实验六 Simulink在数字信号处理和通信系统中的应用(答案)
数字信号处理与Simulink仿真
林谦
傅里叶变换的物理意义
任何一个信号都可以用两种方式来表达,一个定义在 时域(或空域)上,一个定义在频域上,看起来的样 子通常截然不同,但是殊途同归地描述着同一个信号 。在数学上,这种翻译过程被称为“傅立叶变换”。
一个在时域或空域上看起来很复杂的信号通常在频域上的表达会很简单。 如图是一张人脸和它对应的傅立叶变换,可以看出,所有的频域信号差不 多都分布在中心周围,而大部分周边区域都是黑色的(即零)。
A 0.75 0.75 0.75 0.75 0.75 0.75
LE一共有3级IIR滤波器, 通过零点和极点设计滤波 器
4 5 6
THE END!
X ( e j )
H ( e j )
Y (e j )
0
0
c
c
0
c
1、时域可以直观的观测到信号的形状,但是,不能用有限的参数对信号 进行准确的描述。 2、频域分析可以将复杂信号分解为简单的信号(正弦信号)的叠加,可 以更加精确的了解信号的“构造”。
图像处理和信号传输都需要利用滤波器
final signal 3 2 1 0 -1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
frequency components 150
直流分量 10Hz
100
100Hz
50
0 -150
-100
-50
0
50
100
150
4
final signal 3 2 1 0 -1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
数字通信综合实验报告--数字频带传输系统仿真(用Simulink实现)陈信
广东石油化工学院计算机与电子信息学院综合实验报告课程名称数字通信综合实验题目:数字频带传输系统的仿真(用Simulink实现)专业电子信息工程班级电信12-***学号 120344901**姓名 *********指导教师陈信地点主楼8楼通信实验室时间:2015年5月04日至2015年5月08日目录一、目的和要求 (1)二、实验原理 (2)三、实验内容 (3)四、系统设计 (3)4.1、ASK调制 (3)4.2、ASK调制与解调 (5)五、实验结果与分析 (9)六、心得体会 (12)七、参考文献 (13)一、目的和要求目的:这次课程设计主要是运用MATLAB集成环境下的Simulink仿真平台对2ASK频带传输系统仿真,并把运行仿真结果输入到显示器,根据显示器结果分析设计的系统性能。
在设计中,目的主要是仿真通信系统中频带传输技术中的ASK调制。
产生一段随机的二进制非归零码的频带信号,对其进行ASK调制后再加入加性高斯白噪声传输,在接收端对其进行ASK解调以恢复原信号,观察还原是否成功。
通过Simulink的仿真功能摸拟到了实际中的2ASK调制与解调情况。
数字频带传输系统的仿真(用Simulink实现)要求:含纠错编译码、2ASK/2FSK/2PSK/2DPSK调制与解调4种方式中的一种和高斯白噪声的信道。
1.画出系统结构图。
2.绘制出基带信号、已调信号、解调信号波形和它们频谱图,列出各simulink模块参数设计界面和眼图。
、二进制振幅键控原理(2ASK )数字幅度调制又称幅度键控(ASK ),二进制幅度键控记作2ASK 。
2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。
有载波输出时表示发送“1”,无载波输出时表示发送“0”。
2ASK 信号可表示为t w t s t e c cos )()(0= (2-1) 式中,c w 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列)()(b n n nT t g a t s -=∑ (2-2) 其中,g(t)是持续时间b T 、高度为1的矩形脉冲,常称为门函数;n a 为二进制数字⎩⎨⎧-=P P a n 101,出现概率为,出现概率为 (2-3)2ASK/OOK 信号的产生方法通常有两种:模拟调制(相乘器法)和键控法。
MATLABSimulink在数字信号处理中的应用
若用iztrans函数求解如下: >> syms z >> g=3*z/(z*z-z-2); >> IG=iztrans(g) 同样得到:IG = 2^n-(-1)^n
傅立叶变换物理意义: 任何一个信号都可以用两种方式来表达,一个定义在 时域(或空域)上,一个定义在频域上,看起来的样 子通常截然不同,但是殊途同归地描述着同一个信号 。在数学上,这种翻译过程被称为“傅立叶变换”。
或
f [k]z F (z)
matlab的符号运算工具箱提供了z变换函数 ztrans与反变换函数iztrans。
例: >> syms n >> f=n^4; >> ZF=ztrans(f)
得到: ZF = z*(z^3+11*z^2+11*z+1)/(z-1)^5
例: >> f=n/(n+1); >> IZ=iztrans(f)
绘出该系统冲激响应和阶跃响应的波形。
a=[1 6 25]; b=[25]; subplot(121); impulse(b,a) subplot(122); step(b,a)
11
§10.2 Z变换和傅立叶变换
Z变换物理意义: 将离散信号分解为不同频率复指数esTk的线性组合
符号表示
正变换:F(z)=Z{f[k]} 反变换: f[k] =Z-1{F(z)}
§10.1 离散时间信号的表达及其运算
1. 离散时间信号——序列
定义:自变量为离散点的信号(函数),记为
数字信号处理实验答案
数字信号处理实验答案第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
Simulink实验报告
实验一:AM 信号的调制与解调实验目的:1.了解模拟通信系统的仿真原理。
2.AM 信号是如何进行调制与解调的。
实验原理:1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。
+m(t)S AM (t)A 0cos ωc tAM 信号的时域和频域的表达式分别为:()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+=式(4-1) ()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++-++=210 式(4-2)在式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
其频谱是DSBSC-AM 信号的频谱加上离散大载波的频谱。
2.解调原理:AM 信号的解调是把接收到的已调信号还原为调制信号。
AM 信号的解调方法有两种:相干解调和包络检波解调。
AM 相干解调原理框图如图。
相干解调(同步解调):利用相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。
LPF m0(t)S AM(t)cosωc tAM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。
包络检波器一般由半波或全波整流器和低通滤波器组成:(1)整流:只保留信号中幅度大于0的部分。
(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。
实验内容:1.AM相干解调框图。
实验六 基于simulink的时分多路复用系统的仿真
实验六基于simulink的时分多路复用系统的仿真一、实验目的1、掌握时分复用的概念;2、理解时分复用的原理及简单实现方法;3、进一步熟悉simulink在通信系统中的使用2、实验原理抽样定理:一个频带限制在0到f m以内的低通模拟信号x(t),可以用时间上离散的抽样值来传输,抽样值中包含有x(t)的全部信息。
当抽样频率f s≧2f m时,可以从已抽样的输出信号中用一个带宽为f m≦B≦f s—f m的理想低通滤波器不失真地恢复出原始信号。
时分复用是建立在抽样定理基础上的。
抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲值所代替。
这样,当抽样脉冲占据较短时间时,在单路抽样信号在时间上离散的脉冲间留出很大的空隙。
因此,可以在空隙中插入若干路其他抽样信号,只要各路抽样信号在时间上不重叠并且能区分开,那么一个信道就可以能同时传输多路信号,达到多路复用的目的。
这种多路复用技术称为时分多路复用,图6-1为基带信号的时分复用原理框图。
图6-1 基带信号时分复用原理假设有N路PCM信号进行时分多路复用,系统框图及波形如图6-2和图6-3所示。
各路信号首先通过相应的低通滤波器使之变为带线信号,然后送到抽样电子开关,电子开关每T s秒将各路信号依次抽样一次,这样N个样值按先后顺序错开插入抽样间隔T s,之内,最后得到的复用信号是N个抽样信号之和,其波形如图6-3所示。
各路信号脉冲间隔为T s,各路复用信号脉冲的间隔为T s /N。
由各个消息构成单一抽样的一组脉冲叫做一帧,一帧中相邻两个脉冲之间的时间间隔叫做时隙,未被抽样脉冲占用的时隙叫做保护时间。
图6-2 时分复用系统框图图1.3 时分复用波形(a)第一路波形(b)第二路波形(c)第三路波形(d)合成波形在接收端,合成的多路复用信号由与发送端同步的分路转换开关区分不同路的信号,把各路信号的抽样脉冲序列分离出来,再用低通滤波器恢复各路所用的信号。
实验六 SIMULINK仿真-答案
实验六 SIMULINK 仿真一、 动态画圆: 提示:用XY Graph (用图形显示两变量的函数关系)输出。
方法一:双击图标出现相应的模块参数框, 可在其中设置参数.Sine Wave 中Phase(相位)为pi/2, 实际为cos t; Sine Wave1中Phase 为0. 方法二(用正弦波发生器Sine Wave 和积分器Integrator)Sine Wave 中Phase(相位)为pi/2, 实际为cos t; Integrator 中Initial condition(初始值)为0.XY Graph 中, x 的范围为-1.5~1.5, y 的范围为-1.2~1.2.二、求下面微分方程的数值解t y t x sin ,cos ==3建立离散仿真模型(1) 选择一个“Constant”模块,一个“Gain”模块,一个“Product”模块,一个“Sum”模块,一个“Unit Delay”模块,一个“Scope”模块。
(2) 连接模块,将“Scope”模块翻转。
(3) 设置模块参数,“Gain”增益设置为k,“Unit Delay”模块的初始取值设置为0.5,采样时间为1,“Sum”模块的初始取值设置为0.5。
(4) 添加文本注释,系统框图如图8-26所示。
图8-26 离散系统模型(5)在Simulink模型窗口,选择菜单“Simulation”→“Simulation parameters…”,打开对话框,设置系统仿真参数:◆仿真时间设置:如要分析虫口数目在0至100年之间的变化趋势可设置系统仿真时间范围为0~100。
◆仿真步长与离散求解器设置:对于离散系统的仿真,无论是采用定步长求解器还是采用变步长求解器,都可以对离散系统进行精确的求解,这里选择变步长求解器。
对离散系统进行仿真需要使用离散求解器。
系统仿真参数设置如图8-27所示。
图8-27 系统仿真参数设置(6) 开始仿真,当k=0.8,5.00=x (即Unit Delay 模块的初始取值)时,示波器显示如图8-28所示。
数字信号处理实验答案
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB语言的工具箱函数filter函数。
也可以用MA TLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
Simulink实验作业及答案
Simulink系统仿真实验作业第一次作业1.用函数语句对图1所示系统1)求其闭环传递函数2)判断系统是否稳定3)画出其单位阶跃响应曲线,并在曲线上得到超调量、稳定时间、稳态值等参数。
图1解:1)求其闭环传递函数程序如下:clc;clear all;close all;%第一步,把所有用到环节的分子分母罗列表示出来num1=[1];den1=[1];num2=[4];den2=[1];num3=[1];den3=[1 0];num4=[1];den4=[1 1];num5=[2];den5=[1 8];num6=[0.2];den6=[1];num7=[2];den7=[1];num8=[1];den8=[2 1];%第二步,将所有前向通道表示出来s1=tf(num1,den1);s2=tf(num2,den2);s3=tf(num3,den3);s4=tf(num4,den4);s5=tf(num5,den5);s6=tf(num6,den6);s7=tf(num7,den7);s8=tf(num8,den8);s=append(s1,s2,s3,s4,s5,s6,s7,s8);%第三步,对Q式进行连接Q=[2 1 -7;3 2 -8;4 3 6;5 4 0;6 5 0;7 5 0;8 4 0]; %Q式连接方法ss=connect(s,Q,1,5);%第四步,显示闭环传递函数ss运行结果:Transfer function:8 s + 4--------------------------------------s^4 + 9.5 s^3 + 12.1 s^2 + 20.3 s + 122)判断系统是否稳定程序如下:clear all;clcnum=[1 1 2 2 3 5];den=1;%第一步,求系统特征方程s=tf(num,den);%第二步,求系统特征方程的根si=roots(num);%第三步,求出特征根矩阵的大小[m n]=size(roots(num));%第四步,求特征根虚部gen=imag(si)l=0;%第五步,判断是否有虚部大于0;否则g=0for i=1:m*nif(gen(i)>0)l=l+1;endendif(l>0)disp('系统不稳定')end运行结果:gen =1.1656-1.16561.3375-1.3375系统不稳定3)画出其单位阶跃响应曲线,并在曲线上得到超调量、稳定时间、稳态值等参数。
数字信号处理上机实验答案
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
function?tstem(xn,yn)%时域序列绘图函数%?xn:信号数据序列,yn:绘图信号的纵坐标名称(字符串)n=0:length(xn)-1;stem(n,xn,'.');box?onxlabel('n');ylabel(yn);axis([0,n(end),min(xn),*max(xn)])实验一: 系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
Simulink在信号系统解题中的应用
Simulink在信号系统解题中的应用张博08通信一班14082300943摘要:Simulink是一个对动态系统建模和仿真分析的软件包,为信号与系统仿真实验提供了很好的平台。
文章着重介绍了应用Simulink解决信号系统中二阶微分方程,并且建立系统模型并仿真。
从而,通过应用Simulink解决信号系统问题表明融合多种高级仿真技术的仿真实验具有直观、互动的良好效果,能够帮助对抽象概念和理论的深入理解,引导理论与实际应用的结合,并对今后如何开设信号与系统计算机仿真实验提出了建议。
关键词:信号与系统; 二阶微分方程;仿真实验;仿真技术.前言:信号与系统是电子与信息类专业重要的一门专业基础课,是理论性和实践性都很强的课程。
配合理论教学,开展信号与系统计算机虚拟仿真实验,无疑是能力培养的一个重要环节。
而构造合理的、富有启迪性的、难易适中的、可以实现的仿真实验却不是一件轻而易举的事情。
关键在于要有良好的开展仿真实验的技术平台和表现信号与系统理论本质的相关选题。
当今优秀的科技应用软件MATLAB和Simulink仿真软件包为实现信号与系统仿真,提供了一个很好的平台。
作为功能强大的数学工具软件和动态系统仿真软件,在涉及信号处理、控制系统、虚拟现实等领域已得到了广泛的应用,近年来正逐渐成为许多理工科院校的教学内容,为开展系统仿真和分析提供了极大的方便。
本文以信号与系统中的一个典型研究问题为例,阐述在Simulink平台上建模及仿真实验的方法,从中体会Simulink给我们学习带来的深刻影响。
1 Simulink简介系统仿真是近30年才发展起来的一门新兴技术学科,它涉及到各专业理论与技术,如系统分析、控制理论、信号处理、图象处理、计算方法等。
系统仿真是建立在控制理论、相似理论、信息处理技术和计算机初等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假设的系统进行试验,并借助于专家的经验知识、统计数据和信息资料对实验结果进行分析研究,进而做出决策的一门综合的实验性学科。
(完整word版)数字信号处理上机实验答案(第三版,第十章)
第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验.上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR数字滤波器设计及软件实现。
实验五FIR数字滤波器设计与软件实现实验六应用实验—-数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10。
1 实验一:系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性.2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性.已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解.在计算机上适合用递推法求差分方程的解,最简单的方法是采用MATLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应.系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件.系统的稳定性由其差分方程的系数决定。
MATLAB—SIMULINK用法例题
将T1、T2、T3系统的阶跃响应图在同一Scope中显示。
仿真方块图
阶跃响应图:
练习6-2典型二阶欠阻尼系统的传递函数为:
第一问:设ωa=1,σ=0.5,1,5 ,求阶跃响应,(用同一Scope显示);
仿真方块图
阶跃响应图
第二问:设σ=1 ,ωa=0.5,1,5,求阶跃响应在(用同一Scope显示);
仿真方块图
阶跃响应图
第三问:求阶跃响应在(用同一Scope显示);
仿真方块图
阶跃响应图
实验报告
实验名称SIMULINK基本用法
系
控制工程
专业
班
姓名
学号
授课老师
预定时间
实பைடு நூலகம்时间
2013-4-16
实验台号
一、目的要求
1.学习SIMULINK软件工具的使用方法;
2.用SIMULINK仿真线性系统;
二、仪器设备
PC机一台,MATLAB软件
课堂练习:
仿真方块图:
阶跃响应图:
三、程序以及运行结果
数字信号处理上机实验答案(全)1
第十章上机实验第十章上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一系统响应及系统稳定性。
实验二时域采样与频域采样。
实验三用FFT对信号作频谱分析。
实验四IIR 数字滤波器设计及软件实现。
实验五FIR 数字滤波器设计与软件实现实验六应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1实验一:系统响应及系统稳定性1.实验目的(1)掌握求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用 MATLAB语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
系统的稳定性由其差分方程的系数决定。
数字信号处理实验指导书思考题答案实验图[精品文档]
数字信号处理实验指导书思考题答案实验图[精品⽂档]⽬录实验⼀ Matlab与数字信号处理基础 (2)实验⼆离散傅⾥叶变换与快速傅⾥叶变换 (4)实验三数字滤波器结构 (6)注释 (9)主要参考⽂献 (9)实验⼀ Matlab与数字信号处理基础⼀、实验⽬的和任务1、熟悉Matlab的操作环境2、学习⽤Matlab建⽴基本序列的⽅法;3、学习⽤仿真界⾯进⾏信号抽样的⽅法。
⼆、实验内容1、基本序列的产⽣:单位抽样序列、单位阶跃序列、矩形序列、实指数序列和复指数序列的产⽣2、⽤仿真界⾯进⾏信号抽样练习:⽤simulink建模仿真信号的抽样三、实验仪器、设备及材料计算机、Matlab软件四、实验原理序列的运算、抽样定理五、主要技术重点、难点Matlab的各种命令与函数、建模仿真抽样定理六、实验步骤1、基本序列的产⽣:单位抽样序列δ(n): n=-2:2;x=[0 0 1 0 0];stem(n,x);单位阶跃序列u(n):n=-10:10;x=[zeros(1,10) ones(1,11)];stem(n,x);矩形序列R N(n):n=-2:10;x=[0 0 ones(1,5) zeros(1,6)];stem(n,x);实指数序列0.5n:n=0:30;x=0.5.^nstem(n,x);复指数序列e(-0.2+j0. 3)n:n=0:30;x=exp((-0.2+j*0.3)*n);模:stem(n,abs(x));幅⾓:stem(n,angle(x));2、⽤仿真界⾯进⾏信号抽样练习:(1)在Matlab命令窗⼝中输⼊simulink 并回车,以打开仿真模块库;(2)按CTRL+N,以新建⼀仿真窗⼝;在仿真模块库中⽤⿏标点击Sources(输⼊源模块库),从中选择sine wave(正弦波模块)并将其拖⾄仿真窗⼝;(3)在仿真模块库中⽤⿏标点击Discrete(离散模块库),从中选择Zero-Order Hold(零阶保持器模块)并将其拖⾄仿真窗⼝;(4)在仿真模块库中⽤⿏标点击Sinks(显⽰模块库),从中选择Scope(⽰波器模块)并将其拖⾄仿真窗⼝;(5)在仿真窗⼝中把上述模块依次连接起来;(6)⽤⿏标双击Scope模块,以打开⽰波器的显⽰界⾯;(7)⽤⿏标点击仿真窗⼝⼯具条中的?图标开始仿真,结果显⽰在⽰波器中;(8)⽤⿏标双击Zero-Order Hold模块,打开其参数设置窗⼝,改变sample time参数值,例如1、0.5、0.1、0.05…,⽤⿏标点击仿真窗⼝⼯具条中的?图标开始仿真,⽐较⽰波器显⽰结果(选三个参数值,得三个结果);(9)在仿真模块库中⽤⿏标点击Sinks(显⽰模块库),从中选择To Workspace(输出到当前⼯作空间的变量模块)并将其拖⾄仿真窗⼝;(10)⽤⿏标双击To Workspace模块,打开其参数设置窗⼝,改变variable name参数值为x ;同时把save format参数值设置为Array ;(11)在仿真窗⼝中先⽤⿏标点击Zero-Order Hold模块与Scope模块的连线,然后按住CTRL 键,从选中连线的中部引出⼀条线到To Workspace模块;(12)⽤⿏标双击Zero-Order Hold模块,打开其参数设置窗⼝,改变sample time参数值,例如1、0.5、0.1、0.05…,⽤⿏标点击仿真窗⼝⼯具条中的?图标开始仿真,并返回命令窗⼝,⽤stem(x)作图,⽐较序列图显⽰结果(选三个参数值,得三个结果);七、实验报告要求1、实验步骤按实验内容指导进⾏;2、对于实验内容1和2的数据必须给出的离散图,其相关参数应在图中注明;3、具有关联性和⽐较性的图形最好⽤subplot()函数,把它们画在⼀起;4、实验报告按规定格式填写,要求如下:(1)实验步骤根据⾃⼰实际操作填写;(2)各⼩组实验数据不能完全相同,否则以缺席论处;5、实验结束,实验数据交指导教师检查,得到允许后可以离开,否则以缺席论处;⼋、实验注意事项1、Matlab编程、⽂件名、存盘⽬录均不能使⽤中⽂。
MatlabSimulink通信系统设计与仿真
课程设计报告目录一、课程设计内容及要求....................................... 错误!未定义书签。
(一)设计内容............................................. 错误!未定义书签。
(二)设计要求............................................. 错误!未定义书签。
二、系统原理介绍................................................... 错误!未定义书签。
(一)系统组成结构框图............................. 错误!未定义书签。
(二)各模块原理......................................... 错误!未定义书签。
1.信源模块............................................. 错误!未定义书签。
2.信源编码模块..................................... 错误!未定义书签。
3.QPSK调制模块 ................................. 错误!未定义书签。
4.信道模块............................................. 错误!未定义书签。
5.QPSK解调模块 ................................. 错误!未定义书签。
6.误码率模块......................................... 错误!未定义书签。
三、系统方案设计................................................... 错误!未定义书签。
(一)方案论证............................................. 错误!未定义书签。
Matlab和Simulink通信与系统仿真实验指导书
(3)对子系统进行封装:请对(2)所建立所子系统进行封装(Mask) ,编写参数输入对话 框和帮助文档。并将模块放在一个自己的库中。例如
(4)应用自己封装的库模块构建一个系统,和标准的 SIMULINK 库模块进行对比 提示:使用通信工具箱中的模拟幅度调制模块“DSB AM Modulator Passband” 。
思考题:
1. 为什么接收机要采用混频原理?混频的目的是什么?
2. 普通收音机采用了一个混频器的外差技术,但一些高级的收音机,通信中的 手机,卫星电视接收机等等都采用了有多个混频器的多次变频技术,查阅资料对 2 次变频技术作出阐述。 3. 在实验步骤(1)中,仿真步长确定固定的 1e-7 秒。说明原因。当仿真步长 定为 1e-10 秒,你认为会出现什么现象?
(3)请用 simulink 模型实现课本 p252 程序 6-21 的建模和计算。比较编程和图形建模的各
自特点。 (4)使用频谱仪测量正弦信号的功率频谱。 分别测量 800Hz,振幅为 1V 的正弦信号和方波信号的频谱,比较两者的区别。频谱仪模块 在 DSP 工具箱中的 sinks 中。
注意设置频谱仪的 FFT 长度为 2048(可设其它长度试试) 。显示特性设置为幅度显示,而不 要设置为分贝方式。 (5)学有余力的同学,可设计一个系统观察双边带调制输出信号的波形和频谱。
A cos 2pFt 0<A<1 50 < F <535KHz~1605KHz 可设置。表达式为:
cos 2p fct, 535000 < fc < 1605000
调幅输出波形表达式为:
。
f (t ) 1 A cos 2 Ft cos 2 f c t
实验五
Simulink实验报告
实验一:AM 信号的调制与解调实验目的:1.了解模拟通信系统的仿真原理。
2.AM 信号是如何进行调制与解调的。
实验原理:1.调制原理:AM 调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程,就是按原始电信号的变化规律去改变载波某些参量的过程。
+m(t)S AM (t)A 0cos ωc tAM 信号的时域和频域的表达式分别为:()()[]()()()()t t m t A t t m A t S C C C AM ωωωcos cos cos 00+=+= 式(4-1)()()()[]()()[]C C C C AM M M A S ωωωωωωδωωδπω-+++-++=210 式(4-2) 在式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。
其频谱是DSBSC-AM 信号的频谱加上离散大载波的频谱。
2.解调原理:AM 信号的解调是把接收到的已调信号还原为调制信号。
AM 信号的解调方法有两种:相干解调和包络检波解调。
AM 相干解调原理框图如图。
相干解调(同步解调):利用相干载波(频率和相位都与原载波相同的恢复载波)进行的解调,相干解调的关键在于必须产生一个与调制器同频同相位的载波。
如果同频同相位的条件得不到满足,则会破坏原始信号的恢复。
相干载波的提取:(1)导频法:在发送端加上一离散的载频分量,即导频,在接收端用窄带滤波器提取出来作为相干载波,导频的功率要求比调制信号的功率小;(2)不需导频的方法:平方环法、COSTAS环法。
LPF m0(t)S AM(t)cosωc tAM信号波形的包络与输入基带信号成正比,故可以用包络检波的方法恢复原始调制信号。
包络检波器一般由半波或全波整流器和低通滤波器组成:(1)整流:只保留信号中幅度大于0的部分。
(2)低通滤波器:过滤出基带信号;(3)隔直流电容:过滤掉直流分量。
实验内容:1.AM相干解调框图。
(整理)实验六 基于simulink的时分多路复用系统的仿真.
《数据通信原理》实验报告实验题目:基于simulink的时分多路复用系统的仿真专业班级:信息工程2班姓名学号:赵星敏201342351 李明阳201342300指导教师:刘钰实验六基于simulink的时分多路复用系统的仿真一、实验目的1、掌握时分复用的概念;2、理解时分复用的原理及简单实现方法;3、进一步熟悉simulink在通信系统中的使用二、实验原理抽样定理:一个频带限制在0到fm以内的低通模拟信号x(t),可以用时间上离散的抽样值来传输,抽样值中包含有x(t)的全部信息。
当抽样频率fs ≧2fm时,可以从已抽样的输出信号中用一个带宽为fm ≦B≦fs—fm的理想低通滤波器不失真地恢复出原始信号。
时分复用是建立在抽样定理基础上的。
抽样定理使连续(模拟)的基带信号有可能被在时间上离散出现的抽样脉冲值所代替。
这样,当抽样脉冲占据较短时间时,在单路抽样信号在时间上离散的脉冲间留出很大的空隙。
因此,可以在空隙中插入若干路其他抽样信号,只要各路抽样信号在时间上不重叠并且能区分开,那么一个信道就可以能同时传输多路信号,达到多路复用的目的。
这种多路复用技术称为时分多路复用,图6-1为基带信号的时分复用原理框图。
图6-1 基带信号时分复用原理假设有N路PCM信号进行时分多路复用,系统框图及波形如图6-2和图6-3所示。
各路信号首先通过相应的低通滤波器使之变为带线信号,然后送到抽样电子开关,电子开关每Ts秒将各路信号依次抽样一次,这样N个样值按先后顺序错开插入抽样间隔Ts,之内,最后得到的复用信号是N个抽样信号之和,其波形如图6-3所示。
各路信号脉冲间隔为Ts ,各路复用信号脉冲的间隔为Ts/N。
由各个消息构成单一抽样的一组脉冲叫做一帧,一帧中相邻两个脉冲之间的时间间隔叫做时隙,未被抽样脉冲占用的时隙叫做保护时间。
图6-2 时分复用系统框图图6-3 时分复用波形(a)第一路波形(b)第二路波形(c)第三路波形(d)合成波形在接收端,合成的多路复用信号由与发送端同步的分路转换开关区分不同路的信号,把各路信号的抽样脉冲序列分离出来,再用低通滤波器恢复各路所用的信号。