组合数学题库答案.docx
(完整word版)组合数学课后答案
习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。
现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。
证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。
那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。
证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。
(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。
《组合数学》练习题一参考答案
《组合数学》练习题一参考答案《组合数学》练习题一参考答案一、填空:1.!()!m n P n m m n m =- 2.2)1(-n n 3. 0. 4. 2675.),2,1,0(3)2(2321 =+-+=n c c c a n n n n .6.4207.78.()()!!11...!31!21!111n n n ??-++-+-9.22 10.267二、选择:1. 1—10 A B D D A D A B B C三、计算: 1. 解因为]250[=25, ]450[=12, ]850[=6, ]1650[=3, ]3250[=1, ]6450[=0, 所以, 所求的最高次幂是2(50!)=25+12+6+3+1=47.2. 解由我们最初观察的式子,有614,1124,634,144=??===, 再利用定理1,我们得到24!415,102)15(545,155==??=-?==, 3511642434435=+?=???+=, 5061141424425=+?=??+=. 所以,x x x x x x f 24503510)(23455+-+-=.3. 解:设所求为N ,令}2000,,2,1{ =S ,以A ,B ,C 分别表示S 中能被32?,52?,53?整除的整数所成之集,则53466663133200333 532200053220003532000522000322000 =+?-++=+-???????+???????+???????=+---++==C B A C B C A B A C B A CB A N 4. 解:记7个来宾为1A ,2A ,…,7A ,则7个来宾的取帽子方法可看成是由1A ,2A ,…,7A 作成的这样的全排列:如果i A (1≤i ≤7)拿了j A 的帽子,则把i A 排在第j 位,于是(1)没有一位来宾取回的是他自己的帽子的取法种数等于7元重排数7D ,即等于1854。
组合数学题目及答案
组合数学例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。
问共有多少种不同的安全状态?解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。
用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。
这种对应显然是一对一的。
因此,安全状态的总数等于这8个数的全排列总数8!=40320。
例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。
证明n 偶数。
证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。
根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。
例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。
证 设n +1个数是a 1, a 2, ···, an +1。
每个数去掉一切2的因子,直至剩下一个奇数为止。
组成序列r 1, r 2,, ···, rn +1。
这n +1个数仍在[1 , 2n ]中,且都是奇数。
而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。
若ai >aj ,则ai 是aj 的倍数。
例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k<l ≤m ,使得和ak+1+ ak +2+ ···+ al 是m 的倍数。
证 设Sh = , Sh ≡rh mod m, 0≤rh ≤m -1,h = 1 , 2 , ···, m . 若存在l , Sl ≡0 mod m 则命题成立.否则,1≤rh ≤m -1.但h = 1 , 2 , ···,m .由 鸽巢原理,故存在rk= rl , 即Sk ≡Sl mod m ,不妨设l >k .则Sl -Sk= ak+1+ ak+2+…+ al ≡0 mod m例6 设a 1, a 2, a3是任意三个整数,b1 b2 b3为a1, a2, a3的任一排列,则a1-b1, a2-b2 ,a3-b3中至少有一个是偶数.证 由鸽巢原理:a1, a2, a3至少有两个奇偶性相同.则这3个数被2除的余数至少有两个是相同的,不妨设为x; 同样b1, b2, b3中被2除的余数也至少有2个x .这样a1-b1, a2-b2 , a3-b3被2除的余数至少有一个为0.例7 设a 1, a 2,…, a100是由数字1和2组成的序列, 已知从其任一数开始的顺序10个数的和不超过16.即ai+ ai+1+…+ ai+9≤16,1≤i ≤91。
高中组合数计算试题及答案
高中组合数计算试题及答案试题一:某班级有40名学生,需要从中选出5名学生参加数学竞赛。
求:1. 总共有多少种不同的选法?2. 如果班级中有5名女生和35名男生,选出的5名学生中有至少1名女生的选法有多少种?试题二:在一个有10个不同颜色的球的袋子里,需要取出3个球。
求:1. 取出3个球的所有可能组合有多少种?2. 如果取出的3个球中必须包含至少一个红色球,有多少种不同的取法?试题三:在一个有8个不同元素的集合中,需要选择3个元素组成一个小组。
求:1. 这个小组的所有可能组合有多少种?2. 如果小组中必须包含特定的一个元素,有多少种不同的组合方式?试题四:某学校有5个不同的社团,每个学生可以选择加入1个或多个社团。
求:1. 学生可以选择的所有不同社团组合有多少种?2. 如果规定每个学生至少需要加入1个社团,那么有多少种不同的选择方式?试题五:在一个有7个不同数字的序列中,需要选择5个数字形成一个子序列。
求:1. 这个子序列的所有可能组合有多少种?2. 如果子序列中必须包含特定的一个数字,有多少种不同的组合方式?答案:试题一:1. 组合数公式为C(n, k) = n! / [k! * (n-k)!],其中n为总数,k为选择的数量。
所以C(40, 5) = 40! / (5! * 35!) = 658008种选法。
2. 首先计算没有限制的选法,C(40, 5) = 658008种。
然后计算只选男生的选法,C(35, 5) = 324632种。
所以至少有1名女生的选法为658008 - 324632 = 333376种。
试题二:1. 组合数公式同样适用,C(10, 3) = 10! / (3! * 7!) = 120种组合。
2. 首先计算不包含红色球的组合数,C(9, 3) = 84种。
然后从总组合数中减去这部分,120 - 84 = 36种。
试题三:1. 使用组合数公式,C(8, 3) = 8! / (3! * 5!) = 56种组合。
最新组合数学习题答案(1-4章全)
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
组合数学考试题目及答案
组合数学考试题目及答案**组合数学考试题目及答案**一、单项选择题(每题3分,共30分)1. 从10个不同的元素中取出3个元素的组合数为()。
A. 120B. 210C. 100D. 150答案:B2. 以下哪个不是排列数的性质?()。
A. \( P(n, n) = n! \)B. \( P(n, 0) = 1 \)C. \( P(n, k) = \frac{n!}{(n-k)!} \)D. \( P(n, k) = \frac{n!}{k!} \)答案:D3. 从5个不同的元素中取出2个元素的排列数为()。
A. 10B. 20C. 15D. 25答案:B4. 组合数 \( C(n, k) \) 和排列数 \( P(n, k) \) 之间的关系是()。
A. \( C(n, k) = \frac{P(n, k)}{k!} \)B. \( P(n, k) = \frac{C(n, k)}{k!} \)C. \( C(n, k) = k \times P(n, k) \)D. \( P(n, k) = k \times C(n, k) \)答案:A5. 以下哪个是组合数的性质?()。
A. \( C(n, k) = C(n, n-k) \)B. \( C(n, k) = C(n-1, k-1) \)C. \( C(n, k) = C(n, k+1) \)D. \( C(n, k) = C(n+1, k+1) \)答案:A6. 从8个不同的元素中取出3个元素的组合数为()。
A. 56B. 54C. 48D. 35答案:A7. 以下哪个是排列数的递推关系?()。
A. \( P(n, k) = P(n-1, k) + P(n-1, k-1) \)B. \( P(n, k) = P(n-1, k) - P(n-1, k-1) \)C. \( P(n, k) = P(n-1, k) \times P(n, 1) \)D. \( P(n, k) = P(n-1, k-1) \times P(n, 1) \)答案:D8. 从7个不同的元素中取出4个元素的排列数为()。
组合数学第一章答案
1.1 题(宗传玉)从{1,2,……50}中找两个数{a,b},使其满足(1)|a-b|=5;(2)|a-b|≤5;解:(1):由|a-b|=5⇒a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。
当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。
所以这样的序列有90对。
(2):由题意知,|a-b|≤5⇒|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。
当|a-b|=1时,两数的序列有(1,2),(3,4),(2,1)(1,2)……(49,50),(50,49)这样的序列有49*2=98对。
当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题(王星)解:(a)可将5个女生看作一个单位,共八个单位进行全排列得到排列数为:8!×5!,(b)用x表示男生,y表示空缺,先将男生放置好,共有8个空缺,Y X Y X Y X Y X Y X Y X Y X Y在其中任取5个得到女生两两不相邻的排列数:C(8,5)×7!×5!(c)先取两个男生和3个女生做排列,情况如下:6. 若A,B之间存在0个男生,A,B之间共有3个人,所有的排列应为P6=C(5,3)*3!*8!*21.若A,B之间存在1个男生,A,B之间共有4个人,所有的排列应为P1= C(5,1)*C(5,3)*4!*7!*22.若A,B之间存在2个男生,A,B之间共有5个人,所有的排列应为P2=C(5,2)*C(5,3)*5!*6!*23.2.若A,B之间存在3个男生,A,B之间共有6个人,所有的排列应为P3=C(5,3)*C(5,3)*6!*5!*24.若A,B之间存在4个男生,A,B之间共有7个人,所有的排列应为P4=C(5,4)*C(5,3)*7!*4!*25.若A,B之间存在5个男生,A,B之间共有8个人,所有的排列应为P5=C(5,5)*C(5,3)*8!*3!*2所以总的排列数为上述6种情况之和。
最新组合数学习题答案(1-4章全)
第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。
满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。
满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。
1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。
(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。
将女生插入,有5!种方案。
故按乘法原理,有:7!×58C ×5!=33868800(种)方案。
(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。
(完整word版)组合数学习题解答
第一章:1。
2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。
解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P (5,4)=120。
1.4。
10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式? 解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。
如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式.而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。
故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!— 2*9!.1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。
两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!—2*8!。
1。
14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数? 解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F(4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1将它们相加即得,F (4,4)+F(4,3)+F (4,2)+F (4,1)+F (4,0)=70。
组合数学题库-最新-答案版
组合数学习题1.Show that if n+1 integers are chosen form the set {1,2, …,2n},then there are always two which differ by at most 2.从{1,2, …,2n}中选出n+1个数,在这n+1个数中,一定存在两个数,其中一个整数能整除另外一个整数。
任何一个数都可以写成2k*L,其中k是非负数,L是正奇数。
现在从1到2n之间只有n个奇数。
由于有n+1个数都能表示成2k*L,而L的取值只有n中,所以有鸽子洞原理知道,至少有两个数的L是一样的,于是对应k小的那个就可以整除k大的另一个数。
至少有两个L是一样的,则它们的差=(2i-2j)L>=2,题目应该是说差最大为2,而不是除。
2.Show that for any given 52 integers there are exist two of them whose sum, or else difference, is divisible 100.设52个整数a1,a2,…,a52被100除的余数分别是r1,r2,…,r52,而任意一个数被100除余数为0,1,2,…,99,一共100个。
他们可以分为51个类{0},{1,99},{2,98},…,{49,51},{50}。
将这51个集合视为鸽笼,则将r1,r2,…,r52放入51个笼子中,至少有两个属于同一个笼子,所以要么有ri=rj,要么有ri+rj=100,也就是说ai-aj|100或者ai+aj|100。
3.从1,2,3,…,2n中任选n+1个数,证明在这n+1个数中至少有一对数互质。
鸽子洞原理,必有两个数相邻,相邻的两个数互质4.Prove that Ramsey number R(p,q)≤R(p,q-1)+R(p-1,q).令N=R(p,q-1)+R(p-1,q),从N个人中中随意选取一个a,F表示与a相识的人,S表示与a不相识的人。
(完整版)排列组合练习题及答案.doc
《排列组合》一、排列与组合1.从 9 人中选派 2 人参加某一活动,有多少种不同选法?2.从 9 人中选派 2 人参加文艺活动, 1 人下乡演出, 1 人在本地演出,有多少种不同选派方法?3.现从男、女 8 名学生干部中选出 2 名男同学和 1 名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有 90 种不同的方案,那么男、女同学的人数是A. 男同学 2 人,女同学 6 人B.男同学3人,女同学5人C. 男同学 5 人,女同学 3 人D.男同学6人,女同学2人4.一条铁路原有 m个车站,为了适应客运需要新增加 n 个车站( n>1),则客运车票增加了 58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有A.12 个B.13个C.14个D.15个5.用 0,1,2,3,4, 5 这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于 1000 的自然数?(5)可以组成多少个大于 3000,小于 5421 的数字不重复的四位数?二、注意附加条件1.6 人排成一列(1)甲乙必须站两端,有多少种不同排法?( 2)甲乙必须站两端,丙站中间,有多少种不同排法?2.由 1、2、3、4、5、6 六个数字可组成多少个无重复数字且是 6 的倍数的五位数?3.由数字 1,2,3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第 379 个数是A.3761B.4175C.5132D.61574.有号 1、2、3、4、5 的五个茶杯和号 1、2、3、4、5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的号相同的盖法有A.30 种B.31种C.32种D.36种5.从号 1,2,⋯, 10,11 的 11 个球中取 5 个,使 5 个球中既有号偶数的球又有号奇数的球,且它的号之和奇数,其取法数是A.230 种B.236种C.455种D.2640种6.从 6 双不同色的手套中任取 4 只,其中恰好有 1 双同色的取法有A.240 种B.180种C.120种D.60种7.用 0,1,2, 3,4, 5 六个数成没有重复数字的四位偶数,将些四位数从小到大排列起来,第 71 个数是。
组合数学练习题_带答案
组合数学练习题第一章排列组合1, 在1到10000之间,有多少个每位上数字全不相同而且由偶数构成的整数?本题分为四种情况:1位整数有4个: 2, 4, 6, 82位整数有4*4种方案, 有16个3位整数有4*4*3种方案, 有48个4位整数有4*4*3*2种方案, 有96个总共有4+16+48+96=164个这样的整数.2, 一教室有两排,每排9个坐位,今有14名学生,问按下列不同的方式入座,各有多少种坐法?(1) 规定某5人总坐在前排,某4人总在后排,但每人具体坐位不指定;(2) 要求前排至少坐5人,后排至少坐4人。
(1)本问中, 第一排和第二排各有5名和4名同学被确定, 那么14名同学中还有5名同学没有固定在哪一排, 所以可以根据这5名同学的不同排列来计算, 分5种情况考虑; 1)从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加起来就是结果.C(5,4)*P(9,9)*P(9,5)+C(5,3)*P(9,8)*P(9,6)+C(5,2)*P(9,7)*P(9,7)+C(5,1)*P(9,6)*P(9,8)+P(9,5)*P(9,9)(2)本问中, 第一排和第二排所坐的同学的数量被确定, 分别是5名和4名, 那么要从14名同学中把省下的5名同学选出来, 然后再按照坐在不同排的情况进行计算, 同样分5种情况考虑; 1) 从这5名同学中选出4名同学坐在第一排, 这4名和固定的5名同学进行全排列、另外1名同学和第二排固定的4名同学进行全排列,以此类推;2) 从5名同学中选出3名同学坐第一排; 3) 从5名同字中选出2名同学坐第一排; 4) 从5名同学中选出1名同学坐第一排; 5) 最后5名同学全部坐在第二排; 把这5种情况的坐法安排数全部加起来再乘以从14名同学中任选出5名同学方法的数就是结果.C(14,5)*[P(9,9)*P(9,5)+P(9,8)*P(9,6)+P(9,7)*P(9,7)+P(9,6)*P(9,8)+ P(9,5)*P(9,9)] 3, n对夫妇,要求排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下,又有多少种不同的方案?围一圆桌而坐且要求每对夫妇坐在一起,又有多少种方案?(1)本问中, 男女各有n名, 分别进行全排列各有n!种方案, 将他们交叉排列就有(n!)2种方案, 同时男在女前或女在男前又是不同的方案, 所以要乘以2, 所以方案数为--- 2 (n!)2(2)本问较第一问要去掉变为圆周排列后的重复度, 总的人数为2n, 用第一问的方案数除以2n, 所以方案数为--- (n!)2/n(3)本问中, 每对夫妇交换位置坐的方案数为2n, 再把每对夫妇看成单个元素进行圆周全排列, 方案为n!/n, 最后把两种方案数相乘, 所以方案数为--- 2n n!/n4, 有16名选手,其中6名只能打后卫,8名只能打前锋,2名能打前锋或后卫,今欲选出11人组成一支球队,而且需要7人打前锋,4人打后卫,试问有多少种选法?根据2名既能打前锋也能打后卫选手的不同情况来计算方案(1) 方法一, 分成6种情况: 1) 这2名选手全部打前锋; 2) 这2名选手全部打后卫; 3) 从2名选手中选出1名打前锋, 另一名不上场; 4) 从2名选手中选出1名打后卫, 另一名不上场; 5) 2名选手全部上场, 分别打前锋和后卫; 6) 2名选手全部不上场; 把这些方案加起来就是全部选法.C(8,5)*C(6,4)+C(8,7)*C(6,2)+2C(8,6)*C(6,4)+2C(8,7)*C(6,3)+C(8,6)*C(6,3)+C(8,7)*C(6,4) = 2800(2) 方法二, 分成3种情况: 1) 把这2名选手全部加入前锋后选组进行组合; 2) 把这2名选手合部加入后卫后选组进行组合; 但这两种方案中这2名选手全部不上场的方案是重复的, 所以要减掉一个2名选全部不上场的方案数; 3) 上面的方案中也包括了2名选手中只有1名上场的情况, 所以省下只考虑2名选手都上场, 但分别打前锋和后位的方案; 把这些方案加起来就是全部选法.C(6,4)*C(10,7)+C(8,4)*C(8,7) -C(8,7)*C(6,4)+ C(6,3) *C(8,6) = 28005, 从1到10这10个正整数中每次取出一个并登记,然后放回,连续取5次,得到一个由5个数字组成的数列。
(完整word版)组合数学第一章答案.
1.1 从{}5021,,,⋅⋅⋅中找两个数{}b a ,,使其满足 (1) 5||=-b a ;(2)5||≤-b a解:(1)根据5||=-b a 可得 55-=-=-b a b a 或则有种种4545 共有90种。
(2)根据5||≤-b a 得 )50,,2,1(,55{⋅⋅⋅∈+≤≤-b a b a b则:当5≤b 时,有 1=b , 61≤≤a , 则有 6种 2=b , 71≤≤a , 则有7种 3=b , 81≤≤a , 则有8种 4=b , 91≤≤a , 则有 9种5=b , 101≤≤a , 则有10种当455≤<b 时,有 6=b , 111≤≤a , 则有 11种7=b , 122≤≤a , 则有 11种. . . . . . . . .45=b , 5040≤≤a , 则有11种当5045≤<b 时,有 46=b , 5041≤≤a , 则有 10种 47=b , 5042≤≤a , 则有 9种48=b , 5043≤≤a , 则有 8种49=b , 5044≤≤a , 则有 7种50=b , 5045≤≤a , 则有 6种故:共 种520)678910(21140=+++++⨯1.2 (1)先把女生进行排列,方案为5!,然后把女生看成1个人和7个男生进行排列,总方案数为5!×8!(2)女生不相邻,则先把男生进行排列,方案为7!再把女生插入男生之间的8个空位种的任意5个,总方案数为7!×58P(3)应该是A 女生x 女生y 女生z B,或是B 女生x 女生y 女生z A 的形式,从5个女生中选出3人进行排列,方案为35P ,考虑A,B 可以换位,方案为2×35P ,然后把这个看成一个整体,和剩下的2个女生,5个男生,一共7个人进行排列,总方案数2×35P ×8!1.3 m 个男生,n 个女生,排成一行,其中m,n 都是正整数,若(a )男生不相邻(m ≤n+1); (b )n 个女生形成一个整体; (c )男生A 和女生B 排在一起; 分别讨论有多少种方案。
组合练习题答案
组合练习题答案一、选择题1. 下列哪个选项不属于组合数学中的基本概念?A. 排列B. 组合C. 乘法原理D. 除法原理答案:D2. 在n个不同的元素中取出m个元素的组合数可以用以下哪个公式表示?A. C(n, m) = n! / (m! * (n - m)!)B. C(n, m) = (n - m)! / (m! * (n - m)!)C. C(n, m) = n! / (m! * n!)D. C(n, m) = m! / (n - m)!答案:A3. 如果一个排列中元素的顺序是重要的,那么它是一个:A. 组合B. 排列C. 子集D. 集合答案:B4. 假设有5个不同的球和3个不同的盒子,每个盒子至少有一个球,不同的放球方式有多少种?A. 15B. 20C. 25D. 30答案:C5. 以下哪个不是组合数学中的计数问题?A. 计算不同排列的数量B. 计算不同组合的数量C. 计算不同分割的数量D. 计算不同方程的解答案:D二、填空题1. 如果有7个不同的数字,从中选取3个数字进行排列,总共有______ 种不同的排列方式。
答案:5042. 一个班级有30个学生,需要选出5个学生组成一个委员会,不同的委员会组成方式有 ______ 种。
答案:1425063. 如果一个组合问题中元素的顺序不重要,我们通常使用 ______ 来计算可能的组合数。
答案:组合公式4. 假设有10个不同的球,需要将它们分成3组,每组至少有一个球,不同的分法有 ______ 种。
答案:905. 一个排列问题中,如果元素的顺序是重要的,我们通常使用______ 来计算可能的排列数。
答案:排列公式三、解答题1. 一个班级有40名学生,需要选出一个由5名学生组成的篮球队。
如果不考虑性别,不同的组队方式有多少种?解答:根据组合公式 C(n, m) = n! / (m! * (n - m)!),我们可以计算出不同的组队方式为 C(40, 5) = 40! / (5! * 35!) = 658008种。
组合数学习题答案(部分)
n 阶幻方的构造
分三种情况:n 为奇数、n 为 4 的倍数、n 为其它偶数(4n+2 的形式)
⑴ n 为奇数时,最简单
(1) 将 1 放在第一行中间一列; (2) 从 2 开始直到 n×n 止各数依次按下列规则存放:
按 45°方向行走,(如向右上) 每一个数存放的行比前一个数的行数减 1,列数加 1 (3) 如果行列范围超出矩阵范围,则回绕。 例如 1 在第 1 行,则 2 应放在最下一行,列数同样加 1; (4) 如果按上面规则确定的位置上已有数,或上一个数是第 1 行 第 n 列时, 则把下一个数放在上一个数的下面。
置的元素。 (4)调换 A 区和 D 区,B 区和 C 区中选定的对应元素。
30 39 48 1 10 19 28 38 47 7 9 18 27 29 46 6 8 17 26 35 37 5 14 16 25 34 36 45 13 15 24 33 42 44 4 21 23 32 41 43 3 12 22 31 40 49 2 11 20
1
)
34
2 42
3!
43
2(1 1 1 1 ) 2(1 0.083 0.0069) 2.1522 12 9 16
第四章 容斥原理
2.
4.
5.
6.
7. 求集合{1,2,…,n}的排列数,使得在排 列中正好有k个整数在它们的自然位置上。
8.
13.
14.
16.
⑵ n 为 4 的倍数时
采用对称元素交换法。 1.把 数 1 到 n×n 按从 上至下,从左到 右顺序填入矩阵 2.将方 阵的所有 4×4 子方阵中的两对角 线上位置的数关 于方阵 中心作对 称交换 ,即 a(i,j)与 a(n+1-i,n+1-j) 交换,所有其它位置上的数不变。
组合数学习题答案.
第一章答案 第二章答案 第三章答案 第四章答案第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。
8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。
11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。
组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。
12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。
当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。
组合数学题库答案
填空题1.将 5 封信投入 3 个邮筒,有 _____243_种不一样的投法.2. 5 个男孩和 4 个女孩站成一排。
假如没有两个女孩相邻,有43200方法.3. 22 件产品中有 2 件次品,任取 3 件,恰有一件次品方式数为__ 380 ______.4.( x y)6所有项的系数和是_64_ _.答案:645.不定方程 x1x2x3 2 的非负整数解的个数为 _ 6 ___.6 .由初始条件 f (0)1, f (1) 1 及递推关系 f ( n2) f (n1) f ( n) 确立的数列{ f (n)} ( n0) 叫做Fibonacci数列107.( 3x-2y )20的睁开式中 x10y10的系数是c20310( 2)10.8.求 6 的 4 拆分数P4(6)2.9.已知在Fibonacci数列中,已知 f (3)3,f (4)5, f (5) 8 ,试求Fibonacci 数f (20)1094610 .计算P4(12)4P4 (12)P k (12)P1 (8)P2 (8)P3 (8)P4 (8)k134P1 (8) P2 (8)P k (5)P k (4)14 5 515k1k 111.P4(9)( D) A. 5 B. 8 C. 10 D. 612.选择题1.会合 A{ a1 , a 2 ,L , a10 } 的非空真子集的个数为(A) C. 10242.把某英语兴趣班分为两个小组,甲组有 2 名男同学, 5 名女同学;乙组有 3 名男同学, 6名女同学,从甲乙两组均选出 3 名同学来竞赛,则选出的 6 人中恰有 1 名男同学的方式数是( D )A. 800 B. 780 C. 900 D.8503.设( x , y) 知足条件x y10 ,则有序正整数对( x, y) 的个数为(D)A. 100 C. 504.求( x03x12x2x3 )6中 x02 x13 x2项的系数是(C)B. 605.多项式(2 x0x14x2x3 )4中项 x02x12x2的系数是(C)A. 78 B. 104 C. 96 D. 486.有 4 个同样的红球, 5 个同样的白球,那么这9 个球有( B)种不一样的摆列方式A. 63 B. 126 C. 2527.递推关系 f (n ) 4 f ( n1) 4 f (n 2) 的特种方程有重根2,则( B )是它的一般解A.c12n 1c2 2n B.(c1c2n)2 n C.c(1n)2 n D.c1 2n c2 2n8.用数字 1,2,3,4(数字可重复使用)可构成多少个含奇数个1、偶数个 2 且起码含有一个 3 的n (n1) 位数()运用指数生产定理A. 4n 3n ( 1)nB.4n3n14n2n 1 .4n3n( 1)n44339.不定方程 x 1x 2 L x n r rn 正整数的解的个数为多少?(A / C )不确立A.r1B. rC.n r1D.n r 1 r nr nrrn10. x 1 x 2x 314 的非负整数解个数为(A)D. 5011.从 1 至 1000 的整数中,有多少个整数能被5 整除但不可以被6 整除?( A )12.期末考试有六科要复习,若每日起码复习完一科(复习完的科目不再复习) , 5 天里把所有科目复习完,则有多少种不一样的安排?( D )A. 9B. 16 13.某年级的课外学科小组分为数学、语文二个小组,参加数学小组的有23 人,参加语文 小组的有 27 人;同时参加数学、语文两个小组的有7 人。
大学数学组合数学试题与答案(修正版)4
组合数学期末考查卷一、选择题。
(每小题3分,共24分)1.在组合数学的恒等式中n k ⎛⎫= ⎪⎝⎭A 11(1)1n n n k k k --⎛⎫⎛⎫+>≥ ⎪ ⎪-⎝⎭⎝⎭B 1(1)1n n n k k k -⎛⎫⎛⎫+>≥ ⎪ ⎪-⎝⎭⎝⎭C 1(1)11n n n k k k -⎛⎫⎛⎫+>≥ ⎪ ⎪--⎝⎭⎝⎭D (1)1n n n k k k ⎛⎫⎛⎫+>≥ ⎪ ⎪-⎝⎭⎝⎭2、14321=++x x x 的非负整数解个数为( )。
A.120B.100C.85D.503、()()=94P 。
A. 5B. 8C. 10D. 64、递推关系12432(2)n n n n a a a n --=-+≥的特解形式是(a 为待定系数)()A 、2n anB 、2n aC 、32n anD 、22nan 5、错排方式数n D =()A 1(1)n n nD ++-B (1)(1)n n n D ++-C -1(1)n n nD +- D 1(1)(1)n n n D +++-6、将n 个不同的球放入m 个不同的盒子且每盒非空的方式数为( )。
A(nm ) B (),P n m C m!S2(n,m) D(nm )m!7、有100只小鸟飞进6个笼子,则必有一个笼子至少有( )只小鸟。
A 15B 16C 17D 188、若颁发26份奖品给4个人,每人至少有3份,有( )种分法A 55B 40C 50D 39二、填空。
(每小题4分,共20分)1、现有7本不同的书,要分给6个同学,且每位同学都要有书,有__________________种不同的分法2、设q 1, q 2,…… ,q n 是n 个正整数,如果将q 1+ q 2+…+q n -n ﹢1件东西放入n 个盒子里,则必存在一个盒子j 0,1≤j 0≤n ,使得第0j 个盒子里至少装有0j q 件东西,我们把该定理称为__________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
填空题1.将 5 封信投入 3 个邮筒,有 _____243_种不同的投法.2. 5 个男孩和 4 个女孩站成一排。
如果没有两个女孩相邻,有43200方法.3. 22 件产品中有 2 件次品,任取 3 件,恰有一件次品方式数为__ 380 ______.4.( x y)6所有项的系数和是_64_ _.答案:645.不定方程 x1x2x3 2 的非负整数解的个数为 _ 6 ___.6 .由初始条件 f (0)1, f (1) 1 及递推关系 f ( n2) f (n1) f ( n) 确定的数列{ f (n)} ( n0) 叫做Fibonacci数列107.( 3x-2y )20的展开式中 x10y10的系数是c20310( 2)10.8.求 6 的 4 拆分数P4(6)2.9.已知在Fibonacci数列中,已知 f (3)3,f (4)5, f (5) 8 ,试求Fibonacci 数f (20)1094610 .计算P4(12)4P4 (12)P k (12)P1 (8)P2 (8)P3 (8)P4 (8)k134P1 (8) P2 (8)P k (5)P k (4)14 5 515k1k 111.P4(9)( D) A. 5 B. 8 C. 10 D. 612.选择题1.集合 A{ a1 , a 2 ,L , a10 } 的非空真子集的个数为(A) C. 10242.把某英语兴趣班分为两个小组,甲组有 2 名男同学, 5 名女同学;乙组有 3 名男同学, 6名女同学,从甲乙两组均选出 3 名同学来比赛,则选出的 6 人中恰有 1 名男同学的方式数是( D )A. 800 B. 780 C. 900 D.8503.设( x , y) 满足条件x y10 ,则有序正整数对( x, y) 的个数为(D)A. 100 C. 504.求( x03x12x2x3 )6中 x02 x13 x2项的系数是(C)B. 605.多项式(2 x0x14x2x3 )4中项 x02x12x2的系数是(C)A. 78 B. 104 C. 96 D. 486.有 4 个相同的红球, 5 个相同的白球,那么这9 个球有( B)种不同的排列方式A. 63B. 126C. 2527.递推关系 f (n ) 4 f ( n1) 4 f (n 2) 的特种方程有重根2,则( B )是它的一般解A.c12n 1c2 2n B.(c1c2n)2 n C.c(1n)2 n D.c1 2n c2 2n8.用数字 1,2,3,4(数字可重复使用)可组成多少个含奇数个1、偶数个 2 且至少含有一个 3 的n (n1) 位数()运用指数生产定理A. 4n 3n ( 1)nB.4n3n14n2n 1 .4n3n( 1)n44339.不定方程 x 1x 2 L x n r rn 正整数的解的个数为多少?(A / C )不确定A.r1B. rC.n r1D.n r 1 r nr nrrn10. x 1 x 2x 3 14 的非负整数解个数为(A)D. 5011.从 1 至 1000 的整数中,有多少个整数能被5 整除但不能被6 整除?( A )12.期末考试有六科要复习,若每天至少复习完一科(复习完的科目不再复习) , 5 天里把全部科目复习完,则有多少种不同的安排?( D )A. 9B. 16 13.某年级的课外学科小组分为数学、语文二个小组,参加数学小组的有23 人,参加语文 小组的有 27 人;同时参加数学、语文两个小组的有7 人。
这个年级参加课外学科小组人数 ( C )。
A . 50 B .57 C . 43 D . 11 14.将 11 封信放入 8 个信箱中,则必有一个信箱中至少有( B )封信。
A 、 1 B 、 2 C 、 3 D 、 415.组合式120 与下列哪个式子相等?( B )50120119 119C 、12 120 119A 、B 、 +5 49 D、6050494916.在 {1 ,2, 3, 4,5,6} 全排列中,使得只有偶数在原来位置的排列方式数为(A )。
A 、 2B 、 4C 、 9D 、 24 17.若存在一递推关系a 04,a 1 9则 a n( A ).a n 5a n 1 6a n2 (n2)A. 3 2n3n B.2 3n2nC. 3 2n 1D.3 2n 1 3n 118.递推关系 a n4a n 1 3a n 2 2n (n2) 的特解形式是( B)( a 为待定系数)A. an2nB. a2nC. an 3 2nD. an 2 2n19.错位排列数 D n ( C)答案: CA. nD n( 1)n 1 B.(n 1) D n( 1)n C. nD n 1 ( 1)nD.( n 1) D n( 1)n 120.有 100 只小鸟飞进 6 个笼子,则必有一个笼子至少有( C )只小鸟 A. 15 B. 16 C. 17 D. 18 21. 10 个节目中有 6 个演唱, 4 个舞蹈,今编写节目单,要求任意两个舞蹈之间至少有 1个演唱,问可编写出多少种不同的演出节目单? A 66C 74 A 44; P(6,6) ? P(7,4)22.数列 { n} n 0 的生成函数是( D)。
1 tB 、1C、1 t tD、tA 、2232 1 t1 t1 t1 t23. 6 个男孩和 4 个女孩站成一圈,如果没有两个女孩相邻,有(C )种排法。
A 、 P(6, 4)B、 6! P(6,4)C、6!P(6, 4)D、 6! P(7, 4)624.排 A ,B , C , D , E , F 六个字母,使 A , B 之间恰有 2 个字母的方式数( D )。
A 、 12B 、 72C 、 36 D、 14425.求多重集 S {3 a,2 b,4 c} 的 8- 排列数是( C)A. 700B. 140C. 1260D. 120026.一糕点店生产 8 种糕点,如果一盒内装有 12 块各种糕点,并且可以认为每种糕点无限 多,那么你能买到多少种不同的盒装糕点(假设装盒与顺序无关)?( B ) A. 50000 B. 50388 C. 55000 D. 5278827.在一次聚会上有 15 位男士和 20 位女士,则形成 15 对男女一共有多少种方式数(A . 20!B. 20!C.1520 D.20155!15!28.a nn 的生成函数是(D) A .1B.x 2 C.1 D.x (1 x )2 (1 x )2(1 x)2(1 x )2计算题1.试确定多重集 S={1 a 1 , a 2 ,a 3 ,L ,a k } 的 r组合数。
解:把 S 的 r —组合分成两类:①包含 a 的 r组合:这种组合数等于{a 2 ,a 3 ,, a k }的( r -1)1即 N 1 C ((k 1) ( r 1) 1, r 1) C (k r3, r 1)②不包含 a 1 的 r组合:这种组合数等于 {a 2 ,a 3,, a k }的 r 组合数即N 2C ((k 1) r 1, r ) C ( k r 2, r )由加法法则,所求的 r 组合数为 N N 1 N 2 C ( k r 3, r1) C (kr 2, r )2.求 S {5 a,3 b} 的 6- 排列数解: 根据题意有: M 1 {5 a, b}, M 2{4 a, 2b}, M 3 {3 a, 3b}N 16!6, N 26! 15, N 36! 20 则的全排列数 NN 1 N 2N 35!1!4!2!3!3!3.求 (1 2 x 3 x 2 4 x 3 )6 展开式中 x 5 的系数4.求 (12xx 2 ) n 的展开式中 x5的系数 , 其中 n 3 。
2n( n3 )5解: (12xx 2 ) n = ((1 x) 2)n(1 x) 2n。
又因为 (1x)2 n2n2nx kk 0k所以 x 5的系数为2n( n 3 )55. (1) 求 a n n 5 的生成成函数。
( n0 )解:设 A(t )n 0 a n t n ,则 A(t )(n 5)t n( n 1)t n 4t nnn 0n 0(1 t)24(1 t ) 1 1 4 4t 5 4t(1 t )2 (1 t) 2 (2) 解递归关系: H ( n) 4H ( n1) 4H (n2) , H (0) 1, H (1) 3 。
答案:解特征方程212得 H(n)=2 n {1+n/2}x -4x-4=0 x=x =2.6.求重集 S {20 ga,14gb,20 gc} 的 10- 组合数。
答案: C(10+3-1 , 10)7. ( a b c d )100的展开式在合并同类项后一共有多少项?答案: C(100+4-1 , 100).A )418.解递推关系 a n5a n 1 6a n2n2, a 027 , a 1 49. ( n 2 )44解:递推关系 a n5a n 16a n 2 n 2( 1)的特征方程为 x 25x6 0 ,特征根为 x 1 2, x 23.故其通解为a n c 1 2n c 2 3n . 因为( 1)式无等于 1 的特征根,所以递推关系a n5a n 1 6a n 2 n 2 n 2( 2)有特征根 a n AnB ,其中 A 和 B 是待定常数,代入( 2)式得2A 12B 7A 2AnB5[ A(n 1) B]6[ A( n 2) B] n 2化简得 2 An 2B7 An 2, 所以解之得 A111. 于是 a nc 1 2 n c 2 3 n1 1 其中 c ,c 是待定常数。
, B4 n,12 224由初始条件得 c 1 c 21127442c 1 3c 21 11 49244解之得 c 13,c 2 1.所以 a n3 2n 3n1 n 11 ( n 2).9. 解递推关系2 4n2a n 5a n 16a n22n,a 05, a 1 10. ()3解:递推关系 a n 5a n 1 6a n 2n 2( 1)的特征方程为 x 25 x 60 ,特征根为 x 12, x 2 3.故其通解为a nc 12n c 2 3n .因为( 1)式无等于 1 的特征根,所以递推关系a n 5a n 1 6a n 22n 3 n 2( 2)有特征根 a nAn B ,其中 A 和 B 是待定常数,代入(2)式得AnB 5[ A( n 1) B ] 6[ A(n 2)B ] 2n 3化 简 得 2 An 2B 7 A 2n3, 所2A 2 以解 之 得A 1, B2.于 是2B 7A3nn其a n12 c 23 n 2,c中 c 1 ,c 2 是待定常数。