多级反馈队列调度算法的实现

合集下载

多级反馈队列_实验_操作系统

多级反馈队列_实验_操作系统

实验名称:多级反馈队列调度09091201丁奎荣一、实验目的:1、综合应用下列知识点设计并实现操作系统的进程调度,进程状态转换,多组级反馈队列进程调度算法。

2、加深理解操作系统进程调度的过程。

3、加深理解多级反馈队列进程调度算法。

二、实验内容:1、采用一种熟悉的语言,编制程序,最好采用C/C++,界面设计可采用其它自己喜欢的语言。

2、采用多级反馈队列进程调度算法进行进程调度。

3、每个进程对应一个PCB。

在PCB中包括进程标识符pid、进程的状态标志status、进程优先级priority、进程的队列指针next和表示进程生命周期的数据项life(在实际系统中不包括该项)。

4、创建进程时即创建一个PCB,各个进程的pid都是唯一的,pid时在1到100范围的一个整数。

可以创建一个下标为1到100的布尔数组,“真”表示下标对应的进程号是空闲的,“假”表示下标对应的进程号已分配给某个进程。

5、进程状态status的取值为“就绪ready”或“运行run”,刚创建时,状态为“ready”。

被进程调度程序选中后变为“run”。

6、进程优先级priority是0到49范围内的一个随机整数。

7、生命周期life是1到5范围内的一个随机整数。

8、初始化时,创建一个邻接表,包含50各就绪队列,各就绪队列的进程优先级priority分别是0到49。

9、为了模拟用户动态提交任务的过程,要求动态创建进程。

进入进程调度循环后,每次按ctrl+f即动态创建一个过程,然后将该PCB插入就绪队列中。

按ctrl+q 退出进程调度循环。

10、在进程调度循环中,每次选择优先级最大的就绪进程来执行。

将其状态从就绪变为运行,通过延时一段时间来模拟该进程执行一个时间片的过程,然后优先级减半,生命周期减一。

设计图形用户界面GUI,在窗口中显示该进程和其他所有进程的PCB内容。

如果将该运行进程的生命周期不为0,则重新把它变为就绪状态,插入就绪对列中;否则该进程执行完成,撤销其PCB。

多级反馈队列调度算法的原理 -回复

多级反馈队列调度算法的原理 -回复

多级反馈队列调度算法的原理-回复什么是多级反馈队列调度算法?多级反馈队列调度算法是一种进程调度算法,根据进程的优先级和执行时间,将进程分配到不同的处理队列中,并进行轮转执行。

该算法采用了多个队列和反馈机制,使得进程能够相对公平地竞争CPU资源,并且具有较高的响应速度和吞吐量。

多级反馈队列调度算法的原理是什么?多级反馈队列调度算法的原理主要包括以下几个方面:1. 多个队列:多级反馈队列调度算法采用多个队列来存放进程。

一般来说,队列的数量不固定,可以根据实际情况进行调整。

每个队列都有一个不同的优先级,每个优先级代表了不同的执行时间片长度。

2. 进程分配:当一个进程被提交到系统中时,多级反馈队列调度算法会首先将它分配到最高优先级的队列中。

如果该进程在一个时间片内无法完成,那么它就会被移到下一级队列中,并且等待下一次执行。

同样的,进程在下一级队列中也无法完成时,就会被移到更低优先级的队列中。

这个过程会一直持续到该进程执行完成或被终止。

3. 时间片分配:每个队列中的进程都按照其优先级分配时间片。

优先级较高的队列拥有短的时间片,优先级较低的队列拥有长的时间片。

这个机制可以保证高优先级的进程更快地获得CPU资源,从而提高系统的响应速度。

4. 反馈机制:多级反馈队列调度算法还采用了反馈机制,即当进程在一个队列中等待了一定时间之后,它会被移到一个更高优先级的队列中。

这个机制可以有效地解决进程长时间处于低优先级队列中的问题,从而提高处理效率和响应速度。

多级反馈队列调度算法的实现步骤是什么?多级反馈队列调度算法的实现步骤包括以下几个方面:1. 初始化:初始化多个队列,每个队列都有一个不同的优先级,同时初始化时间片大小和进程调度参数。

2. 进程分配:当一个进程被提交到系统中时,将其分配到最高优先级的队列中。

3. 时间片分配:按照优先级分配时间片,优先级较高的队列拥有较短的时间片,优先级较低的队列拥有较长的时间片。

4. 进程执行:从最高优先级的队列中取出一个进程执行,在一个时间片内完成或被抢占后,将进程移到下一级队列中等待执行。

操作系统中的CPU调度算法实现与优化

操作系统中的CPU调度算法实现与优化

操作系统中的CPU调度算法实现与优化随着计算机技术的不断发展,操作系统作为计算机的重要组成部分已经成为了现代计算机的核心,操作系统的性能对整个计算机的运行和效率有着至关重要的影响。

其中,CPU调度算法是操作系统中的核心内容之一,其对操作系统的性能有着直接的影响作用。

什么是CPU调度算法?CPU调度是操作系统中的一项关键任务,主要负责分配CPU 时间片给各个进程,以实现多进程并发执行。

而CPU调度算法则是CPU调度的关键之一,其主要作用是决定进程在什么情况下能够获取CPU使用权,进程的优先级、时间片大小等等影响着操作系统的性能。

常见的CPU调度算法:1. 先来先服务调度算法(FCFS)先来先服务调度算法,即按照作业到达的先后顺序分配CPU 时间片,每个进程在进入就绪队列后,按照行到达时间先后依次排队等待调度,先到达的进程先分配CPU时间片,然后完成执行后才分配给后续的进程。

这种算法不需要任何额外的参数,其实现简单,但是当进程短任务和长任务交织时,会导致短任务长时间等待,并且也不能满足响应时间的需求。

2. 短作业优先调度算法(SJF)短作业优先调度算法,即根据进程的需要任务量分配CPU时间片,等待时间短的任务优先获取CPU使用权,使得短任务能够更快的得到执行,提高系统的响应速度。

但是,该定调度算法仅适用于批处理系统,当进程数量庞大时,无法快速准确地预估进程的任务量,如果预估不准,就会出现长任务等待短任务的情况。

3. 优先级调度算法优先级调度算法是基于进程的优先级确定分配CPU时间片的方法,一般根据进程的特性,为不同进程设置不同的优先级,每次调度时以优先级高的进程优先获取CPU使用权,直到时间片用完或者进程执行结束。

优先级调度算法有着良好的响应性,但不利于低优先级进程,经常会出现饥饿的情况。

4. 时间片轮转调度算法时间片轮转调度算法指将CPU时间片分成一定长度的时间段,按照进程到达的先后依次分配时间片,等待不同进程请求时间的到达,一旦时间到达,则进行轮换,并将未利用完的时间片赋予下一个进程。

调度的调度算法实验报告

调度的调度算法实验报告

调度的调度算法实验报告调度的调度算法实验报告引言:调度是计算机科学中一个重要的概念,它涉及到任务分配、资源管理和优化等方面。

调度算法则是实现调度的关键,它决定了任务的执行顺序和资源的分配方式。

在本次实验中,我们将探讨几种常见的调度算法,并通过实验对其性能进行评估和比较。

一、先来先服务算法(FCFS)先来先服务算法是最简单的调度算法之一,它按照任务到达的先后顺序进行处理。

实验中,我们模拟了一个任务队列,每个任务有不同的执行时间。

通过实验结果可以看出,FCFS算法的优点是简单易懂,但当任务的执行时间差异较大时,会导致平均等待时间较长。

二、最短作业优先算法(SJF)最短作业优先算法是一种非抢占式调度算法,它根据任务的执行时间来进行排序。

实验中,我们将任务按照执行时间从短到长进行排序,并进行调度。

实验结果显示,SJF算法的优点是能够最大程度地减少平均等待时间,但当任务的执行时间无法预测时,该算法可能会导致长任务等待时间过长的问题。

三、时间片轮转算法(RR)时间片轮转算法是一种抢占式调度算法,它将任务分为多个时间片,并按照顺序进行调度。

实验中,我们设置了每个时间片的长度,并将任务按照到达顺序进行调度。

实验结果表明,RR算法的优点是能够公平地分配资源,但当任务的执行时间超过一个时间片时,会导致上下文切换频繁,影响系统的性能。

四、最高响应比优先算法(HRRN)最高响应比优先算法是一种动态调度算法,它根据任务的等待时间和执行时间来计算响应比,并选择响应比最高的任务进行调度。

实验中,我们根据任务的到达时间、执行时间和等待时间计算响应比,并进行调度。

实验结果显示,HRRN算法能够在一定程度上平衡长任务和短任务的等待时间,但当任务的执行时间过长时,会导致其他任务的等待时间过长。

五、多级反馈队列算法(MFQ)多级反馈队列算法是一种综合性的调度算法,它将任务分为多个队列,并根据任务的执行情况进行调度。

实验中,我们设置了多个队列,并根据任务的执行时间和等待时间进行调度。

多级反馈队列调度算法的原理

多级反馈队列调度算法的原理

多级反馈队列调度算法的原理1.多级反馈队列调度算法是一种常见的进程调度算法,旨在平衡系统的吞吐量、响应时间和公平性。

它采用多个队列,每个队列有不同的优先级,进程根据其行为在这些队列之间移动。

本文将详细介绍多级反馈队列调度算法的原理和工作方式。

2. 算法概述多级反馈队列调度算法的核心思想是通过不同优先级的队列来对进程进行调度。

每个队列有不同的时间片大小,高优先级队列的时间片较小,低优先级队列的时间片较大。

当一个进程在当前队列中运行完时间片,它将被移动到下一优先级的队列。

如果一个进程在某个队列运行完时间片后还没有执行完,它将继续在当前队列等待,以便有更多的机会执行。

3. 多级队列结构典型的多级反馈队列调度算法包括多个队列,通常包括三个或更多级别。

每个队列的优先级不同,如高、中、低。

时间片大小逐渐增大,高优先级队列的时间片小于中优先级,中优先级小于低优先级。

4. 调度过程4.1 进程到达当一个新进程到达系统时,它被分配到最高优先级队列。

4.2 运行和时间片耗尽进程在当前队列中运行,如果它的时间片耗尽,它将被移动到下一优先级的队列。

如果进程在当前队列没有完成执行,它将在下一次调度时继续运行。

4.3 优先级提升如果一个进程在低优先级队列等待了很长时间,系统可能会将其提升到高优先级队列,以确保长时间等待的进程有机会获得更多的CPU 时间。

5. 优点5.1 响应时间短由于高优先级队列的时间片较小,进程在高优先级队列中能够更快地执行,因此系统的响应时间相对较短。

5.2 吞吐量高对于短时间运行的进程,能够快速地在高优先级队列中完成执行,有助于提高系统的吞吐量。

5.3 公平性低优先级队列的时间片较大,长时间运行的进程有足够的机会在低优先级队列中执行,增加了系统的公平性。

6. 缺点6.1 管理复杂性多级反馈队列调度算法需要维护多个队列,涉及到队列的调度和进程的迁移,因此管理和实现相对复杂。

6.2 死锁可能如果系统中的进程都是长时间运行的,并且高优先级队列的时间片较小,可能导致低优先级队列中的进程长时间等待,进而引发死锁问题。

立即抢占的多级反馈队列调度算法

立即抢占的多级反馈队列调度算法

立即抢占的多级反馈队列调度算法
多级反馈队列调度算法是一种抢占式的调度算法,它将进程划分为多个队列,并为每个队列分配一个时间片大小。

不同队列的时间片大小逐级递减。

具体的多级反馈队列调度算法包括以下步骤:
1. 初始化:为每个队列设置一个时间片大小,通常情况下,较高级别的队列分配较短的时间片。

2. 将所有进程按照优先级或到达时间加入到第一级别队列中。

3. 从当前队列中选取一个进程执行。

4. 如果该进程运行完,结束并从队列中移除。

5. 如果该进程没有运行完,但时间片已经耗尽,则将该进程移到下一个级别的队列中。

6. 重复步骤3-5,直到所有进程执行完毕。

在多级反馈队列调度算法中,较高级别的队列优先级较高,所以当有高优先级的进程到达时,会抢占正在执行的低优先级进程,确保高优先级进程能够尽快得到执行。

同时,低优先级进程也能够得到执行的机会,不至于被一直阻塞。

通过多级反馈队列调度算法,能够实现较短的响应时间和较高的系统吞吐量,能够更好地满足不同进程的执行需求。

多级反馈队列调度算法

多级反馈队列调度算法

多级反馈队列调度算法:(FB算法)(1)设置多个不同优先级的就绪队列,并赋予各个队列大小不同时间片,使得优先级愈高的队列时间片愈小。

(2)新就绪进程总是先进入第一级(即最高优先级)队列的末尾,并按FIFO原则等待调度;当轮到该进程执行时,如它能在规定时间片内完成,便可准备撤离系统,否则将它转入第二级队列末尾,再同样按FIFO原则等待调度;如果它在第二级队列上运行一个时间片后仍未完成,再依次将它转入第三极队列。

如此下去,当一个长作业从第一级队列降到最后一级队列时,便在该队列中采取时间片轮转方式运行。

(3)系统总是调度第一级队列上的进程执行;仅当第一级队列为空时,才调度第二级队列上的进程执行‘类推之,仅当第1~(i-1)为空时,才调度第i级队列上的进程执行。

多级反馈队列算法可有很多变形,如当处理机正在为第I级队列上的进程服务时,又有新进程进入优先级最高的队列,此时,既可采用立即抢占的方式,将正在执行的进程插入第i级队列的末尾,并将处理机分配给新进程;也可以只按时间片进行抢占,等正在执行的进程时间片用完或它不需要CPU时再进行CPU调度。

例题如下:进程到达和需服务时间进程到达时间服务时间A 0 3B 2 6C 4 4D 6 5E 8 2RR算法中,就绪进程按FIFO方式排列,CPU总是分配给队首的进程,并只能执行一个时间片;FB算法将就绪进程排成多个不同优先权及时间片的队列,就绪进程总是按FIFO方式先进入优先权最高的队列,CPU也总是分配给较高优先权队列上的队首进程,若执行一个时间片仍未完成,则转入下一级队列的末尾,最后一级队列采用时间片轮转方式进行调度。

5101520A B ED C A B ED C A B ED C 05101520RR (q=1)FB (q=2i-1)FB (q=2i-1)立即抢占说明:q=2i-1,其中的i表示是在哪个级的队列上,所以,优先级愈高的队列时间片愈小(原理)(1)q=21-1=1执行A,然后放入到第二级队列末尾(2)q=22-1=2A执行结束此时B已经在2秒时到达,放在第一队列的末尾。

多级反馈队列调度算法_C语言

多级反馈队列调度算法_C语言

多级反馈队列调度算法C语言模拟实现多级反馈队列调度算法:1、设置多个就绪队列,并给队列赋予不同的优先级数,第一个最高,依次递减。

2、赋予各个队列中进程执行时间片的大小,优先级越高的队列,时间片越小。

3、当一个新进程进入内存后,首先将其放入一个对列末尾,如果在一个时间片结束时尚未完成,将其转入第二队列末尾。

4、当一个进程从一个对列移至第n个队列后,便在第n个队列中采用时间片轮转执行完。

5、仅当时间片空闲时,才调度第二个队列中的进程。

(1~i-1)空闲时,才调度i,如果处理机正在第i队列中运行,又有新进程进入优先权较高队列,则新进程抢占处理机,将正在运行的进程放入第i队列队尾,将处理机分给新进程。

#include <stdio.h>#include <stdlib.h>#include <string.h>typedef struct node /*进程节点信息*/{char name[20]; /*进程的名字*/int prio; /*进程的优先级*/int round; /*分配CPU的时间片*/int cputime; /*CPU执行时间*/int needtime; /*进程执行所需要的时间*/char state; /*进程的状态,W——就绪态,R——执行态,F——完成态*/int count; /*记录执行的次数*/struct node *next; /*链表指针*/}PCB;typedef struct Queue /*多级就绪队列节点信息*/{PCB *LinkPCB; /*就绪队列中的进程队列指针*/int prio; /*本就绪队列的优先级*/int round; /*本就绪队列所分配的时间片*/struct Queue *next; /*指向下一个就绪队列的链表指针*/}ReadyQueue;PCB *run=NULL,*finish=NULL; /*定义三个队列,就绪队列,执行队列和完成队列*/ReadyQueue *Head = NULL; /*定义第一个就绪队列*/int num; /*进程个数*/int ReadyNum; /*就绪队列个数*/void Output(); /*进程信息输出函数*/void InsertFinish(PCB *in); /*将进程插入到完成队列尾部*/void InsertPrio(ReadyQueue *in); /*创建就绪队列,规定优先数越小,优先级越低*/ void PrioCreate(); /*创建就绪队列输入函数*/void GetFirst(ReadyQueue *queue); /*取得某一个就绪队列中的队头进程*/void InsertLast(PCB *in,ReadyQueue *queue); /*将进程插入到就绪队列尾部*/void ProcessCreate(); /*进程创建函数*/void RoundRun(ReadyQueue *timechip); /*时间片轮转调度算法*/void MultiDispatch(); /*多级调度算法,每次执行一个时间片*/int main(void){PrioCreate(); /*创建就绪队列*/ProcessCreate();/*创建就绪进程队列*/MultiDispatch();/*算法开始*/Output(); /*输出最终的调度序列*/return 0;}void Output() /*进程信息输出函数*/{ReadyQueue *print = Head;PCB *p;printf("进程名\t优先级\t轮数\tcpu时间\t需要时间\t进程状态\t计数器\n");while(print){if(print ->LinkPCB != NULL){p=print ->LinkPCB;while(p){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);p = p->next;}}print = print->next;}p = finish;while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);p = p->next;}p = run;while(p!=NULL){printf("%s\t%d\t%d\t%d\t%d\t\t%c\t\t%d\n",p->name,p->prio,p->round,p->cputime,p->needtime,p->state,p->count);p = p->next;}}void InsertFinish(PCB *in) /*将进程插入到完成队列尾部*/{PCB *fst;fst = finish;if(finish == NULL){in->next = finish;finish = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void InsertPrio(ReadyQueue *in) /*创建就绪队列,规定优先数越小,优先级越低*/{ReadyQueue *fst,*nxt;fst = nxt = Head;if(Head == NULL) /*如果没有队列,则为第一个元素*/{in->next = Head;Head = in;}else /*查到合适的位置进行插入*/{if(in ->prio >= fst ->prio) /*比第一个还要大,则插入到队头*/{in->next = Head;Head = in;}else{while(fst->next != NULL) /*移动指针查找第一个别它小的元素的位置进行插入*/{nxt = fst;fst = fst->next;}if(fst ->next == NULL) /*已经搜索到队尾,则其优先级数最小,将其插入到队尾即可*/{in ->next = fst ->next;fst ->next = in;}else /*插入到队列中*/{nxt = in;in ->next = fst;}}}}void PrioCreate() /*创建就绪队列输入函数*/{ReadyQueue *tmp;int i;printf("输入就绪队列的个数:\n");scanf("%d",&ReadyNum);printf("输入每个就绪队列的CPU时间片:\n");for(i = 0;i < ReadyNum; i++){if((tmp = (ReadyQueue *)malloc(sizeof(ReadyQueue)))==NULL){perror("malloc");exit(1);}scanf("%d",&(tmp->round)); /*输入此就绪队列中给每个进程所分配的CPU时间片*/tmp ->prio = 50 - tmp->round; /*设置其优先级,时间片越高,其优先级越低*/tmp ->LinkPCB = NULL; /*初始化其连接的进程队列为空*/tmp ->next = NULL;InsertPrio(tmp); /*按照优先级从高到低,建立多个就绪队列*/}}void GetFirst(ReadyQueue *queue) /*取得某一个就绪队列中的队头进程*/{run = queue ->LinkPCB;if(queue ->LinkPCB != NULL){run ->state = 'R';queue ->LinkPCB = queue ->LinkPCB ->next;run ->next = NULL;}}void InsertLast(PCB *in,ReadyQueue *queue) /*将进程插入到就绪队列尾部*/{PCB *fst;fst = queue->LinkPCB;if( queue->LinkPCB == NULL){in->next = queue->LinkPCB;queue->LinkPCB = in;}else{while(fst->next != NULL){fst = fst->next;}in ->next = fst ->next;fst ->next = in;}}void ProcessCreate() /*进程创建函数*/{PCB *tmp;int i;printf("输入进程的个数:\n");scanf("%d",&num);printf("输入进程名字和进程所需时间:\n");for(i = 0;i < num; i++){if((tmp = (PCB *)malloc(sizeof(PCB)))==NULL){perror("malloc");exit(1);}scanf("%s",tmp->name);getchar(); /*吸收回车符号*/scanf("%d",&(tmp->needtime));tmp ->cputime = 0;tmp ->state ='W';tmp ->prio = 50 - tmp->needtime; /*设置其优先级,需要的时间越多,优先级越低*/tmp ->round = Head ->round;tmp ->count = 0;InsertLast(tmp,Head); /*按照优先级从高到低,插入到就绪队列*/ }}void RoundRun(ReadyQueue *timechip) /*时间片轮转调度算法*/{int flag = 1;GetFirst(timechip);while(run != NULL){while(flag){run->count++;run->cputime++;run->needtime--;if(run->needtime == 0) /*进程执行完毕*/{run ->state = 'F';InsertFinish(run);flag = 0;}else if(run->count == timechip ->round)/*时间片用完*/{run->state = 'W';run->count = 0; /*计数器清零,为下次做准备*/InsertLast(run,timechip);flag = 0;}}flag = 1;GetFirst(timechip);}}void MultiDispatch() /*多级调度算法,每次执行一个时间片*/{int flag = 1;int k = 0;ReadyQueue *point;point = Head;GetFirst(point);while(run != NULL){Output();if(Head ->LinkPCB!=NULL)point = Head;while(flag){run->count++;run->cputime++;run->needtime--;if(run->needtime == 0) /*进程执行完毕*/{run ->state = 'F';InsertFinish(run);flag = 0;}else if(run->count == run->round)/*时间片用完*/{run->state = 'W';run->count = 0; /*计数器清零,为下次做准备*/if(point ->next!=NULL){run ->round = point->next ->round;/*设置其时间片是下一个就绪队列的时间片*/InsertLast(run,point->next); /*将进程插入到下一个就绪队列中*/flag = 0;}else{RoundRun(point); /*如果为最后一个就绪队列就调用时间片轮转算法*/break;}}++k;if(k == 3){ProcessCreate();}}flag = 1;if(point ->LinkPCB == NULL)/*就绪队列指针下移*/point =point->next;if(point ->next ==NULL){RoundRun(point);break;}GetFirst(point);}}。

多级反馈队列调度算法

多级反馈队列调度算法

多级反馈队列调度算法多级反馈队列调度算法(MFQS)是一种更为智能的作业调度算法,它旨在提高系统的吞吐量和作业完成时间。

它以对多个作业队列赋予优先级的方式来调度作业,使得系统更加高效。

多级反馈队列调度算法(MFQS),也称为多队列调度算法,是一种实时作业调度算法,其目的是有效地安排操作系统中的作业,以提高作业处理和计算性能。

它依据作业推入到队列的顺序对作业进行调度,通过多级反馈将新作业放入空余的队列中,并将不同的调度策略应用于不同的作业,以提高作业的调度效率,提高服务器的利用率。

多级反馈队列调度算法的主要原理是:用户的不同类型的作业将被分到不同的反馈队列中,每个反馈队列对应一种调度策略,每个反馈队列中的作业可以有一定的优先级,每个反馈队列都有不同的时间片。

新提交的作业会放入队列中,等待服务进程调度处理,当作业完成时,就会被从队列中删除,并释放资源。

三、优点1、调度效率优异:由于采用了反馈策略,可以减少作业之间交叉调度导致的延迟,提高作业处理速度,提高作业完成率和系统的反应速度;2、适用性较强:此算法不仅可用于多处理器系统,还可用于单处理器,不同类型的作业可以使用不同的调度策略;3、灵活性高:MFQS可以自由调整系统调度器运行参数,改变队列优先级,调整调度算法;4、容错性高:此算法采用了反馈机制,因此可以不受系统的实际负载情况的影响,从而增加系统的容错性;5、配置灵活:此算法允许调度程序自动调节时间片的大小,从而使系统的配置更加灵活。

四、缺点1、配置时间较长:需要对系统进行耗时的配置,作业队列的划分和优先级调整等;2、算法复杂:此算法较复杂,需要具备较为丰富的算法知识;3、压缩失效:由于反馈队列每次只调度一个作业,因此调度的效率可能会因太多的空余队列而受到影响,使得调度算法的优势不明显;4、多级调度困难:对于比较复杂的多级反馈队列系统,可能会出现某一种调度算法无法满足要求的情况;5、参数调整繁杂:系统负载变化时,需要根据实际情况重新调整参数,使调度过程更为有效。

多级队列调度算法和多级反馈队列调度算法

多级队列调度算法和多级反馈队列调度算法

多级队列调度算法和多级反馈队列调度算法在计算机操作系统中,进程调度是指根据一定的策略从就绪队列中选择一个进程分配CPU时间片,使得多个进程能够合理高效地共享CPU资源。

多级队列调度算法和多级反馈队列调度算法是两种常见的进程调度算法。

本文将分别介绍这两种调度算法的原理和特点。

一、多级队列调度算法多级队列调度算法是一种基于优先级的调度算法,将就绪进程划分为多个队列,每个队列具有不同的优先级,其中优先级高的队列具有更高的调度优先级。

调度器按照优先级从高到低的顺序选择进程执行,同一优先级的进程按照先到先服务的原则进行调度。

多级队列调度算法的主要特点如下:1. 简单高效:多级队列调度算法简单直观,易于实现和理解。

由于进程被划分到不同的队列中,能够更好地满足不同进程的调度需求。

2. 公平性:多级队列调度算法可以根据进程的优先级来确定调度顺序,优先级高的进程能够更早地被执行,提高了进程的响应速度。

3. 适应性:多级队列调度算法可以根据不同进程的调度需求来设置不同的优先级,能够更好地满足不同进程的执行要求。

然而,多级队列调度算法也存在一些问题。

例如,如果某个队列中的进程过多,可能会导致低优先级队列的进程长时间得不到执行,影响系统的整体性能。

为了解决这个问题,引入了多级反馈队列调度算法。

二、多级反馈队列调度算法多级反馈队列调度算法是在多级队列调度算法的基础上进行改进的一种调度算法。

它引入了时间片的概念,并允许进程在不同的队列之间移动。

每个队列具有不同的时间片大小和优先级,当一个进程的时间片用完后,它会被移到下一个优先级更低的队列中。

多级反馈队列调度算法的主要特点如下:1. 公平性:多级反馈队列调度算法兼顾了优先级和时间片的概念,能够更加公平地分配CPU时间片,避免某个队列中的进程长时间得不到执行。

2. 弹性:多级反馈队列调度算法能够根据进程的执行情况灵活地调整进程的优先级和时间片大小,提高系统的响应速度和吞吐量。

非抢占式多级反馈队列调度算法

非抢占式多级反馈队列调度算法

非抢占式多级反馈队列调度算法非抢占式多级反馈队列调度算法是一种常用的进程调度算法,也是操作系统领域中非常经典和重要的一个概念。

在操作系统中,进程调度是指操作系统对进程进行选择和分配处理器的过程,而多级反馈队列调度算法是其中一种常见的调度策略。

一、多级反馈队列调度算法的基本原理1.1 多级反馈队列的设置多级反馈队列调度算法通过设置多个队列,每个队列具有不同的优先级,来实现对进程的调度。

一般来说,优先级高的队列具有更高的调度优先级,而优先级低的队列具有较低的调度优先级。

当一个进程到达系统时,首先被放入最高优先级的队列中,如果在一个时间片内没有执行完毕,则将其移动到优先级稍低的队列中,以此类推,直到进程执行完毕或者被放入最低优先级的队列中。

1.2 时间片的设定在多级反馈队列调度算法中,不同队列具有不同的时间片大小,一般来说,优先级高的队列具有较短的时间片,而优先级低的队列具有较长的时间片。

这样设计的好处是,能够兼顾高优先级进程的及时响应和低优先级进程的长时间执行。

1.3 调度策略多级反馈队列调度算法的核心在于其调度策略。

一般来说,即使在同一优先级的队列中,也采用先来先服务的策略,即按照进程到达的顺序进行调度。

而在不同优先级的队列之间,则按照各自的调度策略来执行。

二、多级反馈队列调度算法的实现在实际的操作系统中,多级反馈队列调度算法的实现需要考虑诸多因素。

首先是如何设置各个队列的优先级和时间片大小,需要根据具体的系统特点和需求来进行调整。

其次是如何具体实现调度策略,包括进程的进入队列和离开队列的条件、时间片的划分和分配等细节问题。

针对不同的操作系统,可能会有不同的实现方式和优化方法。

三、对非抢占式多级反馈队列调度算法的个人理解和观点在我看来,非抢占式多级反馈队列调度算法是一种非常灵活和高效的调度策略。

它能够兼顾到各个进程的优先级和执行时间,既能够保证高优先级进程的及时响应,又能够充分利用处理器资源,提高系统的整体吞吐量。

操作系统实验报告-进程调度法的实现

操作系统实验报告-进程调度法的实现

操作系统实验报告进程调度算法的实现1.实验目的进程是操作系统最重要的概念之一,本实验通过对进程调度模拟程序的运行,学习运用时间片轮转法进行进程调度,加深对进程的基本调度状态以及进程调度算法的理解。

2.算法思想进程调度算法:采用多级反馈队列调度算法。

其基本思想是:当一个新进程进入内在后,首先将它放入第一个队列的末尾,按FCFS原则排队等待高度。

当轮到该进程执行时,如能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚为完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行,以此类推。

4.算法。

5.程序代码程序的主要代码如下:#include<iostream.h>#include<stdlib.h>#include<time.h>#include<stdio.h>#include<string.h>const int MAXCOMMANDLEN =50;///////////////////////////////////////////////////////////////////////////////////////// PROCESS///////////////////////////////////////////////////////////////////////////////////////class Process{friend class CPU; //友元类protected:static int init_ID; //静态初始IDint ID; //进程IDchar runText[MAXCOMMANDLEN]; //进程指令数组int IP; //进程指令指针,保存进程指令执行到的具体位置bool ISuseSource; //进程是否使用资源(是或者否)bool ISblocked; //进程是否被阻塞(是或者否)int unitTime; //进程被cpu执行单位时间, 默认 1int blockTime; //进程被阻塞时间public:static void RandID(); //静态随机生成进程ID的函数Process(); //进程类的构造函数int getID(); //得到进程IDint getIP(); //获取进程指令指针IPvoid setIP(int); //设置IPvoid Runed(); //进程被执行int getUnittime(); //得到进程的单位执行时间2int getBlcoktime(); //得到进程被阻塞的时间void setBlocktime(int); //设置进程被阻塞的时间void setUnittime(int); //设置进程的单位执行时间char getResult(int); //得到进程被执行的结果char* getRuntext(); //得到进程执行的指令void setBlockstate(bool); //设置进程阻塞状态bool getBlockstate(); //得到进程阻塞状态bool getISusesource(); //得到资源的使用状态void setISusesource(bool); //设置资源的使用状态};int Process::init_ID; //初始化静态变量void Process::RandID() //随机产生一个进程ID{srand((unsigned)time(NULL)); //调用srand随机生成函数init_ID=rand();}Process::Process() //进程的构造函数{ID=init_ID++; //进程ID的初值为静态初始ID的值int commandLen; //命令行长度IP=0;cout<<"Please input the text which process runed by CPU [#command#] :>\\ ";cin>>runText; //输入命令if( (commandLen=strlen(runText) ) > MAXCOMMANDLEN )exit(0); //输入长度超出最大长度时退出,特殊情况处理3runText[commandLen]='#'; //初始指令结束标志 '#' runText[commandLen+1]='\0'; //字符串结束标志ISuseSource=false; //设置资源的使用状态为未使用ISblocked=false; //进程的初始状态-》未被阻塞unitTime=1; //进程被执行的单位时间为1 blockTime=0; //阻塞时间为0}void Process::Runed() //进程被CPU执行{cout<<getResult(IP++); //输出得到的进程执行结果}int Process::getID() //得到进程ID {return ID;}int Process::getIP() //得到进行IP {return IP;}void Process::setIP(int ip) //设置进程IP {IP=ip;}bool Process::getISusesource() //得到资源的使用状态{return ISuseSource;4}void Process::setISusesource(bool s) //设置资源的使用状态{ISuseSource=s;}char* Process::getRuntext() //得到进程执行的指令{return runText;}int Process::getUnittime() //得到进程的单位执行时间{return unitTime;}int Process::getBlcoktime() //得到进程阻塞状态{return blockTime;}void Process::setBlocktime(int BT) //设置进程阻塞时间{blockTime=BT;}void Process::setUnittime(int UT) //设置进程的单位执行时间{unitTime=UT;}5void Process::setBlockstate(bool state) //设置进程阻塞状态{ISblocked=state;}bool Process::getBlockstate() //得到进程阻塞状态{return ISblocked;}char Process::getResult(int k) //得到程序的运行结果{return runText[k];}///////////////////////////////////////////////////////////////////////////////////////// SOURCE///////////////////////////////////////////////////////////////////////////////////////class Source //资源类{protected:int ID; //资源 IDbool state; //资源是否被占用状态int pro_ID; //使用资源的进程id Process *pro; //使用资源的进程指针int time; //进程使用资源的时间6public:Source(int); //资源类构造函数bool getState(); //得到资源被使用状态void setState(bool); //设置资源被使用状态void setTime(int); //设置进程使用资源的时间void setPro(Process *); //设置使用该资源的进程int getID(); //得到资源idint getPorID(); //得到使用资源的进程id void setProID(int); //设置使用资源的进程id void runned(); //资源被cpu调用};Source::Source(int id) //资源类构造函数{ID=id; //资源ID初值为idpro=NULL; //指针赋为空值state=true; //状态为被使用状态}void Source::setProID(int id) //设置使用资源的进程id{pro_ID=id;}void Source::setTime(int t) //设置进程使用资源的时间{time=t;}void Source::setState(bool s) //设置资源使用状态{7state=s;}bool Source::getState() //得到资源使用状态{return state;}void Source::setPro(Process *p) //设置使用该资源的进程{pro=p;}void Source::runned() //资源被CPU调用{if(time>0) //时间充足继续运行输出资源信息并使时间减一{cout<<"( Source :"<<ID<<")";time--;}if(time<=0) //时间用完{pro->setISusesource(false); //资源的使用状态为未使用int ip=pro->getIP(); //得到进程的IPpro->setIP(++ip); //设置到下一个ipSource::setState(true); //设置资源的使用状态为正在使用cout<<endl<<"The process "<<pro->getID()<<" relase the source!"<<endl;pro=NULL; //输出资源被释放指针值赋值为空值}8}//////////////////////////////////////////////////////////// ///////////////////////////// CPU////////////////////////////////////////////////////////////// /////////////////////////typedef struct Block //阻塞队列结构{Process *p_BlockProcess; //被阻塞的进程队列int index; //被阻塞的进程在就绪队列中的位置}Block;class CPU{protected:Process *p_Process; //进程队列Process **pp_Process; //进程就绪队列Block *blockQueue ; //进程阻塞队列Source *p_Source; //资源指针int numOfprocess; //进程数量int numOfblock; //被阻塞的进程数int PC; //程序计数器int allTime; //cpu运行的总时间public :CPU(int); //cpu构造函数void Run(); //cpu运行进程bool _IC(Process&); //虚拟IC,进行进程指令翻译void useSource(Process&); //进程申请资源9void blockProcess(Process&); //阻塞进程void releaseBlockPro(); //释放阻塞进程int getAlltime(); //得到进程运行的总时间void displayPro(); //显示进程的基本信息,id,指令,运行时间等void blockTimeADD(); //阻塞时间加1 };CPU::CPU(int num){p_Source=new Source(379857);//创建一个id号为379857的资源numOfprocess=num; //进程数numOfblock=0; //阻塞数allTime=0; //cpu运行的总时间初始化为0p_Process=new Process[numOfprocess];//进程队列申请空间pp_Process=new Process*[numOfprocess];//进程就绪队列申请空间blockQueue=new Block[numOfprocess]; //阻塞队列申请空间for(int i=0;i<numOfprocess;i++){pp_Process[i]=&p_Process[i]; //用二维数组存放进程指针数组头指针blockQueue->p_BlockProcess=NULL; //阻塞队列的阻塞进程赋值为空blockQueue->index=-1; //阻塞队列的索引值置为1 }}int CPU::getAlltime() //得到进程运行的总时间{return allTime;}10void CPU::displayPro() //显示进程的基本信息{for(int i=0;i<numOfprocess;i++)//循环输出被执行的进程的信息{cout<<"\tProcess ID : "<<p_Process[i].getID()<<endl;cout<<" text of runned :"<<p_Process[i].getRuntext()<<endl;}}void CPU::Run() //cpu运行进程{int numPro=numOfprocess; //记录未被运行的进程个数do{for(int num=0;num < numOfprocess;num++){if(!pp_Process[num]) //就绪队列不空继续执行continue;for(int t=0;t<p_Process[num].getUnittime();t++){PC=p_Process[num].getIP();//得到进程Ipif(_IC(p_Process[num]))//判断进程的状态TURE进入{if(t==0) //时间为0运行完输出进程信息cout<<"the process ["<<p_Process[num].getID()<<"] runed : ";if(!p_Process[num].getISusesource())//如果该进程未被运行过,则调用run运行{p_Process[num].Runed();//}else{p_Source->runned(); //if( p_Source->getState() && numOfblock>0 ){releaseBlockPro();////如果进程运行过,现在但未运行,说明为阻塞。

多级反馈队列调度算法c语言

多级反馈队列调度算法c语言

多级反馈队列调度算法c语言多级反馈队列调度算法是一种常用的进程调度算法,具有较高的效率和准确性。

其主要思想是将所有进程按照优先级分组,并将每一组形成一个队列,然后按照一定的规则对队列进行调度。

具体实现上,在C语言中可以通过定义结构体和数组来描述进程和优先级队列。

例如:```c// 进程控制块结构体定义typedef struct PCB {int pid; // 进程IDint priority; // 进程优先级int burst_time; // 进程需要执行的时间int remain_time; // 进程剩余执行时间} PCB;// 优先级队列结构体定义typedef struct Queue {PCB arr[100]; // 存储进程控制块的数组int front; // 队列头指针int rear; // 队列尾指针} Queue;// 多级反馈队列调度算法的实现int main() {Queue queue[3]; // 三个优先级队列...}```在初始化时,可以将所有进程根据优先级分别插入到对应的队列中。

然后按照规则对队列进行调度,例如:每次从优先级最高的队列中取出一个进程进行执行,如果其执行时间不足一个时间片,则重新放回原队列;如果执行时间超过一个时间片,则将其放到下一级队列中。

如果某个队列中没有需要执行的进程,则按照优先级顺序从下一级队列中取出一个进程执行。

具体的C语言代码实现如下:```c// 将进程插入优先级队列中void enqueue(Queue *queue, PCB pcb) {queue->arr[queue->rear++] = pcb;}// 从优先级队列中取出一个进程PCB dequeue(Queue *queue) {return queue->arr[queue->front++];}int main() {Queue queue[3]; // 三个优先级队列int time_quantum = 1; // 时间片长度为1// 初始化队列for (int i = 0; i < 3; i++) {queue[i].front = 0;queue[i].rear = 0;}for (int i = 0; i < n; i++) {enqueue(&queue[0], processes[i]); // 将所有进程插入第一级队列中}// 多级反馈队列调度while (1) {int flag = 1; // 判断队列中是否还有需要执行的进程 // 优先级最高的队列中取出一个进程if (queue[0].front < queue[0].rear) {PCB cur = dequeue(&queue[0]);cur.remain_time -= time_quantum;if (cur.remain_time <= 0) {printf("进程%d执行完毕\n", cur.pid);} else {enqueue(&queue[1], cur);}flag = 0;}// 次高优先级队列中取出一个进程if (flag && queue[1].front < queue[1].rear) {PCB cur = dequeue(&queue[1]);cur.remain_time -= time_quantum;if (cur.remain_time <= 0) {printf("进程%d执行完毕\n", cur.pid);} else {enqueue(&queue[2], cur);}flag = 0;}// 最低优先级队列中取出一个进程if (flag && queue[2].front < queue[2].rear) {PCB cur = dequeue(&queue[2]);cur.remain_time -= time_quantum;if (cur.remain_time <= 0) {printf("进程%d执行完毕\n", cur.pid);} else {enqueue(&queue[2], cur); // 仍然插入到该队列 }flag = 0;}if (flag) {break; // 所有队列中均没有需要执行的进程,退出循环}}return 0;}```值得注意的是,在实现过程中还需要对进程的剩余执行时间进行处理,以保证进程可以正确地按照优先级和时间片进行调度和执行。

操作系统四种调度算法

操作系统四种调度算法

操作系统四种调度算法操作系统四重调度算法之一、先来先服务调度算法先来先服务FCFS调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。

当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。

在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。

该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。

操作系统四重调度算法之二、短作业进程优先调度算法短作业进程优先调度算法SJPF,是指对短作业或短进程优先调度的算法。

它们可以分别用于作业调度和进程调度。

短作业优先SJF的调度算法是从后备队列中选择一个或若干个估计运行时间最短的作业,将它们调入内存运行。

而短进程优先SPF调度算法则是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它,使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。

操作系统四重调度算法之三、高优先权优先调度算法1.优先权调度算法的类型为了照顾紧迫型作业,使之在进入系统后便获得优先处理,引入了最高优先权优先FPF调度算法。

此算法常被用于批处理系统中,作为作业调度算法,也作为多种操作系统中的进程调度算法,还可用于实时系统中。

当把该算法用于作业调度时,系统将从后备队列中选择若干个优先权最高的作业装入内存。

当用于进程调度时,该算法是把处理机分配给就绪队列中优先权最高的进程,这时,又可进一步把该算法分成如下两种。

1 非抢占式优先权算法在这种方式下,系统一旦把处理机分配给就绪队列中优先权最高的进程后,该进程便一直执行下去,直至完成;或因发生某事件使该进程放弃处理机时,系统方可再将处理机重新分配给另一优先权最高的进程。

这种调度算法主要用于批处理系统中;也可用于某些对实时性要求不严的实时系统中。

c语言实现多级反馈队列调度的算法模拟进程的控制

c语言实现多级反馈队列调度的算法模拟进程的控制

c语言实现多级反馈队列调度的算法模拟进程的控制目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 多级反馈队列调度算法2.1 基本原理2.2 算法设计思路2.3 算法流程图3. C语言实现模拟进程控制3.1 数据结构定义3.2 进程创建与销毁3.3 进程调度与执行4. 实验结果与分析4.1 实验环境介绍4.2 实验结果展示4.3 结果分析与讨论5. 结论与展望5.1 结论总结5.2 存在问题与改进方向1. 引言1.1 背景和意义在计算机科学领域,进程调度是操作系统中非常重要的一个功能。

它负责决定哪个进程可以使用CPU并以何种顺序执行。

进程调度算法的优劣直接影响了系统的性能和效率。

多级反馈队列调度算法是一种常用的进程调度算法之一,它可以根据进程的类型和优先级将进程划分到不同的队列中,并根据优先级来决定进程的执行顺序。

该算法兼具公平性和高响应时间两个特点,适合应用于多任务环境下。

本文旨在使用C语言实现模拟多级反馈队列调度算法,并通过模拟进程控制过程,探讨其在实际应用中的表现。

通过实验结果与分析,我们将评估该算法在不同场景下的性能指标,并对其中存在问题提出改进方向。

1.2 结构概述本文共分为五个部分组成:•引言:介绍本文撰写目的、研究背景以及多级反馈队列调度算法在进程控制中的重要性。

•多级反馈队列调度算法:详细介绍多级反馈队列调度算法的基本原理、设计思路和算法流程图。

•C语言实现模拟进程控制:描述C语言中如何定义数据结构以及实现进程的创建、销毁以及调度和执行过程。

•实验结果与分析:介绍实验环境并展示实验结果,对结果进行分析和讨论。

•结论与展望:总结本文的研究成果,并提出该算法在应用过程中存在的问题以及改进方向。

通过以上结构安排,我们将全面深入地探讨多级反馈队列调度算法在模拟进程控制中的应用。

1.3 目的本文旨在通过使用C语言实现多级反馈队列调度算法,模拟进程控制过程。

通过对该算法进行分析和实验,目标如下:1.探讨多级反馈队列调度算法在不同场景下的优劣势,并对其性能指标进行评估。

多级反馈队列调度算法

多级反馈队列调度算法

如果一个队列中的所有进程都已 完成,则该队列将被移至最低优 先级的队列。
多级反馈队列调度算法是一种先 进的调度算法,它结合了优先级 调度和轮转调度的优点。
在每个时间片内,调度算法会根 据队列的优先级选择一个队列进 行服务。
这种算法能够有效地处理短进程 和长进程,并确保公平性和优先 级。
多级反馈队列调度算法的优缺点
02 03
介绍
多级反馈队列调度算法是计算机操作系统中的一种重要调 度算法,具有灵活性和公平性的特点。该论文主要介绍了 多级反馈队列调度算法的基本原理、实现方法、性能评估 以及在计算机操作系统中的应用。
材料与方法
该论文采用理论分析和实证研究相结合的方法,首先介绍 了多级反馈队列调度算法的基本原理和实现方法,然后通 过模拟实验和性能评估,分析了多级反馈队列调度算法的 性能表现。
多级反馈队列调度算法的优缺点
缺点
实现复杂度:多级反馈队列调度算法的实现复 杂度较高,需要维护多个队列和相应的数据结 构。
优先级反转:在某些情况下,低优先级的进程 可能会占用CPU时间过长,导致高优先级的进 程等待过长时间,这被称为优先级反转问题。
03
多级反馈队列调度算法的设计与实现
算法设计思路和流程
讨论未来工作
尽管多级反馈队列调度算法在性能评估和分析中表现出 了较好的性能,但仍有许多问题需要进一步研究和改进 。例如,我们可以考虑如何优化任务分配策略,使得系 统能够更好地处理大规模和复杂的任务;我们还可以探 讨如何设计更加智能的任务调度策略,以更好地满足实 时性和可靠性等需求。此外,我们也可以将多级反馈队 列调度算法与其他优化算法相结合,以实现更好的系统 性能。
进行排序
03
定期检查队列中的进程是否需要升级或降级,根据其

多级反馈队列调度算法的实现

多级反馈队列调度算法的实现

学生实习报告课程名称_ 数据结构与数据处理应用训练题目名称多级反馈队列调度算法的实现学生学院计算机与计算科学专业班级学号学生姓名指导教师2012年 2月 16 日多级反馈队列调度算法的实现【摘要】多级反馈队列调度算法是操作系统中CPU处理机调度算法之一,该算法既能使高优先级的进程(任务)得到响应又能使短进程(任务)迅速完成。

UNIX操作系统便采取这种算法,而本次试验就是试用C语言模拟某多级反馈队列调度算法。

本次试验中前三级就绪队列采用时间片轮转法,时间片大小分别为2、4和8,最后一级就绪队列采用FIFO调度,将任务进入多级队列进行模拟,任务从优先级高的队列到优先级地的队列的顺序逐一进入,还用了算法支持抢占式,最后完成模拟,得到各个任务先后完成的顺序,还有得到各个任务的响应时间、离开时间、周转时间。

【关键词】队列优先级任务时间1 内容与要求【内容】多级反馈队列调度算法是操作系统中CPU处理机调度算法之一,该算法既能使高优先级的进程(任务)得到响应又能使短进程(任务)迅速完成。

UNIX操作系统便采取这种算法,本次试验就是试用C语言模拟某多级反馈队列调度算法,通过输入任务号、到达时间、运行时间,求出任务完成的先后顺序以及各个任务的响应时间、离开时间、周转时间。

【要求】多级反馈队列调度算法描述:1、该调度算法设置四级就绪队列:前三级就绪队列采用时间片轮转法,时间片大小分别为2、4和8;最后一级就绪队列采用FIFO调度。

2、任务在进入待调度的队列等待时,首先进入优先级最高的队列等待。

3、首先调度优先级高的队列中的任务。

若高优先级中队列中已没有调度的任务,则调度次优先级队列中的任务,依次类推。

4、对于同一个队列中的各个任务,按照队列指定调度方法调度。

每次任务调度执行后,若没有完成任务,就被降到下一个低优先级队列中。

5、在低优先级的队列中的任务在运行时,又有新到达的任务,CPU马上分配给新到达的任务。

(注:与原来的题目不同,原题是在低优先级的队列中的任务在运行时,又有新到达的任务时,要在运行完这个时间片后,CPU马上分配给新到达的任务,而本题不需要在运行完这个时间片,即正在进行的任务立刻停止,CPU 马上分配给新到达的任务)6、为方便实现,时间以1为单位,用整数数据表示;且每个时间点,最多只有一个任务请求服务(即输入)。

多级反馈队列调度算法(转)

多级反馈队列调度算法(转)

多级反馈队列调度算法(转)多级反馈队列调度算法如果有很多任务排队等着被处理,哪个任务先被处理,哪个任务后处理,这个需要由操作系统决定,这就是调度。

多级反馈队列调度算法是⽬前操作系统调度算法中被公认的⼀种较好的调度算法。

它可以满⾜各种类型进程的需要,既能使⾼优先级的作业得到响应⼜能使短作业(进程)迅速完成。

基本概念多级反馈队列调度算法是⼀种根据先来先服务原则给就绪队列排序,为就绪队列赋予不同的优先级数,不同的时间⽚,按照优先级抢占CPU的调度算法。

算法的实施过程如下:按照先来先服务原则排序,设置N个就绪队列为Q1,Q2...QN,每个队列中都可以放很多作业;为这N个就绪队列赋予不同的优先级,第⼀个队列的优先级最⾼,第⼆个队列次之,其余各队列的优先权逐个降低;设置每个就绪队列的时间⽚,优先权越⾼,算法赋予队列的时间⽚越⼩。

时间⽚⼤⼩的设定按照实际作业(进程)的需要调整;进程在进⼊待调度的队列等待时,⾸先进⼊优先级最⾼的Q1等待。

⾸先调度优先级⾼的队列中的进程。

若⾼优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。

例如:Q1,Q2,Q3三个队列,只有在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。

对于同⼀个队列中的各个进程,按照时间⽚轮转法调度。

⽐如Q1队列的时间⽚为N,那么Q1中的作业在经历了时间⽚为N的时间后,若还没有完成,则进⼊Q2队列等待,若Q2的时间⽚⽤完后作业还不能完成,⼀直进⼊下⼀级队列,直⾄完成。

在低优先级的队列中的进程在运⾏时,⼜有新到达的作业,那么在运⾏完这个时间⽚后,CPU马上分配给新到达的作业即抢占式调度CPU。

应⽤范围此算法应⽤于同⼀个资源的多个使⽤者可分优先级使⽤资源的情况。

使⽤⽅法及步骤假设系统中有3个就绪队列Q1,Q2,Q3,时间⽚分别为2,4,8。

现在有3个作业J1,J2,J3分别在时间 0 ,1,3时刻到达。

⽽它们所需要的CPU时间分别是3,2,1个时间⽚。

【操作系统】多级反馈队列算法

【操作系统】多级反馈队列算法

【操作系统】多级反馈队列算法1. 原理介绍1. RR时间⽚轮转原理 在采⽤时间⽚轮转算法中,所有的就绪进程按FCFS策略排成⼀个就绪队列。

系统可设置每隔⼀定时间便产⽣⼀次中断,去激活进程调度程序进⾏调度,把CPU分配给队⾸进程,并令其执⾏⼀个时间⽚。

当它运⾏完毕后,⼜把处理机分配给就绪队列中新的队⾸进程,也让它执⾏⼀个时间⽚。

这样,就可以保证就绪队列中的所有进程在确定的时间段内,都能获得⼀个时间⽚的处理机时间。

在RR调度算法中进程的切换,可分为两种情况:①若⼀个时间⽚尚未⽤完,正在运⾏的进程便已经完成,就⽴即激活调度程序,将它从就绪队列中删除,再调度就绪队列中队⾸的进程运⾏,并启动⼀个新的时间⽚。

②在⼀个时间⽚⽤完时,计时器中断处理程序被激活。

如果进程尚未运⾏完毕,调度程序将把它送往就绪队列的末尾。

2.多级反馈队列调度机制 设置多个就绪队列。

在系统中设置多个就绪队列,并为每个队列赋予不同的优先。

第⼀个队列的优先级最⾼,第⼆个次之,其余队列的优先级逐个降低。

该算法为不同列中的进程所赋予的执⾏时间⽚的⼤⼩也各不相同,在优先级愈⾼的队列中,其时间⽚愈⼩。

每个队列都采⽤FCFS算法。

当新进程进⼊内存后,⾸先将它放⼊第⼀队列的末尾,按FCFS原则等待调度。

当轮到该进程执⾏时,如它能在该时间⽚内完成,便可撤离系统。

否则,即它在⼀个时间⽚结束时尚未完成,调度程序将其转⼊第⼆队列的末尾等待调度;如果它在第⼆队列中运⾏个时间⽚后仍未完成,再依次将它放⼊第三队列...依此类推。

当进程最后被降到第n队列后,在第n队列中便采取按RR⽅式运⾏。

按队列优先级调度。

调度程序⾸先调度最⾼优先级队列中的诸进程运⾏,仅当第⼀队列空闲时才调度第⼆队列中的进程运⾏;仅当第1到(i-1)所有队列均空时,才会调度第i队列中的进程运⾏。

如果处理机正在第i队列中为某进程服务时⼜有新进程进⼊任⼀优先级较⾼的队列,此时须⽴即把正在运⾏的进程放回到第i队列的末尾,⽽把处理机分配给新到的⾼优先级进程。

多级反馈队列实验报告

多级反馈队列实验报告

多级反馈队列实验报告实验目的本实验旨在通过实践了解多级反馈队列调度算法的原理及应用。

通过模拟多个作业的调度过程,了解多级反馈队列调度算法对于不同类型作业的处理效果,并比较其与其他调度算法的差异。

实验背景在计算机操作系统中,进程调度是一项重要的任务,它决定了不同进程间的运行顺序和优先级。

多级反馈队列调度算法是一种基于队列的调度算法,通过动态调整作业的优先级,使得优先级高的作业能够更快地被处理,提高整体系统的响应速度。

实验过程1. 创建多个作业首先,我们需要创建多个作业模拟实际运行环境下的多任务场景。

每个作业有不同的优先级和执行时间,以模拟不同类型的任务。

2. 创建多级反馈队列在实验中,我们创建了多级反馈队列,用于处理不同优先级的作业。

队列的优先级由高到低依次为1、2、3,其中优先级1的队列时间片最短,而优先级3的队列时间片最长。

3. 调度作业在实验中,我们按照作业的优先级将作业放入相应的队列。

每个队列根据时间片长度进行轮转调度,即每个作业执行一段时间后会被暂停,并放入下一个优先级更低的队列继续执行。

如果作业的执行时间超过了当前队列的时间片长度,作业会被放入优先级更高的队列继续执行。

4. 结果分析通过观察每个作业的执行情况,我们可以比较多级反馈队列调度算法与其他调度算法的优劣。

如果某个作业的执行时间较长,但优先级较低,那么它会在多个队列中轮转执行,从而获得更多的CPU时间。

同时,优先级较高的作业能够更快地被处理,提高整个系统的响应速度。

实验结果经过多次实验,我们得出了以下实验结果:1. 多级反馈队列调度算法能够较好地处理不同类型的作业。

优先级较高的作业能够被更快地处理,而优先级较低的作业也能有机会获得更多的CPU时间。

2. 多级反馈队列调度算法对短作业具有较好的响应速度。

由于时间片较短,短作业能够迅速完成,不会被长作业长时间占用。

3. 多级反馈队列调度算法较其他简单的调度算法更加灵活。

相比于先来先服务调度算法或短作业优先调度算法,多级反馈队列调度算法能够更合理地分配CPU资源,提高整体性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
return ==NULL;
}
void ClearQueue(LinkQueue& HQ)
{
LNode* p=;
while(p!=NULL) {
=>next;
delete p;
p=;
}
=NULL;
}
void function(LinkQueue* x, int timing)//任务运行
{
int leatime[4];//时间片的大小
if(t->runtime==1&&timing>=t->arrivetime)
t->retime=timing - t->arrivetime;
if(t->runtime == t->burst)
{
t->leavetime=timing+1;
t->roundtime =t->leavetime - t->arrivetime;
if ==NULL)
=NULL;
delete p;
return temp;
}
ElemType *PeekQueue(LinkQueue& HQ)
{
if ==NULL) {cerr<<"队列为空无首元素。"<<endl;exit(1);}
return &>data;
}
bool EmptyQueue(LinkQueue& HQ)
:队列的各个基本功能函数,任务的创建函数与运行函数。
3 详细设计
存储结构描述
struct Job {
int jobnum;obnum>>jobing[i].arrivetime>>jobing[i].burst;
i=0;
while(i!=n||!(EmptyQueue(x[1])&&EmptyQueue(x[2])
void create(LinkQueue* x,Job job)
函数功能:创建任务。
void function(LinkQueue* x, int timing)
函数功能:任务运行。
输入输出
输入:任务号 到达时间 运行时间
输出:任务号 响应时间 离开时间 周转时间、
文件介绍
:主函数的存放,功能函数的调用。
4、对于同一个队列中的有完成任务,就被降到下一个低优先级队列中。
5、在低优先级的队列中的任务在运行时,又有新到达的任务,CPU马上分配给新到达的任务。(注:与原来的题目不同,原题是在低优先级的队列中的任务在运行时,又有新到达的任务时,要在运行完这个时间片后,CPU马上分配给新到达的任务,而本题不需要在运行完这个时间片,即正在进行的任务立刻停止,CPU马上分配给新到达的任务)
cout<<"任务号:"<<t->jobnum<<" "<<"响应时间:"<<t->retime<<" ";
cout<<"离开时间:"<<t->leavetime<<" "<<"周转时间:"<<t->roundtime;
cout<<endl;//输出信息
OutQueue(x[i]);
}
else if((t->runtime == leatime[i]) && (i<=3))
6、为方便实现,时间以1为单位,用整数数据表示;且每个时间点,最多只有一个任务请求服务(即输入)。
2总体设计
算法总体思路:
这是建立在一个时间轴上的,即时刻,一个一个时刻(时间点)进行。
2.1.1主函数思路:
先初始化所有队列,再输入任务个数,如果输入个数为0,则重新输入,然后输入各个任务的信息,即任务号、到达时间、运行时间,再当时刻到任务的到达时间时,就创建任务,然后运行任务,时刻自动加1,创建任务与运行任务进行循环,直到所有任务进行完或所有队列为空才跳出循环,最后清空所有队列。
【关键词】队列优先级任务时间
1 内容与要求
【内容】
多级反馈队列调度算法是操作系统中CPU处理机调度算法之一,该算法既能使高优先级的进程(任务)得到响应又能使短进程(任务)迅速完成。UNIX操作系统便采取这种算法,本次试验就是试用C语言模拟某多级反馈队列调度算法,通过输入任务号、到达时间、运行时间,求出任务完成的先后顺序以及各个任务的响应时间、离开时间、周转时间。
功能模块介绍:
void main ()
函数功能:主函数
void InitQueue(LinkQueue& HQ):队列的初始化
void EnQueue(LinkQueue& HQ,ElemType item)
函数功能:向队列中插入一个元素
ElemType OutQueue(LinkQueue& HQ)
2.1.2功能函数思路:
void create(LinkQueue* x,Job job):使任务的已运行时间为0,再使任务进入第一个队列。
void function(LinkQueue* x, int timing):四个队列从第一个到第四个,即从最高优先级开始,任务在4个队列中逐个进行,根据任务是否为第一次执行,求出响应时间,任务完成时,求出离开时间和周转时间输出信息,在前3个队列,如果任务刚完成一个就绪队列的时间片,就降低优先级,使任务进入下一个队列。
函数功能:从队列中删除一个元素
ElemType *PeekQueue(LinkQueue& HQ)
函数功能:读取队首元素
bool EmptyQueue(LinkQueue& HQ)
函数功能:检查队列是否为空
void ClearQueue(LinkQueue& HQ)
函数功能:清除链队中的所有元素,使之变为空队
{//调整优先级
EnQueue(x[i+1],OutQueue(x[i]));
}
break;
}
i++;
}
}
void create(LinkQueue* x,Job job)
{
=0;
EnQueue(x[1],job);
}
【要求】
多级反馈队列调度算法描述:
1、该调度算法设置四级就绪队列:前三级就绪队列采用时间片轮转法,时间片大小分别为2、4和8;最后一级就绪队列采用FIFO调度。
2、任务在进入待调度的队列等待时,首先进入优先级最高的队列等待。
3、首先调度优先级高的队列中的任务。若高优先级中队列中已没有调度的任务,则调度次优先级队列中的任务,依次类推。
&& EmptyQueue(x[3])&& EmptyQueue(x[4]))){
while(timing==jobing[i].arrivetime)
{
create(x,jobing[i]);<<endl;
exit(1);
}
ElemType temp=>data;
LNode* p=;
=p->next;
学生实习报告
课程名称_数据结构与数据处理应用训练
题目名称多级反馈队列调度算法的实现
学生学院计算机与计算科学
专业班级
学 号
学生姓名
指导教师
2012年 2月16日
多级反馈队列调度算法的实现
【摘要】
多级反馈队列调度算法是操作系统中CPU处理机调度算法之一,该算法既能使高优先级的进程(任务)得到响应又能使短进程(任务)迅速完成。UNIX操作系统便采取这种算法,而本次试验就是试用C语言模拟某多级反馈队列调度算法。本次试验中前三级就绪队列采用时间片轮转法,时间片大小分别为2、4和8,最后一级就绪队列采用FIFO调度,将任务进入多级队列进行模拟,任务从优先级高的队列到优先级地的队列的顺序逐一进入,还用了算法支持抢占式,最后完成模拟,得到各个任务先后完成的顺序,还有得到各个任务的响应时间、离开时间、周转时间。
leatime[0]=0;
leatime[1]=2;
leatime[2]=6;
leatime[3]=14;
Job *t=NULL;
int i=1;
while(i<5)
{
if(EmptyQueue(x[i])==false)//如果队列不为空
{
t=PeekQueue(x[i]);//读取队首元素
t->runtime++;//已运行时间+1
相关文档
最新文档