一元二次方程(知识点+考点+题型总结)

合集下载

一元二次方程专题复习讲义(知识点_考点_题型总结材料)haouseok

一元二次方程专题复习讲义(知识点_考点_题型总结材料)haouseok

一元二次方程专题复习解与解法元二次方程 根的判别韦达定理⑴②未知数的最高次数是.2,这样的③整式方程就是一元二次方程。

2⑵一般表达式:ax bx c 0(a0)⑶难点:如何理解 “未知数的最高次数是 2 ① 该项系数不为“ 0 ”; ② 未知数指数为“ 2 ”;③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

例1、- ■下列方程中是关于 x 的一兀二次方程的是()A 3 x 1 2 2 x 1B 11 c c2 2 0x xC2axbx c 0Dx 2x x 1变式:: 当k时, 关于x 的方程kx 222x x 23是一元二次方程。

例2、方程 m 2 x m 3mx 1 0是关于x 的一元二次方程,则 m 的值为 _________________ 。

2★1、方程8x 7的一次项系数是 _______________ ,常数项是 __________ 。

★2、若方程 m 2x 向10是关于x 的一元一次方程,⑴求m 的值;⑵写出关于 x 的一元一次方程。

★★3、若方程m 1 x2m ? x 1是关于x的一元二次方程,则m的取值范围是____________★★★4、若方程nx m+x n-2x 2=0是一元二次方程,则下列不可能的是()2 2例2、关于x的一元二次方程a 2 x x a 4 0的一个根为0,则a的值为 ___________ 。

2例3、已知关于x的一元二次方程ax bx c 0 a 0的系数满足a c b,则此方程必有一根为________ 。

例4、已知a, b是方程x 4x m 0的两个根,b, c是方程y 8y 5m 0的两个根,贝U m的值为_________。

★1、已知方程x2 kx 10 0的一根是2,则k为__________________ ,另一根是___________x 1★2、已知关于x的方程x2 kx 2 0的一个解与方程3的解相同。

一元二次方程题型总结

一元二次方程题型总结

《一元二次方程》每日一练知识点一:一元二次方程的概念1、已知关于x 的方程(m ²-1)x ²+(m-2)x-2m+1=0,当m= 时是一元二次方程,当m = 时是一元一次方程。

2、关于y 的一元二次方程2y(y-3)= -4的一般形式是 ,它的二次项系数是_____ , 一次项是_____ ,常数项是 。

3、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的值为( )(A )1 (B )1- (C )1或1- (D )0.54、方程(m +2)|m |+3mx +1=0是关于x 的一元二次方程,则( )。

(A )m =±2 (B )m =2 (C )m =-2 ( D )m ≠±2知识点二:一元二次方程的解法直接开平方法;配方法;公式法;因式分解法;十字相乘法1、用适当的方法解下列方程(1)(x+3)2 -12=0 (2) 3x 2-6x +1=0 (3)x 2-4x +1=0。

(4)7x(x-2)=2x-4 (5)2(3)4(3)0x x x -+-= (6)22510x x --=(7)9(x-1)2-4=0 (8)2x 2+6x-2=0 (9)(2)(35)1x x --=; (10)22)3()12(x x -=-2、方程x x =23的解是 ;方程 0)2)(1(=-+x x 的根是 ;3、等腰三角形的三条边长是x 2-6x+5=0的根,则这个等腰三角形的周长是____ _.4、方程2x 2-3x+1=0变为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 5、将二次三项式x 2-4x+1配方后得( ) A .(x-2)2+3 B .(x-2)2-3 C .(x+2)2+3 D .(x+2)2-36、已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一根为( )A. 0B. 1C. -1D. 27、当代数式x 2+3x+5的值为7时,代数式3x 2+9x-2的值是( ).A .4B .0C .-2D .-4知识点三:根的判别式的应用△>0,方程有2个不相等的实数根; △=0,方程有2个相等的实数根;△<0,方程没有实数根; 0≥∆,方程有实数根。

(完整版)一元二次方程知识点和经典例题

(完整版)一元二次方程知识点和经典例题

一元二次方程一.基本概念定义:形如:02=++c bx ax (0≠a )的方程,叫做一元二次方程的一般式. 例题:若方程32)1(1=--+x x m m 是关于x 的一元二次方程,求m 的值.二.一元二次方程的解法(1)直接开方法: 02=+c ax , 开平方求出未知数的值:ac x -±= (2)因式分解法:0)(2=++-mn x n m x ,因式分解得:0))((=--n x m x ∴m x =1,n 2=x(3)配方法:061232=-+x x ,得:242=+x x ,∴222)2(2)2(4+=++x x 即:6)2(2=+x ∴621+-=x ,622--=x(4)公式法:解法步骤:○1先把一元二次方程化为一般式; ○2找出方程中a 、b 、c 等各项系数和常数的值;○3计算出ac b 42-的值;○4把a,b, ac b 42-的值代入公式;○5求出方程的两个根.例题:解方程: x(x+12)=8x+12解:原方程化简得:01242=-+x x ,方程中:a=1,b=4,c=-12∆=ac b 42-=(4)2-4×1×(-12)=16+48=64.∴28412644±-=⨯±-=x =42±- ∴原方程根为:21=x ,=2x -6.一元二次方程解法练习题:(1)用直接开方法解一元二次方程: ○1 (2x-1)2=7 ○222)43()43(x x -=- ○30144)3(2=--x(2)用因式分解法解一元二次方程:○11)1(3-=-x x x ○25x(x-3)=6-2x ○32(x +2)(x -1)=(x +2)(x +4)○4025)2(10)2(2=++-+x x ○542)2)(1(+=++x x x ○60)4()52(22=+--x x(3)用配方法解一元二次方程:○1x(x+4)=8x+12 ○226120x x --= ○30223)12(22=-+-+x x(4)用公式法解一元二次方程:○123520x x -+= ○5(3)(1)2x x +-=- ○112x 2-33x+130=0(5)选择适当的方法解下列方程:○122(2)9x x -= ○22299990x x +-= ○32(101)10(101)90x x +-++=○42690x x -+= ○5x(37)2x x -= ○6}113111[1()]222323x x x x ⎧--+-+=⎨⎩三.一元二次方程根的判别式1.一元二次方程根的判别式:把ac b 42-=∆叫做一元二次方程:02=++c bx ax (0≠a )的根的判别式.利用根的判别式可以不解方程判别一元二次方程跟的情况:20(1)00(2)400.b ac ∆>⇔⎧∆≥⇔⎨∆=⇔⎩∆=-∆<⇔当时方程有两个不相等的实根;当时方程有两个实数根;当时方程有两个相等的实数根;当的值小于时,即:时方程无实数根例1.不解方程判断下列方程跟的情况:(1)08822=+-x x (2)24120x x +-= (3)20232=+-x x解:(1)方程中:a=2,b=-8,c=8,∆=ac b 42-=(-8)2-4×2×8=64-64=0∵∆=0 ∴原方程有两个相等的实数根.(2)方程中:a=1,b=4,c=-12,∆=ac b 42-=(4)2-4×1×(-12)=16+48=64 ∵∆>0 ∴原方程有两个不相等的实数根.(3)方程中:a=2,b=-3,c=2,∆=ac b 42-=(-3)2-4×2×2=9-16=-7∵∆<0 ∴原方程无实数根.例2.关于x 的一元二次方程(m -1)x 2-2(m -3)x +m +2=0有实数根,求m 的取值范围.解:当m -1≠0时, 即:m 1≠时,该方程是关于x 一元二次方程.∵原方程有实数根∴0≥∆,即:Δ=[-2(m -3)]2-4(m -1)(m +2)=-28m +440≥ 解得:711≤m ∴m 的取值范围是711≤m 且m 1≠. 例3. 求证:关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根. 证明:∵224=[2(1)]4(2)(1)4(3)b ac k k k k ∆=-----+=-且k 3≤,∴总有0≥∆ ∴关于x 的一元二次方程2(2)2(1)10k x k x k --+-+=(k 3)≤总有实数根.四.一元二次方程根与系数的关系1.定理:设一元二次方程02=++c bx ax (0≠a 且042≥-ac b )的两个根分别为1x 和2x ,则:ab 2x 1x -=+; a 2x 1xc =• 特别地:对于一元二次方程20x px q ++=,根与系数的关系为:12x x p +=-; 12x x q =注:○1此定理成立的前提是0∆≥.也就是说必须在方程有实..数根..时才可使用. ○2此定理在其他一些数学书籍中也叫做韦达定理。

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。

2) 未知数的最高次数是2.3) 是方程。

4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。

2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。

3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。

4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。

5) 二次函数图像法,当时,方程有没有实数根。

3、应用1) 一元二次方程可用于解某些求值题。

2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。

知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。

要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。

解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。

解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。

选择哪种方法要根据具体情况而定。

直接开平方法是解形如x²=a的方程的方法,解为x=±√a。

配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。

人教版九年级-一元二次方程知识点总结及基础题型

人教版九年级-一元二次方程知识点总结及基础题型

一元二次方程知识点一:一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程叫做一元二次方程,一般形式是),,,0(02为常数c b a a c bx ax ≠=++类型:()()()()⎪⎪⎩⎪⎪⎨⎧≠=++≠=+≠=+≠=000000002222a c bx ax a c axa bx ax a ax ④③②①判断一元二次方程的步骤例1:1.下列方程时一元二次方程的是①2032=+x x ;②04322=+-xy x ;③412=-x x ;④02=x ;⑤0332=+-x x ⑥x 2﹣1=y ⑦(x+2)(x+1)=x 2 ⑧ 6x 2=5 ⑨⑩2x +3x +y=0 ;⑪ x+y+1=0 ;⑫ 213122+=+x x ; ⑬ 0512=++x x⑭;⑮3y 2﹣2y=﹣1;⑯2x 2﹣5xy+3y 2=0;⑰⑱ ;⑲ ;⑳ ;④ ;⑤ ;⑥;⑦ ;⑧ ;⑨ ;⑩(). 2.关于x 的方程mx 2+3x=x 2+4是一元二次方程,则m 应满足条件是 _________ .3.关于x 的一元二次方程ax 2﹣3x+2=0中,a 的取值范围是 _________ .4.当m= _________ 时,方程(m 2﹣1)x 2﹣mx+5=0不是一元二次方程.1.把方程化成一般形式),,,0(02为常数c b a a c bx ax ≠=++2.最高次数=23.最高次项的系数≠05.若关于x 的方程(k ﹣1)x 2﹣4x ﹣5=0是一元二次方程,则k 的取值范围是__________ 例2:当=m 时,方程072)1(1=-+-+x x m m 为一元二次方程6.若是关于x 的一元二次方程,则a= _________ .7.若关于x 的方程(m ﹣1)﹣mx ﹣3=0是一元二次方程,则m= _________ .8.当k= _________ 时,(k ﹣1)﹣(2k ﹣1)x ﹣3=0是关于x 的一元二次方程. 9.方程(m+2)x |m|+3mx+1=0是关于x 的一元二次方程,则m=__________10.关于x 的方程(m ﹣2)x |m|﹣mx+1=0是一元二次方程,则m=___________知识点二:一元二次方程的一般形式一元二次方程的一般形式是),,,0(02为常数c b a a c bx ax ≠=++,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项①0≠a ;②指出二次项系数,一次项系数,常数项时,一定要带上前面的符号③一元二次方程化为一般形式时,若没出现一次项bx ,并不是没有,而是0=b例3: 把方程(1)()()1231=+-x x (2)(3)(4)化为一般形式,并写出它的二次项系数,一次项系数和常数项1.一元二次方程的二次项系数、一次项系数、常数项分别是_______________2.一元二次方程142=+x x 的二次项系数,一次项系数,常数项分别是3.一元二次方程2x -3x = 4的一般形式是 ,一次项系数为 。

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。

一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是():A。

2x^2+11x-2=0B。

ax^2+bx+c=DC。

2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。

针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。

3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。

m=n=2B。

m=2.n=1C。

n=2.m=1D。

m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。

根的概念可用于求代数式的值。

典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。

例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。

一元二次方程知识点总结&练习

一元二次方程知识点总结&练习

一元二次方程专题(一)、一元二次方程的解法:【知识点归纳与总结】一、概念:一元二次方程的一般形式为:ax 2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。

二、基本思路与方法: 解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。

1 用直接开平方法解形如 (x-m)2=n (n≥0) 的方程,其解为x=m±.例1.解方程(1)75(3x+1)2=7 (2)9x 2-24x+16=112.配方法:用配方法解方程ax 2+bx +c=0 (a≠0)先将常数c 移到方程右边:ax 2+bx=-c将二次项系数化为1:x 2+b a x=-c a方程两边分别加上一次项系数的一半的平方:x 2+b a x+(b 2a )2=-c a +(b 2a)2 方程左边成为一个完全平方式:(x+)2= 当b 2-4ac≥0时,x+=±∴ x= (这就是求根公式)例2.用配方法解方程 3x 2-4x-2=03.公式法:把一元二次方程化成一般形式,然后计算判别式△=b 2-4ac 的值,当b 2-4ac≥0时,把各项系数a, b, c 的值代入求根公式x= (b 2-4ac≥0)就可得到方程的根。

例3.用公式法解方程 2x 2-8x=-54.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8 (2) 2x 2+3x=0 (3) 6x 2+5x-50=0 (4)x 2-2(+)x+4 =0小结:一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

《一元二次方程》各节知识点及典型例题

《一元二次方程》各节知识点及典型例题

第二章 一元二次方程第一节 一元二次方程 第二节 一元二次方程的解法 第三节 一元二次方程的应用 第四节 一元二次方程根与系数的关系 五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。

其中ax 2是 ,a 是 ,bx 是 ,b 是 ,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a-1)x |a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a-1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x-2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。

巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x-1)+1=2x 2C. x 2+3x=2x D. ax 2+bx+c-0 2、已知关于x 的方程mx 2+(m-1)x-1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值 6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)

初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。

一元二次方程知识点总结与易错题

一元二次方程知识点总结与易错题

一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

考点二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。

4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于-a b ,二根之积等于ac,也可以表示为x 1+x 2=-a b ,x 1 x 2=ac。

一元二次方程常见题型总结

一元二次方程常见题型总结

一元二次方程常见题型总结一元二次方程常见题型总结题型1:一元二次方程的概念1.若方程$(a-1)x^2-3x+2=0$是关于$x$的一元二次方程,则$a$的取值范围为【】(A)$a\neq1$(B)$a>1$(C)$a\neq1$(D)$a>1$答案:$a\neq1$2.若$1-3$是方程$x^2-2x+c=0$的一个根,则$c$的值为【】(A)$-2$(B)$4/3$(C)$3/2$(D)$4$答案:$4/3$3.已知关于$x$的一元二次方程$(k+4)x^2+3x+k^2+3k-4=0$的一个根为$0$,且$k$的值为【】答案:$k=-4$或$k=1$题型2:一元二次方程的解法4.一个等腰三角形的底边长是$6$,腰长是一元二次方程$x^2-7x+12=0$的一个根,则此三角形的周长是【】(A)$12$(B)$13$(C)$14$(D)$12$或$14$答案:$14$5.方程$(x+3)^2=5(x+3)$的解为__________。

答案:$x=-2$或$x=2$6.用适当的方法解下列方程:1)$4x^2-144=0$;(2)$2x^2+3x=3$;(3)$x^2-2x-24=0$;(4)$x(2x-5)=4x-10$。

题型3:一元二次方程根的判别式及根与系数的关系定理7.已知$a,b,c$为常数,点$P(a,c)$在第二象限,则关于$x$的方程$ax^2+bx+c=0$的根的情况是【】(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)无法判断答案:$B$8.若关于$x$的一元二次方程$x^2+(2k-1)x+k^2-1=0$没有实数根,则$k$的取值范围为__________。

答案:$k1$9.已知关于$x$的一元二次方程$x^2+(2k+1)x+k^2=0$有两个不相等的实数根。

1)求$k$的取值范围;2)设方程的两个实数根分别为$x_1,x_2$,当$k=1$时,求$x_1^2+x_2^2$的值。

一元二次方程 知识点总结

一元二次方程 知识点总结

一元二次方程知识点总结一、一元二次方程的概念。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 判断方程是否为一元二次方程。

- 首先看方程是否为整式方程。

- 然后看是否只含有一个未知数,且未知数的最高次数为2,同时二次项系数不为0。

例如x^2+2x - 1 = 0是一元二次方程;而x^2+(1)/(x)=1不是一元二次方程,因为它是分式方程。

二、一元二次方程的解法。

1. 直接开平方法。

- 对于方程x^2=p(p≥0),解为x=±√(p)。

- 例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

2. 配方法。

- 步骤:- 把方程ax^2+bx + c = 0(a≠0)的常数项移到等号右边,得到ax^2+bx=-c。

- 二次项系数化为1,即x^2+(b)/(a)x =-(c)/(a)。

- 在等式两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=((b)/(2a))^2-(c)/(a)。

- 左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。

- 例如解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x + 9 = 7+9,即(x + 3)^2=16,解得x = 1或x=-7。

3. 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。

- 步骤:- 确定a、b、c的值。

- 计算b^2-4ac的值,判断方程是否有实数根。

- 当b^2-4ac≥0时,代入求根公式求解。

(完整版)一元二次方程知识点和易错点总结

(完整版)一元二次方程知识点和易错点总结

一元二次方程知识点总结知识结构梳理(1)含有 个未知数。

(2)未知数的最高次数是 1、概念 (3)是 方程。

(4)一元二次方程的一般形式是 。

(1) 法,适用于能化为)((0)2≥=+n n m x 的一元二次方程 (2) 法,即把方程变形为ab=0的形式,2、解法 (a ,b 为两个因式), 则a=0或(3) 法(4) 法,其中求根公式是 根的判别式当 时,方程有两个不相等的实数根。

(5) 当 时,方程有两个相等的实数根。

当 时,方程有没有的实数根。

可用于解某些求值 (1) 一元二次方程的应用 (2)(3)可用于解决实际问题的步骤 (4) (5)(6)知识点归类知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:1、一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是一元二次方程2、同时还要注意在判断时,需将方程化成一般形式。

例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。

其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。

注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

例1 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。

完整版一元二次方程知识点总结和例题复习

完整版一元二次方程知识点总结和例题复习

知识框架 知识点总结:一兀二次方程4. 一元二次方程的解法(1) 直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如 (X 可知,X a 是b 的平方根,当 b<0时,方程没有实数根。

(2) 配方法 配方法是一种重要的数学方法,2a) b 的一元二次方程。

根据平方根的定义b 0 时,X a4b , X a J b ,当它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式2 2 2a 2ab b (a b),把公式中的a 看做未知数x ,并用x X 2 2bx b 2(x b)2。

配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;代替,则有 化二次项系知识点、概念总结 1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元) ,并且未知 数的最高次数是 2 (二次)的方程,叫做一元二次方程。

2. 一元二次方程有四个特点:(1) 含有一个未知数; (2) 且未知数次数最高次数是 2; (3) 是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整 式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a 丰0)的形 式,则这个方程就为一元二次方程。

(4 )将方程化为一般形式: 3. 一元二次方程的一般形式 过整理,?都能化成如下形式 一个一元二次方程经过整理化成 是二次项系数;bx 是一次项, 2ax +bx+c=0时,应满足( :一般地,任何一个关于 X 2ax +bx+c=0 (aM 0)。

2ax +bx+c=0 (a 丰 0)后,b 是一次项系数;a 丰0) 的一元二次方程,经其中ax 2是二次项,c 是常数项。

数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p ±V q ;如果qv 0,方程无实根.(3) 公式法 公式法是用求根公式解一元二次方程的解的方法, 方法。

(完整版)一元二次方程知识点总结

(完整版)一元二次方程知识点总结

一元二次方程1. 一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2 (二次)的方程,叫做一元二次方程。

(2)一元二次方程的一般形式:ax2 bx c 0(a 0)。

其中a为二次项系数,b为一次项系数,c为常数项。

注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。

2. 一元二次方程的解法(1 )直接开平方法:形如(x a)2 b(b 0)的方程可以用直接开平方法解,两边直接开平方得x a b或者x a 、、b,x a , b。

注意:若b<0,方程无解(2)因式分解法:一般步骤如下:①将方程右边得各项移到方程左边,使方程右边为0 ;②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是原方程的解。

(3)配方法:用配方法解一元二次方程ax2 bx c 0(a 0)的一般步骤①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x m)2 n(n 0)的形式;④用直接开平方法解变形后的方程。

注意:当n 0时,方程无解(4)公式法:一元二次方程ax2 bx c 0(a 0)根的判别式:b24ac0方程有两个不相等的实根:x b甘4/( b2 4ac 0)2af(x)的图像与x轴有两个交点0方程有两个相等的实根f(x)的图像与x轴有一个交点0方程无实根f(x)的图像与x轴没有交点3. 韦达定理(根与系数关系)我们将一元二次方程化成一般式ax2+bx+c = 0之后,设它的两个根是x i 和X2,则&和X2与方程的系数a, b, c之间有如下关系:X i+X2 = b;X i?X2 = 2a a4. 一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程专题复习考点一、概念(1)定义:①只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。

(2)一般表达式:)0(02≠=++a c bx ax⑶难点:如何理解 “未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x x B 02112=-+xx C 02=++c bx ax D 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。

例2、方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

针对练习: ★1、方程782=x 的一次项系数是 ,常数项是 。

★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。

★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( ) A.m=n=2 B.m=2,n=1 C.n=2,m=1 D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知322-+y y 的值为2,则1242++y y 的值为 。

例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。

针对练习:★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。

★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。

⑴求k 的值; ⑵方程的另一个解。

★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。

★★4、已知a 是0132=+-x x 的根,则=-a a 622。

★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A1- B 1 C c b - D a -★★★6、若=•=-+y x 则y x 324,0352 。

考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:()m x m m x ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法 典型例题:例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 。

针对练习:下列方程无解的是( )A.12322-=+x xB.()022=-xC.x x -=+132D.092=+x类型二、因式分解法:()()021=--x x x x 21,x x x x ==⇒或 ※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ ,0222=++a ax x典型例题:例1、()()3532-=-x x x 的根为( )A 25=x B 3=x C 3,2521==x x D 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。

变式1:()()=+=-+-+2222222,06b 则a b a b a 。

变式2:若()()032=+--+y x y x ,则x+y 的值为 。

变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。

例3、方程062=-+x x 的解为( )A.2321=-=,x xB.2321-==,xx C.3321-==,x x D.2221-==,x x 例4、解方程: ()04321322=++++x x例5、已知023222=--y xy x ,则yx y x -+的值为 。

变式:已知023222=--y xy x ,且0,0>>y x ,则yx y x -+的值为 。

针对练习:★1、下列说法中:①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x . ③)3)(2(6522--=+-a a b ab a④ ))()((22y x y x y x y x -++=-⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x 正确的有( ) A.1个 B.2个 C.3个 D.4个 ★2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y ★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或25、方程:2122=+x x 的解是 。

★★★6、已知06622=--y xy x ,且0>x ,0>y ,求y x y x --362的值。

★★★7、方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。

类型三、配方法()002≠=++a c bx ax 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:例1、 试用配方法说明322+-x x 的值恒大于0。

例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3、 已知,x、yy x y x 0136422=+-++为实数,求y x 的值。

例4、 分解因式:31242++x x针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+x x xx ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。

★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。

类型四、公式法⑴条件:()04,02≥-≠ac b a 且 ⑵公式: aac b b x 242-±-=,()04,02≥-≠ac b a 且 典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x ⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式: (1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成 c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。

典型例题:例1、 已知0232=+-x x,求代数式()11123-+--x x x 的值。

例2、如果012=-+x x ,那么代数式7223-+x x 的值。

例3、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。

例4、用两种不同的方法解方程组⎩⎨⎧=+-=-)2(.065)1(,6222y xy x y x说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再消元。

但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已知的问题.考点四、根的判别式ac b 42-根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。

典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。

例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。

例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?针对练习:★1、当k 时,关于x 的二次三项式92++kx x是完全平方式。

★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么? ★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .★★4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.★ ★★5、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数?考点五、方程类问题中的“分类讨论”典型例题:例1、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。

例2、 不解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。

例3、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。

相关文档
最新文档