高数一试题及答案.

合集下载

高数一试题及答案

高数一试题及答案

《高等数学(一)》复习资料」、选择题1.2若 lim x -x k _5,则 k _( )x )3x -3A. -3B.-4C.-5 D. -62. 若lim ―1x 2 -k 2,x -1则 k =( )A.1;. 2 C.3 D.43. 曲线y=e x -3sinx 1在点(0, 2)处的切线方程为() A. y =2x 2 B. y = -2x 2 C. y = 2x 3 D. y = -2x 34. 曲线y =e x -3sin x -1在点(0,2)处的法线方程为()x -15.妁——=()x 1sin xA. 0B. 3C. 4D. 5x6.设函数 f (x) = [ (t +1)(t —2)dt ,贝U f \3)=()7.求函数y =2x 4 -4x 3,2的拐点有()个 A 1 B 2 C 4 D 010.设f (x )=x -3x ,5,则 f (0)为 f (x )在区间[-2,2]上的(B.y = --x 2 C.28.当x 》::时,下列函数中有极限的是(1 A. sinx B. x C. e9.已矢口 f '(3)=2 , h im 0f(3-h)-f (3)2hx 1X 2-1 )。

D. arcta nx)。

A.极小值B. 极大值C. 最小值D. 最大值11. 设函数 f(x)在[1,2]上可导,且 f'(x) ::: 0, f (1) . 0,f (2) ::: 0,则 f(x)在(1,2)内 ()A.至少有两个零点B.有且只有一个零点C.没有零点D.零点个数不能确定12. [f (x) xf '(x)]dx =().A. f(x) CB. f '(x) CC. xf (x) CD. f 2(x) C13. 已知 y = f 2 (In x 2),则 y = ( C )14. d . f (x)=( B) 0 C-2 DA.(0,0)B.( 1,1)C.(2,2)D.(3,3)19.已知 y = f(ln x),则 y = ( A )A. df (x)B. f (x)C. df (x)D. f (x) CA.2 f (lnx 2)f(ln x 2)4 f (ln x 2)B. -------------C.x 24 f (ln x 2) f \ln x 2) p2f (In x 2)f (x)x 2A. f '(x) CB.f(x) C.f (x)D. f(x) C15.xdx = ( DA. 2xln x +CB.C. 2ln x CD. ln x ? C16. A. 2B.4 D.17. 设函数 f (x)二 C.x(t-1)(t 2)dt ,则 f (-2)=()18. 曲线 y =x 3的拐点坐标是() A.f (ln x)B. f (ln x)C. xf(ln x)D f (ln X )x20. d df(x) -( A)21. In xdx = ( A )A. xl nx — x CB. In x —x CC. In x — xD. In x二、求积分(每题8分,共80分)1 .求 cosx sin xdx3.求 arctan xdx .4.求Je 酥dx5.求dx . 'x —5x +6兀27 计算 f x cosxdx .8.求厂匕dx .2 211. 求 1 2xe» dx 12. 求 3x 2 .3「x 3dx14.求 x .3 -x 2dx三、解答题, A1. 若 lim 3x- ax 2-x1 二一,求 af 62 讨论函数f (x) =-x 3-2x 2 • 3x -3的单调性并求其单调区间2.求34 3ln x ,dx .6. 求定积分8dx 013x9.求dx ' 1 +$x + 2x-求函数f(x)= x _x_2的间断点并确定其类型 x —2i x = a cost求由方程y’sint 确定的导数y x .严1e x ,x cO函数f(x)= 1,x = 0 在x=0处是否连续?tanx, x A 0"1e x ,x c0函数f (x) =[1,x =0 在x = 0处是否可导?tanx, x 0求抛物线y =x 2与直线y 二x 所围成图形D 的面积A . 10.计算由抛物线y 2 =2x 与直线y =x -4围成的图形D 的面积A .11. 设y 是由方程y =sin y xe y 确定的函数,求 y 12. 求证:In x :: x -1, x 113. 设y 是由方程y =1 xe y 确定的函数,求 \14. 讨论函数f(x) =2x 3 -9x 2,12x-3的单调性并求其单调区间 15. 求证:e x • 2x —1,16. 求函数f(x)「(1-;)的间断点并确定其类型X —X五、解方程1. 求方程 y 2dx ,(x 2 -xy)dy =0 的通解.2. 求方程yy • y 2 = 0的通解.3.4. 设 xy 2 sin x =e xy ,求 y5. 求y =(x 2的导数. 5(x 3)6. 7. 8. 9.3. 求方程 厂一2y : y = x 2 3的一个特解.4. 求方程y -5y • 9y =5xe ;x 的通解.高数一复习资料参考答案 一、选择题 I- 5: DABAA 6-10: DBCDD II- 15: BCCBD 16-21 : ABAAAA 二、求积分1 .求 cosx , sin xdx___ _________ 2解:cosx 、、sin xdx 二 sin xd (sin x) sin32.J(4 3lnx)34解:设 u = arctanx , dv 二 dx ,即二 xarcta n x - 十X=3t 2e t -6te t6 e t dt =3t 2e^6te t 6e t C2 2=xarctanxIn(1 x ) C . 34. 求[e ,x dx解:3jxX = td3t 2dt =3 t 2ddt Fd -3 e? 2td^3t 2e t -6 te t dtx+c =2Js in 3x+C3解:4 3In xdx 二(4 3Inx)3d(ln x) x1(4 3ln丄d(4 3ln x)33. 求 arctan xdx -a r ct acid 炉 xa r ctxa n(arcx 2dx=3e x (3 x 2 -23 x 2) C .5.求3 dx -'x —5x +6解:由上述可知V 35—,所以x -5x 6 x-2 x-3「 x +3 i .z -5 6 、i l 「 1 i 「 1 i 巧 dx = ( )dx - -5 dx 6 dx x -5x 6 x-2 x -3 x-2 x-3=-5ln x- 2 +6ln x -耳 +C .解:令于? = t ,即 x = t ‘,贝U dx =3t 2dt ,且当 x = 0 时,t=0 ;当 x = 8 时,t =3ln3.兀27.计算 J 0 x cosxdx .2解:令 u = x , dv 二cosxdx ,贝U du 二 2xdx , v 二 sinx ,于bnl^x C . 6 |4 x解:令 u = M x +2,贝U x =u 3 -2 , dx =3u 2du ,从而有6.dx 1 3 x2,于是■ 2■ 2 2x cosxdx 二 xdsinx=(x sin x) 0 0再用分部积分公式,得r2 二x cosxdx = 2 xd cosx 二 2=2 ||(xcos x) JI JI-f 2xsinxdx=—2『 xsinxdx(xcosx)-sin xJI- 0 cosxdx8.求dx解:dx = d(x 1^-ln63—(x ,)+C 3+(x+1)9.求dx 13x 2求定积分8 dx _ 23t 2dt厂3x = oTT「t ln(1 t)2 2 , ,」o u -11, du = 3 du ‘ 1 +ue21=(In xd (In x) =Tn x314.求 x .3-x 2dx解:J x J 3 _x 2dx = _ J 1 J 3 _x 2d(3 _X 2) = _丄 2(3 — x 2)' +C = —1 (3 —x 2)' +C'2 2 3 3三、解答题J 11.若 lim 3x i :ax 2-x 1 二一,求 a F 6解:因为 3x - Jax 2 -x +1 = 一:x x ,所以 a = 9 3x + Jax 2 - x +1 否则极限不存在。

大一高数试题及解答

大一高数试题及解答

大一高数试题及答案一、填空题〔每题1分,共10分〕________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点〔0,1〕处的切线方程是______________。

f〔Xo+2h〕-f〔Xo-3h〕3.设f〔X〕在Xo可导且f'〔Xo〕=A,则lim───────────────h→o h= _____________。

4.设曲线过〔0,1〕,且其上任意点〔X,Y〕的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f〔x,y〕=sin〔xy〕,则fx〔x,y〕=____________。

_______R √R2-x28.累次积分∫ dx∫ f〔X2+Y2〕dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──〔─── 〕2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题〔在每题的四个备选答案中,选出一个正确的答案,将其码写在题干的〔〕内,1~10每题1分,11~20每题2分,共30分〕〔一〕每题1分,共10分11.设函数f〔x〕=── ,g〔x〕=1-x,则f[g〔x〕]=〔〕x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是〔〕x①无穷大量②无穷小量③有界变量④无界变量3.以下说法正确的选项是〔〕①假设f〔 X 〕在 X=Xo连续,则f〔 X 〕在X=Xo可导②假设f〔 X 〕在 X=Xo不可导,则f〔 X 〕在X=Xo不连续③假设f〔 X 〕在 X=Xo不可微,则f〔 X 〕在X=Xo极限不存在④假设f〔 X 〕在 X=Xo不连续,则f〔 X 〕在X=Xo不可导4.假设在区间〔a,b〕内恒有f'〔x〕〈0,f"〔x〕〉0,则在〔a,b〕内曲线弧y=f〔x〕为〔〕①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则〔〕① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F〔x〕dx=──∫G〔x〕dxdxdx16.∫ │x│dx=〔〕-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是〔〕①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f〔x,y〕=x3+y3+x2ytg── ,则f〔tx,ty〕=〔〕y①tf〔x,y〕②t2f〔x,y〕1③t3f〔x,y〕④ ──f〔x,y〕t2an+1∞9.设an≥0,且lim───── =p,则级数∑an〔〕n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是〔〕①一阶线性非齐次微分方程②齐次微分方程③可别离变量的微分方程④二阶微分方程〔二〕每题2分,共20分11.以下函数中为偶函数的是〔〕①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f〔x〕在〔a,b〕可导,a〈x1〈x2〈b,则至少有一点ζ∈〔a,b〕使〔〕①f〔b〕-f〔a〕=f'〔ζ〕〔b-a〕②f〔b〕-f〔a〕=f'〔ζ〕〔x2-x1〕③f〔x2〕-f〔x1〕=f'〔ζ〕〔b-a〕④f〔x2〕-f〔x1〕=f'〔ζ〕〔x2-x1〕13.设f〔X〕在 X=Xo 的左右导数存在且相等是f〔X〕在 X=Xo 可导的〔〕①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f〔x〕cosx=──[f〔x〕]2,则f〔0〕=1,则f〔x〕=〔〕dx①cosx②2-cosx③1+sinx④1-sinx15.过点〔1,2〕且切线斜率为4x3的曲线方程为y=〔〕①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=〔〕x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =〔〕x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f〔y,y'〕,降阶的方法是〔〕① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo〔xo≠0〕收敛,则∑ anxn在│x│〈│xo│〔〕n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=〔〕D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题〔每题5分,共45分〕___________/x-11.设y=/────── 求y' 。

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)

完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。

1.下列各组函数中,是相同的函数的是()。

A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。

A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。

A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。

A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。

A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。

A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。

A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。

A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。

A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。

A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。

大一高数试题及答案

大一高数试题及答案

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大学高数一试题及答案

大学高数一试题及答案

大学高数一试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2在x=0处的导数是:A. 0B. 1C. 2D. 4答案:B2. 极限lim(x→0)(sin x/x)的值是:A. 0B. 1C. 2D. ∞答案:B3. 曲线y=x^3-3x+2在x=1处的切线斜率是:A. 0B. 1C. -2D. 2答案:D4. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的极值点是______。

答案:1, 2, 32. 曲线y=x^2与直线y=4x相切的点的横坐标是______。

答案:23. 函数f(x)=ln(x)的不定积分是______。

答案:xln(x)-x+C4. 级数∑(1到∞) (1/n^2)的和是______。

答案:π^2/6三、计算题(每题10分,共30分)1. 计算定积分∫(0到π) sin x dx。

答案:22. 求函数f(x)=x^3-3x^2+2的一阶导数和二阶导数。

答案:一阶导数:3x^2-6x;二阶导数:6x-63. 求极限lim(x→∞) (1+1/x)^x。

答案:e四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在R上是单调递增的。

答案:略2. 证明极限lim(x→0) (1-cos x)/x^2=0。

答案:略。

(完整版)大一高数试题及答案.doc,推荐文档

(完整版)大一高数试题及答案.doc,推荐文档

大一高数试题及答案一、填空题(每小题1分,共10分)1.函数 的定义域为______________________。

22111arcsin xx y -+-= 2.函数上点( 0,1 )处的切线方程是______________。

2e x y += 3.设f(X )在可导,且,则0x A (x)f'=hh x f h x f h )3()2(lim000--+→= _____________。

4.设曲线过(0,1),且其上任意点(x ,y )的切线斜率为2x ,则该曲线的方程是____________。

5._____________。

=-⎰dx xx41 6.__________。

=∞→xx x 1sinlim 7.设f(x,y)=sin(xy),则fx(x,y)=____________。

9.微分方程的阶数为____________。

22233)(3dx y d x dxy d + ∞ ∞10.设级数 ∑ an 发散,则级数 ∑ an _______________。

n=1 n=1000二、单项选择题。

(1~10每小题1分,11~20每小题2分,共30分)1.设函数则f[g(x)]= ( ) x x g xx f -==1)(,1)( ① ② ③ ④xx 11-x 11-x -112.是 ( )11sin +xx ①无穷大量 ②无穷小量 ③有界变量 ④无界变量3.下列说法正确的是 ( )①若f( X )在 X =Xo 连续, 则f( X )在X =Xo 可导 ②若f( X )在 X =Xo 不可导,则f( X )在X =Xo 不连续 ③若f( X )在 X =Xo 不可微,则f( X )在X =Xo 极限不存在 ④若f( X )在 X =Xo 不连续,则f( X )在X =Xo 不可导 4.若在区间(a,b)内恒有,则在0)(",0)('><x f x f (a,b)内曲线弧y=f(x)为 ( )①上升的凸弧 ②下降的凸弧 ③上升的凹弧 ④下降的凹弧5.设,则 ( ))(')('x G x F = ① F(X)+G(X) 为常数 ② F(X)-G(X) 为常数 ③ F(X)-G(X) =0 ④⎰⎰=dx x G dxddx x F dxd )()( 1 6.( )=⎰-dx x 11-1① 0 ② 1 ③ 2 ④ 3 7.方程2x+3y=1在空间表示的图形是 ( ) ①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线8.设,则f(tx,ty)yx y x y x y x f tan),(233++==( )① ②),(y x tf),(2y x f t ③ ④ ),(3y x f t ),(12y x tan +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1 ①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( ) ①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程 (二)每小题2分,共20分11.下列函数中为偶函数的是 ( ) ①y=ex ②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a) ②f(b)-f(a)=f'(ζ)(x2-x1) ③f(x2)-f(x1)=f'(ζ)(b-a) ④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X )在 X =Xo 的左右导数存在且相等是f(X )在 X =Xo 可导的 ( )①充分必要的条件 ②必要非充分的条件 ③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim───∫3tgt2dt=()x→0x3 01①0②1③──④∞3xy17.limxysin─────=()x→0x2+y2y→0①0②1③∞④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=─────pdy∞∞19.设幂级数 ∑ an xn 在xo (xo ≠0)收敛, 则 ∑ an xn 在│x│〈│xo│( )n=o n=o①绝对收敛 ②条件收敛 ③发散 ④收敛性与an 有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ= ( ) D x 1 1 sinx① ∫ dx ∫ ───── dy 0 x x__1 √y sinx② ∫ dy ∫ ─────dx 0 y x __1 √x sinx③ ∫ dx ∫ ─────dy 0 x x __1 √x sinx④ ∫ dy ∫ ─────dx 0 x x三、计算题(每小题5分,共45分)1.设求 y’ 。

自考高数(一)试题及答案

自考高数(一)试题及答案

自考高数(一)试题及答案自考高等数学(一)试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是基本初等函数?A. 正弦函数B. 常数函数C. 指数函数D. 绝对值函数答案:D2. 函数f(x) = x^2 + 3x + 2在区间(-∞,-2)上的单调性是:A. 单调递增B. 单调递减C. 不确定D. 非单调答案:B3. 微积分基本定理指出:A. 定积分可以转化为不定积分求解B. 不定积分是定积分的基础C. 定积分的值等于其原函数的不定积分的差值D. 所有连续函数都有原函数答案:C4. 曲线y = x^3在点(1,1)处的切线斜率是:A. 0B. 1C. 3D. 2答案:C5. 以下哪个级数是发散的?A. 1 + 1/2 + 1/3 + ...B. (1/2) + (1/4) + (1/8) + ...C. 1 - 1/2 + 1/3 - 1/4 + ...D. 1 - 1/2^2 + 1/3^2 - 1/4^2 + ...答案:A6. 微分方程dy/dx = x^2 - y^2的解的形式是:A. y = x^2B. y = C/xC. y = x + CD. y = Cx^2答案:B7. 函数f(x) = e^x在x=0处的泰勒展开式的前两项是:A. 1 + xB. 1 - xC. 1 + x^2D. 1 + x + x^2答案:A8. 以下哪个选项是二元函数f(x, y) = x^2 + y^2的极值点?A. (0, 0)B. (1, 1)C. (-1, -1)D. (2, -2)答案:A9. 曲线积分∮(x^2 + y^2) ds 在圆周x^2 + y^2 = 1上的值是:A. 0B. 1C. 2πD. 4π答案:D10. 以下哪个选项是函数f(x) = sin(x)的傅里叶变换?A. 1/2B. 1/2δ(x - π)C. 1/2δ(x)D. δ(x - π)答案:C二、填空题(每题4分,共20分)11. 极限lim (x→0) (sin(x)/x) 的值是 _______。

高等数学考试题库(附答案)

高等数学考试题库(附答案)

《高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 2.函数()00x f x a x ≠=⎨⎪=⎩ 在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭(C )1f C x ⎛⎫+ ⎪⎝⎭(D )1f C x ⎛⎫-+ ⎪⎝⎭8.x x dxe e -+⎰的结果是( ).(A )arctan xe C + (B )arctan xeC -+ (C )x x e e C --+ (D )ln()x x e e C -++9.下列定积分为零的是( ).(A )424arctan 1x dx x ππ-+⎰ (B )44arcsin x x dx ππ-⎰ (C )112x xe e dx --+⎰ (D )()121sin x x x dx -+⎰ 10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21xy x =-的垂直渐近线有条. 4.()21ln dxx x =+⎰.5.()422sin cos xx x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰ ②()220dx a x a >-⎰ ③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高数》试卷1参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题 1.2- 2. 3. 2 4.arctanln x c + 5.2 三.计算题 1①2e ②162.11xy x y '=+- 3. ①11ln ||23x C x +++②ln ||x C + ③()1x e x C --++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭(B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2xy x e-=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ). (A) ()121x x e -(B) 12x x e - (C) ()121x x e + (D) 12xxe8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x . 3.函数211xy x =+-的水平和垂直渐近线共有_______条. 4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰ ②()220dx a x a>+⎰③2x x e dx ⎰ 四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yx e y y '=- 3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》试卷3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7. 20_______________________.x t d e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x +-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy t t t y dx dx ππ=====且切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxxx x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0y x C ==⇒=1xx y e x-∴=《高数》试卷4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e + 10、微分方程 xe y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=* B 、x e y 73=* C 、x xe y 272=* D 、x e y 272=*二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分⎰eedx x 1ln ; 6、解方程21xy xdx dy -=;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e - ; 6、C x y =-+2212 ; 四、1、38; 2、图略《高数》试卷5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ). A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a x x lnC 、⎰+=C x xdx sin cosD 、⎰++=C x xdx 211tan7、计算⎰xdx x e x cos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin8、曲线2x y = ,1=x ,0=y 所围成的图形绕x 轴旋转所得旋转体体积=V ( ). A 、⎰14dx x π B 、⎰1ydy πC 、⎰-1)1(dy y π D 、⎰-104)1(dx x π9、设 a ﹥0,则=-⎰dx x a a22( ).A 、2a B 、22a πC 、241a 0 D 、241a π 10、方程( )是一阶线性微分方程. A 、0ln2=+'xyy x B 、0=+'y e y x C 、0sin )1(2=-'+y y y x D 、0)6(2=-+'dy x y dx y x二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;4、=⎰-113cos xdx x;5、微分方程 023=+'-''y y y 的通解是 .三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分 ⎰eedx x 1ln ;6、求方程y xy y x =+'2满足初始条件4)21(=y 的特解.四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.2、利用导数作出函数 49623-+-=x x x y 的图象.参考答案(B 卷)一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x xx ; 3、dx x x 221)1(1-- ;4、C x ++ln 22 ;5、)12(2e- ; 6、x e x y 122-= ;四、1、 29; 2、图略七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

自考高数一历年试题及答案

自考高数一历年试题及答案

自考高数一历年试题及答案自考高等数学(一)历年试题及答案一、选择题1. 下列函数中,不是周期函数的是()。

A. y = sin(x)B. y = cos(x)C. y = e^xD. y = x^2答案:C2. 函数f(x) = x^3在区间(-1,2)上的最大值是()。

A. 1B. 8C. -1D. 2答案:B3. 微分方程dy/dx - y = 0的通解是()。

A. y = Ce^xB. y = Cxe^xC. y = CxD. y = e^x答案:A4. 若函数f(x) = 2x - 3在点x=1处的导数为1,则该函数在此处的切线斜率为______。

答案:15. 定积分∫₀¹ x² dx的值为______。

答案:1/3三、解答题6. 求函数f(x) = 3x² - 2x + 5的极值。

解答:首先求导数f'(x) = 6x - 2。

令f'(x) = 0,解得x = 1/3。

在x = 1/3处,f(x)取得极小值,计算得f(1/3) = 14/3。

7. 已知某工厂生产函数为Q = 2L²/3 + 3K,其中L为劳动投入,K为资本投入。

求劳动对产量的边际贡献。

解答:首先求产量对劳动的偏导数,即边际贡献。

对Q关于L求偏导得:dQ/dL = 4L/3。

这就是劳动对产量的边际贡献。

四、证明题8. 证明函数f(x) = x³ - 6x在区间(-2, 2)上是增函数。

证明:求导数f'(x) = 3x² - 6。

要证明f(x)在区间(-2, 2)上是增函数,需要证明f'(x)在该区间内恒大于0。

观察f'(x) = 3x² - 6,可以发现在x = ±√2时,f'(x) = 0。

在区间(-2, -√2)和(√2, 2)内,f'(x) > 0,而在区间(-√2, √2)内,f'(x) < 0。

高数一自考试题及答案

高数一自考试题及答案

高数一自考试题及答案一、选择题(每题2分,共10分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)答案:C2. 二阶微分方程 y'' - 2y' + y = 0 的通解形式是:A. y = e^(-t)B. y = e^tC. y = e^(2t)D. y = e^t * cos(t)答案:B3. 曲线 y = x^2 在点 (1,1) 处的切线斜率是:A. 0B. 1C. 2D. 3答案:C4. 定积分∫[0,1] x^2 dx 的值是:A. 1/3B. 1/4C. 1/2D. 2/3答案:B5. 函数 f(x) = x^3 - 6x^2 + 11x - 6 在区间 [2,5] 上的最大值是:A. 3B. 9C. 14D. 19答案:D二、填空题(每题3分,共15分)6. 极限 l im (x→0) [x - sin(x)] / [x^3] 的值是 _______。

答案:17. 函数 f(x) = ln(x+1) 的导数 f'(x) 是 _______。

答案:1 / (x + 1)8. 微分方程 dy/dx = x^2 - y^2 的解的形式是 _______。

答案:C(e^(x^2/2) + C)9. 定积分∫[1, e] e^x dx 的值是 _______。

答案:e^e - e10. 利用分部积分法计算∫ x e^x d x 的结果是 _______。

答案:x e^x - e^x + C三、解答题(共75分)11. (15分)计算定积分∫[0, 2] (2x + 1) dx。

解:首先确定积分的上下限,然后应用基本积分公式进行积分。

∫[0, 2] (2x + 1) dx = [x^2 + x] | [0, 2]= (2^2 + 2) - (0^2 + 0)= 4 + 2= 612. (15分)求函数 f(x) = x^2 - 4x + 3 在区间 [-1, 5] 上的最大值和最小值。

试题库(高数(1))第一章

试题库(高数(1))第一章

第一章客观题及答案1.xx y 1arctan 3+-=的自然定义域是( C ) A .{}3<x x B .{}0≠x x C .{}0,3≠<x x x D .{}30<<x x2.若x x g x x f lg 2)(,lg )(2==,则下列叙述正确的是( B )A .)()(x g x f =B .)()(x g x f ≠C .)()(x g x f >D .)()(x g x f <3.x x f =)(,下列说法正确的是( D )A .是分段函数B .是非初等函数C .是可导函数D .是初等函数4.若函数)(x f 的定义域[]2,0=D ,则)(2x f 的定义域是( A ) A .[]2,2- B .[]2,0 C .[]4,0 D .[]4,4- 5.下列说法错误的是( B )A .两个偶数的和是偶数,两个奇数的和是奇数B .两个偶数的积是偶数,两个奇数的积是奇数C .偶数与奇数的积是奇数D .偶数与一个非奇非偶的函数的和奇偶性不定6.若[]n nx n n 11)1(++-=,则关于{}nx 的极限下列说法正确的是( A ) A .极限不存在 B .极限为1 C .极限为0 D .极限为27.n n n x 312+=的极限是( B ) A .0 B .32 C .不存在 D .1 8.设a x n n =∞→lim ,下列说法不正确的是( C ) A .在a 的任意去心邻域内都含有{}n x 中的无数多个点B .在a 的任意邻域外都至多含有{}n x 中的有限多个点C .存在N ,对任意的正数ε,当N n >时,都有ε<-a x nD .对任意的正数ε,存在正数N ,当N n >时,都有ε<-a x n9.设0lim >=∞→a x n n ,下列说法不正确的是( D ) A .数列{}n x 有界 B .存在正数N ,当N n >时,0>n xC .a x n n =∞→lim D . 对任意n ,0>n x 10.a x n n ≠∞→lim 的充要条件的是( D ) A .{}n x 中任意子列都收敛 B .{}n x 中任意子列都收敛于aC .{}n x 中奇数项子列与偶数项子列都收敛于aD .存在{}n x 中的两个子列收敛于不同的极限11.若0)(lim >=∞→a x f x ,则下列说法不正确的是( B ) A .a x f x f x x ==+∞→-∞→)(lim )(lim B .0)(>x f C .M x st M >>∃,,0时,)(x f 有界 D .a y =是)(x f 的水平渐近线12.0)(lim 0>=→a x f x x ,下列说法正确的是( A ) A .左、右极限都存在,且都等于aB .{}n x 是)(x f 定义域内任一收敛于0x 且不等于0x 的数列,都有{})(n x f 收敛C .0x x =是)(x f 的垂直渐近线D .0)(>x f 13.=+-+-∞→1521lim 233n n n n n ( B ) A .0 B .1 C .∞ D .21 14.=+++∞→112lim 322n n n n ( A ) A .0 B .1 C .∞ D .21 15. =--∞→nn n n 51lim 23( C ) A .0 B .1 C .∞ D .21 16.=>∞→n n a a lim ,0( B )A .0B .1C .∞D .2117.当0→x 时,113-+x ~( D )A .xB .x +1C .∞D .x 3118.当0→x 时,x 2cos 1-~( D )A .xB .x 2C .221x D .22x19.=→x xx 5sin 2tan lim 0( B ) A .0 B .52C .∞D .∞-20.=--+→1cos 1)21(lim 3120x x x ( C )A .0B .1C .34-D .21-21.当0→x 时,x x x 1cos sin 2+是)1ln()cos 1(x x ++的( A )A .同阶无穷小B .高阶无穷小C .等价无穷小D .低价无穷小22.当0→x 时,34)1(x xx ++是x 的( B )A .高阶无穷小B .同阶无穷小C .等价无穷小D .低价无穷小23.下列说法正确的是( D )A .若)(x f 在0x 的左、右极限都存在,则)(x f 在0x 连续B .若)(x f 在0x 的极限存在,则)(x f 在0x 连续C .一切的初等函数在其定义域上都连续D .若)(x f 在0x 连续,则)(x f 在0x 的极限必存在24.若0x 是)(x f 的间断点,则下列说法中,0x 不是)(x f 的第一类间断点的是( B)A .)(x f 在0x 无定义B .)(x f 在0x 的左极限不存在C .)(x f 在0x 的左、右极限都存在,但不相等D .)(x f 在0x 的极限存在,但不等于)(0x f25.设⎪⎩⎪⎨⎧≥<+=-0,cos 0,)(21x x x a e x f x 在0=x 连续,则=a ( A )A .0B .1C .34-D .21- 26.若⎪⎪⎩⎪⎪⎨⎧>+=<=0),1ln(10,00,sin )(x x x x x x x x f ,则0=x 是)(x f 的( B ) A .连续点 B .可去间断点 C .跳跃间断点 D .第二类间断点27.下列说法错误的是( C )A .若)(x f 在0x 即左连续又右连续,则)(x f 在0x 点连续B .若)(x f 在0x 的连续,则)(x f 在0x 的连续C .若)(x f 在0x 的连续,则)(x f 在0x 的连续D .若)(x f 在0x 有定义,则0x 不是连续点就是间断点28.下列述叙错误的是( D )A .若)(),(x g x f 在0x 连续,则)()(x g x f ±在0x 点连续B .若)(),(x g x f 在0x 连续,则)()(x g x f ⋅在0x 点连续C .若)(),(x g x f 在0x 连续,则0)(,)()(0≠x g x g x f 在0x 点连续D .若)(),(x g x f 在0x 连续,则))((x g f 在0x 点连续29.=+→xx x 2cot 20)tan 31(lim ( C )A .0B .1C .3eD .430.若11)(11+-=x xe e xf ,则0=x 是)(x f 的( A )A .可去间断点B .连续点C .跳跃间断点D .第二类间断点 31.))21(cos 11sin (lim 2-+∞→--++e x x x x x x xx x =( B )A .0B .1C .2eD .不存在32.下列说法正确的是( C )A .若)(x f 在[]b a ,连续,则)(x f 在[]b a ,必有零点B .若)(x f 在[]b a ,有间断点,则)(x f 在[]b a ,必无界C .若)(x f 在[]b a ,连续,则)(x f 必取得介于最大值与最小值之间的任何值D .若)(x f 在[]b a ,连续,则)(x f 在),(b a 必有最大值与最小值33.数列{}n x 有界是数列{}n x 收敛的( B )A .充分条件B .必要条件C .充要条件D .无关条件34.)(x f 在0x 有定义是)(x f 在0x 收敛的( D )A .充分条件B .必要条件C .充要条件D .无关条件35.设(Dirichlet )函数⎩⎨⎧=是无理数时,当是有理数时当x x x D 0,1)(,则下列说法正确的是( A ) A .处处不连续 B .在有理点连续 C .在无理点连续 D .在0=x 连续36.=+∞→xx xx 2)1(lim ( D ) A .0 B .1 C .3e D .2e37. =-→x x x 1)21(lim ( C ) A .2e B .1 C .2-e D . 3e38.设,232)(-+=x x x f 则当0→x 时,有( )A .)(x f 与x 是等价无穷小B .)(x f 与x 同阶但非等价无穷小C .)(x f 是比x 高阶的无穷小D .)(x f 是比x 低阶的无穷小39.)(x f 在0x 的某一去心邻域内无界是∞=→)(lim 0x f x x 的( B )条件 A .充分条件 B .必要条件 C .充要条件 D .无关条件40.设)(x f 的定义域是[]1,0,则)(ln x f 的定义域是( A )A .[]e ,1B .[]e ,0C .[]1,0D .[)+∞,041.设⎪⎩⎪⎨⎧=≠=-0,0,)(cos )(2x a x x x f x 在0=x 连续,则=a ( B ) A .0 B .1 C .34- D .21-42.=+++∞→1)1232(lim x x x x ( A ) A .e B .1 C . 2e D .2-e43.=++++++∞→)12111(lim 222n n n n n ( A )A .0B .1C . nD .∞+44.若)(x f 在0x 的某右邻域内单调递增,则下列说法证确的是( D )A .若有上限,则)(x f 在0x 点有极限B .若有下限,则)(x f 在0x 点有极限C .若有上限,则)(x f 在0x 点有右极限D .若有下限,则)(x f 在0x 点有右极限 45.0lim =∞→n n x 是0lim =∞→n n x 的( C ) A .充分条件 B .必要条件 C .充要条件 D .无关条件。

考研高数1试题及答案

考研高数1试题及答案

考研高数1试题及答案一、选择题(每题5分,共20分)1. 已知函数 \( f(x) = x^3 + 2x^2 - 5x + 1 \),下列选项中,\( f(x) \) 的导数正确的是:A. \( 3x^2 + 4x - 5 \)B. \( x^3 + 2x^2 - 5 \)C. \( 3x^2 + 2x - 5 \)D. \( 3x^3 + 4x^2 - 5x \)答案:A2. 设 \( A \) 是 \( 3 \times 3 \) 矩阵,\( \det(A) = 2 \),则\( \det(2A) \) 的值是:A. 4B. 8C. 16D. 32答案:B3. 计算极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是:A. 0B. 1C. \( \frac{1}{2} \)D. \( \frac{1}{3} \)答案:B4. 已知 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. 1D. 2答案:A二、填空题(每题5分,共20分)1. 求定积分 \( \int_{0}^{1} (2x - 1) dx \) 的值是 _______。

答案:\( \frac{1}{2} \)2. 函数 \( y = \ln(x) \) 的定义域是 _______。

答案:\( (0, +\infty) \)3. 函数 \( y = e^x \) 的导数是 _______。

答案:\( e^x \)4. 已知 \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \),则\( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是 _______。

答案:1三、解答题(每题10分,共60分)1. 求函数 \( f(x) = x^3 - 3x \) 在 \( x = 1 \) 处的切线方程。

高数一试题及答案

高数一试题及答案

欢迎阅读 《 高等数学(一) 》复习资料一、选择题1. 若23lim 53x x x kx →-+=-,则k =( )A. 3-B.4-C.5-D.6-2. 若21lim 21x x kx →-=-,则k =( )A. 13. A.y =4. A.y =5. x A.06.7.8. 当A.9.已知'(3)=2f ,0lim 2h h →=( ) 。

A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内() A.至少有两个零点 B. 有且只有一个零点C. 没有零点D. 零点个数不能确定12. [()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C ) A.2222(ln )(ln )f x f x x ' B. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 222(ln )()f x f x x ' 14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15. ⎰16. A.217. 18. 19. 20. A.()df x B.()f x C.()df x ' D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求⎰.3. 求arctan xdx ⎰.4.求⎰5. 求2356x dx x x +-+⎰.6.求定积分80⎰7. 计算20cos x xdx π⎰. 8. 求2128dx x x +-⎰. 9. 求⎰11. 求12. 求13. 求14.求1. 若2.3. 4. 设5. 求6. 求由方程cos sin x a t y b t =⎧⎨=⎩确定的导数x y '. 7. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0x e x f x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin y y y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设14. 15.16. 1. 2.3.4.1-5: 6-10:DBCDD11-15: BCCBD16-21:ABAAAA二、求积分1.求cos ⎰. 解:322cos (sin )sin 3x x C C ==+=⎰ 2. 求dx x⎰.解:13(43ln )(ln )x d x =+⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则21arctan ln(1)2x x x C =-++. 4.求⎰解:⎰ 5. 求 6. 解7. 解:令2u x =,cos dv xdx =,则2du xdx =,sin v x =,于是22200000cos sin (sin )2sin 2sin x xdx x d x x x x xdx x xdx πππππ==-=-⎰⎰⎰⎰. 再用分部积分公式,得002(cos )sin 2x x x πππ⎡⎤=-=-⎣⎦.8. 求2128dx x x +-⎰. 解:221113(1)(1)ln 28(1)963(1)x dx d x C x x x x -+=+=++-+-++⎰⎰12ln 64x C x-=++. 9.求⎰ 解:令u =32x u =-,23dx u du =,从而有11. 求2212x xe dx -⎰ 解:2222222411112x x x xe dx e dx e e e -----===-⎰⎰12. 求13. 求14.求 1. 若否则极限不存在。

高数1考研试题及答案

高数1考研试题及答案

高数1考研试题及答案模拟试题:高等数学一一、选择题(每题3分,共30分)1. 下列函数中,满足f(-x) = f(x)的是()。

A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 曲线y = x^3在点(1,1)处的切线斜率为()。

A. 0B. 3C. 2D. 13. 设函数f(x)在点x=a处连续且可导,若lim (x→a) [f(x) - f(a)]/(x-a) = 3,则f'(a)的值为()。

A. 2B. 3C. 4D. 54. 定积分∫[0,1] x^2 dx的值为()。

A. 1/3B. 1/2C. 2/3D. 3/45. 设数列{an}满足a1 = 1,an+1 = √(an) + 1,若lim (n→∞) an = a,则a的值为()。

A. 1B. 2C. 3D. 46. 设函数f(x)在区间[a, b]上单调递增,若f(x)在x=c处取得最大值,则c()。

A. 一定等于aB. 一定等于bC. 属于区间(a, b)D. 可能属于[a, b],也可能属于(a, b]7. 二阶常系数线性微分方程y'' - 3y' + 2y = 0的特征方程为()。

A. r^2 - 3r + 2 = 0B. r^2 - 3r = 0C. r^2 + 2r - 3 = 0D. r^2 - 2r - 3 = 08. 设函数f(x)在点x=x0处可导,且f'(x0) ≠ 0,则f(x)在点x=x0处()。

A. 一定连续B. 一定不可导C. 一定是极值点D. 一定是拐点9. 利用分部积分法计算定积分∫[0,π] sin(x) dx,得到的结果为()。

A. -cos(x)|0^πB. 2C. -2D. π10. 设函数f(x)在区间[a, b]上连续,要使∫[a, b] f(x) dx存在,则必须有()。

A. f(x)在[a, b]上可导B. f(x)在[a, b]上单调递增C. f(x)在[a, b]上无间断点D. f(x)在[a, b]上的每一点都有定义答案:1. B2. B3. B4. A5. B6. D7. A8. A9. A10. D二、填空题(每题4分,共20分)11. 设函数f(x) = x^2 - 4x,则f(x)的最小值是________。

大一高数试题和答案与解析

大一高数试题和答案与解析

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的(),1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)恒有f'(x)〈0,f"(x)〉0,则在(a,b)曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③ 设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大一高数试题及答案[1]

大一高数试题及答案[1]

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an 发散,则级数∑ an_______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0 ② 1 ③ 2 ④ 37.方程2x+3y=1在空间表示的图形是 ( )①平行于xoy面的平面 ②平行于oz轴的平面 ③过oz轴的平面 ④直线x8.设f(x,y)=x3+ y3+ x2ytg── ,则f(tx,ty)= ( ) y①tf(x,y) ②t2f(x,y) 1③t3f(x,y) ④ ──f(x,y)t2an +1 ∞9.设an ≥0,且lim ───── =p,则级数 ∑an ( ) n→∞ a n=1①在p〉1时收敛,p〈1时发散 ②在p≥1时收敛,p〈1时发散 ③在p≤1时收敛,p〉1时发散 ④在p〈1时收敛,p〉1时发散10.方程 y'+3xy=6x2y 是 ( )①一阶线性非齐次微分方程 ②齐次微分方程③可分离变量的微分方程 ④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是 ( )①y=ex②y=x3+1③y=x3cosx ④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使( )①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ an xn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=() D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《 高等数学(一) 》复习资料一、选择题1. 若23lim53x x x kx →-+=-,则k =( ) A. 3- B.4- C.5- D.6-2. 若21lim21x x kx →-=-,则k =( ) A. 1 B.2 C.3 D.43. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.132y x =-+5. 211limsin x x x→-=( ) A.0 B.3 C.4 D.56.设函数0()(1)(2)xf x t t dt =+-⎰,则(3)f '=( )A 1B 2C 3D 47. 求函数43242y x x =-+的拐点有( )个。

A 1 B 2 C 4 D 08. 当x →∞时,下列函数中有极限的是( )。

A. sin xB. 1x eC. 211x x +- D. arctan x9.已知'(3)=2f ,0(3)(3)lim2h f h f h→--=( ) 。

A. 32 B. 32- C. 1 D. -110. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。

A. 极小值B. 极大值C. 最小值D. 最大值11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( )A.至少有两个零点B. 有且只有一个零点C. 没有零点D. 零点个数不能确定 12.[()'()]f x xf x dx +=⎰( ).A.()f x C +B. '()f x C +C. ()xf x C +D. 2()f x C +13. 已知22(ln )y f x =,则y '=( C )A.2222(ln )(ln )f x f x x 'B. 24(ln )f x x 'C. 224(ln )(ln )f x f x x 'D. 222(ln )()f x f x x '14. ()d f x ⎰=( B)A.'()f x C +B.()f xC.()f x 'D.()f x C +15.2ln xdx x =⎰( D )A.2ln x x C +B.ln xC x+ C.2ln x C + D.()2ln x C + 16. 211limln x x x→-=( ) A.2 B.3 C.4 D.517. 设函数0()(1)(2)xf x t t dt =-+⎰,则(2)f '-=( )A 1B 0C 2-D 2 18. 曲线3y x =的拐点坐标是( )A.(0,0)B.( 1,1)C.(2,2)D.(3,3)19. 已知(ln )y f x =,则y '=( A )A.(ln )f x x ' B.(ln )f x ' C.(ln )f x D.(ln )f x x20. ()d df x =⎰( A)A.()df xB.()f xC.()df x 'D.()f x C +21. ln xdx =⎰( A )A.ln x x x C -+B.ln x x C -+C.ln x x -D.ln x二、求积分(每题8分,共80分)1.求cos ⎰.2. 求dx x⎰. 3. 求arctan xdx ⎰.4. 求⎰5. 求2356x dx x x +-+⎰.6. 求定积分8⎰7. 计算20cos x xdx π⎰.8. 求2128dx x x +-⎰.9. 求11. 求2212x xe dx -⎰12. 求3x⎰13. 求21ln exdx x⎰14.求⎰三、解答题1. 若(1lim 36x x →∞=,求a2.讨论函数321()2333f x x x x =-+-的单调性并求其单调区间3. 求函数22()2x x f x x --=-的间断点并确定其类型4. 设2sin ,.xy xy x e y '+=求5.求y =6. 求由方程cos sin x a ty b t =⎧⎨=⎩ 确定的导数x y '.7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?8. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否可导?9. 求抛物线2y x =与直线y x =所围成图形D 的面积A .10. 计算由抛物线22y x =与直线4y x =-围成的图形D 的面积A .11. 设y 是由方程sin yy y xe =+确定的函数,求y '12.求证: ln 1,1x x x <->13. 设y 是由方程1yy xe =+确定的函数,求y '14. 讨论函数32()29123f x x x x =-+-的单调性并求其单调区间15.求证: 21,x e x >-16. 求函数3(1)()x x f x x x -=-的间断点并确定其类型五、解方程1. 求方程0)(22=-+dy xy x dx y 的通解.2.求方程20yy y '''+=的通解.3. 求方程22y y y x '''-+=的一个特解. 4. 求方程3595xy y y xe -'''-+=的通解.高数一复习资料参考答案一、选择题 1-5: DABAA 6-10:DBCDD 11-15: BCCBD 16-21:ABAAAA二、求积分1.求cos ⎰.解:322cos (sin )sin 3x x C C ==+=⎰2. 求.解:13(43ln )(ln )x d x x =+⎰⎰131(43ln )(43ln )3x d x =+⋅+⎰ 431(43ln )4x C =++. 3. 求arctan xdx ⎰.解:设arctan u x =,dv dx =,即v x =,则arctan arctan (arctan )xdx x x xd x =-⎰⎰2arctan 1xx x dx x =-+⎰ 21arctan ln(1)2x x x C =-++.4. 求⎰解:32222e 33e 3e 3e 23e 6e t t t t t t x t t dt t dt t tdt t t dt ===-⋅=-⎰⎰⎰⎰⎰223e 6e 6e 3e 6e 6e t t t t t t t t dt t t C =-+=-++⎰2)C=+.5. 求2356xdxx x+-+⎰.解:由上述可知23565623xx x x x+-=+-+--,所以2356()5623xdx dxx x x x+-=+-+--⎰⎰115623dx dxx x=-+--⎰⎰5ln26ln3x x C=--+-+.6.求定积分8⎰解t=,即3x t=,则23dx t dt=,且当0x=时,0t=;当8x=时,2t=,于是28222000313ln(1)3ln312t dtt t tt⎡⎤==-++=⎢⎥+⎣⎦⎰⎰.7. 计算2cosx xdxπ⎰.解:令2u x=,cosdv xdx=,则2du xdx=,sinv x=,于是2220000cos sin(sin)2sin2sinx xdx x d x x x x xdx x xdxπππππ==-=-⎰⎰⎰⎰.再用分部积分公式,得2000cos2cos2(cos)cosx xdx xd x x x xdxππππ⎡⎤==-⎢⎥⎣⎦⎰⎰⎰002(cos)sin2x x xπππ⎡⎤=-=-⎣⎦.8. 求2128dxx x+-⎰.解:221113(1)(1)ln28(1)963(1)xdx d x Cx x x x-+=+=++-+-++⎰⎰12ln64xCx-=++.9.求解:令u=32x u=-,23dx u du=,从而有22311311u udu duu u-+==++⎰⎰213(1)3(ln1)12uu du u u Cu=-+=-++++⎰11. 求2212xxe dx-⎰解:2222222411112x x xxe dx e dx e e e-----===-⎰⎰12.求3x⎰解:333223(3)(3)3x x x C=--=--+⎰13. 求21lne x dxx⎰解:22111ln111ln(ln)ln ln333ee exdx xd x x ex====⎰⎰14.求⎰解:3322222121(3)(3)(3)233x x C x C=--=-⋅-+=--+⎰三、解答题1.若(1lim36xx→∞=,求a解:因为223x=,所以9a=否则极限不存在。

2.讨论函数321()2333f x x x x=-+-的单调性并求其单调区间解:2'()43f x x x=-+由2'()430f x x x =-+=得121,3x x ==所以()f x 在区间(,1)-∞上单调增,在区间(1,3)上单调减,在区间(3,)+∞上单调增。

3. 求函数22()2x x f x x --=-的间断点并确定其类型解:函数无定义的点为2x =,是唯一的间断点。

因2lim ()3x f x →=知2x =是可去间断点。

4. 设2sin ,.xy xy x e y '+=求解:22cos ()xy y xy y x e y y ''+⋅+=+,故 ()cos (2)xy xy y e y xy x y e --'=-5.求y =解:对原式两边取对数得:1ln 3ln(1)ln(2)5ln(3),2y x x x =+++-+于是3115,1223y y x x x '=+⋅-+++ 故3115].1223y x x x '=+⋅-+++6. 求由方程cos sin x a ty b t =⎧⎨=⎩确定的导数x y '.解: 22()cos .()sin x y t b t b x y x t a t a y''===-'- 7. 函数1,0()1,0tan ,0xe xf x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在0x =处是否连续?解:1lim ()lim 0xx x f x e --→→== 00lim ()lim tan 0x x f x x ++→→== 故在0x =处不连续。

相关文档
最新文档