热力学第二定律ppt

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

(完整版)热力学第二定律.ppt

(完整版)热力学第二定律.ppt

热力学第二定律的微观实质
从微观上看,任何热力学过程都伴随着大量分子的无序运 动的变化。热力学第二定律就是说明大量分子运动的无序程度 变化的规律。 •功转换为热:大量分子的有序运动向无序运动转化, 是可 能的;而相反的过程,是不可能的。
•热传导:大量分子运动的无序性由于热传导而增大了。 •自由膨胀:大量分子向体积大的空间扩散,无序性增大。
不可能从单一热源吸收热量,使它
Q
完全转变为功而不引起其它变化。
热源
A. 从单一热源吸收热量,使它完全转变为功,一定要引起 其它变化。
特例:等温过程从单一热源吸收热量,并完全用来做功, 必导致系统体积变化。
B. 第二类永动机不可能制成。
η 100% 2.克劳修斯表述
热量不能自动地从低温物体传向高温物体。
讨论: A.没有外界做功,不可能从低温热源将
热量传输到高温热源。 B.第二类永动机不可能制成。
高温热源 Q1 A
Q2 低温热源
热力学第二定律是研究热机效率和制冷系数时提 出的。对热机,不可能吸收的热量全部用来对外 作功;对制冷机,若无外界作功,热量不可能从 低温物体传到高温物体。热力学第二定律的两种 表述形式,解决了物理过程进行的方向问题。
S 0
(孤立系, 自然过程)ห้องสมุดไป่ตู้
§8-6 热力学过程的不可逆性
广义定义:假设所考虑的系统由一个状态出发
经过某一过程达到另一状态,如果存在另一个 过程,它能使系统和外界完全复原(即系统回 到原来状态,同时原过程对外界引起的一切影 响)则原来的过程称为可逆过程;反之,如果 用任何曲折复杂的方法都不能使系统和外界完 全复员,则称为不可逆过程。
各种宏观态不是等几率的。那种宏观态包含的微观态 数多,这种宏观态出现的可能性就大。

热力学第二定律-PPT课件

热力学第二定律-PPT课件

答案 C
18
典例精析 二、热力学第一定律和热力学第二定律
返回
【例3】 关于热力学第一定律和热力学第二定律,下列论述正 确的是( ) A.热力学第一定律指出内能可以与其他形式的能相互转化,
而热力学第二定律则指出内能不可能完全转化为其他形式 的能,故这两条定律是相互矛盾的 B.内能可以全部转化为其他形式的能,只是会产生其他影响, 故两条定律并不矛盾
答案 B
15
典例精析 一、热力学第二定律的基本考查 返回
【例2】 如图1中汽缸内盛有一定质量的理想气体,汽缸壁是 导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的, 但不漏气,现将活塞杆缓慢向右移动,这样气体将等温膨胀并 通过活塞对外做功.若已知理想气体的内能只与温度有关,则 下列说法正确的是( )
的是( D )
A.随着低温技术的发展,我们可以使温度逐渐降低,并最终达 到绝对零度
B.热量是不可能从低温物体传递给高温物体的 C.第二类永动机遵从能量守恒定律,故能制成 D.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,同时空
气向外界放出热量1.5×105 J,则空气的内能增加了0.5×105 J
解析 由于汽缸壁是导热的,外界温度不变,活塞杆与外界连 接并使其缓慢地向右移动过程中,有足够时间进行热交换,所 以汽缸内的气体温度也不变,要保持其内能不变,该过程气体 是从单一热源即外部环境吸收热量,即全部用来对外做功才能 保证内能不变,但此过程不违反热力学第二定律.此过程由外 力对活塞做功来维持,如果没有外力对活塞做功,此过程不可 能发生.
程都具有
,都是不可逆的.
方向性
7
一、热力学第二定律 返回 延伸思考
热传导的方向性能否简单理解为“热量不会从低温物体传给高温物 体”? 答案 不能.

热力学第二定律课件

热力学第二定律课件

●【点拨】 虽然第二类永动机不违反能量守恒定律 ,大量 的事实证明,在任何情况下热机都不可能只有一个热源, 热机要不断地把吸取的热量变为有用的功,就不可避免地 将一部分热量传给低温热源.
若热机从高温热源吸收热量Q1,其中一部分转化为对外所
做的机械功W,另一部分热量Q2随废气排放到冷凝器中.根据
能量转化和守恒定律,应有Q1=W+Q2,热机效率η=
●解析: 热力学第一定律是热现象中内能与其他形式能的 转化规律,是能的转化和守恒定律的具体表现,适用于所 有的热学过程,故C正确,D错误;再根据热力学第二定律, 热量不能自发地从低温物体传到高温物体,必须借助于其 他系统做功.A错误,B正确,故选B、C.
●答案: BC
●2.热力学第二定律的一种表述 ●热量不能 自发 地从低温物体传到高温物体.这是热力学
第二定律的克劳修斯表述,阐述的是 传热 的方向性.
●二、热力学第二定律的另一种表述
●1.热机
●(1)热机工作的两个阶段
●第一个阶段是 燃烧燃料 ,把燃料中的 化学能 变成工作物质的
内能.
●第 二个 阶段是 工作 物质对 外
中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液
化,放出热量到箱体外,下列说法正确的是( )
●A.热量可以自发地从冰箱内传到冰箱外 ●B . 电 冰 箱 的 制 冷 系 统 能 够 不 断 地 把 冰 箱 内 的 热 量 传 到 外 界 ,
是因为其消耗了电能 ●C.电冰箱的工作原理不违反热力学第一定律 ●D.电冰箱的工作原理违反热力学第一定律
地球上海水的总质量达1.4×1021 kg.如果把这些海水的温度 降低1 ℃,放出的热量就达9×1018 kW·h,足够全世界使用4 000年.这个设想不违背能量守恒定律,但是不能实现,所 以叫做第二类永动机.前面学到的,违背能量守恒定律的永 动机,叫做第一类永动机.

热力学第二定律演示图PPT36页

热力学第二定律演示图PPT36页
热力学第二定律演示图
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往Байду номын сангаас上登。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

第六章-热力学第二定律PPT课件

第六章-热力学第二定律PPT课件

力学中称为方向性问题。
.
2
3,第二类永动机是不可能实现的
4,热力学第二定律与第一定律 相互独立互相补充
二,热力学第二定律的克劳修斯表述
克劳修斯(Rudolf Clausius,1822-1888),德国物理学家,对热力
学理论有杰出的贡献,曾提出热力学第二定律的克劳修斯表述和熵
的概念,并得出孤立系统的熵增加原理。他还是气体动理论和热力
.
4
3,更简单的克劳修斯表述:热量不可能自发地从低温热源传向高温热源。
通过以上内容,我们来判断以下说法正确与否:
① 功可变成热,热不能变成功。(若 对,举一例说明)
② 功可完全变成热,热不能完全变成功。(若不对,举一反例)
③ 功不能完全变成热,热能完全变成功。
④ 功可完全变成热,但要在外界作用下,热能完全变成功。
2,两种表述将的都是热和功的问题,功不仅限于机械功的广义 功,每一种功热转换过程也可以作为热力学第二定律的表述。
热力学第二定律不是若干典型热学事例的堆积仓库,物理定律也 不能停留在具体的表面描述,真正的热力学定律应当是对物理本 质的描述,不同的表述应当有共同的物理本质,热力学第二定律 应该有更好的叙述。
第六章,热力学第二定律
问题的引入:
1,焦耳理论与卡诺热机理论的矛盾:同属能量转换, 有用功变热可以全部实现,为什么反过来就不能全部 实现,能量转换与守恒定律可没有这样的限制。
2,热机效率始终小于1并不全是技术原因
3,大量与热有关的自然过程仅靠热力学第一定律是不 足以解释的:1)热传递是不可逆的;2)电影散场后, 观众自发离开影院走向各方,却不能自发地重新聚集在 原来的电影院; 3)空气自由膨胀不能自发收缩等。
小结:上述三个不可逆过程,在推理过程中,很容易找到使系统 复原的方法,但这种情况并不多见,并且花费很多精力时间去寻 找系统复原的方法,很不经济。所以,我们必须借助其他方法。

第二章 热力学第二定律 物理化学课件

第二章  热力学第二定律  物理化学课件

设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B Qr AT
对微小变化
dS Qr
T
上式习惯上称为熵的定义式,即熵的变化值可 用可逆过程的热温商值来衡量。
2 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必 然比卡诺循环效率低,即
Q1 Q2 Q1
T1
T 2
T1

1+
T K
2
dT T
J K-1
24.3J K-1
• 此过程热温商为
Q
T
2
373 K 273 K
32.22
22.18 103
T K
373
3.49
106
• 故开动此致冷机所需之功率为
1780
1 60
W
50%=59.3
W
§2.4 熵的概念
• 1 可逆过程的热温商及熵函数的引出
• 在卡诺循环中,两个热源的热温商之和 等于零,即
Q1 Q2 QB 0
T1 T2
TB
• 那么,任意可逆循环过程的多个热源的 热温商之和是否仍然等于零?
§2.4 熵的概念
S Qr Qr TT
• 对理想气体定温可逆过程来说 Qr=-Wr
nRT ln V2
S
V1 nR ln V2 nR ln p1
T
V1
p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变;
• (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。
Q1

第二章:热力学第二定律(物理化学)

第二章:热力学第二定律(物理化学)
如果是一个隔离系统,环境与系统间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个隔离系统的熵永不减少。
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”

第六章 热力学第二定律.ppt

第六章 热力学第二定律.ppt
热一律一切热力学过程都应满足能量守恒。 但满足能量守恒的过程是否一定都能进行?
热二律满足能量守恒的过程不一定都能进行! 过程的进行还有个方向性的问题。
§1.热力学第二定律
热力学第二定律的表述
热力学第二定律以否定的语言说出一条确定的规律.
1.开尔文(Kelvin)表述: 不可能从单一热源吸取热量,使之完全变为有
N
A


1 261023

0



1 2
N
A


1 261023

0
这种宏观状态虽原则上可出现,
但实际上不可能出现.
例.用铅字随机排版出一百万字小说的概率


1

106
106



1 106106


1 23.326106

1 22107
0
自然过程的方向性的定量描述:
T称为热力学温标 或开尔文温标
( ) 为普适函数,所以热力学温标与测温物质的性质无关。
用热力学温标所表示的温度写为xK,这里x为温度数值。
水的三相点的热力学温度规定为273.16 K 。
热力学温度的单位——开尔文(K)就是水三相点的热力
学温度的 1 。 273.16
热力学温标和理想气体温标中水的三相点温度值都定为 273.16K,可见在理想气体温标能确定的范围内,热力学 温标与理想气体温标的测得值相等。
A A
Q1 Q2 A
A A
Q1 Q2 A
若甲做正循环,乙做逆循环,则η不大于η´ 若甲做逆循环,乙做正循环,则η ´不大于η

即:所有工作于相同高温热源和相同的低温热源之间的一切可 逆热机,其效率都相等。

热力学第二定律-耗散结构_图文

热力学第二定律-耗散结构_图文

生物 生命
生物是远离平衡态的开放系统 生命过程是一种耗散结构 物种的产生 偶然性 物种的保护
麦克斯韦分布
麦克斯韦分布
其中 di S > 0:熵产生,由系统内部的不可逆过 程引起。 de S : 熵流,可正可负。由系统与外部的能量和物
质交换引起。
自组织现象的解释
开放系统从外界接收负熵流 de S<0 且 |de S|>di S 系统的熵 d S = di S + de S<0 使系统由无序变到有序
负熵流
贝纳特实验中,流体系统是一个开放系统,随着热 量的流进流出,系统的熵在变化。若流进流出的热 量相等,为dQ 。
热力学第二定律-耗散结构_图文.ppt
第四章 热力学第二定律
*耗散结构介绍
耗散结构理论: 普利高津(I.Prigoging, 比利时)
1967年创立, 1977年获诺贝尔化学奖。
• 自组织现象 • 开放系统的熵变 • 远离平衡态的分叉现象
• 通过涨落达到有序
有序与无序
热力学第二定律说明了孤立系统中 的自然过程有方向性:
流进的熵
流出的熵
因为
所以
即流出的熵大于流进的熵 。
若净流出的熵超过了系统内部的“熵产生”,系统 的熵就减少,系统就从无序有序。
远离平衡态的分叉现象
1.平衡态热力学(经典热力学)
主要研究平衡态的性质.例如,贝纳特实验中 T=0 的情形。
2. 线性非平衡态热力学(近平衡态热力学)
外界的影响较小,外界的作用与系统状态的变化可 以看成简单的线性关系.
激光
激光器出激光,要输入足够的功率(开放系统) 才能造成粒子数反转的状态(远离平衡态)。
当有能量

物理化学-热力学第二定律PPT课件

物理化学-热力学第二定律PPT课件

(2) 当T2-T1=0, (3) 当T1=0K,
=0 =100%
表述
第四节 卡诺定理
1. 所有工作在相同的高温热源与低温热源 之间的任意热机以卡诺热机的效率最大。
2.卡诺热机的效率只与两热源的温度有关, 而与工作物质无关
证明:
卡诺定理的数学表达式 R≧ I
T2–T1 ≧ T2
Q2+Q1 Q2
Q1 + T1
低电位
逆过程称为非自发过程
(2)不可逆性 理想气体真空膨胀 Q=0 W=0 U=0 再等温可逆压缩回去 U=0 Q=W 系统恢复,环境失W,而得Q
环境恢复,Q能否全部转变W
自发过程能否成为可逆过程,可归结为: 在不引起其它任何变化条件下,热能
否全部变为功。 焦尔的热功当量测定实验
一切自发过程都是不可逆过程
二、热力学第二定律数学表达式 ——克劳修斯不等式
U=0
W=Q1+Q2
W=W1+W2+W3+W4
=
nRT2ln(V2/V1)
-∫
T1 T2
CV
dT
+
nRT1ln(V4/V3)
-∫
T2 T1
CV
dT
W= nRT2ln(V2/V1) + nRT1ln(V4/V3) (2) 绝热膨胀
T2V2 -1 = T1V3 -1 (3) 绝热压缩
T2V1 -1 = T1V4 -1
式中, K1, K2, K 3 均为常数, Cp /CV
绝热功的求算
理想气体绝热可逆过程的功
W V2 pdV V1
=
K V2 V V1
dV
=
K
(1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W Q1 Q2 η Q1 Q1
低温热源
1824 年,法国工程师
N.L.S.Carnot (1796~1832)
设计了一个循环,以理想气
体为工作物质,从高温热源 吸收的热量,一部分通过理 想热机用来对外做功,另一 部分的热量放给低温热源。
卡诺
这种循环称为卡诺循环。
⑴恒温可逆膨胀
Q1 W1 pdV nRT1 ln V2 / V1
ΔT = 0 Δh = 0 Δ =0 …
空调 水泵 化学泵 …
不可逆 不可逆 不可逆 …
功变热 功变热 功变热 …
自发过程的共同特征
(1)过程总是单方向趋于平衡。 (2)过程具有不可逆性。以上过程都可以回到初态,但需 要外界做功。 (3)过程具有对环境做功的能力,如配有合适的装臵,则可能从 自发过程中获得可用的功。 自发性、非自发性与可逆性、不可逆性的关系: 过程是否自发,取决于体系的始、终态;过程是否可逆取决 于对过程的具体安排。 不论自发还是非自发过程,一切实际过程都是不可逆的。若 施以适当的控制,在理论上都能成为可逆过程。
VB nRT1ln V A
由于VA和VD, VB和VC处于同一绝热线上,则
1 1 T1V A T2VD 1 1 T1VB T2VC
VC VB VA VD
, Q=Q1+Q2 = - W
∴W = - nR(T1-T2)ln V
B
VA
热机效率:热机对环境所做的功-W与其从高温热源 吸收的热Q1之比,其符号为η: W Q1 Q2 η
(2)热力学第二定律的各种表述在本质上是等价的, 由一种表述的正确性可推出另外一种表述的正确性。
[判断正误] 体系发生自发过程后不能回复到初态!
自发过程是不可逆的,非自发过程是可逆的。
§3.2 卡诺循环
通过工质从高温热源吸热、向
低温热源放热并对环境作功的
高温热源
循环操作的机器称为热机。
热机对环境所做的功与其从高 温热源吸收的热之比称为热机 效率,其符号为η:
引言
热力学第一定律即能量转化与守恒原理 违背热力学第一定律的变化与过程一定不能发生 不违背热力学第一定律过程却未必能自动发生: 例:两物体的传热问题
温度不同的两个物体相接触,最后达到平衡态,两物体具动回到温度不同的状态,尽管该逆过程不违
'' ''
卡 诺 循环 第 四 步
卡诺循环
以理想气体为工作物质,依次经历恒温可逆膨胀、绝热 可逆膨胀、恒温可逆压缩、绝热可逆压缩最后回到原状 态。
卡诺循环第四步
整个循环过程中,系统对外做了功,吸收了外界的热量,
ΔU = 0, Q = - W, W = W 1 +W ′ +W 2 +W 〞
VD =+ nCV,m(T2-T1) – nRT2ln V + nCV,m(T1-T2) C VD VB = - nRT1ln - nRT2ln V , VA C

热力学第二定律是实践经验的总结,反过来,它指
导生产实践活动

热力学第二定律关于某过程不能发生的断言是十分
肯定的。而关于某过程可能发生的断言则仅指有发生 的可能性,它不涉及速率问题。
§3.1 自发过程及热力学第二定律
100 oC 0 oC 水从高处 N2 O2
.........
50 oC
低处
N2 + O2
背热力学第一定律。
——利用热力学第一定律并不能判断一定条件下什么过程不 可能进行,什么过程可能进行,进行的最大限度是什么。 要解决此类过程方向与限度的判断问题,就需要用到自然 界的另一普遍规律——热力学第二定律。 热力学第二定律是随着蒸汽机的发明、应用及热机效率等 理论研究逐步发展、完善并建立起来的。卡诺(Carnot)、 克劳修斯(Clausius)、开尔文(Kelvin)等人在热力学第二定 律的建立过程中做出了重要贡献。
2.热力学第二定律
克劳修斯:热从低温物体传
给高温物体而不产生其它变
化是不可能的。
开尔文:从一个热源吸热,使
之完全转化为功,而不产生其 它变化是不可能的。
后来被奥斯特瓦德(Ostward)表述为:“第二类永 动机是不可能造成的”。
从单一热源吸热使之完
第二类 永动机
全变为功而不留下任何
影响。
克劳修斯:热从低温物体传给高温物体而不产生其它变 化是不可能的。即热传导的不可逆性。致冷机消耗电能 开尔文:从一个热源吸热,使之完全转化为功,而不产生其
Q1
卡诺循环的热机效率为:
W Q1 Q2 r Q1 Q1 - nR(T1 - T2 )ln VB nRT 1ln VA VB VA T1 T2 T1
Q1 卡诺循环的热 机效率只取决 于高、低温热 源的温度。
2.卡诺定理 卡诺定理:在高低温两个热源间工作的所有热机中,以可逆 热机的热机效率为最大。(反证法)
W Q1 Q2 Q2 ir 1 Q1 Q1 Q1
它变化是不可能的。即热功转变的不可逆性。
高级能可以无条件地 转变为低级能;低级 能全部转变为高级能 热:能量传递的低 级形式:无序能 是有条件的——给环 境留下影响。 功是能量传递的高 级形式:有序能
第二类永动机是不可能造成的
对热力学第二定律的说明:
(1)热力学第二定律是实验现象的总结。它不能被任 何方式加以证明,其正确性只能由实验事实来检验。
V1
V2
ΔU= 0
卡 诺循 环 第 一步
(2)绝热可逆膨胀
Q' =0 W "=U =nCV ,m (T2 -T1 )
卡诺循环第二步
(3)恒温可逆压缩
Q2 W2 pdV nRT2 ln V4 / V3
V4 V3
卡 诺循 环 第 三步
(4)绝热可逆压缩
Q =0 W =U = nCV ,m (T1 -T2 )
化学反应
Zn + CuSO4 → Cu + ZnSO4 HCl + NaOH → NaCl +
H 2O ............
1.自发过程
自发过程:在自然条件下能够发生的过程。自然条件就 是外界不能施加影响。
实例
决定方向 因素
限度
还原方 法
过程性 质
系统复原环境 痕迹
热传导 水流 化学流 …
温度 水位 化学位 …
相关文档
最新文档