高考文科数学解析几何题型与方法
(完整版)解析几何考点和答题技巧归纳
解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
高考专题:解析几何常规题型与方法
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考查的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考查。
选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考查圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要体现在以下几个方面:(1)解析几何是代数与 几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、范围、参系数等多种问题,因而成为高中数学综合 能力要求最高的内容之一(2)解析几何的计算量相对偏大(3)在大家的“拿可拿之分” 的理念下,大题的前三道成了兵家必争之地,而排放位置比较尴尬的第21题或22题(有 时20题)就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比较普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几内容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓基础。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在巩固基础、对付“跳一跳便可够得到”的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解基本概念(如直线的倾斜角、斜率、距离、截距等)2、熟练掌握基本公式(如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等)3、熟练掌握求直线方程的方法(如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等)4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中基本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法(如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等)8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
高考数学复习解析几何的题型及方法
高考数学复习解析几何的题型及方法佚名知识整合高考中解析几何试题一样共有4题(2个选择题,1个填空题,1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一样紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的差不多知识和向量的差不多方法,这一点值得强化。
1。
能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程动身推导出直线方程的其他形式,斜截式、两点式、截距式;能依照已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了。
观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观看过程中指导。
我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。
有的小孩说“乌云跑得飞速。
”我加以确信说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。
”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。
雨后,我又带幼儿观看晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
高考数学解析几何解题方法
高考数学解析几何解题方法
高考数学解析几何解题方法
1.将圆锥曲线几何性质与向量数量积、不等式等交汇是高考解析几何命题的一种新常态,问题解决过程中浸透数学的转化化归,函数与方程和数形结合等的数学思想方法。
2. 点差法是一种常用的形式化解题方法,这种方法对于解决有关斜率,中点等问题有较好的解题效能。
3、圆及其直线与圆的位置关系,轨迹等问题是全国I卷的常考点,点到直线的间隔、弦长公式,圆的几何性质,解三角形等知识点交汇交融,数形结合、分类讨论等数学思想方法有机浸透,解法常规,思路明晰。
4、直线与圆锥曲线的位置关系在虽然没有明确指出,但是在高考那么是常考不衰的考点,同时常常与不等式、最值等相交汇,题型常见,理解容易,思路明确,交汇点较多。
直线与圆锥曲线位置关系解法步骤直接明了,关键计算(解方程、求最值等)是否准确,标准是否到位,细节是否圆满。
5、抛物线的切线及其性质,存在性的问题都是高考的常考点,将求证目的∠OPM=∠OPN 转化为 k1+k2=0 是解题的关
键,表达转化化归思想的应用,同时利用设而不务实现整体化简是减少计算量的有效方法,应当纯熟掌握。
6、“定义型”的试题是高考的一个热点。
这种题目设问新颖,层次清楚,贯穿解析几何的核心内容,解题的思路和策略常规常见,通性通法,直线与圆锥曲线的位置关系的解法和根本在此呈现,正确快速的多字母化简计算是解析几何解题的一道坎。
高考解析几何的题型及思路
高考解析几何的题型及思路解析几何是必考的,常作为压轴题,特点是计算量大。
不过解几题其实很有规律性,解题思路并不难掌握,就是要用代数方法(方程、函数、不等式的思想和方法)研究几何问题,而数形结合思想(主要是利用定义或平面几何知识分析问题)是减少解几综合题计算量的主要手段。
常见的类型题有:(1)、求曲线(动点)的方程:若曲线类型已知,用待定系数法列方程组求解即可。
若给出了单个动点满足的条件,可先判断其是否符合某种曲线的定义,符合即可用待定系数求解,否则用直接法求解。
若条件有两个动点,一般用代入法求解;若条件有三个以上的动点,一般用参数法求解。
(2)求参数或曲线的特征量(如a、b、c、p、离心率、斜率、倾角、面积等)的值。
这类题要用到方程思想求解,即想办法把题目的条件(等量关系)转化为所求变量的方程(组)解之。
(3)求参数或几何量(如角、面积、斜率)的取值范围的问题。
主要是利不等式法或函数法求解。
其中判别式是列不等式的一个重要途径。
通常用韦达定理或题目给出的其它条件来列出变量间的等量关系,再把等量关系代入判别式消元化简解出相关参数的范围。
或利用韦达定理或其它等量关系建立变量间的关系式,把所求变量表示为其它变量的函数,利用求函数值域的方法确定变量的取值范围。
这个函数的定义域通常由判别式或其它条件确定。
(4)直(曲)线过定点问题:关键是求出直(曲)线的方程,当然这个方程必定含有一个参数。
求出方程后观察什么定点的坐标满足。
若观察不出,只要令参数取两个特殊值,然后把得到的两条具体的直(曲)线求交点即得所求定点。
(5)证明定值:证某个式子为定值,即是要求出这个式子的值是什么。
把条件转化为相关的方程(组),消去其中的参数即得。
(6)探索性(存在性)问题:通常转化为对方程根的存在性的讨论。
▲注意向量与解析几何的密切联系.由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,大量的解析几何问题都是以向量作为背景编拟的;▲判别式和韦达定理是解决以直线和圆锥曲线的位置关系为背景的综合问题的必用工具。
高考专题:解析几何常规题型及方法
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。
选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓根底。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
高考数学解析几何9种题型的解题技巧!
解析几何命题趋向:
1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以填空题的形式出现,每年必考
2.考查直线与二次曲线的普通方程,属容易题,对称问题常以填空题出现
3.考查圆锥曲线的基础知识和基本方法的题多以填空题的形式出现,有时会出现有一定灵活性和综合性较强的题,如求轨迹,与向量结合,与求最值结合,属中档题。
考点透视
一.直线和圆的方程
1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
3.了解二元一次不等式表示平面区域.
4.了解线性规划的意义,并会简单的应用.
5.了解解析几何的基本思想,了解坐标法.
6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
二.圆锥曲线方程
1.掌握椭圆的定义、标准方程和椭圆的简单几何性质.2.掌握双曲线的定义、标准方程和双曲线的简单几何性质.3.掌握抛物线的定义、标准方程和抛物线的简单几何性质.4.了解圆锥曲线的初步应用.。
文科高考数学重难点04 解析几何(解析版)
重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。
解析几何七种常规题型及方法
解析几何七种常规题型及方法常规题型及解题的技巧方法 A:常规题型方面 一、一般弦长计算问题:例1、椭圆()2222:10x y C a b a b +=>>,直线1:1x yl a b-=被椭圆C 截得的弦长为e =,过椭圆C 的直线2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度.思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为,得228a b +=,………①又3e =,即2223c a =,所以223a b =………………………….②联立①②得226,2a b ==,所以所求的椭圆的方程为22162x y +=.⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,251860x x -+= 由韦达定理知,1212186,55x x x x +==从而12x x -==由弦长公式,得1255AB x =-==,即弦AB 的长度为5点评:此题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。
二、中点弦长问题:具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
分析:设P x y 111(,),P x y 222(,)代入方程得x y 121221-=,x y 222221-=。
两式相减得()()()()x x x x y y y y 12121212120+--+-=。
又设中点P 〔*,y 〕,将x x x 122+=,y y y 122+=代入,当x x 12≠时得22201212x yy y x x ---=·。
高考数学解析几何题 如何运用几何知识解题
高考数学解析几何题如何运用几何知识解题解析几何是高考数学中的重要内容,也是一道考察学生运用几何知识解题能力的重要题型。
本文将以高考数学解析几何题为例,介绍如何运用几何知识解题。
一、直线与平面的交点解析几何中,直线与平面的交点是较为常见的题型。
当需要求解直线与平面的交点时,我们可以先列出直线和平面的方程,然后联立求解。
例如,已知直线L:2x+3y-4=0与平面α:x+y+z-6=0相交,求交点的坐标。
解:首先,我们可以化简直线和平面的方程为参数方程:直线L:x=2-3t, y=t, z=t平面α:x+y+z=6然后,将直线的参数方程代入平面的方程,得到:(2-3t) + t + t = 64t = 4t = 1将t=1代回直线的参数方程,得到交点的坐标为:x = 2-3(1) = -1z = 1所以,交点的坐标为(-1, 1, 1)。
二、直线与平面的位置关系除了求解交点外,直线与平面的位置关系也是解析几何中常见的题型。
当需要判断直线与平面的位置关系时,我们可以比较直线与平面的方程的系数。
例如,已知直线L:2x-y+1=0与平面α:x-y+z+2=0的位置关系是相交,求直线L在平面α上的投影长度。
解:首先,我们可以化简直线和平面的方程为参数方程:直线L:x=1+t, y=2t+1, z=0平面α:x=y-2z-2然后,将直线的参数方程代入平面的方程,得到:(1+t) = (2t+1)-2(0)-21+t = 2t-1t = 2将t=2代回直线的参数方程,得到直线L在平面α上的交点坐标为:x = 1+2 = 3y = 2(2)+1 = 5所以,直线L在平面α上的交点坐标为(3, 5, 0)。
三、直线与直线的位置关系除了与平面的位置关系外,直线与直线的位置关系也是解析几何中常见的题型。
当需要判断直线与直线的位置关系时,我们可以比较两条直线的方程的系数。
例如,已知直线L1:2x+y-1=0与直线L2:x+2y-3=0的位置关系是相交,求交点坐标。
高考数学 专题22 解析几何高考常考题型方法总结(解析版)
专题22 解析几何高考常考题型方法总结一.【学习目标】1.掌握圆锥曲线的定义;2.掌握焦点三角形的应用和几何意义; 3.掌握圆锥曲线方程的求法;4.掌握直线与圆锥曲线的位置关系;5.熟练掌握定点、定值、最值和范围问题。
二.【知识点总结】1.椭圆定义:平面内与两个定点12,F F 的距离的和等于常数(大于12,F F 之间的距离)的点的轨迹叫做椭圆,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 2.椭圆的标准方程(1) 22221,(0)x y a b a b +=>>,焦点12(,0),(,0)F c F c -,其中c =.(2) 22221,(0)x y a b b a+=>>,焦点12(0,),(0,)F c F c -,其中c =3.椭圆的几何性质以22221,(0)x y a b a b+=>>为例(1)范围:,a x a b y b -≤≤-≤≤.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:长轴端点:12(,0),(,0)A a A a -,短轴端点:12(0,),(0,)B b B b -;长轴长12||2A A a =,短轴长12||2B B b =,焦距12||2F F c =.(4)离心率,01,ce e e a=<<越大,椭圆越扁,e 越小,椭圆越圆.(5) ,,a b c 的关系:222c a b =-.4.双曲线的定义:平面内与两个定点12,F F 的距离的差的绝对值等于常数(小于12,F F 之间的距离)的点的轨迹叫做双曲线,这两个定点12,F F 叫做焦点,两焦点间的距离叫做焦距. 5.双曲线的标准方程(1) 22221,(0,0)x y a b a b -=>>,焦点12(,0),(,0)F c F c -,其中c =(2) 22221,(0,0)x y a b b a-=>>,焦点12(0,),(0,)F c F c -,其中c =6.双曲线的几何性质以22221,(0,0)x y a b a b-=>>为例(1)范围:,x a x a ≥≤-.(2)对称性:对称轴:x 轴,y 轴;对称中心:(0,0)O(3)顶点:实轴端点:12(,0),(,0)A a A a -,虚轴端点:12(0,),(0,)B b B b -;实轴长12||2A A a =,虚轴长12||2B B b =,焦距12||2F F c =.(4)离心率,1ce e a=>(5) 渐近线方程by x a=±.7.抛物线的定义:平面内与一个定点和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,直线l 叫抛物线的准线.8.抛物线的标准方程(1) 22222,2,2,2,(0)y px y px x py x py p ==-==->.对应的焦点分别为:(,0),(,0),(0,),(0,)2222p p p p F F F F --. (2)离心率1e =.三.【题型归纳】 (一)斜率问题 (二)面积问题(三)参数的范围问题 (四)轨迹问题 (五)最值(六)圆锥曲线的性质 (七)与向量的综合 (八)轨迹方程与面积 (九)定值问题(十)圆与圆锥曲线 (十一)最值 四.【题型方法】 (一)斜率问题例1.设M ,N 是抛物线2y x =上的两个不同的点,O 是坐标原点,若直线OM 与ON 的斜率之积为12-,则( )A.||||42OM ON +≥B.O 到直线MN 的距离不大于2C.直线MN 过抛物线2y x =的焦点D.MN 为直径的圆的面积大于4π【答案】B【解析】当直线MN 的斜率不存在时,设,由斜率之积为12-,可得20112y -=-,即202y =,∴MN 的直线方程为2x =;当直线的斜率存在时,设直线方程为y kx m =+,联立2y kx m y x=+⎧⎨=⎩,可得20ky y m -+=.设()1122(),,M x y N x y ,,则,∴121212OM ON y y k k k x x m ==-⋅=, 即2m k =-.∴直线方程为()22y kx k k x =-=-. 则直线MN 过定点()2,0.则O 到直线MN 的距离不大于2.故选B .练习1.已知点(),P x y 在圆()()22:111C x y -+-=上,则2y x+的最小值是( ) A .23B .34C .43 D .32【答案】C【解析】由题意,设2y k x+=,整理得20kx y --=, 又由圆()()22:111C x y -+-=的圆心坐标为(1,1),半径为1, 当直线20kx y --=与()()22:111C x y -+-=有交点时,2231(1)k k -≤+-,解得43k ≥,即2y x +的最小值为43,故选C.(二)面积问题例2.已知有相同焦点1F 、2F 的椭圆()2211x y m m +=>和双曲线()2210x y n n-=>,点P 是它们的一个交点,则12F PF ∆面积的大小是( ) A.122 C.1 D.2【答案】C【解析】如图所示,不妨设两曲线的交点P 位于双曲线的右支上,设1PF s =,2PF t =.由双曲线和椭圆的定义可得 2s t m s t n⎧+=⎪⎨-=⎪⎩解得2222 s t m n st m n⎧+=+⎨=-⎩,在12PF F △中,()2221222414cos 222m n m s t c F PF st m n +--+-∠==-, ∵11m n -=+,∴2m n -=,∴12cos 0F PF ∠=,∴1290F PF ∠=︒.∴12F PF △面积为1 12st =, 故选:C .练习1.设12,F F 是椭圆的两个焦点,点P 在椭圆上,且128F F =,1210PF PF +=,则12PF F ∆面积的最大值为 ( )A .6B .12C .15D .20【答案】B【解析】根据128F F =,1210PF PF +=可知28,210c a ==,故2229b a c =-=,所以3b =.由于12PF F ∆底边12F F 长度一定,故高最高的时候取得最大值,高最高为3b =,所以三角形面积的最大值为121122F F b ⋅⋅=.故选B. 练习2.设经过点M(2,1)的等轴双曲线的左、右焦点分别为F 1,F 2,若此双曲线上的一点N 满足12NF NF ⊥u u u v u u u u v ,则△NF 1F 2的面积为_______. 【答案】3【解析】设该等轴双曲线的方程为()220x y λλ-=≠,Q 该双曲线经过点()2,1,41M λ∴-=,即3λ=,该双曲线的方程为223x y -=,易得())126,0,6,0F F -,Q 该双曲线上的一点N 满足12NF NF ⊥u u u v u u u u v ,设()00,N x y ,可得2200220036x y x y ⎧-=⎨+=⎩,062y ∴=,则12NF F ∆的面积1322S =⨯=,故答案为3. 练习3.椭圆22221x y a b+=(a>b>0)中,F 1,F 2分别为其左、右焦点,M 为椭圆上一点且MF 2⊥x 轴,设P 是椭圆上任意一点,若△PF 1F 2面积的最大值是△OMF 2面积的3倍(O 为坐标原点),则该椭圆的离心率e=____.【解析】由题意,可得2b Mc a(,), ∵△PF 1F 2面积的最大值是△OMF 2面积的3倍,211223223b c b c b a a ⨯⨯=⨯⨯⨯∴=,,,∴c ==, ∴e c e a ==.(三)参数的范围问题例3.若函数||1y x =-的图像与曲线22:1C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是( ) A.[1,1)-B.(1,0)-C.(,1][0,1)-∞-UD.[1,0](1,)-+∞U【答案】A【解析】由y =|x |﹣1可得,x ≥0时,y =x ﹣1;x <0时,y =﹣x ﹣1, ∴函数y =|x |﹣1的图象与方程x 2+λy 2=1的曲线必相交于(±1,0)所以为了使函数y =|x |﹣1的图象与方程x 2+λy 2=1的曲线恰好有两个不同的公共点,则 y =x ﹣1代入方程x 2+λy 2=1,整理可得(1+λ)x 2﹣2λx +λ﹣1=0 当λ=﹣1时,x =1满足题意, 由于△>0,1是方程的根,∴11λλ-+<0,即﹣1<λ<1时,方程两根异号,满足题意; y =﹣x ﹣1代入方程x 2+λy 2=1,整理可得(1+λ)x 2+2λx +λ﹣1=0 当λ=﹣1时,x =﹣1满足题意, 由于△>0,﹣1是方程的根,∴11λλ-+<0,即﹣1<λ<1时,方程两根异号,满足题意; 综上知,实数λ的取值范围是[﹣1,1) 故选:A .练习1.已知椭圆222:1x M y a+=,圆222:6C x y a +=-在第一象限有公共点P ,设圆C 在点P 处的切线斜率为1k ,椭圆M 在点P 处的切线斜率为2k ,则12k k 的取值范围为( ) A.(1,6) B.(1,5)C.(3,6)D.(3,5)【答案】D【解析】因为椭圆222:1x M y a +=和圆222:6C x y a +=-在第一象限有公共点P ,所以222661a a a ⎧>-⎨->⎩,解得235a <<.设椭圆222:1x M y a+=和圆222:6C x y a +=-在第一象限的公共点()00,P x y ,则椭圆M在点P 处的切线方程为0021x x y y a +=,圆C 在点P 处的切线方程为2006x x y y a +=-,所以010x k y =-,0220x k a y =-,所以()2123,5k a k =∈,故选D.(四)轨迹问题例4.已知动点M的坐标满足方程12512x y =+-,则动点M 的轨迹为( ) A.抛物线 B.双曲线C.椭圆D.以上都不对【答案】A【解析】由题意,动点M的坐标满足方程12512x y +-,1251213x y +-=,可得上式表示动点(,)M x y 到定点(0,0)的距离与到定直线125120x y +-=的距离相等,且定点不在定直线上,结合抛物线的定义可知:动点M 轨迹是以定点为焦点,定直线为准线的抛物线. 故选A.练习1.已知两点()12,0F -、()22,0F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程为( ) A .22143x y +=B .22184x y +=C .221164x y +=D .2211612x y +=【答案】D 【解析】由题设可得121228PF PF F F +==,即2216,16412a b ==-=,应选答案D 。
高考数学解析几何问题的题型与方法
第14讲解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1.能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3.理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:(r>0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a、b、c、p、e之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 (04江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点、,动点P满足. 当点P的纵坐标是时,点P到坐标原点的距离是(A)(B)(C)(D)21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查(A ) (B )(C ) (D )2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线与y 轴交于点M. 若,求直线l 的斜率. 本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高.解:(I )设所求椭圆方程是由已知,得 所以.故所求的椭圆方程是(II )设Q (),直线当由定比分点坐标公式,得0(2)()2,2,1212Q Q m km MQ QF x m y km +-⨯-=-==-==---当时.于是 故直线l 的斜率是0,. 例5(04全国文科Ⅰ)设双曲线C :相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且求a 的值.解:(I )由C 与t 相交于两个不同的点,故知方程组有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①双曲线的离心率(II )设.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C : F 是C 的焦点,过点F 的直线与C 相交于A 、B 两点.(Ⅰ)设的斜率为1,求夹角的大小; (Ⅱ)设,求在轴上截距的变化范围.解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为将代入方程,并整理得设则有.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x OB OA(Ⅱ)由题设得即由②得,∵ ∴③联立①、③解得,依题意有∴又F(1,0),得直线l方程为当时,l在方程y轴上的截距为由可知在[4,9]上是递减的,∴直线l在y轴上截距的变化范围为从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与2005年高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足,其中α、β∈R,且α+β=1,则点C的轨迹方程为(A)(x-1)2+(y-2)2=5 (B)3x+2y-11=0(C)2x-y=0 (D)x+2y-5=0例8(04辽宁)已知点、,动点,则点P的轨迹是(A)圆(B)椭圆(C)双曲线(D)抛物线2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大.3.与数列相综合在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n的坐标为(x n,y n),(Ⅰ)求及;(Ⅱ)证明(Ⅲ)若记证明是等比数列.解:(Ⅰ)因为,所以,又由题意可知,∴== ∴为常数列.∴(Ⅱ)将等式两边除以2,得又∵,∴(Ⅲ)∵∴是公比为的等比数列. 4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。
湖南省高三数学新高考解析几何题型与方法专题分析
解析几何问题的题型与方法考试要求:(1)能根据已知条件,熟练地选择恰当的方程形式写出直线与圆的方程,并能利用直线和圆的方程来研究有关的问题.(2) 了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.(3)掌握直角坐标系中的曲线与方程的关系和轨迹的概念。
能够根据所给条件,选择适当的直角坐标系求曲线的方程并画出方程所表示的曲线。
(4)掌握圆锥曲线的标准方程及其几何性质。
了解圆锥曲线的一此实际应用。
(5)了解用坐标法及向量法研究几何问题的思想,掌握利用方程研究曲线性质的方法高考解析几何试题一般占35分左右,命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,曲线与方程的关系和轨迹,求解有时还要用到平几..的基本知识和向量的基本方法.............,这一点值得注意。
教学过程:一、基础训练:1.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( C ) A .x y 3= B .x y 3-= C .x y 33=D .x y 33-=2.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( B )A .45B .25C .32D .453.若动点(x ,y ) 抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是 ( B ) A .1617 B . 1615 C.87D . 04.已知定点A 、B 且|AB|=4,动点P 满足|PA|-|PB|=3,则|PA|的最小值是(C )A.21B.23 C.27 D.55. 若椭圆长轴长与短轴长之比为2,它的一个焦点是(215,0),则椭圆的标准方程是1208022=+y x 6.已知直线1y x =+与椭圆221mx ny +=(0)m n >>相交于,A B 两点,若弦AB 中点的横坐标为13-,则双曲线22221x y m n-=的两条渐近线夹角的正切值是43.二、例题分析:例1、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程;(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b c abb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k .设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210kx y k k kx y k k x x x BE -=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又 故所求k=±7. 说明:为了求出k 的值, 需要通过消元, 想法设法建构k 的方程. 直线与圆锥曲线相交问题,一般可用两个方程联立后,用△≥0来处理.但有时用△≥0来判断圆锥曲线相交问题是不可靠的.解决这类问题:方法1,由“△≥0”与直观图形相结合;方法2,由“△≥0”与根与系数关系相结合。
考生拿下高考数学解析几何题的方法答题技巧
考生拿下高考数学解析几何题的方法答题技巧每次和同学们谈及高考数学,大家似乎都有同感:高中数学难,解析几何又是难中之难,那么高考数学解析几何题的方法有那些呢?其实不然,解析几何题目自有路径可循,方法可依。
只要经过认真的准备和正确的点拨,完全可以让高考数学的解析几何压轴题变成让同学们都很有信心的中等题目。
解析几何高考的命题趋势:(1)题型稳定:近几年来高考解析几何试题一直稳定在三(或二)个选择题,一个填空题,一个解答题上,分值约为30分左右,占总分值的20%左右。
(2)整体平衡,重点突出:《考试说明》中解析几何部分原有33个知识点,现缩为19个知识点,一般考查的知识点超过50%,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;(3)能力立意,渗透数学思想:如____年第(22)题,以梯形为背景,将双曲线的概念、性质与坐标法、定比分点的坐标公式、离心率等知识融为一体,有很强的综合性。
一些虽是常见的基本题型,但如果借助于数形结合的思想,就能快速准确的得到答案。
(4)题型新颖,位置不定:近几年解析几何试题的难度有所下降,选择题、填空题均属易中等题,且解答题未必处于压轴题的位置,计算量减少,思考量增大。
加大与相关知识的联系(如向量、函数、方程、不等式等),凸现教材中研究性学习的能力要求。
加大探索性题型的分量。
直线与圆内容的主要考查两部分:(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;考生拿下高考数学解析几何题的方法的讲解内容就是这些,希望考生成绩可以更上一层楼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五:高考文科数学解析几何题型与方法(文科)
一、考点回顾 1.直线
(1).直线的倾斜角和斜率 (2) .直线的方程
a.点斜式:)(11x x k y y -=-;
b.截距式:b kx y +=;
c.两点式:
121121x x x x y y y y --=--; d.截距式:1=+b
y
a x ;
e.一般式:0=++C By Ax ,其中A 、B 不同时为0. (3).两直线的位置关系
两条直线1l ,2l 有三种位置关系:平行(没有公共点);相交(有且只有一个公共点);重合(有无数个公共点).在这三种位置关系中,我们重点研究平行与相交. (4).简单的线性规划.
①存在一定的限制条件,这些约束条件如果由x 、y 的一次不等式(或方程)组成的不等式组来表示,称为线性约束条件.
②都有一个目标要求,就是要求依赖于x 、y 的某个函数(称为目标函数)达到最大值或最小值.特殊地,若此函数是x 、y 的一次解析式,就称为线性目标函数.
③求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题. 2. 圆
(1).圆的定义 (2).圆的方程
a.圆的标准方程,
b.圆的一般方程,
c.圆的参数方程 (3).直线与圆 3.圆锥曲线
(1).椭圆的性质
(2)双曲线的性质
(3).抛物线中的常用结论
①过抛物线y2=2px的焦点F的弦AB长的最小值为2p。