[建筑土木]第七章材料力学应力状态

合集下载

材料力学第7章应力状态

材料力学第7章应力状态

y
2

2 xy

m m
ax in




m
ax
2

m
in
极值切应力等于极值正应力差的一半。
§7.2 平面应力状态分析的解析法
三、极值切应力和主平面夹角
注意到 则 所以
tan
2 0

2 xy x
y
tan
21


x 2 xy
y
tan
20


1
tan 21
§7.2 平面应力状态分析的解析法
7.2.3 极值切应力及其作用面 一、极值切应力方位角
d 0 d
( x y ) cos 2 2 xy sin 2 0

tan
21


x 2 xy
y
二、最大、最小切应力

m m
ax
in




x
2



x
y
2
sin 2
xy cos 2
§7.2 平面应力状态分析的解析法
7.2.2 主应力 主方向 一、主应力
正应力是求极值
d d
x
y
2
(2sin 2 ) xy(2cos2 ) 0
得极值条件为

x

2
y
sin
2
xy
cos
2

0
(1) 极值正应力所在的斜面,恰好是切应力等于零的
平面,即主平面。
(2) 极值正应力就是主应力。
§7.2 平面应力状态分析的解析法

材料力学第七章应力状态和强度理论

材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y

x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2

x
y

2
4 2 xy
x
yx xy x
y
R c

x y
2
2
x
xy

dA
yx

y
x y 1 2 2 2

40

x y
2 0.431MPa
sin( 80 ) xy cos(80 )

C
C

C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa

材料力学 第07章 应力状态分析与强度理论

材料力学 第07章 应力状态分析与强度理论
2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力

材料力学习题册答案_第7章_应力状态

材料力学习题册答案_第7章_应力状态

第 七 章 应力状态 强度理论一、 判断题1、平面应力状态即二向应力状态,空间应力状态即三向应力状态。

(√)2、单元体中正应力为最大值的截面上,剪应力必定为零。

(√)3、单元体中剪应力为最大值的截面上,正应力必定为零。

(×) 原因:正应力一般不为零。

4、单向应力状态的应力圆和三向均匀拉伸或压缩应力状态的应力圆相同,且均为应力轴 上的一个点。

(×) 原因:单向应力状态的应力圆不为一个点,而是一个圆。

三向等拉或等压倒是为一个点。

5、纯剪应力状态的单元体,最大正应力和最大剪应力值相等,且作用在同一平面上。

(×) 原因:最大正应力和最大剪应力值相等,但不在同一平面上6、材料在静载作用下的失效形式主要有断裂和屈服两种。

(√)7、砖,石等脆性材料式样压缩时沿横截面断裂。

(×)8、塑性材料制成的杆件,其危险点必须用第三或第四强度理论所建立的强度条件来校核强度。

(×) 原因:塑性材料也会表现出脆性,比如三向受拉时,此时,就应用第一强度理论9、纯剪应力状态的单元体既在体积改变,又有形状改变。

(×) 原因:只形状改变,体积不变10、铸铁水管冬天结冰时会因冰膨胀被胀裂,而管的冰不会被破坏,只是因为冰的强度比铸铁的强度高。

(×) 原因:铸铁的强度显然高于冰,其破坏原因是受到复杂应力状态二、 选择题1、危险截面是( C )所在的截面。

A 最大面积B 最小面积C 最大应力D 最大力2、关于用单元体表示一点处的应力状态,如下论述中正确的一种是( D )。

A 单元体的形状可以是任意的B 单元体的形状不是任意的,只能是六面体微元C 不一定是六面体,五面体也可以,其他形状则不行D 单元体的形状可以是任意的,但其上已知的应力分量足以确定任意方向面上的硬力 3、受力构件任意一点,随着所截取截面方位不同,一般来说( D ) A 正应力相同,剪应力不同 B 正应力不同,剪应力相同 C 正应力和剪应力均相同 D 正应力和剪应力均不同 4、圆轴受扭时,轴表面各点处于( B )A 单向应力状态B 二向应力状态C 三向应力状态D 各向等应力状态 5、分析处于平面应力状态的一点,说确的是( B )。

工程力学c材料力学部分第七章 应力状态和强度理论

工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =

σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0

材料力学应力状态分析

材料力学应力状态分析

材料力学应力状态分析材料力学是研究物质内部力学性质和行为的学科,其中应力状态分析是材料力学中的重要内容之一。

应力状态分析是指对材料内部受力情况进行分析和研究,以揭示材料在外力作用下的应力分布规律和应力状态特征,为工程设计和材料选用提供依据。

本文将从应力状态的基本概念、分类和分析方法等方面展开讨论。

首先,我们来介绍一下应力状态的基本概念。

应力是指单位面积上的力,是描述物体内部受力情况的物理量。

在材料力学中,通常将应力分为正应力和剪应力两种基本类型。

正应力是指垂直于截面的应力,而剪应力是指平行于截面的应力。

在实际工程中,材料往往同时受到多种应力的作用,因此需要对应力状态进行综合分析。

其次,我们将对应力状态进行分类。

根据应力的作用方向和大小,可以将应力状态分为拉应力状态、压应力状态和剪应力状态三种基本类型。

拉应力状态是指材料内部受到拉力作用的状态,压应力状态是指材料内部受到压力作用的状态,而剪应力状态是指材料内部受到剪切力作用的状态。

这三种应力状态在工程实践中都具有重要的意义,需要我们进行深入的分析和研究。

接下来,我们将介绍应力状态分析的方法。

应力状态分析的方法有很多种,常用的有应力分析法、应变分析法和能量方法等。

应力分析法是通过应力分布的计算和分析来揭示应力状态的特征,应变分析法则是通过应变分布的计算和分析来揭示应力状态的特征,而能量方法则是通过能量原理和平衡条件来揭示应力状态的特征。

这些方法各有特点,可以根据具体情况选择合适的方法进行分析。

最后,我们需要注意的是,在进行应力状态分析时,需要考虑材料的本构关系、边界条件和载荷情况等因素,以确保分析结果的准确性和可靠性。

同时,还需要注意应力状态分析的结果对工程实践的指导意义,以便更好地指导工程设计和材料选用。

总之,材料力学应力状态分析是一个复杂而重要的课题,需要我们进行深入的研究和分析。

只有深入理解应力状态的特征和规律,才能更好地指导工程实践,为实际工程问题的解决提供科学依据。

材料力学-7-应力状态分析

材料力学-7-应力状态分析

7.1 应力状态的基本概念
y
y
1 1 4
z
4
Mz
x
x
l
S FP
2
3
Mx
z
3
a
第7章 应力状态分析
7.2 平面应力状态任意方向面上的应力 ——解析法
7.2 平面应力状态任意方向面上的应力 ——解析法
一、方向角与应力分量的正负号约定
x
正应力
x
x
拉为正
压为负
x
7.2 平面应力状态任意方向面上的应力 ——解析法

第7章 应力状态分析 7.1 应力状态的基本概念
7.2 平面应力状态任意方向面上的应力 ——解析法 7.3 主应力、主平面与面内最大切应力 ——解析法 7.4 应力圆及其应用——图解法
7.5 三向应力状态的特例分析
7.6 广义胡克定律
7.7 应变能密度
第7章 应力状态分析
tan 2q p=- 2 τ
xy
x y
主平面(principal plane):切应力q=0的方向面,用 qp表示。 主应力(principal stress):主平面上的正应力。 主方向(principal directions):主平面法线方向,用方 向角qp表示。
7.3 主应力、主平面与面内最大切应力 ——解析法
第7章 应力状态分析
第7章 应力状态分析
1
3
2
max
max
拉压、弯曲正应力 扭转、弯曲切应力
这些强度问题的共同特点是:
1、危险截面上的危险点只承受正应力 或切应力; 2、都是通过实验直接确定失效时的极限应力,并以此为依据建立强度 设计准则。 复杂受力:危险截面上危险点同时承受正 应力和切应力,或者危险点的其他面上同 时承受正应力或切应力。 → 强度条件

《材料力学》第7章-应力状态和强度理论-习题解

《材料力学》第7章-应力状态和强度理论-习题解
解:左支座为A,右支座为B,左集中力作用点为C,右集中力作用点为D。
支座反力: (↑)
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过 的5。3%,在工程上是允许的。
(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外侧横截面上校核点a的强度
超过 的3.53%,在工程上是允许的。
解:坐标面应力:X(—0。05,0);Y(-0.2,0)
。根据以上数据作出如图所示的应
力圆。图中比例尺为 代表 。
按比例尺量得斜面的应力为:
按习题7—5得到的公式计算如下:
作图法(应力圆法)与解析法(公式法)的结果一致。
[习题7-7]试用应力圆的几何关系求图示悬臂梁距离自由端为 的截面上,在顶面以下 的一点处的最大及最小主应力,并求最大主应力与 轴之间的夹角。
解:
…………(1)
…………(2)
(1)、(2)联立,可解得 和 。
至此,三个面的应力均为已知:X( ,0),Y( ,0)( , 均为负值);
( )。由X,Y面的应力就可以作出应力圆。
[习题7-12]一焊接钢板梁的尺寸及受力情况如图所示,梁的自重略去不计。试示 上 三点处的主应力。
解:(1)求 点的主应力
解:坐标面应力:X(15,15),Y(0,-15)
第一强度理论:
因为 , ,即 ,
所以 符合第一强度理论的强度条件,构件不会破坏,即安全.
第二强度理论:
因为 ,
,即 ,
所以 符合第二强度理论的强度条件,构件不会破坏,即安全。
[习题7—25]一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。已知钢材的许用应力为 , .试校核梁内的最大正应力和最大切应力。并按第四强度理论校核危险截面上的a点的强度。注:通常在计算a点处的应力时,近似地按 点的位置计算。

材料力学-应力状态分析

材料力学-应力状态分析

+
σ x σ y
2
cos 2α τ x sin 2α
sin 2α + τ x cos 2α
注意: 的正负号, 注意:1)σx 、σy 、τx 和 α的正负号, 2) 公式中的切应力是τx ,而非τy, 而非 的正负号。 3) 计算出的σα和τα 的正负号。
τα τ α>0
τα τ α<0
图示圆轴中, 已知圆轴直径d=100mm, 轴向拉 例 : 图示圆轴中 , 已知圆轴直径 , 力 F=500kN,外力矩Me=7kNm。求 C点α = 30°截 , 外力矩 。 点 ° 面上的应力。 面上的应力。 y
σy
τ
D
x
τx τy
σx
o A2
C
A1
σ
D
y
σ1 =
σ x +σ y
2
σ x +σ y + 2
2 +τ x
2
2
σ2 =
σ x +σ y
2
σ x +σ y 2 +τ x 2
σy
τ
D
x
τx τy
σx
o A2
2α0
C
A1
σ
D
y
2τ x 2α 0 = arctan σ x σ y
σ x σ y R= 2
+τ x2
2
σ x +σ y σ α 2
σy
σ x σ y 2 2 + τα = +τ x 2 τ
2 2
D
x
τx τy
σx
o
C D
y
σ
50MPa

材料力学第07章应力状态与应变状态分析

材料力学第07章应力状态与应变状态分析

以上由单元体公式
应力圆(原变换)
下面寻求: 由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价
换句话,单元体与应力圆是否有一一对应关系?
为什么说有这种对应关系?
DE R sin[180o ( 2 20 )] R sin( 2 20 )
( R cos 20 ) sin 2 ( R cos 20 )cos 2
2
cos2
xy
sin 2
同理:
x
y
2
sin 2
xy
cos2
n
Ox
图2
二、极值应力
令:d
d
0
x
y
sin202 xycos200
由此得两个驻点:
01、(
01
2
)和两个极值:
tg20
2 xy x
y
y
mm
ax in
x
y ±(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力 !
y
O
x
七、主单元体、主平面、主应力:
y
y
主单元体(Principal bidy):
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
A

材料力学 第七章 应力状态和强度理论

材料力学 第七章  应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。

材料力学第七章

材料力学第七章

若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。

材料力学课件第7章 应力状态分析

材料力学课件第7章   应力状态分析
α+
2
(2)主应力值计算 ) 方法一: 方法一: σ x +σ y σ x −σ y + cos 2α 0 − τ xy sin 2α 0 σ α =
2 2 0 σ x +σ y σ x −σ y π π σ = + cos 2 α 0 + − τ xy sin 2 α 0 + α0 + π 2 2 2 2 2
2τ xy
σ x −σ y
2τ xy 1 可取: 可取: α 0 = arctan − σ −σ 2 x y
1 2τ xy , arctan − σ −σ x y 2
π + 2来自3、主应力: 、主应力: (1)性质: )性质: ①主应力为各截面上正应力的极值。 主应力为各截面上正应力的极值。
∗ FS Sz τ= bIz
五、主平面、主应力 主平面、 1、主平面 、 •τ= 0的截面 的截面; 的截面 •过一点有三个相 过一点有三个相 互垂直的主平面. 互垂直的主平面 2、主应力 、 •主平面上的正应力 主平面上的正应力; 主平面上的正应力 •表示符号 1 、σ2、σ3( σ1 ≥σ2≥σ3 ) 。 表示符号σ 表示符号 应力状态分类: 六、应力状态分类: 1、单向应力状态: 只有一个主应力不为零。 、单向应力状态: 只有一个主应力不为零。 •可用平面图形表示应力状态。 可用平面图形表示应力状态。 可用平面图形表示应力状态 2、二向(平面)应力状态:两个主应力不为零。 、二向(平面)应力状态:两个主应力不为零。 •可用平面图形表示应力状态。 可用平面图形表示应力状态。 可用平面图形表示应力状态 3、三向应力状态 :三个主应力都不为零。 三个主应力都不为零。 、 4、简单应力状态:单向应力状态。 、简单应力状态:单向应力状态。 5、复杂应力状态:二向和三向应力状态。 、复杂应力状态:二向和三向应力状态。

材料力学 第七章 应力状态与强度理论

材料力学 第七章 应力状态与强度理论

取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2

cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2

x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2

材料力学第七章

材料力学第七章
2

x y
2
cos 2 x sin 2

x y
2
sin 2 x cos 2
补充例 题1
T
图示圆轴中,已知:圆轴直径d=100mm, 轴向拉 力F=500kN,外力矩Me=7kN· m。 求C点 =30°截面上的应力。
y T
y
F x
F
C
x
第7章
应力状态和强度理论
§7-1 概 述
低 碳 钢 拉 伸 试 验
铸 铁 拉 伸 试 验
低 碳 钢 扭 转 试 验
铸 铁 扭 转 试 验
1、一点处的应力状态
构件内一点处各截面方向上的应力的情况,称 为该点的应力状态。可由围绕该点的一个单元体面 上的应力表示。
目的:通过应力状态分析求出该点处的 max 、 max 及 其作用面,从而更好地进行强度分析。
30
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
分析轴向拉伸杆件的最大切应力的作用面,说 补充例 明低碳钢拉伸时发生屈服的主要原因。 题3
低碳钢拉伸时,其上任意一点都是单向应力状态。
x

x y
2

x y
2
cos 2 x sin 2

x
单元体如何取? 在研究点的周围,取一个由三对互相垂直的平 面构成的六面体,该六面体的边长分别为无穷小量 dx、dy和dz,如下图所示。
y
dz dx dy x
z
单元体每个面上应力均布;每对相互平行面上的 性质相同的应力大小相等;可用截面法求任一截面上 的应力。
根据单元体的局部平衡:
y
n


y

材料力学第七章应力状态分析

材料力学第七章应力状态分析
(*)τα = Nhomakorabea2
sin 2α + τ xy cos 2α
(**)
(*) 2 + (**) 2
(σ α −
σ x +σ y
2
) + (τ α ) = (
2 2
σ x −σ y
2
2 ) 2 + τ xy
(7 - 6)
In a given problem, σx, σy, τxy are the three constants, σα,, τα are the variables. This equation is an expression for a circle of radius
σ x −α y
2
cos 2α − τ xy sin 2α
(7-1)
τα =
sin 2α + τ xy cos 2α
3. Principle Stresses in Two-dimensional Problems To find the plane for a maximum or a minimum normal stress, let σ x −α y dσ α = −2[ sin 2α + τ xy cos 2α ] = 0 = −2τ α 2 dα 2τ xy tg 2α1 = − σ x −σ y
σ'=
σ x +σ y
(7 - 5)
∴τ max = ±
min
σ1 − σ 2
2
Example 7-1 For the state of stress shown in the figure, (a) find the stresses acting on the inclined plane with θ=-22.5°; (b) find the principle stresses and shown their sense on a properly oriented element; and (c) find the maximum shear stresses with the associated normal stresses and show the results on a properly oriented element. Solution: For original state of stress σx=3 Mpa σy=1 MPa τxy= -2 Mpa (a) From Eq.(7-1)

材料力学——应力分析

材料力学——应力分析

,则α1
405(τx0) 405(τx0)
7-2 二向应力状态分析--解析法
例题1:一点处的平面应力状态如图所示。
已知 x 60MP,a txy 30MPa, y 40MP,a 30。
试求(1) 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
y t xy
x
目录
7-2 二向应力状态分析--解析法
t
ty(xdsAin)co sy(dsAin)sin0
y
Ft 0
td Atx(ydc Ao )sco sx(dc Ao )ssin ty(xdsAin)siny(dsAin)co s0
目录
7-2 二向应力状态分析--解析法
{ 利用三角函数公式
co2 s 1(1co2s)
2
sin 21(1co2s)
d d (x y)si2 n2 txc y o 2 s
设α=α0 时,上式值为零,即
t (xy )s2 i0 n 2xc y 2 o 0 s 0
2 (x σ 2 σ y) si0n τ x 2 c yα o0s 2 2α α 0 τ 0
即α=α0 时,切应力为零 目录
2
2 s ic n o s si2 n
并注意到 t yx t xy 化简得
t 1
1
2 (xy) 2 (xy)c2 o s xs y 2 in
t1 2(xy)si2 ntxy co 2s
目录
7-2 二向应力状态分析--解析法
3. 正应力极值和方向
确定正应力极值
t 1 2 (xy ) 1 2 (xy )c2 o s xs y 2 in
(2)主平面的位置
tg2α0
2τ xy σx σy

工程力学(材料力学部分第七章)

工程力学(材料力学部分第七章)

4 主应力及应力状态的分类
主应力和主平面
切应力全为零时的正应力称为主应力;
主应力所在的平面称为主平面;
主平面的外法线方向称为主方向。
主应力用1 , 2 , 3 表示 (1 2 3 ) 。
应力状态分类
单向应力状态
11
应力状态分类
单向应力状态 二向应力状态(平面应力状态)
三向应力状态(空间应力状态)
D点
由 y 40, yx 60
D'点
画出应力圆
52
圆心坐标
OC x y 80 (40)
2
2
20
半径
R
x
2
y
2
2 xy
80 (40) 2
(60)2
84.85 85
2
53
圆心坐标 OC 20
半径
R 85
1 OA1 OC R
E
105 MPa
3 OC R
65 MPa
D (x ,xy)
x y
2
R 1 2
x y
2
4
2 xy
38
3 应力圆上的点与单元体面上的应力的对应关系 (1) 点面对应
应力圆上某一点 的坐标值对应着 单元体某一方向面上的正应力和切应力。
39
(1) 点面对应
应力圆上某一点的坐 标 值对应着单元体某 一方向面上的正应力 和切应力。
D点对应的面与E点 对应的面的关系
主应力。
从半径CD转到CA1 的角度即为从x轴转
到主平面的角度的
两倍。
44
主应力 即为A1, B1处的正应力。
max min
x
y
2
x
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档