形三边的关系来判断它能否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:听说古埃及人用以下图的方法画直角:把一根长绳打上等距离的 13 个结,而后以 3 个结、 4 个结、 5 个结的长度为边长,用木桩钉成一个三角形,此中一个角即是直角.这个问题意味着,假如围成的三角形的三边长分别为3, 4, 5,有下边的关系:2223+ 4=5 ,那么围成的三角形是直角三角形.画画看,假如三角形的三边长分别为, 6,,有下边的关系: 2.5 2+ 62= 6.5 2,画cm cm cm出的三角形是直角三角形吗?换成三边分别为4cm,cm, cm,再试一试.生 1:我们不难发现上图中,第 1 个结到第 4 个结是 3 个单位长度即 AC=3;同理 BC=4, AB=5.因为 32+ 42= 52,所以我们围成的三角形是直角三角形.生 2:假如三角形的三边长分别是 2.5 cm, 6 cm, 6.5 cm. 我们用尺规作图的方法作此三角形,经过丈量后,发现 6.5 cm的边所对的角是直角,而且222 2.5 +6 = 6.5 .再换成三边长分别为 4 cm, 7.5 cm, 8.5 cm的三角形,能够发现 8.5 cm的边所对的角是直角,且有 42+ 7.5 2=8.5 2.师:很好!我们经过实质操作,猜想结论.命题 2假如三角形的三边长a, b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.再看下边的命题:命题 1假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2+ b2= c2.它们的题设和结论各有何关系?师:我们能够看到命题 2 与命题 1 的题设、结论正好相反,我们把像这样的两个命题叫做互抗命题.假如把此中的一个叫做原命题,那么另一个叫做它的抗命题.比如把命题 1 当作原命题,那么命题 2 是命题 1 的抗命题.二、例题解说【例 1】说出以下命题的抗命题,这些命题的抗命题成立吗?(1)同旁内角互补,两条直线平行;(2)假如两个实数的平方相等,那么这两个实数相等;(3)线段垂直均分线上的点到线段两头点的距离相等;(4)直角三角形中 30°角所对的直角边等于斜边的一半.剖析: (1) 每个命题都有抗命题,说抗命题时注意将题设和结论调动即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,抗命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、稳固练习教材第 33 页练习第 2题.四、讲堂小结师:经过这节课的学习,你对本节内容有哪些认识?学生讲话,教师评论.本节课的教课方案中,将教课内容精简化,推行分层教课.依据学生原有的认知结构,让学生更好地领会切割的思想.设计的题型前后响应,使知识有序推动,有助于学生理解和掌握;让学生经过合作、沟通、反省、感悟的过程,激发学生研究新知的兴趣,感觉研究、合作的乐趣,并从中获取成功的体验,真实表现学生是学习的主人.将目标分层后,知足不一样层次学生的做题要求,达到稳固讲堂知识的目的.第 2 课时勾股定理的逆定理( 2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的观点.要点勾股定理的逆定理的证明及互逆定理的观点.难点理解互逆定理的观点.一、复习导入师:我们学过的勾股定理的内容是什么?生:假如直角三角形的两条直角边长分别为a, b,斜边长为c,那么 a2+b2= c2.师:依据上节课学过的内容,我们获取了勾股定理抗命题的内容:假如三角形的三边长 a ,b, c 知足 a2+ b2= c2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的抗命题,命题 1 我们已证明过它的正确性,命题 2 正确吗?如何证明呢?师生行为:让学生试着找寻解题思路,教师可指引学生理清证明的思路.师:△ ABC的三边长a, b, c 知足 a2+ b2=c2. 假如△ ABC是直角三角形,它应与直角边是a, b 的直角三角形全等,实质状况是这样吗?我们画一个直角三角形A′ B′ C′,使 B′ C′= a, A′ C′= b,∠ C′= 90° ( 如图 ) ,把画好的△A′ B′ C′剪下,放在△ABC上,它们重合吗?22222222生:我们所画的 Rt△A′B′C′,(A′B′)=a+ b,又因为 c = a + b ,所以 (A′ B′ ) =c,即 A′B′= c.△ABC 和△ A′ B′C′三边对应相等,所以两个三角形全等,∠ C=∠ C′= 90°,所以△ ABC 为直角三角形.即命题 2 是正确的.师:很好!我们证了然命题2 是正确的,那么命题 2 就成为一个定理.因为命题 1 证明正确此后称为勾股定理,命题2 又是命题 1 的抗命题,在此,我们就称定理 2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:可能否是原命题成立,抗命题必定成立呢?生:不必定,如命题“对顶角相等”成立,它的抗命题“假如两个角相等,那么它们是对顶角”不行立.师:你还可以举出近似的例子吗?生:比如原命题:假如两个实数相等,那么它们的绝对值也相等.抗命题:假如两个数的绝对值相等,那么这两个实数相等.明显原命题成立,而抗命题不必定成立.二、新课教授【例 1】教材第 32 页例 1【例 2】教材第 33 页例 2【例 3】一个部件的形状以下图,按规定这个部件中∠A 和∠ DBC 都应为直角.工人师傅量出了这个部件各边的尺寸,那么这个部件切合要求吗?剖析:这是一个利用直角三角形的判断条件解决实质问题的例子.2 2 =9+16 2A 是直角.解:在△ ABD 中, AB + AD = 25= BD ,所以△ ABD 是直角三角形,∠2 2 2 2DBC 是直角.在△ BCD 中,BD +BC = 25+ 144= 169=13 = CD ,所以△ BCD 是直角三角形,∠ 所以这个部件切合要求.三、稳固练习1.小强在操场上向东走80 m 后,又走了 60 m ,再走 100 m 回到原地.小强在操场上向东走了80 m 后,又走 60 m 的方向是 ________.【答案】向正南或正北2.如图,在我国沿海有一艘不明国籍的轮船进入我国海疆,我海军甲、乙两艘巡逻艇立刻从相距 13 海里的 A , B 两个基地前往拦截, 6 分钟后同时抵达 C 地将其拦截.已知甲巡逻艇每小时航行 120 海 里,乙巡逻艇每小时航行 50 海里,航向为北偏西 40°,求甲巡逻艇的航向.11222【答案】解:由题意可知:AC= 120× 6×60= 12, BC= 50× 6×60= 5, 12+ 5=13 . 又 AB=13,222ACB=90°,∴∠ CAB= 40°,航向为北偏东 50° .∴ AC+ BC= AB,∴△ ABC是直角三角形,且∠四、讲堂小结1.同学们对本节的内容有哪些认识?2.勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采纳以学生为主体,指引发现、操作研究的教课方案,切合学生的认知规律和认知水平,最大限度地调动了学生学习的踊跃性,有益于培育学生着手、察看、剖析、猜想、考证、推理的能力,确实使学生在获取知识的过程中获取能力的培育.1、一知半解的人,多不谦逊;见多识广有本事的人,必定谦逊。
新人教版第十七章勾股定理教案
新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。
2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。
3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。
教学重点:知道勾股定理的结果,并能运用于解题。
教学难点:进一步发展学生的说理和简单推理的意识及能力。
教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。
教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。
今天我们就来一同探索勾股定理。
二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
这个事实是我国古代3000多年前有一个叫XXX的人发现的。
他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。
下面这个古老的精彩的证法出自我国古代无名数学家之手。
已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
人教版初中数学八年级下册第十七章:勾股定理(全章教案)
第十七章勾股定理教材简析本章的内容包括:勾股定理、勾股定理的逆定理.本章主要研究并揭示直角三角形三边之间的关系的勾股定理与勾股定理的逆定理.勾股定理是一个著名的几何定理,在西方也被称为毕达哥斯拉定理.勾股定理有几百种证明方法,本章主要介绍的是我国古代数学家赵爽的证明方法,这种方法利用直角三角形的面积与正方形的面积关系,数形结合,直观、简洁.勾股定理在数学的发展和现实世界中有着广泛的作用.本章是直角三角形相关知识的延续,同时也让学生进一步认识无理数,充分体现了数学知识的紧密相关性、连续性.在中考中,主要考查勾股定理及三角形判别条件的应用,常与三角形的其他知识结合考查.教学指导【本章重点】勾股定理,勾股定理的逆定理.【本章难点】勾股定理的证明,勾股定理的应用.【本章思想方法】1.体会转化思想,如:应用勾股定理将实际问题转化成数学模型,从而构造直角三角形求解.2.体会和掌握方程思想,如:利用勾股定理求线段长时,往往需要列方程求解.课时计划17.1勾股定理3课时17.2勾股定理的逆定理1课时17.1勾股定理第1课时勾股定理及其证明教学目标一、基本目标【知识与技能】1.了解勾股定理的发现过程.2.掌握勾股定理的内容.3.会用面积法证明勾股定理.【过程与方法】经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程;在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力.【情感态度与价值观】通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,体验解决问题的方法的多样性,培养学生的合作交流意识和探索精神.二、重难点目标【教学重点】勾股定理的探究及证明.【教学难点】掌握勾股定理,并运用它解决简单的计算题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P22~P24的内容,完成下面练习.【3 min反馈】1.勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.2.(1)教材P23“探究”,如图,每个方格的面积均为1,请分别算出图中正方形A、B、C、A′、B′、C′的面积.解:A 的面积=4;B 的面积=9;C 的面积=52-4×12×(2×3)=13;所以A +B =C .A ′=9;B ′=25;C ′=82-4×12×(5×3)=34;所以A ′+B ′=C ′.所以直角三角形的两直角边的平方和等于斜边的平方.(2)阅读、理解教材P23~P24“赵爽弦图”证明勾股定理.解:朱实=12ab ;黄实=(a -b )2;正方形的面积=4朱实+黄实=(a -b )2+12ab ×4=a 2+b 2-2ab +2ab =a 2+b 2.又正方形的面积=c 2,所以a 2+b 2=c 2,即直角三角形两直角边的平方和等于第三边的平方.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再作三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.证明:a 2+b 2=c 2.图1图2【互动探索】(引发学生思考)从整体上看,这两个正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.【证明】由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等.又∵左边的正方形面积可表示为a 2+b 2+12ab ×4,右边的正方形面积可表示为c 2+12ab ×4,∴a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.【互动总结】(学生总结,老师点评)通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.【例2】 已知在Rt △ABC 中,∠C =90°,a 、b 为两直角边,c 为斜边. (1)若a =3,b =4,则c 2=____,c =____;(2)若a=6,b=8,则c2=____,c=____;(3)若c=41,a=9,则b=____;(4)若c=17,b=8,则a=____.【互动探索】(引发学生思考)根据勾股定理求解.【分析】(1)c2=a2+b2=32+42=25,则c=5.(2) c2=a2+b2=62+82=100,则c=10.(3) 因为c2=a2+b2,所以b=c2-a2=412-92=40.(4)因为c2=a2+b2,所以a=c2-b2=172-82=15.【答案】(1)255(2)10010(3)40(4)15【互动总结】(学生总结,老师点评)本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a、b,斜边长为c,那么a2+b2=c2.a2+b2=c2的常用变形b=c2-a2,a=c2-b2.活动2巩固练习(学生独学)1.在△ABC中,∠C=90°.若a=5,b=12,则c=13;若c=41,a=9,则b=40.2.等腰△ABC的腰长AB=10 cm,底BC为16 cm,则底边上的高为6_cm,面积为48_cm2.3.已知在△ABC中,∠C=90°,BC=a,AC=b,AB=c.(1)若a=1,b=2,求c;(2)若a=15,c=17,求b.解:(1)根据勾股定理,得c2=a2+b2=12+22=5.∵c>0,∴c= 5.(2)根据勾股定理,得b2=c2-a2=172-152=64.∵b>0,∴b=8.活动3拓展延伸(学生对学)【例3】在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC 的周长.【互动探索】应考虑高AD在△ABC内和△ABC外的两种情形.【解答】当高AD在△ABC内部时,如图1.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60.当高AD在△ABC外部时,如图2.同理可得,BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.图1 图2【互动总结】(学生总结,老师点评)题中未给出图形,作高构造直角三角形时,易漏掉钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC 外的情形.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.练习设计请完成本课时对应练习!第2课时勾股定理的应用教学目标一、基本目标【知识与技能】能运用勾股定理解决有关直角三角形的简单实际问题.【过程与方法】经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件.【情感态度与价值观】培养合情推理能力,体会数形结合的思维方法,激发学习热情.二、重难点目标【教学重点】勾股定理的简单应用.【教学难点】运用勾股定理建立直角三角形模型解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P25的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.在△ABC中,∠C=90°.若BC=6,AB=10,则AC=8.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,已知在△ABC中,∠ACB=90°,AB=5 cm,BC=3 cm,CD⊥AB于点D,求CD的长.【互动探索】(引发学生思考)观察图形:“多直角三角形嵌套”图形→已知边长,求高CD →利用等面积法求解.【解答】∵△ABC 是直角三角形,∠ACB =90°,AB =5 cm ,BC =3 cm , ∴由勾股定理,得AC =AB 2-BC 2=4 cm. 又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =AC ·BC AB =4×35=125(cm).【互动总结】(学生总结,老师点评)由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,这个规律也称“弦高公式”,它常与勾股定理联合使用.【例2】 如图,侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m ,你能帮小王算出敌方汽车的速度吗?【互动探索】(引发学生思考)要求敌方汽车的速度,需要算出BC 的长.在Rt △ABC 中利用勾股定理即可求得BC .【解答】由勾股定理,得AB 2=BC 2+AC 2,即5002=BC 2+4002,所以BC =300 m. 故敌方汽车10 s 行驶了300 m ,所以它1 h 行驶的距离为300×6×60=108 000(m), 即敌方汽车的速度为108 km/h.【互动总结】(学生总结,老师点评)用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.活动2 巩固练习(学生独学)1.等腰三角形的腰长为13 cm ,底边长为10 cm ,则它的面积为( D ) A .30 cm 2 B .130 cm 2 C .120 cm 2D .60 cm 22.直角三角形两直角边长分别为5 cm 、12 cm ,则斜边上的高为6013cm.3.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达地点B 200 m ,结果他在水中实际游了520 m ,求该河流的宽度为多少?解:根据图中数据,运用勾股定理,得AB =AC 2-BC 2=5202-2002=480(m). 即该河流的宽度为480 m. 活动3 拓展延伸(学生对学)【例3】如图1,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有绳子从D 出发,沿长方体表面到达B ′点,问绳子最短是多少厘米?图1 图2图3【互动探索】可把绳子经过的面展开在同一平面内,有两种情况,分别计算并比较,得到的最短距离即为所求.【解答】如图2,由题易知,DD′=3 cm,B′D′=2×2=4(cm).在Rt△DD′B′中,由勾股定理,得B′D2=DD′2+B′D′2=32+42=25;如图3,由题易知,B′C′=2 cm,C′D=2+3=5 (cm).在Rt△DC′B′中,由勾股定理,得B′D2=B′C′2+C′D2=22+52=29.因为29>25,所以第一种情况绳子最短,最短为5 cm.【互动总结】(学生总结,老师点评)此类题可通过侧面展开图,将要求解的问题放在直角三角形中,问题便迎刃而解.环节3课堂小结,当堂达标(学生总结,老师点评)勾股定理的简单运用:(1)由直角三角形的任意两边的长度,可以应用勾股定理求出第三边的长度.(2) 用勾股定理解决实际问题的关键是建立直角三角形模型,再代入数据求解.练习设计请完成本课时对应练习!第3课时利用勾股定理表示无理数教学目标一、基本目标【知识与技能】进一步熟悉勾股定理的运用,掌握用勾股定理表示无理数的方法.【过程与方法】通过探究用勾股定理表示无理数的过程,锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力.【情感态度与价值观】让学生充分体验到了数学思想的魅力和知识创新的乐趣,体会数形结合思想的运用.二、重难点目标【教学重点】探究用勾股定理表示无理数的方法.【教学难点】会用勾股定理表示无理数.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P26~P27的内容,完成下面练习.【3 min反馈】1.勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方.2.教材P27,利用勾股定理在数轴上画出表示1,2,3,4,…的点.3.13的线段是直角边为正整数3,2的直角三角形的斜边.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1C.5-1D. 5【互动探索】(引发学生思考)先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.【分析】图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5,那么点A所表示的数为5-1.故选C.【答案】C【互动总结】(学生总结,老师点评)本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的位置,再根据A的位置来确定a的值.活动2巩固练习(学生独学)1.小明学了利用勾股定理在数轴上找一个无理数的准确位置后,又进一步进行练习:首先画出数轴,设原点为点O,在数轴上的2个单位长度的位置找一个点A,然后过点A作AB ⊥OA,且AB=3.以点O为圆心,OB为半径作弧,设与数轴右侧交点为点P,则点P的位置在数轴上(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP1= 2 ;再过P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;….依此继续,得OP2018=2019,OP n=n+1(n为自然数,且n>0).3.利用如图4×4的方格,作出面积为8平方单位的正方形,然后在数轴上表示实数8和-8.解:面积为8平方单位的正方形的边长为8,8是直角边长为2,2的两个直角三角形的斜边长,画图如下:活动3拓展延伸(学生对学)【例2】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【互动探索】(1)利用勾股定理,找长为有理数的线段,画三角形即可;(2)先找出几个能构成勾股数的无理数,再画出来即可,如画一个边长2,22,10的三角形;(3)画一个边长为10的正方形即可.【解答】(1)直角三角形的三边分别为3,4,5 ,如图1.(2)直角三角形的三边分别为2,22,10,如图2.(3)画一个边长为10的正方形,如图3.【互动总结】(学生总结,老师点评)本题考查了格点三角形的画法,需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)利用勾股定理表示无理数.练习设计请完成本课时对应练习!17.2勾股定理的逆定理教学目标一、基本目标【知识与技能】掌握勾股定理的逆定理,并能进行简单运用;理解互逆命题的有关概念.【过程与方法】经历探索直角三角形的判定条件过程,理解勾股定理的逆定理.【情感态度与价值观】激发学生解决问题的愿望,体会勾股定理逆向思维所获得的结论,明确其应用范围和实际价值.二、重难点目标【教学重点】掌握勾股定理的逆定理,勾股数,理解互逆命题的有关概念.【教学难点】利用勾股定理的逆定理解决问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P31~P33的内容,完成下面练习.【3 min反馈】1.(1)勾股定理:如果直角三角形的两直角边长分别为a、b,斜边为c,那么a2+b2=c2.(2)勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2;那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.4.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理互为逆定理.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】判断满足下列条件的三角形是否是直角三角形.(1)在△ABC中,∠A=20°,∠B=70°;(2)在△ABC中,AC=7,AB=24,BC=25;(3)△ABC的三边长a、b、c满足(a+b)(a-b)=c2.【互动探索】(引发学生思考)分别已知三角形的边和角,如何判定一个三角形是直角三角形呢?【解答】(1)在△ABC中,∵∠A=20°,∠B=70°,∴∠C=180°-∠A-∠B=90°,即△ABC是直角三角形.(2)∵AC2+AB2=72+242=625,BC2=252=625,∴AC2+AB2=BC2.根据勾股定理的逆定理可知,△ABC是直角三角形.(3)∵(a+b)(a-b)=c2,∴a2-b2=c2,即a2=b2+c2.根据勾股定理的逆定理可知,△ABC是直角三角形.【互动总结】(学生总结,老师点评)判断直角三角形的常用方法有两种:(1)两锐角互余的三角形是直角三角形(即有一个角等于90°的三角形是直角三角形);(2)利用勾股定理的逆定理判断三角形的三边是否满足a2+b2=c2(c为最长边).【例2】写出命题“等腰三角形两腰上的高线长相等”的逆命题,判断这个命题的真假,并说明理由.【互动探索】(引发学生思考)原命题的题设为等腰三角形,结论为腰上的高相等,然后交换题设与结论得到其逆命题;可根据三角形面积公式判断此命题的真假.【解答】命题“等腰三角形两腰上的高线长相等”的逆命题是两边上的高相等的三角形为等腰三角形,此逆命题为真命题.如图,在△ABC中,CD⊥AB,BE⊥AC,且CD=BE.∵BC=BC,∴△CBD≌△BCE(HL),∴∠DBC=∠ECB,∴△ABC为等腰三角形.【互动总结】(学生总结,老师点评)两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.一般地,原命题成立时,它的逆命题可能成立,也可能不成立.【例3】某港口位于东西方向的海岸线上.“远航”号“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1.5小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【互动探索】(引发学生思考)根据“路程=速度×时间”分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.【解答】根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30海里.∵242+182=302,∴PQ2+PR2=QR2,∴∠QPR=90°.由“远航”号沿东北方向航行可知,∠QPS=45°,∴∠SPR=45°,即“海天”号沿西北方向航行.【互动总结】(学生总结,老师点评)本题考查路程、速度、时间之间的关系,勾股定理的逆定理、方位角等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.活动2巩固练习(学生独学)1.以下列各组数为边长,能组成直角三角形的是(C)A.5,6,7B.10,8,4C.7,25,24D.9,17,152.下列各命题都成立,写出它们的逆命题,这些逆命题成立吗?(1)同旁内角相等,两直线平行;(2)如果两个角是直角,那么这两个角相等.解:(1)“同旁内角相等,两直线平行”的逆命题是两直线平行,同旁内角相等,逆命题不成立.(2)“如果两个角是直角,那么这两个角相等”的逆命题是如果两个角相等,那么两个角是直角,逆命题不成立.3.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a、b、c为勾股数.你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?解:对.因为a2+b2=(2m)2+(m2-1)2=4m2+m4-2m2+1=m4+2m2+1=(m2+1)2,且c2=(m2+1)2,所以a2+b2=c2,即a、b、c是勾股数.m=2时,勾股数为4、3、5;m=3时,勾股数为6、8、10;m=4时,勾股数为8、15、17.4.如图,已知在四边形ABCD中,∠A=90°,AB=2 cm,AD= 5 cm,CD=5 cm,BC=4 cm,求四边形ABCD的面积.解:如图,连结BD.∵∠A=90°,AB=2 cm,AD= 5 cm,∴根据勾股定理,得BD=3 cm.又∵CD=5 cm,BC=4 cm,∴CD2=BC2+BD2,∴△BCD是直角三角形,∴∠CBD=90°,∴S四边形ABCD=S△ABD+S△BCD=12AB·AD+12BC·BD=12×2×5+12×4×3=()5+6cm2.活动3 拓展延伸(学生对学)【例4】在正方形ABCD 中,F 是CD 的中点,E 为BC 上一点,且CE =14CB ,试判断AF 与EF 的位置关系,并说明理由.【互动探索】观察图形,猜测AF ⊥EF .证明△AEF 为直角三角形可得AF ⊥EF .【解答】AF ⊥EF .理由如下:设正方形的边长为4a .∵F 是CD 的中点,CE =14CB , ∴EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,由勾股定理,得AE 2=AB 2+BE 2=16a 2+9a 2=25a 2.在Rt △CEF 中,由勾股定理,得EF 2=CE 2+CF 2=a 2+4a 2=5a 2.在Rt △ADF 中,由勾股定理,得AF 2=AD 2+DF 2=16a 2+4a 2=20a 2.∴AE2=EF2+AF2,∴△AEF为直角三角形,且AE为斜边.∴∠AFE=90°,即AF⊥EF.【互动总结】(学生总结,老师点评)利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.环节3课堂小结,当堂达标(学生总结,老师点评)1.勾股定理的逆定理:如果三角形的三边长a、b、c满足a2-b2=c2,那么这个三角形是直角三角形.2.能够成为直角三角形三条边长的三个正整数,称为勾股数.3.两个命题的题设、结论整好相反,我们把像这样的两个命题叫做互逆命题.练习设计请完成本课时对应练习!。
人教版八年级数学下册第17章勾股定理(教案)
举例:
a)难点突破:通过动画或实体模型展示勾股定理的证明过程,帮助学生形成直观认识,再逐步引导到数学证明上。
b)问题解决:设计不同类型的题目,如直角三角形的不定方程问题,或斜边、腰长中有一个未知数的题目,指导学生如何应用勾股定理求解。
关于学生小组讨论环节,我认为这是一个很好的互动学习方式。学生们能够在这个过程中相互启发、共同进步。但在讨论过程中,我也发现有些学生过于依赖同伴,自己的思考不够独立。为了培养学生的独立思考能力,我将在以后的讨论中适当引导,鼓励他们提出自己的观点和解决方案。
最后,在总结回顾环节,我对学生们掌握的知识点进行了梳理,也解答了他们的一些疑问。但我认为,仅仅依靠课堂上的总结回顾还不够,还需要在课后加强学生的巩固练习,让他们在实际操作中不断巩固所学知识。
4.通过小组合作、讨论交流,培养学生的团队合作意识和沟通能力,增强数学表达与交流素养。
5.引导学生从不同角度思考问题,灵活运用勾股定理及其相关知识,提高学生的创新意识和数据分析素养。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念及其表达形式,即直角三角形中,斜边的平方等于两腰的平方和。
-学会运用勾股定理解决实际问题,如求直角三角形的斜边长或判断一个三角形是否为直角三角形。
人教版八年级数学下册第17章勾股定理(教案)
一、教学内容
人教版八年级数学下册第17章勾股定理,主要包括以下内容:
1.勾股定理的概念:理解直角三角形的特征,掌握勾股定理的内容及其表达形式。
2.勾股定理的证明:通过几何图形和数学推导,掌握勾股定理的证明方பைடு நூலகம்。
3.勾股定理的应用:学会运用勾股定理解决实际问题,如求直角三角形的斜边长、判断一个三角形是否为直角三角形等。
人教八年级下册第17章勾股定理单元(教案)
一、教学内容
人教版八年级下册第17章勾股定理单元,主要包括以下内容:
1.勾股定理的概念及证明:通过具体图形,引导学生发现勾股定理,并运用不同的方法进行证明,如割补法、代数证明等。
2.勾股数及其应用:介绍勾股数的概念,探讨勾股数的性质,如整数勾股数、勾股数的倍数等,并学会运用勾股定理解决实际问题。
2.通过探究勾股数的性质与应用,发展学生数据分析与数学建模的核心素养,增强解决实际问题的能力。
3.探索勾股定理的逆定理,提高学生空间想象与几何直观的核心素养,培养逆向思维与创新能力。
4.结合实际问题,培养学生数学应用与问题解决的核心素养,提升团队合作与探究精神。
5.通过本章学习,强化学生数学知识与学科思想方法的学习,培养数学情感与审美观念,提高数学素养。
其次,实践活动环节,学生们在分组讨论和实验操作中表现出很高的热情,但我也注意到有些小组在讨论过程中偏离了主题。这说明我在引导讨论时还需加强,要让学生明确讨论的目标和重点,确保讨论内容与勾股定理的实际应用紧密相关。
关于学生小组讨论环节,我觉得整体效果较好,学生们能够积极发表自己的观点,并在交流中碰撞出火花。但在分享成果时,我发现有些学生表达不够清晰,可能是因为他们在讨论中没有充分准备。为了提高成果分享的质量,我可以在讨论环节结束时,让学生们先在小组内进行一次预演,确保每个人都能清楚地表达自己的观点。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念及其证明方法,这是本节课的核心内容。通过割补法、代数证明等不同方法,让学生深刻理解a²+b²=c²的内涵。
-勾股数的识别与应用,包括整数勾股数、勾股数的倍数等特性,以及如何在实际问题中运用勾股定理。
第十七章《勾股定理》教案
师活动、学生活动、设计意图、技术应用等)一、创设情境,引入新课1、国际数学家大会是最高水平的全球性数学科学学术会议.2002年在北京召开了第24届国际数学家大会。
如图就是大会的会徽的图案。
你见过这个图案吗?它由哪些基本图形组成?2、相传2500多年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家用砖铺成的地面图案反应了直角三角形三边的某种数量关系。
我们也来观察一下地面的图案,看看能从中发现什么数量关系呢?二、探究新知思考:三个正方形A,B,C 的面积有什么关系?由这三个正方形A,B,C的边长构成的等腰直角三角形三条边长度之间有怎样的特殊关系?可以发现,以等腰直角三角形两条直角边为边长的小正方形的面积的和,等于以斜边为边长的大正方形的面积。
即等腰直角三角形的三边之间有一种特殊的关系:斜边的平方等于两直角边的平方和。
看似平淡无奇的现象有时却蕴含着深刻的道理。
探究:在网格中的一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?通过前面的探究活动,猜一猜,直角三角形三边之间应该有什么关系?猜想:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2证明:(教师讲解)这个图案是公元3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”。
赵爽根据此图指出:四个全等的直角三角形(红色)可以如图围成一个大正方形,中间的部分是一个小正方形(黄色)。
赵爽利用弦图证明命题的基本思路如下,把边长为a,b的两个正方形连在一起,它的面积是a2十b2;另一方面,这个图形可分割成四个全等的直角三角形(红色)和一个正方形(黄色)。
把图17.1-6(1)中左、右两个三角形移到图17.1-6(2)中所示的位置,就会形成一个以c 为边长的正方形(图17.1-6(3))。
因为图17.1-6(1)与图17.1-6(3)都由四个全等的直角三角形(红色)和一个正方形(黄色)组成,所以它们的面积相等。
勾股定理全章教案
17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。
2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。
3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。
二、教学重点、难点:重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。
三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。
四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。
2.自主探索,合作交流 活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。
②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为2cm , 正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向) (图中每一小方格表示21cm )⑴正方形P 的面积为2cm ,正方形Q 的面积为2cm , 正方形R 的面积为2cm 。
⑵正方形P 、Q 、R 的面积之间的关系 是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。
第17章勾股定理-含30°、60°的三角形的计算与证明(教案)
在讲授过程中,我特别注意了将理论知识与学生的日常生活联系起来,用实际案例来说明勾股定理的应用。这种教学方法似乎很受学生欢迎,他们能够更积极地参与到课堂讨论中。例如,在讨论含30°、60°直角三角形的应用时,学生们提出了许多有趣的例子,如建筑设计中的斜坡、桥梁的斜拉索等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、含30°、60°直角三角形的性质及其应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
实践活动和小组讨论环节也取得了不错的效果。学生们在分组讨论中积极交流,通过实验操作加深了对勾股定理的理解。但在这一过程中,我也注意到有些学生过于依赖小组其他成员,自身的思考不够独立。为此,我计划在未来的教学中,增加一些个人思考的环节,鼓励每个学生都能独立分析和解决问题。
此外,我也在思考如何更好地在课堂上进行差异化教学,以满足不同学生的学习需求。对于那些对几何证明感到吃力的学生,我可能会设计一些更为基础的练习,让他们逐步建立信心。而对于那些对数学有更高兴趣和能力的学生,我则会提供一些更具挑战性的问题,以激发他们的潜力。
-学会运用勾股定理和三角函数解决含30°、60°的直角三角形问题;
-能够将所学知识应用于解决实际问题。
第十七章 勾股定理教案
第十七章勾股定理17.1 勾股定理教学目标1.了解勾股定理的文化背景,了解利用拼图验证勾股定理的方法.2.能说出勾股定理,并能应用其进行简单的计算.教学重难点【重点】探索和验证勾股定理,并能应用其进行简单的计算.【难点】用拼图的方法验证勾股定理.教学过程一、导入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2002年在北京召开了第24届国际数学家大会.此图案就是大会会徽的图案.[设计意图]勾股定理揭示的是特殊三角形的三边关系,从探索等腰直角三角形三边关系入手,揭示直角三角形的三边关系,体现了由特殊到一般的数学研究方法.1.探索勾股定理(1)探索等腰直角三角形三边之间的关系.师:这个地面图案中有大大小小、各种“姿势”的正方形.毕达哥拉斯在这些正方形中发现了什么呢?(出示教材图17.1 - 2)(1)问题提出:在图17.1 - 2中,是以等腰直角三角形三边为边长的三个正方形.这三个正方形面积之间存在怎样的关系?三个正方形之间的面积关系说明了什么?(2)学生活动:质疑、猜测、探索、交流三个正方形面积之间的关系.学生的探索方法可能是:通过数正方形内等腰直角三角形个数的办法,得出两个小正方形的面积之和等于大正方形的面积.(3)教师总结:通过直接数等腰直角三角形的个数,或者用割补的方法将小正方形中的等腰直角三角形补成一个大正方形,得出结论:小正方形的面积之和等于大正方形的面积,也就是等腰直角三角形两条直角边的平方和等于斜边的平方.追问:在图17.1 - 2中,如果选取更大的等腰直角三角形,按照同样的方法作三个正方形,这三个正方形的面积关系还一样吗?如图所示.[设计意图]这个探索活动是学习、探索勾股定理的基础.借助三个正方形面积之间的关系,探索等腰直角三角形三边的数量关系,这是本活动的出发点.提出追问的问题,有助于学生的认识上升到整个直角三角形的一般性的高度,也为学生有个性的创意活动搭建了平台.2.勾股定理的证明教师提问:对于任意直角三角形三边之间应该有什么关系?教师引导学生猜想:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.追问:以上直角三角形的边长都是具体的数值,一般情况下,如果直角三角形的两直角边长分别为a,b,斜边长为c,我们的猜想仍然成立吗?思路一(出示教材图17.1 - 5)让学生剪4个全等的直角三角形,拼成如图所示的图形,利用面积证明.图中大正方形的面积是c2,直角三角形的面积是ab,中间正方形的面积为(b-a)2,则有c2=ab×4+(b-a)2,即a2+b2=c2.教师适时介绍:这个图案是公元3世纪汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以按如图所示围成一个大正方形,中间部分是一个小正方形(黄实).我们刚才用割的方法证明使用的就是这个图形.教师在学生归纳基础上总结:直角三角形两直角边长的平方和等于斜边长的平方.中国人称它为“勾股定理”,外国人称它为“毕达哥拉斯定理”.[设计意图]通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,发展学生的形象思维,使学生对定理的理解更加深刻,体会数学中数形结合的思想.通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.通过了解勾股定理的证明方法,增强学生学习数学的自信心.思路二学生利用拼图游戏验证定理,并思考:能用右图证明这个结论吗?已知:在△ABC中,∠ACB=90°,∠BAC,∠ABC,∠ACB的对边分别为a,b,c.求证:a2+b2=c2.(1)让学生准备多个三角形模型,最好是有颜色的纸,让学生拼摆不同的形状,利用面积相等进行证明.(2)拼成如图所示,其等量关系为4×ab+(b-a)=c2,化简可证.(3)发挥学生的想象能力拼出不同的图形,进行证明.教师指导学生验证.我们证明了以上结论的正确性,我们就可称之为定理,这就是著名的“勾股定理”.请同学们用不同的表达方式(文字语言、符号语言)表述这一定理.勾股定理的名称介绍:3000多年前,我国古代有一个叫商高的人说:“把一根直尺折成直角,两端连接得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.因为勾股定理内容最早出现在商高的话中,所以又称“商高定理”.一千多年后,西方的毕达哥拉斯证明了此定理,因此又叫“毕达哥拉斯定理”,当时毕达哥拉斯学派为了纪念这一发现,杀了一百头牛庆功,故而还叫“百牛定理”.一个定理有如此多的“头衔”,可见勾股定理的不凡.[设计意图]通过拼图活动,充分调动学生的积极性,进一步激发学生的求知欲;通过借助不同图形探索证明,提高学生思维的活跃性;通过对赵爽弦图的介绍,了解我国古代数学家对勾股定理的发现及证明所做出的贡献,增强民族自豪感.思路三1876年,美国总统伽菲尔德利用下图验证了勾股定理.你也能完成证明过程吗?证明:以a,b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab.把这两个直角三角形拼成如图所示的形状,使A,E,B三点在一条直线上.∵Rt△EAD≌Rt△CBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90°,∴∠AED+∠BEC=90°.∴∠DEC=180°-90°=90°.∴△DEC是一个等腰直角三角形,它的面积等于c2.又∵∠DAE=90°,∠EBC=90°,∴AD∥BC.∴四边形ABCD是一个直角梯形,它的面积等于(a+b)2.∴(a+b)2=2×ab+c2.∴a2+b2=c2.学生思考后,教师再展示证明过程.[设计意图]通过了解勾股定理的不同证明方法,丰富自己的知识;通过了解到古今中外无数人进行证明,激发学生学习数学的热情.[知识拓展]解决直角三角形有关计算和证明的问题时,要注意:(1)求直角三角形斜边上的高常运用勾股定理和面积关系式联合求解.(2)要证明线段的平方关系,首先考虑使用勾股定理,从图中寻找或构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证.(3)由勾股定理的基本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b),b2=c2-a2=(c+a)(c-a)等.(4)在钝角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,若c为最大边长,则有a2+b2>c2.二.例题讲解(补充)在直角三角形中,各边的长如图,求出未知边的长度.[解题策略]在直角三角形中,已知两边长,求第三边长,应用勾股定理求解,也可建立方程解决问题.(补充)有两边长分别为3 cm,4 cm的直角三角形,其第三边长为 cm.[解题策略]注意掌握勾股定理的表达式,分类讨论是解决此题的关键,难点在于容易漏解.师生共同回顾本节课所学主要内容:1.如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边长的平方和等于斜边长的平方.2.注意事项:(1)注意勾股定理的使用条件:只对直角三角形适用,而不适用于锐角三角形和钝角三角形.(2)注意分清斜边和直角边,避免盲目代入公式致错.(3)注意勾股定理公式的变形:在直角三角形中,已知任意两边长,可求第三边长,三.巩固练习1.如图所示,字母B所代表的正方形的面积是()A.12B.13C.144D.1942.如图所示,若∠A=60°,AC=20 m,则BC大约是(结果精确到0.1 m) ()A.34.64 mB.34.6 mC.28.3 mD.17.3 m3.在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=;(2)若b=6,c=10,则a=;(3)若a=5,c=13,则b=;(4)若a=1.5,b=2,则c=.四、板书设计第1课时1.探索勾股定理2.勾股定理的证明3.例题讲解例1例2五、作业布置六、课后评价17.1 勾股定理(2)教学目标1. 能说出勾股定理,能运用勾股定理的数学模型解决现实世界的实际问题2.通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决现实问题的意识和能力.3.经历探究勾股定理在实际问题中的应用过程,进一步体会勾股定理的应用方法.教学重难点【重点】运用勾股定理解决实际问题【难点】勾股定理的灵活运用.教学过程一、新课导入电视的尺寸是屏幕对角线的长度.小华的爸爸买了一台29英寸(74 cm)的电视机,小华量电视机的屏幕后,发现屏幕只有58 cm长和46 cm宽.他觉得一定是售货员搞错了,你同意他的想法吗?你能解释是为什么吗?引导学生回忆勾股定理的内容,学生再尝试解决上面的问题.[设计意图] 让学生回忆勾股定理的内容,并注意文字语言、图形语言、符号语言的规范统一,尝试解决生活中的实际问题,以激发学生学习的兴趣和探究的欲望.二、新知学习1.木板进门问题思路一(1)分析导入一提出的问题.教师在学生讨论基础上明确解决问题的方法:计算电视机对角线的长度,看是否为74 cm.解:根据勾股定理,得≈74(cm).因此,这台电视机符合规格.(2)自学教材第25页例1.教师提问:门框能通过薄木板的最大宽度是多少?学生带着问题阅读题目,试写解答过程.(3)变式练习:长方体盒内长、宽、高分别为3 cm,2.4 cm和1.8 cm,盒内可放的棍子最长为cm.本题需先求出长和宽组成的长方形的对角线长,为=(cm).这根最长的棍子和长方体的高,以及长和宽组成的长方形的对角线组成了直角三角形,则棍子最长为=3(cm).教师引导学生小结:遇到求木板进门或将物体放入立体图形内的问题,常常需要找到能通过(放入)物体的最大长度,与物体的长度比较大小,从而判断是否可以通过(放入).[设计意图] 通过讲练结合,引导学生独立分析,自主学习,提高学生运用勾股定理解决简单问题的能力. 思路二(教材例1)一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?[设计意图] 运用转化思想,将求门框的对角线的长转化为已知两直角边长求斜边长,从而用勾股定理解决.2.梯子靠墙问题如图所示,一架2.6 m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4 m.如果梯子的顶端A沿墙下滑0.5 m,那么梯子底端B也外移0.5 m吗?[解题策略] 已知直角三角形的两边长,可以根据勾股定理求出第三边长.已知直角三角形的一边长及两边之间的关系,也可以求出各边长.在求锐角三角形或钝角三角形的边长时,可以将其转化为直角三角形,应用勾股定理求解.[设计意图] 巩固性练习,本题涉及已知斜边长和一直角边长求另一直角边长,也用勾股定理解决.3.表面距离最短问题(补充)如图所示,一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为( )A.aB.(1+)aC.3aD.a[解题策略] 平面图中,可以直接用勾股定理求两点之间的距离,而在求表面距离最短的问题时,需要将立体图形展开后,将实际问题转化成可以用勾股定理进行计算的问题.[设计意图] 通过例题分析解决,建立数学模型,提高学生分析问题和解决问题的能力.[知识拓展] 勾股定理应用的条件必须是直角三角形,所以要应用勾股定理必须构造直角三角形.常见的应用类型为:①化非直角三角形为直角三角形;②将实际问题转化为直角三角形模型.四、巩固练习1.小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒( )A.20根B.14根C.24根D.30根2.为迎接新年的到来,同学们做了许多花布置教室,准备召开新年晚会.小刘搬来一架高2.5米的木梯,木梯放好后,顶端与地面的距离为2.4米,则梯脚与墙脚的距离应为( )A.0.7米B.0.8米C.0.9米D.1.0米3.(2015·厦门中考节选)已知A,B,C三地的位置如图所示,∠C=90°,A,C两地相距4 km,B,C两地相距3 km,则A,B两地的距离是4.(2014·潍坊中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是五、板书设计第2课时1.木板进门问题例12.梯子靠墙问题例23.表面距离最短问题例3六、作业布置七、课后评价17.1 勾股定理(3)教学目标1.利用勾股定理,能在数轴上找到表示无理数的点.2.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.教学重难点【重点】能利用勾股定理在数轴上表示无理数.【难点】利用勾股定理寻找直角三角形中长度为无理数的线段.教学过程一、新课导入我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢? [设计意图] 在七年级时,学生只能找到数轴上的表示有理数的点,而对于表示像,这样的无理数的点却找不到.学习了勾股定理后,这样的问题就可以得到解决.由旧入新,开门见山导入新课.二、探究新知1.利用勾股定理证明HL定理师生共同画图,写出已知、求证.引导学生关注画图的过程,思考哪些元素相等.已知:如图所示,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求证:Rt△ABC≌Rt△A'B'C'.2.利用勾股定理在数轴上表示无理数OB是以数轴的单位长度为边的正方形的对角线,以数轴的原点为圆心、OB长为半径画弧,交数轴正半轴于点A,则点A表示的数是.小组交流讨论:找到长为的线段所在的直角三角形.学生在数轴上画出表示的点.(1)在数轴上找到点A,使OA=3;(2)作直线l垂直于OA,在l上取一点B,使AB=2;(3)连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.[设计意图] 利用勾股定理和数轴上的点表示实数,将数与形进一步联系在一起,渗透数形结合思想,加深对勾股定理、数轴和实数的理解.三、例题讲解(补充)如图所示,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.[解题策略] 不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.四、课堂小结师生共同回顾本节课所学主要内容:1.用勾股定理在数轴上表示无理数,构造长为无理数的线段放在直角三角形中,有时是直角边,有时是斜边.2.求不规则图形的面积,应用割补法把图形分解为特殊图形,四边形中常常通过作辅助线构造直角三角形,以利用勾股定理.五、巩固练习1.如图所示,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB 的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )A. B.2 C. D.2.52.如图所示,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A.-B.-1+C.-1-D.1-3.如图所示,数轴上点A所表示的数为a,则a的值是.4.在平静的湖面上有一支红莲,高出水面1 m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2 m,求这里的水深是多少.六、板书设计第3课时1.利用勾股定理证明HL定理2.利用勾股定理在数轴上表示无理数3.例题讲解例题七、作业布置八、课后评价17.2 勾股定理的逆定理教学目标1.理解并能证明勾股定理的逆定理.2.理解原命题、逆命题、逆定理的概念.3.会认识并判断勾股数,掌握勾股定理的逆定理,并能灵活应用逆定理判定一个三角形是否为直角三角形.教学重难点【重点】勾股定理的逆定理的应用.【难点】勾股定理的逆定理的证明.教学过程一、新课导入你能说出勾股定理吗?并指出定理的题设和结论.学生独立回忆勾股定理,师生共同分析得出其题设和结论,教师引导指出勾股定理是从形的特殊性得出三边之间的数量关系.追问:你能把勾股定理的题设与结论交换得到一个新的命题吗?师生共同得出新的命题,教师指出其为勾股定理的逆命题.追问:“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.[设计意图] 通过对前面所学知识的归纳总结,自然合理地引出勾股定理的逆定理.二、探究新知1.勾股定理的逆定理(1)归纳猜想埃及人的画直角的方法,你有什么启发吗?[设计意图] 由特殊到一般,归纳猜想出“如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形就为直角三角形”的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.(2)原命题、逆命题提问:命题1和命题2的题设和结论分别是什么?[设计意图] 让学生在合作交流的基础上明确互逆命题的概念,在互动的过程中掌握互逆命题的真假性是各自独立的.(3)勾股定理的逆定理的证明如果你认为是正确的,你能证明这个命题“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形”吗?已知:如图所示,△ABC中,AB=c,AC=b,BC=a,且a2+b2=c2. 求证:∠C=90°.[设计意图] 引导学生用图形和数学符号语言表示文字命题,构造直角三角形,让学生体会这种证明思路的合理性,帮助学生突破难点.三、例题讲解(教材例1)判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=15,b=8,c=17;(2)a=13,b=14,c=15.[设计意图] 通过练习,学会运用勾股定理逆定理判断一个三角形是否为直角三角形.[知识拓展] 勾股定理的逆定理是直角三角形的判定方法之一,利用它判定是否为直角三角形的一般步骤:①确定最大边长c;②计算a2+b2和c2的值,若a2+b2=c2,则此三角形是直角三角形;若a2+b2<c2,则此三角形是钝角三角形;若a2+b2>c2,则此三角形是锐角三角形.(教材例2)某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile,“海天”号每小时航行12 n mile.它们离开港口一个半小时后分别位于点Q,R处,且相距30 n mile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?[设计意图] 学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力.四、课堂小结师生共同回顾本节课所学主要内容:(1)已知一个三角形的三边长,利用勾股定理的逆定理来判定这个三角形是不是直角三角形.(2)一个命题一定有逆命题,一个定理不一定有逆定理.(3)三个数满足勾股数的两个条件:①三个数必须满足较小的两个数的平方和等于最大的一个数的平方;②三个数必须都是正整数.(4)解题时,注意勾股定理与其逆定理的区别.勾股定理是在直角三角形中运用的,而勾股定理的逆定理是判断一个三角形是不是直角三角形的.五、巩固练习1.(2015·毕节中考)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4,5B.1,2,1C.6,7,8D.2,3,42.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( )A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.下列说法中正确的有( )(1)在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角;(2)命题“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半”的逆命题是真命题;(3)勾股定理的逆定理是:如果两条直角边长的平方和等于斜边长的平方,那么这个三角形是直角三角形;(4)△ABC的三边之比是1∶1∶,则△ABC是直角三角形.A.1个B.2个C.3个D.4个4.如图(1)所示的是一块地,已知AD=4 m,CD=3 m,AD⊥DC,AB=13 m,BC=12 m,求这块地的面积.六、板书设计17.2 勾股定理的逆定理1.勾股定理的逆定理(1)归纳猜想(2)原命题、逆命题(3)勾股定理的逆定理的证明2.例题讲解例1 例2七、作业布置八、课后评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1 勾股定理(1) 如果直角三角形的两直角边长分别为 a,b, 例 1 斜边长为 c,那么 a2+b2=c2
例2
课题
17.1 勾股定理(2) 课型 新授 知识 会用勾股定理解决简单的实际问题. 目标 三维 能力 让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性. 目标 目标 情感 树立数形结合的思想. 目标 教学重点 勾股定理的应用. 教学难点 实际问题向数学问题的转化. 教学方法 采取小组讨论、合作探究、拼图等方法。
D
勾股定理的应用 例 1、求下列直角三角形中未知边的长。
x 3 4
8 x
17
16 20
x
例 2、将长为 13 米的梯子 AB 斜靠在墙上, BC 长为 5 米,求梯子上端 A 到墙的底端 C 的距离 AC.
A
B
C
课堂小结: 本节课你学到了什么? 作业设置: 习题 17.1 第 1,2 题。
板书设计
17.1 勾股定理(3) 板书设 计
课题 知识 目标 三维 目标 能力 目标
17.2 勾股定理的逆定理(1) 课型 新授 1.理解并掌握勾股定理的逆定理的证明方法.灵活应用勾股定理及逆定理解 决实际问题. 2.理解原命题、逆命题、逆定理的概念及关系. 1.经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,渗透合 情推理的数学意识. 2.在解决问题的过程中,继续体验模型的思想方法,培养学生与他人交流、 合作的意识.
a c a c
图一
c b a b a c
大正方形的面积可以表示为 还可以表示为 结论:
b b
b a c
a
方法二: 大正方形的面积可以表示为
c b
还可以表示为
b c c a b a
结论:
图二
我国古代学者把直角三角形较短的直角边称为“勾” ,较长的直角边称 为“股” ,斜边称为“弦”. 因此就把命题 1 称为勾股定理. 弦
教学过 程
创设情境,以美引新: 请同学们欣赏美丽的海螺图案,在数学中也有这样一幅美丽的“海螺”图案! 同学们知道是怎么画 出来的吗?它是依据 什么数学知识画出来 的?
问题:如何在数轴上表示 13 ?如何在数轴上表示 2 ?
课堂练习:课本 P27 练习第 1,2 题 课堂小结: 今天这节课你有什么收获和小组内的同学交流一下。 作业设置: 习题 17.16,7, ,11,12 题。
B
Ⅱ
Ⅲ
B
Ⅱ
Ⅲ
Cห้องสมุดไป่ตู้
Ⅰ
A
C
Ⅰ
A
思考: (1)你发现了三个正方形Ⅰ、Ⅱ、Ⅲ的面积之间有什么关系吗? 正方形Ⅰ的面积 正方形Ⅱ的面积 正方形Ⅲ的面积 (单位面积) (单位面积) (单位面积) 较大的图 较小的图 (2)你发现了一般直角三角形三边长度之间存在什么关系吗? 由上面的例子,我们猜想: 命题 1 : 如果直角三角形的两直角边长分别为 a,b,斜边长为 c, 那么 a2+b2=c2 证一证 命题 1 的证明方法有多种 方法一:我国古人赵爽的证法,利用“赵爽弦图”证明.(图一)
教学过程
课堂引入 D C 勾股定理在实际的生产生活当中有着广泛的应用. 勾 股定理的发现和使用解决了许多生活中的问题, 今天我们 就来运用勾股定理解决一些问题,你可以吗?试一试. 例题分析 例1 分析: ⑴在实际问题向数学问题的转化过程中, 注意 A B 勾股定理的使用条件,即门框为长方形,四个角都是直 角.⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最 长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通 过?⑷转化为勾股定理的计算,采用多种方法.⑸注 意给学生小结深化数学建模思想,激发数学兴趣. A 例2 C 分析:⑴在△AOB 中,已知 AB=2.6,AO=2.4, 利用勾股定理计算 OB. D O B ⑵ 在△COD 中,已知 CD=2.6,CO=1.9,利用 勾股定理计算 OD.则 BD=OD-OB,通过计算可知 BD≠AC. ⑶进一步让学生探究 AC 和 BD 的关系,给 AC 不同的值,计算 BD. 课堂练习: 课本 26 页练习 1,2 题。 课堂小结: 在运用勾股定理解决问题的时候需要注意哪些问题? 作业设置: 习题 17.1 第 3,4,5,8,9,10 题。 17.1 勾股定理(2) 例1 例2
B
教学过程
Ⅲ B Ⅱ C Ⅲ Ⅰ A
Ⅱ C Ⅰ A
正方形Ⅰ的面积 (单位面积) 较大的图 较小的图
正方形Ⅱ的面积 (单位面积)
正方形Ⅲ的面积 (单位面积)
思考: (1)你发现了三个正方形Ⅰ、Ⅱ、Ⅲ的面积之间有什么关系吗?
(2)你发现了等腰直角三角形三边长度之间存在什么关系吗? 探究活动三: 由上面你得到的结论,我们自然联想到:一般的直角三角形是否也具有 该性质呢?观察下图并填写: (图中每个小方格代表一个单位面积)
板书设计
课 题 知 识 目 标 能 力 目 标 情 感
17.1 勾股定理(3) 会用勾股定理解决简单的实际问题.
课型
新授
三 维 目 标
让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性.
树立数形结合的思想.
目 标 教学重 点 教学难 点 教学方 法
勾股定理的应用. 实际问题向数学问题的转化. 采取小组讨论、合作探究、拼图等方法。 思考: 在八年级上册我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个 直角三角形全等。学习了勾股定理后,你能证明这一结论吗?
勾 股
勾股定理 如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那 么 a +b2=c2 A 推理格式: ∵ △ABC 为直角三角形 2 2 2 ∴ AC +BC =AB . c (或 a2+b2=c2) b 例题学习 B C a 求直角△BCD 中未知边的长.
2
13 C x 3 A 4 B
八年级数学教学设计
课题 17.1 勾股定理(1) 课型 新授 知识 了解勾股定理的发现过程, 掌握勾股定理的内容, 会用面积法证明勾股定理。 目标 三维 能力 培养在实际生活中发现问题总结规律的意识和能力. 目标 目标 情感 介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促 目标 其勤奋学习. 教学重点 勾股定理的内容及证明. 教学难点 教学方法 勾股定理的证明. 采取小组讨论、合作探究、拼图等方法。 探究活动一: 画一个直角边为 3cm 和 4cm 的直角△ABC,用刻度尺量出 AB 的长。 你发现了什么? 你是否发现 32+42 与 52 的关系? 对于任意的直角三角形也有这个性质吗? 探究活动二: 探究等腰直角三角形的情况 观察下图并填写: (图中每个小方格代表一个单位面积)