八年级数学勾股定理全章复习与巩固(提高)巩固练习
勾股定理(基础)巩固练习(初中八年级下册数学)
勾股定理基础巩固【巩固练习】一.选择题1.在△ABC 中,AB =12,AC =9,BC =15,则△ABC 的面积等于( )A.108B.90C.180D.542.(2015春•安顺期末)在Rt△ABC 中,AB=3,AC=4,则BC 的长为( )A .5B .C .5或D .无法确定3. 小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( )A .12米B .10米C .8米D .6米4.Rt △ABC 中,斜边BC =2,则222AB AC BC ++的值为( )A.8B.4C.6D.无法计算5.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( )A.4B.6C.8D.1026.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( )A.1502cmB.2002cmC.2252cmD.无法计算 二.填空题7.在直角坐标系中,点P (-2,3)到原点的距离是_______.8.(2015•曲靖二模)如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交数轴上原点右边于一点,则这个点表示的实数是 _________ .9.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.10.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12. 如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点'B重合,则AC=cm.三.解答题13.(2015春•咸丰县期末)如图,在△ABC中,∠B=30°,∠C=45°,AC=2.求BC边上的高及△ABC的面积.14. 已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.15.如图,将长方形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.【答案与解析】一.选择题1.【答案】D ;【解析】△ABC 为直角三角形,面积=1129542⨯⨯=. 2.【答案】C ; 【解析】解:当AC 为直角边时,BC===5; 当AC 为斜边时,BC===. 综上所述,BC 的长为5或. 故选C .3.【答案】A ; 【解析】设旗杆的高度为x 米,则()22215x x +=+,解得12x =米. 4.【答案】A ;【解析】222228AB AC BC BC ==++.5.【答案】B ;【解析】AD =8,BD 221086-=.6.【答案】C ;【解析】面积和等于222225AC BC AB +==.二.填空题7.13()222313-+=8.【答案】;【解析】解:由勾股定理可知, ∵OB===, ∴这个点表示的实数是;, 故答案为:.9.【答案】2;【解析】走捷径是22345+=米,少走了7-5=2米.10.【答案】10;【解析】飞行距离为()2288210+-=. 11.【答案】5;【解析】可证两个三角形全等,正方形边长为22125+=.12.【答案】4;【解析】90AB E ABE '∠=∠=︒,又因为AE =CE ,所以BE '为△AEC 的垂直平分线,AC =2AB =4cm .三.解答题13.【解析】解:∵AD⊥BC,∠C=45°,∴△ACD 是等腰直角三角形,∵AD=CD.∵AC=2, ∴2AD 2=AC 2,即2AD 2=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴BD===2, ∴BC=BD+CD=2+2,∴S △ABC =BC•AD=(2+2)×2=2+2. 14.【解析】解:过D 点作DE ⊥AB 于E ,∵AD 平分∠BAC ,∠C =90°,∴DE =CD =3,易证△ACD ≌△AED ,∴AE =AC ,在Rt △ DBE 中,∵BD =5 ,DE =3,∴BE =4在Rt △ACB 中,∠C =90°设AE =AC =x ,则AB =4x +∵222AB AC BC =+∴()22248x x +=+ 解得6x =,∴AC =6.15.【解析】解:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,222AB AE BE +=,∴()22239x x +-=.解得5x =.。
勾股定理全章复习教学设计
勾股定理全章复习一、复习要求:1.体验勾股定理的探索过程;已知直角三角形的两边长,会求第三边长。
2.会用勾股定理知识解决简单问题;会用勾股定理逆定理判定直角三角形。
3.会用勾股定理解决有关的实际问题。
二、知识网络:二、知识梳理:1、勾股定理(1)重视勾股定理的三种叙述形式:①在直角三角形斜边上的正方形等于直角边上的两个正方形(《几何原本》).②直角三角形直角边上的两个正方形的面积之和等于斜边上的正方形的面积.③直角三角形斜边长度的平方,等于两个直角边长度平方之和.从这三种提法的意义来看,勾股定理有“形的勾股定理”和“数的勾股定理”之分。
(2)定理的作用:①已知直角三角形的两边,求第三边。
②证明三角形中的某些线段的平方关系。
③作长为的线段。
勾股定理揭示的是平面几何图形本身所蕴含的代数关系。
利用勾股定理探究长度为,,……的无理数线段的几何作图方法,并在数轴上将这些点表示出来,进一步反映了数与形的互相表示、相互交融,加深对无理数概念的直观认识。
(3)勾股定理的证明:经典证法有:①欧几里得证法②赵爽《勾股圆方图注》证法③刘徽《青朱出入图》证法④美国总统加菲的证明⑤印度婆什迦罗的证明⑥面积法证明;除此之外,还有文字证明、拼图证明和动态证明。
(4)勾股定理的应用:勾股定理只适用于直角三角形,首先分清直角及其所对的斜边。
当已知中没有直角时,可作辅助线,构造直角三角形后,再运用勾股定理解决问题。
求线段的长度,常常综合运用勾股定理和直角三角形的其它性质,等腰三角形的性质,轴对称的性质来解决。
2、勾股定理的逆定理(1)勾股定理的逆定理的证明方法,也是学生不熟悉的,引导学生用所学过的全等三角形的知识,通过构造一个三角形与直角三角形全等,达到证明的目的。
(2)逆定理的作用:判定一个三角形是否为直角三角形。
(3)勾股定理的逆定理是把数转化为形,是利用代数计算来证明几何问题。
要注意叙述及书写格式。
运用勾股定理的逆定理的步骤:①首先确定最大的边(如c)②验证:与是否具有相等关系:若,则△ABC是以∠C为90°的直角三角形。
北师大版初中数学八年级上册知识讲解 巩固练习 勾股定理(提高)
勾股定理(提高)【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.a b ,c 222a b c +=222a c b =-222b c a =-()222c a b ab =+-图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、与勾股定理有关的证明1、在△ABC中,AB=AC,D是BC延长线上的点,求证:【答案与解析】证明:作等腰三角形底边上的高AE∵AB=AC,AE⊥BC∴BE=EC,∠AEB=∠AEC=90°∴【总结升华】解决带有平方关系的问题,关键是找出直角三角形,利用勾股定理进行转化,若没有直角三角形,常常通过作垂线构造直角三角形,再利用勾股定理解题.类型二、与勾股定理有关的线段长2、如图,在等腰直角三角形ABC 中,∠ABC=90°,D 为AC 边上中点,过D 点作DE 丄DF ,交AB 于E ,交BC 于F ,若AE=4,FC=3,求EF 长.【答案与解析】解:连接BD ,∵等腰直角三角形ABC 中,D 为AC 边上中点,∴BD ⊥AC (三线合一),BD=CD=AD ,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C ,又∵DE 丄DF ,∴∠FDC+∠BDF=∠EDB+∠BDF ,∴∠FDC=∠EDB ,222222()()AD AB AE DE AE BE -=+-+2222AE DE AE BE =+--22DE BE =-()()DE BE DE BE =+-BD CD =在△EDB与△FDC中,∵,∴△EDB≌△FDC(ASA),∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在Rt△EBF中,EF2=BE2+BF2=32+42,∴EF=5.【总结升华】此题考查的知识点是勾股定理及全等三角形的判定,关键是由已知先证三角形全等,求得BE和BF,再由勾股定理求出EF的长.举一反三:【变式】(2018春•天津校级期中)如图,∠C=30°,PA⊥OA于A,PB⊥OB于B,PA=2,PB=11,求OP的长.【答案】解:∵PA⊥OA,∠C=30°,∴PC=2PA=4,∴BC=BP+PC=11+4=15,∵PB⊥OB,∠C=30°,设OB=x,则OC=2x,在Rt△BOC中,由勾股定理得:x+15=(2x),解得,即,∴OP===14.类型三、与勾股定理有关的面积计算3、(2018•丰台区二模)问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.【思路点拨】(1)根据图形得出S△ABC=S矩形MONC﹣S△CMA﹣S△AOB﹣S△BNC,根据面积公式求出即可;(2)先画出符合的三角形,再根据图形和面积公式求出即可.【答案与解析】解:(1)△ABC的面积是4.5,理由是:222S△ABC=S矩形MONC﹣S△CMA﹣S△AOB﹣S△BNC=4×3﹣×4×1﹣×2×1﹣×3×3=4.5,故答案为:4.5;(2)如图2的△MNP,S△MNP=S矩形MOAB﹣S△MON﹣S△PAN﹣S△MBP=5×3﹣×5×1﹣×2×4﹣×3×1=7,即△MNP的面积是7.【总结升华】本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是能正确画出格点三角形,难度不是很大.举一反三:【变式】如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是4、6、3、4,则最大正方形E的面积是()A.17B.36C.77D.94【答案】C类型四、利用勾股定理解决实际问题4、(2019•贵阳模拟)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【思路点拨】(1)利用勾股定理直接得出AB的长即可;(2)利用勾股定理直接得出BC′的长,进而得出答案.【答案与解析】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC ′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.【总结升华】此题主要考查了勾股定理的应用,熟练利用勾股定理是解题关键. 举一反三:【变式】如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:, 在Rt △AA ′B 中,根据勾股定理得:则AB =15.所以需要爬行的最短路程是15.勾股定理(提高)【巩固练习】cmcm 12AA '=12392A B π'=⨯⨯=22222129225AB AA A B ''=+=+=cm cm一.选择题1.如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,AE=16,则BE 的长度为( )A .10B .11C .12D .132. (2019•漳州)如图,△ABC 中,AB=AC=5,BC=8,D 是线段BC 上的动点(不含端点B 、C ).若线段AD 长为正整数,则点D 的个数共有( )A .5个B .4个C .3个D .2个3.如图,长方形AOBC 中,AO=8,BD=3,若将矩形沿直线AD 折叠,则顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为( )A.30 B .32 C .34 D .164.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线,,上,且,之间的距离为2 , ,之间的距离为3 ,则的值是( )A .68B .20C .32D .471l 2l 3l 1l 2l 2l 3l 2AC5.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42或32D .37或336.(2018•烟台)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2018的值为( )A .B .C .D .二.填空题7.若一个直角三角形的两边长分别为12和5,则此三角形的第三边的平方为______.8. 将一根长为15cm 的很细的木棒置于底面直径为5cm ,高为12cm 的圆柱形杯中,木棒露在杯子外面的部分长度x 的范围是 .9.如图,在的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,这样的点C 共 个.20122⎛⎫ ⎪ ⎪⎝⎭20132⎛⎫ ⎪ ⎪⎝⎭201212⎛⎫ ⎪⎝⎭201312⎛⎫ ⎪⎝⎭55⨯10.(2019•黄冈校级自助招生)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边长为a ,较长的直角边长为b ,那么(a+b )2的值是 _________ .11.已知长方形ABCD ,AB =3,AD =4,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_______________.12.(2018春•召陵区期中)如图,在四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=90°,那么四边形ABCD 的面积是 .三.解答题13.(2018•青岛模拟)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,求运动过程中,点D 到点O 的最大距离.14.现有10个边长为1的正方形,排列形式如左下图, 请把它们分割后拼接成一个新的正方形.要求: 在左下图中用实线画出分割线,并在右下图的正方形网格图(图中每个cmcm小正方形的边长均为1)中用实线画出拼接成的新正方形.15.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A 城气象局测得沙尘暴中心在A 城的正西方向240km 的B 处,以每时12km 的速度向北偏东60°方向移动,距沙尘暴中心150km 的范围为受影响区域.(1)A 城是否受到这次沙尘暴的影响?为什么?(2)若A 城受这次沙尘暴影响,那么遭受影响的时间有多长?【答案与解析】一.选择题1. 【答案】C【解析】∵BE ⊥AC ,∴△AEB 是直角三角形,∵D 为AB 中点,DE=10,∴AB=20,∵AE=16,,所以BE=12.2. 【答案】C【解析】过点A 作AE ⊥BC,则由勾股定理得AE=3,点D 是线段BC 上的动点(不含端点B 、C ).所以3≤AD <5,AD=3或4,共有3个符合条件的点.222144BE AB AE =-=3.【答案】A【解析】由题意CD =DE =5,BE =4,设OE =,AE =AC =,所以,,阴影部分面积为. 4.【答案】A【解析】如图,分别作CD ⊥交于点E ,作AF ⊥,则可证△AFB ≌△BDC ,则AF =3=BD, BF =CD =2+3=5,∴DF =5+3=8=AE ,在直角△AEC 中,勾股定理得.5.【答案】C 【解析】高在△ABC 内部,第三边长为14;高在△ABC 外部,第三边长为4,故选C .6.【答案】C【解析】解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:, …第n 个正方形的边长是,所以S 2018的值是()2012,故选C. x 4x +()22284x x +=+6x =1168433022⨯⨯+⨯⨯=3l 2l 3l 2228+2=68AC=二.填空题7.【答案】169或119;【解析】没有指明这两边为直角边,所以要分类讨论,12也可能是斜边.8.【答案】2cm≤x≤3cm;【解析】由题意可知BC=5cm ,AC=12cm ,AB=13cm .当木棒垂直于底面时露在杯子外面的部分长度最长为,15-AC=15-12=3cm ,当木棒与AB 重合时露在杯子外面的部分长度最短为15-AB=15-13=2cm.9.【答案】8;【解析】如图所示:有8个点满足要求.10.【答案】25;【解析】根据题意,结合勾股定理a 2+b 2=13,四个三角形的面积=4×ab=13﹣1,∴2ab=12,联立解得:(a+b )2=13+12=25.11.【答案】; 【解析】连接BE ,设AE =,BE =DE =,则,. 12.【答案】36.【解析】解:∵∠ABC=90°,AB=3,BC=4,78cm x 4x -()22234x x +=-78x =∴AC===5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD=×3×4+×5×12=36.故答案是:36.三.解答题13.【解析】解:如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=AB=1,DE===,∴OD的最大值为:+1.14.【解析】解:如图所示:15.【解析】180÷12=15(小时)∴A城受沙尘暴影响的时间为15小时.。
新人教版八年级数学下勾股定理时间综合练习
学校: 班级: 姓名: 考号: ………………………………密…………………………………………封………………………………线………………………………勾股定理全章知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,b ,a = ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
八年级数学勾股定理单元复习与巩固
勾股定理单元复习与巩固一、知识网络二、目标认知学习目标:1、了解勾股定理的历史,经历勾股定理的探索过程;2、理解并掌握直角三角形中边角之间的关系;3、能应用直角三角形的边角关系解决有关实际问题.重点:勾股定理及其逆定理的应用难点:勾股定理及其逆定理的应用三、知识要点梳理知识点一、勾股定理及其逆定理1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)2.勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。
知识点二、勾股定理与勾股定理逆定理的区别与联系。
区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
知识点三、如何用勾股定理的逆定理判定一个三角形是否是直角三角形(1)首先确定最大边(如:C,但不要认为最大边一定是C)(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的三角形。
(若c2>a2+b2则△ABC是以∠C为钝角的三角形,若c2<a2+b2则△ABC是以∠C为锐角三角形)四、规律方法指导1.勾股定理的证明实际采用的是前面接触过的利用图形面积与代数恒等式的关系转化证明的。
大家注意总结体会。
2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。
3.勾股定理在应用时一定要注意弄清谁是斜边谁是直角边,这是这个定理在应用过程中易犯的主要错误。
4.勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出一个三角形是否是直角三角形的判定方法.5.应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.。
人教版八年级数学下册第十七章勾股定理全章知识点归纳及典型题分类
CA BD勾股定理全章知识点归纳及典型题分类一.基础知识点:1:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC 中,90C ,则22c ab ,22bca ,22acb )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c ;(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC为锐角三角形)。
(定理中a ,b ,c 及222a b c 只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a cb ,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理6:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222abc 中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1nn n(2,nn 为正整数);2221,22,221n nn nn (n 为正整数)2222,2,mn mn mn (,mn m ,n为正整数)二、典型题归类类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,CD ⊥AB 于D 。
新人教版八年级数学下册勾股定理知识点和典型例习题1
新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面c b a H G F E D C B A b a c b a c c a b c a b积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a a b b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角a b c c b a E D C B A形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222,b,c为a b c+<,时,以a三边的三角形是钝角三角形;若,b,c为三边的三角形222a b c+>,时,以a是锐角三角形;②定理中a,b,c及222+=只是一种表a b c现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222+=a b c 中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:221,2,1n n n-+(2,n≥n为正整数);2221,22,221n n n n n++++(n 为正整数)2222,2,m n mn m n-+(,m n>m,n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用 勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30°D C B A A D B C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
2022年八年级上数学:勾股定理全章复习与测试
勾股定理全章复习与测试【学习目标】1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.4. 掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.5. 能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.6. 能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.7.学会运用勾股定理求立体图形中两点之间最短距离。
8.能够运用勾股定理解决生活中实际问题。
9.能利用轴对称解决简单的最短路径问题.10.体会图形的变化在解决最值问题中的作用,感悟转化思想.重点:学会运用勾股定理求立体图形中两点之间最短距离;体会图形的变化在解决最值问题中的作用,感悟转化思想.难点:能够运用勾股定理解决生活中实际问题;利用轴对称解决简单的最短路径问题.【基础知识】一.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.二.勾股定理的证明(1)勾股定理的证明方法有很多种,教材是采用了拼图的方法证明的.先利用拼图的方法,然后再利用面积相等证明勾股定理.(2)证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.三.勾股定理的逆定理(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.四.勾股数勾股数:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…五.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.六.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】一.勾股定理(共5小题)1.(2022春•江源区期中)等腰三角形的腰长为25,底边长为14,则它底边上的高为()A.24B.7C.6D.52.(2022•和平区三模)如图,在△ABC中,∠C=90°,AD平分∠CAB,CD=1.5,BD=2.5,则AC的长为()A.5B.4C.3D.23.(2022春•玉山县期中)在Rt△ABC中,两条直角边AB,BC的长c,a满足|4﹣c|+a2﹣10a+25=0.(1)求AC的长.(2)求Rt△ABC的面积.4.(2022春•蜀山区校级期中)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒2cm的速度沿折线A→C→B→A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.5.(2022春•景县期中)如图,已知AD是△ABC的中线,DE⊥AC于点E,CE=1,DE=2,AE=4.(1)求AD的长;(2)求证:AD垂直平分线段BC.二.勾股定理的证明(共3小题)6.(2021秋•方城县期末)如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为13,则直角三角形较短的直角边a与较长的直角边b的比的值是()A.B.C.D.7.(2021秋•蓬江区月考)请用两种方法证明:△ABC中,若∠C=90°,则a2+b2=c28.(2022春•庐江县期中)将两个全等的直角三角形按如图所示摆放,使点A、E、D在同一条直线上.利用此图的面积表示式证明勾股定理.三.勾股定理的逆定理(共3小题)9.(2022春•龙岩期中)在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=6,b=8,c=10B.a=5,b=5,c=5C.a:b:c=3:4:5D.a=4,b=5,c=610.(2022春•武昌区期中)如图,四边形ABCD中,若∠B=90°,AB=20,BC=15,CD=7,AD=24.(1)判断∠D是否是直角,并说明理由;(2)求∠A+∠C的度数.11.(2022春•海淀区校级期中)如图,四边形ABCD中,∠B=90°,AB=BC=2,AD=4,CD=2,求∠BAD的度数.四.勾股数(共2小题)12.(2022春•阳谷县期中)在下列各数中,不是勾股数的是()A.5,12,13B.9,40,41C.8,15,17D.8.12.1513.(2020•鼓楼区一模)已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2.求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n2﹣12n B勾股数组Ⅰ8勾股数组Ⅱ35五.勾股定理的应用(共2小题)14.(2022春•江城区期中)湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=40米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.15.(2022春•彭州市校级期中)森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?六.平面展开-最短路径问题(共2小题)16.(2022春•连城县期中)如图,矩形ABCD为圆柱体的横截面,BC是上底的直径,其中AB为4cm,底面圆周长为16cm,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则爬行的最短路程是()A.4B.4C.4D.17.(2021秋•峡江县期末)如图,圆柱形容器的高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离.【过关检测】一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2021春•饶平县校级期末)下列选项中,不能用来证明勾股定理的是()A.B.C.D.2.(3分)(2020春•南岗区校级期中)一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m,他在水中实际游了520m,那么该河的宽度为()A.440m B.460m C.480m D.500m3.(3分)一职工下班后以50米/分的速度骑自行车沿着东西马路向东走了5.6分,又沿南北马路向南走了19.2分到家,则他的家离公司距离为()米.A.100B.500C.1240D.10004.(3分)(2019秋•招远市期末)有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.1B.2021C.2020D.20195.(3分)(2019秋•沙河市期末)历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEBB.S△EDA+S△CEB=S△CDEC.S四边形CDAE=S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD6.(3分)(2014春•株洲期中)在△ABC中,AB=12cm,AC=9cm,BC=15cm,则S△ABC等于()A.108cm2B.54cm2C.180cm2D.90cm27.(3分)已知a,b,c分别为△ABC中∠A,∠B,∠C的对边,满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15D.∠C=∠A+∠B8.(3分)(2019秋•淅川县期末)如图△ABD中,∠D=90°,C是BD上一点,已知CB=9,AB=17,AD=8,则DC的长是()A.8B.9C.6D.159.(3分)(2020秋•杏花岭区校级月考)如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是()A.50.5寸B.52寸C.101寸D.104寸10.(3分)如图所示,有一块长方形场地ABCD,长AB=20m、宽AD=10m,中间有一堵墙,高MN=2m,一只蚂蚁要从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20m B.24m C.25m D.26m二.填空题(共8小题,满分24分,每小题3分)11.(3分)如图是一块长、宽、高分别为4cm、2cm和1cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体木块的表面爬到长方体木块上和顶点A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是.12.(3分)在Rt△ABC中,∠C=90°,a:b=3:4,c=15cm,则a=cm.13.(3分)如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD 的面积是.14.(3分)(2007春•射洪县校级期末)如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是.15.(3分)(2021秋•凤翔县期中)一个无盖的圆柱形杯子的展开图如图所示,现将一根长18cm的吸管放在杯子中,则吸管露在杯子外面的部分至少有cm.16.(3分)(2015•江西校级模拟)小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.17.(3分)(2013•睢宁县校级模拟)如图,长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE 折叠,点A恰好落在边BC上的点F处.若AE=5,BF=3,则CD的长.18.(3分)(2017•长春)如图1,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图2,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.三.解答题(共7小题,满分46分)19.(6分)如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?20.(6分)如图,已知BE⊥AE,∠A=∠EBC=60°,AB=4,BC2=12,CD2=3,DE=3.求证:(1)△BEC为等边三角形;(2)ED⊥CD.21.(6分)阅读理解:我们知道在直角三角形中,有无数组勾股数,例如5,12,13;9,40,41;…但其中也有一些特殊的勾股数,例如:3,4,5是三个连续正整数组成的勾股数.解决问题:(1)在无数组勾股数中,是否存在三个连续偶数能组成勾股数?若存在,试写出一组勾股数;(2)在无数组勾股数中,是否还存在其他的三个连续正整数能组成勾股数?若存在,求出勾股数;若不存在,说明理由.22.(6分)(2017春•岱岳区期中)如图,四边形ABCD中,∠ADC=90°,AD=12,CD=9,AB=25,BC=20,求四边形ABCD的面积.23.(6分)(2014春•霸州市期末)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.24.(6分)(2021春•庄浪县期末)如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD ⊥AD,求这块地的面积.25.(10分)(2017秋•盱眙县期中)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.。
专题复习:勾股定理(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过制作直角三角形模型,演示勾股定理的基本原理。
1.数学抽象:通过勾股定理的学习,使学生能够从实际问题中抽象出数学模型,理解数学概念的本质,提高数学思维能力。
2.逻辑推理:培养学生运用不同的证明方法,理解和掌握勾股定理的推理过程,提高逻辑思维能力和解题技巧。
3.数学建模:学会将勾股定理应用于解决实际问题,建立数学模型,培养学生解决实际问题的能力。
五、教学反思
在今天《勾股定理》的复习课上,我发现学生们对于定理的概念和应用有了较好的掌握,但在证明过程中还存在一些困难。我尝试用生活中的实例引入勾股定理,让学生感受到数学与生活的紧密联系,这一点效果不错,大家都很感兴趣。但在教学过程中,我也注意到了几个问题。
首先,对于定理的证明方法,尤其是代数法的证明,部分学生感到难以理解。在今后的教学中,我需要更加耐心地引导他们,通过多举例、多解释,帮助他们突破这个难点。
-掌握至直角三角形的边长比例关系,如30°-60°-90°和45°-45°-90°直角三角形。
-例:通过实际例题,如计算墙壁上悬挂画框的合适位置,强调勾股定理在实际问题中的应用。
2.教学难点
-理解勾股定理的证明过程:学生需要理解并掌握从具体实例中抽象出定理的过程,以及不同证明方法背后的逻辑。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
八年级数学勾股定理全章复习与巩固
《勾股定理》全章复习与巩固 要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形;若时,△ABC 是锐角三角形;若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. a b 、c 222a b c +=a b c 、、222a b c +=c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、知识点如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形. 观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.类型一、勾股定理及逆定理的应用例1、如图所示,等腰直角△ABC中,∠ACB=90°,E、F为AB上两点(E左F右),且∠ECF=45°,求证:.a b c、、at bt ct、、a b c、、a b c<<2a b c=+27 29222AE BF EF+=典型例题举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:.例2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.222BD AB BC =+类型二、勾股定理及逆定理的综合应用例3、如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.例4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.【变式】如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?类型三、勾股定理的实际应用例5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD =800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【变式】如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.例6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B处,在沿海城市福州A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?。
初中数学同步训练必刷题(人教版八年级下册 第十七章 勾股定理 全章测试卷)(教师版)
初中数学同步训练必刷题(人教版八年级下册第十七章勾股定理全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·邻水期末)一个直角三角形的两条边的长分别为8,10,则第三条边的长为()A.6B.12C.2√41D.6或2√41【答案】D【知识点】勾股定理【解析】【解答】解:当直角边为10和8时斜边长为√102+82=2√41;当10为斜边时另一条直角边为√102−82=6∴第三边长为6或2√41.故答案为:D.【分析】分情况讨论:当直角边为10和8时;当10为斜边时;分别利用勾股定理求出第三边的长. 2.(2022八下·韩城期末)下列各组数中,是勾股数的是()A.1,√5,3B.0.3,0.4,0.6C.9,12,15D.5,6,7【答案】C【知识点】勾股数【解析】【解答】解:A、√5不是正整数,故此选项不合题意;B、0.3,0.4,0.6三个数不是正整数,故此选项不合题意;C、9,12,15都是正整数,且92+122=225=152,故此选项符合题意;D、5,6,7都是正整数,但52+62≠72,故此选项不合题意.故答案为:C.【分析】勾股数是正整数,可排除选项A,B;再利用各选项中较小两数的平方和等于较大数的平方,可得到是勾股数的选项.3.(2022八下·台江期末)在边长为1的小正方形组成的网格中,A,B,C,D、E在格点上,长度是√10的线段是()A.AB B.AC C.AD D.AE【答案】B【知识点】勾股定理的应用【解析】【解答】解:AB=√12+22=√5,AC=√12+32=√10,AD=√22+22=√8,AE=√22+32=√13,综上,只有B选项符合题意,故答案为:B.【分析】由网格图的特征和勾股定理可求得AB、AC、AD、AE的值,再结合各选项可求解. 4.(2022八下·交口期末)如图,某公园的一块草坪旁边有一条直角小路,公园管理处为了方便群众,沿AC修了一条近路,已知AB=40米,BC=30米,则走这条近路AC可以少走()米路A.30B.20C.50D.40【答案】B【知识点】勾股定理的应用【解析】【解答】解:在Rt△ABC中,∵AB=40米,BC=30米,∴AC=√AB2+BC2=√402+302=50(米),30+40-50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故答案为:B.【分析】在Rt△ABC中,AB=40米,BC=30米,根据勾股定理可得AC=√AB2+BC2=√402+302=50(米),则30+40-50=20(米),即走这条近路AC可以少走20米路。
初二数学下勾股定理全章复习与巩固(提高)知识讲解+巩固练习
《勾股定理》全章复习与巩固(提高)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题. 【知识网络】【要点梳理】【高清课堂 勾股定理全章复习 知识要点】 要点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=) 2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题; (3)解决与勾股定理有关的面积计算; (4)勾股定理在实际生活中的应用. 要点二、勾股定理的逆定理 1.勾股定理的逆定理如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ; (2)验证:22a b +与2c 是否具有相等关系:若222a b c +=,则△ABC 是以∠C 为90°的直角三角形; 若222a b c +>时,△ABC 是锐角三角形; 若222a b c +<时,△ABC 是钝角三角形.2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数; 2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. 【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:222AE BF EF +=.【思路点拨】由于∠ACB =90°,∠ECF =45°,所以∠ACE +∠BCF =45°,若将∠ACE 和∠BCF 合在一起则为一特殊角45°,于是想到将△ACE 旋转到△BCF 的右外侧合并,或将△BCF 绕C 点旋转到△ACE 的左外侧合并,旋转后的BF 边与AE 边组成一个直角,联想勾股定理即可证明. 【答案与解析】解:(1)222AE BF EF +=,理由如下:将△BCF 绕点C 旋转得△ACF′,使△BCF 的BC 与AC 边重合, 即△ACF′≌△BCF ,∵ 在△ABC 中,∠ACB =90°,AC =BC , ∴ ∠CAF′=∠B =45°,∴ ∠EAF′=90°. ∵ ∠ECF =45°,∴ ∠ACE +∠BCF =45°. ∵ ∠ACF′=∠BCF ,∴ ∠ECF′=45°. 在△ECF 和△ECF′中45CE CE ECF ECF CF CF =⎧⎪'∠=∠=⎨⎪'=⎩°∴ △ECF ≌△ECF′(SAS),∴ EF =EF′. 在Rt △AEF′中,222AE F A F E ''+=, ∴ 222AE BF EF +=.【总结升华】若一个角的内部含有同顶点的半角,(如平角内含直角,90°角内含45°角,120°角内含60°角),则常常利用旋转法将剩下的部分拼接在一起组成又一个半角,然后利用角平分线、全等三角形等知识解决问题. 举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:222BD AB BC =+.【答案】解:将△ABD 绕点D 顺时针旋转60°.由于DC =AD ,故点A 转至点C .点B 转至点E ,连结BE . ∵ BD =DE ,∠BDE =60°∴ △BDE 为等边三角形,BE =BD易证△DAB ≌△DCE ,∠A =∠2,CE =AB ∵ 四边形ADCB 中∠ADC =60°,∠ABC =30° ∴ ∠A +∠1=360°-60°-30°=270° ∴ ∠1+∠2=∠1+∠A =270° ∴ ∠3=360°-(∠1+∠2)=90°∴222BC CE BE += ∴ 222BC AB BD +=2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.【答案与解析】解:如图,做∠ECB=∠PCA ,且使CE=CP ,连结EP ,EB在△APC 和△BEC 中PCA ECB AC BC PC EC =⎧⎪∠=∠⎨⎪=⎩∴△APC ≌△BEC∴△PCE 为等腰直角三角形∴∠CPE=45°,PE 2=PC 2+CE 2=8 又∵PB 2=1,BE 2=9 ∴PE 2+ PB 2= BE 2 则∠BPE=90°∴∠BPC=135°【总结升华】本题考查了勾股定理的逆定理,通过观察所要求的角度,作出辅助线,把PA 、PB 、PC 的长度转化为一个三角形三条边,构造出直角三角形是解题的关键,当然此题也可以利用旋转的思想来解,即将△APC 绕点C 旋转,使CA 与CB 重合即△APC ≌△BEC. 类型二、勾股定理及逆定理的综合应用3、( •顺义区一模)在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边.当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,可以判断△ABC 的形状(按角分类).(1)请你通过画图探究并判断:当△ABC 三边长分别为6,8,9时,△ABC 为 三角形;当△ABC 三边长分别为6,8,11时,△ABC 为 三角形.(2)小明同学根据上述探究,有下面的猜想:“当a 2+b 2>c 2时,△ABC 为锐角三角形;当a 2+b 2<c 2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c 在什么范围内取值时,△ABC 是直角三角形、锐角三角形、钝角三角形?【思路点拨】(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;(2)根据三角形的任意两边之和大于第三边求出最长边c 点的最大值,然后得到c 的取值范围,然后分情况讨论即可得解. 【答案与解析】解:(1)∵两直角边分别为6、8时,斜边==10,∴△ABC 三边分别为6、8、9时,△ABC 为锐角三角形;当△ABC 三边分别为6、8、11时,△ABC 为钝角三角形; 故答案为:锐角;钝角;(2)∵c 为最长边,2+4=6,∴4≤c <6,a 2+b 2=22+42=20,①a 2+b 2>c 2,即c 2<20,0<c <2,∴当4≤c <2时,这个三角形是锐角三角形; ②a 2+b 2=c 2,即c 2=20,c=2,∴当c=2时,这个三角形是直角三角形;③a2+b2<c2,即c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.【总结升华】本题考查了勾股定理,勾股定理逆定理,读懂题目信息,理解理解三角形为锐角三角形、直角三角形、钝角三角形时的三条边的数量关系是解题的关键.4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.【答案与解析】证明:取BC中点G,连结AG并延长交DC延长线于H∵∠ABG=∠HCG,BG=CG,∠AGB=∠HGC∴△GAB≌△HCG∴∠GAB=∠H,AB=CH又∵AB=AD,∠B=∠D,BG=DE∴△ABG≌△ADE∴∠GAB=∠DAE在Rt ADF△中,设AD a=,由勾股定理得:222222325()41654AF AD DF a a aAF a=+=+==∴又544aHF CH CF a a=+=+=∴AF=HF∴∠FAH=∠H∴∠FAH=∠DAE∴∠BAF=2∠DAE【总结升华】要证∠BAF=2∠EAD,一般方法是在∠BAF中取一个角使之等于∠EAD,再证明另一个角也等于∠EAD,另一种方法是把小角扩大一倍,看它是否等于较大的角.举一反三:【变式】(春•防城区期末)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?【答案】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.类型三、勾股定理的实际应用5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?【思路点拨】作点A关于直线CD的对称点G,连接GB,交CD于点E,利用“两点之间线段最短”可知应在E处饮水,再根据对称性知GB的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决.【答案与解析】解:作点A关于直线CD的对称点G,连接GB交CD于点E,由“两点之间线段最短”可以知道在E点处饮水,所走路程最短.说明如下:在直线CD 上任意取一异于点E 的点I ,连接AI 、AE 、BE 、BI 、GI 、GE . ∵ 点G 、A 关于直线CD 对称,∴ AI =GI ,AE =GE .由“两点之间线段最短”或“三角形中两边之和大于第三边”可得GI +BI >GB =AE +BE ,于是得证.最短路程为GB 的长,自点B 作CD 的垂线,自点G 作BD 的垂线交于点H ,在直角三角形GHB 中,∵ GH =CD =800,BH =BD +DH =BD +GC =BD +AC =200+400=600,∴ 由勾股定理得222228006001000000GB GH BH =+=+=.∴ GB =1000,即最短路程为1000米.【总结升华】这是一道有关极值的典型题目.解决这类题目,一方面要考虑“两点之间线段最短”;另一方面,证明最值,常常另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明,如本题中的I 点.本题体现了勾股定理在实际生活中的应用. 举一反三:【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.【答案】解:根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP , 即最短距离EP +BP 也就是ED .∵ AE =3,EB =1,∴ AB =AE +EB =4,∴ AD =4,根据勾股定理得:222223425ED AE AD =+=+= . ∵ ED >0,∴ ED =5,∴ 最短距离EP +BP =5.6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问: (1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?【答案与解析】解:(1)该城市会受到台风影响.理由:如图,过点A 作AD ⊥BC 于D 点, 则AD 即为该城市距离台风中心的最短距离. 在Rt △ABD 中,因为∠B=30°,AB=240. ∴AD =12AB =12×240=120(千米). 由题可知,距台风中心在(12-4)×25=200(千米)以内时,则会受到台风影响.因为120<200,因此该城市将会受到影响.(2)依题(1)可知,当点A 距台风中心不超过200千米时,会受台风影响,故在BC 上作AE=AF=200;台风中心从点E 移动到点F 处时,该城市会处在台风影响范围之内.(如图)由勾股定理得,2222220012025600DE AE AD =-=-=所以EF=2×160=320(千米).又知台风中心以20千米/时的速度移动. 所以台风影响该城市320÷20=16(小时). (3)∵AD 距台风中心最近,∴该城市受到这次台风最大风力为:12-(120÷25)=7.2(级). 答:该城市受台风影响最大风力7.2级. 【总结升华】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,运用勾股定理使问题解决.【巩固练习】 一.选择题1. 在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形 2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°3.( 春•西华县期末)下列满足条件的三角形中,不是直角三角形的是( ) A .三内角之比为1:2:3 B.三边长的平方之比为1:2:3 C .三边长之比为3:4:5 D.三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A .2900mB . 1200mC . 1300mD .1700m 5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( ) A .ab =h 2 B .a 2+b 2=h 2 C .111a b h += D .222111a b h+= 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A.25B.325C.2197D.4057. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( ) A.()()2222221,4,1a m b m c m =-==+ B.()()222221,4,1a m b m c m =-==+ C.()()222221,2,1a m b m c m =-==+ D.()()2222221,2,1a m b m c m =-==+8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.121二.填空题9. 如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.11.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.12.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD 上的任意一点,则AP+EP的最小值是cm.13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.(春•监利县期末)小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm 的木箱中,他能放进去吗?答:(选填“能”或“不能”).15. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD,求:△ABC的面积.18.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s 的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.19.(•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若一直重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时. (1)求对学校A 的噪声影响最大时卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间.20. 如图1,四根长度一定....的木条,其中AB =6cm ,CD =15cm ,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置. 位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2); 位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为x ,请用x 的代数式表示AD 的长; (2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.【答案与解析】 一.选择题1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=,222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.2.【答案】C ;【解析】连接AC ,计算AC 2=BC 2=5,AB 2=10,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°. 3.【答案】D ;【解析】解:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形,故正确;B 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;C 、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;D 、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确. 故选D .4.【答案】C ;【解析】作A 点关于河岸的对称点A′,连接BA′交河岸与P ,则PB+PA=PB+PA′=BA′最短,如图,BB′=BD+DB′=1200,B′A′=500,BA′=1300(m ).5.【答案】D ;【解析】解:根据直角三角形的面积可以导出:abc h=.再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2= 222a b h .两边同除以a 2b 2,得222111a b h +=. 6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325. 7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,长方形KLMJ 的面积为10×11=110.故选C .二.填空题9.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形. 10.【答案】3;【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE=4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4.12.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.13.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5.14.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm ,根据题意,得x 2=502+402+302=5000, 702=4900,因为4900<5000, 所以能放进去.15.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三.解答题 17.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x ,∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC += ∴ △ABC 是直角三角形,∠A =90°. ∴ 1143622ABC S AB AC ==⨯⨯=△ 18.【解析】解:如图,作AD ⊥BC ,交BC 于点D , ∵BC=8cm ,∴BD=CD=BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP 2=PD 2+AD 2=PC 2﹣AC 2,∴PD 2+AD 2=PC 2﹣AC 2,∴PD 2+32=(PD+4)2﹣52∴PD=2.25, ∴BP=4﹣2.25=1.75=0.25t , ∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25, ∴BP=4+2.25=6.25=0.25t , ∴t=25秒,∴点P 运动的时间为7秒或25秒.19.【解析】 解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m , ∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=BC ,OA=80m ,∵在Rt △AOD 中,∠AOB=30°,∴AD=OA=×80=40m ,在Rt △ABD 中,AB=50,AD=40,由勾股定理得:BD===30m ,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响. ∵重型运输卡车的速度为18千米/小时,即=300米/分钟,∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.20.【解析】 解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9. (2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9. 在△ACD 中,∠C =90° 由勾股定理得222AC CD AD +=. ∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++. 化简,得6x =180. 解得 x =30. 即 BC =30.∴ AD =39.。
八年级数学勾股定理全章复习与巩固(基础)巩固练习
第一章勾股定理 姓名一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B 到上端点A 的直线距离为( )A.15B.16C.17D.183. 放学以后,小红和小颖分手,分别沿着东南方向和西南方向回家,若两人行走的速度都部分的面积是( ).A .6B .12C .24D .305.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a b c +=B.三角形的三边比为1∶2∶3C.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A.450a 元B.225a 元C.150a 元D.300a 元7. 如图所示,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8. 已知,如图长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A.32cmB.42cmC.62cmD.122cm9.根据下图中的数据,确定A=,B=,x=.10.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.11.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC =60米,则点A到岸边BC的距离是______米.12.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.13. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑cm,则其中最大的正方形的边长为______cm.的四个小正方形的面积的和是16214.如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A 的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30cm/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______cm.15. 小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?(填“能”或“不能”).16.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3 千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.。
新人教版八年级数学下册勾股定理知识点和典型例习题1 (2)
新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为22()2S a b a a b b =+=++ 所以22a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长cbaHG F ED CBAbacbac ca bcab a bc cbaED CB A边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
北师大版八年级上册数学第一章勾股定理全章知识点及习题
如果三角形的三边长为 a,b,c ,满足 a 2 b 2 c ,那么,这个三角形是直角三角形.知识点一:勾股定理定义画一个直角边为 3cm 和 4cm 的直角△ ABC ,量 AB 的长;一个直角边为 5 和 12 的直角△ ABC ,量 AB 的长 发现 32+42 与 52的关系, 52+122 和 132 的关系,对于任意的直角三角形也有这个性质吗? 直角三角形两直角边 a 、b 的平方和等于斜边 c 的平方。
(即: a 2+b 2= c 2) 1.如图,直角△ ABC 的主要性质是:∠ C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若 D 为斜边中点,则斜边中线 ; ⑶若∠ B=30°,则∠ B 的对边和斜边: ;(给出证明)⑷三边之间的关系:知识点五:勾股定理逆定理第一章 勾股定理知识点二:验证勾股定理 B 、∠ C 的对边为A 、∠ 例 2 。
求证: 证明: 已知:在△ ABC 中,∠ C=90°,∠2 2 2 a + b =c 。
知识点四:勾股定理简单应用在 Rt △ ABC 中,∠ C=90°(1) 已知: a=6, b=8 ,求 c (2) 已知: b=5,c=13,求 aa 、 b、利用勾股定理的逆定理判别直角三角形的一般步骤:①先找出最大边(如 c )②计算 c 2与 a 2 b 2 ,并验证是否相等。
2 2 2若 c 2=a 2 b 2 ,则△ ABC 是直角三角形。
2 2 2若 c 2≠ a 2 b 2 ,则△ ABC 不是直角三角形。
1.下列各组数中,以 a ,b ,c 为边的三角形不是 Rt △的是()知识点八:逆定理判断垂直1.在△ ABC 中,已知 AB 2-BC 2= CA 2,则△ ABC 的形状是 ( )A .锐角三角形;B .直角三角形;C .钝角三角形;D .无法确定. 2.如图,正方形网格中的△ ABC ,若小方格边长为 1,则△ ABC 是 ( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对知识点九:勾股定理应用题1. 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面A. a=7,b=24,c=25 C.a=6,b=8,c=102. 三角形的三边长为 (a b) 2 c 2 A. 等边三角形 B. 钝角三角形B. a=7,b=24,c=24 D.a=3,b=4,c=52ab , 则这个三角形是 ( )C.直角三角形 D. 锐角三角形3. 已知 x 6 y 8 (z 10)2 0 知识点六:勾股数则由此 x,y,z 为三边的三角形是三角形 .1)满足 a 2 b 2 c 2 的三个正整数,称为勾股数.2)勾股数中各数的相同的整数倍,仍是勾股数,如 3、4、5是勾股数, 6、8、10 也是勾股数.3)常见的勾股数有:① 3、4、5②5、12、13;③8、15、17;④ 7、24、25;⑤ 11、 60、 61;⑥ 9、40、41. 1.设a 、 b 、 c 是直角三角形的三边 ,则 a 、 b 、 c 不可能的是( ).A.3,5,4B. 5,12,13C.2,3,4D.8,17,151. 若线段 a , b ,c 组成 A.2 ∶3∶4 B.3 Rt △,则它们的比可以是( C.5 )12∶13 知识点七:确定最短路线1. 一只长方体木箱如图所示,长、宽、 有一只甲虫从 A 出发,2.如图, 一圆柱高 8cm,底面半径 2cm,一只蚂蚁从点 A 爬到点D.4 ∶ 6∶ 7是5cm 、高分别为 C ,最近距离是多少?A是一个边长为10 尺的正方形,在水池正中央有一根新生的芦苇,它高出水面 1 尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?2. ______________________________________________________________________ 如图为某楼梯 ,测得楼梯的长为 5米,高3米, 计划在楼梯表面铺地毯 , 地毯的长度至少需要 _______________ 米.3.一根直立的桅杆原长 25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两部分各是多长?4.某中学八年级学生想知道学校操场上旗杆的高度,他们发现旗杆上的绳子垂到地面还多拉开 5 米后,发现下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?综合练习一、选择题3米2 2 2 1、下面几组数 : ①7,8,9; ②12,9,15; ③m2 +n2, m2 成直角三角形的三边长的是 ( )2– n 2, 2mn(m,n 均为正整数 ,mn); ④ a2, a21, a 22. 其中能组1 米,当他们把绳子的下端A. ①②;B. ①③;C. ②③ ;D. ③④ 2已知一个 Rt△的两边长分别为 3和 4,则第三边长的平方是(A.25B.14C.7D.7 或 253.三角形的三边长为 (a b)2 c 2 2ab , 则这个三角形是 ( )A. 等边三角形 ;B. 钝角三角形 ;C. 直角三角形 ;D. 锐角三角形24. △ABC 的三边为 a 、b 、c 且(a+b)(a-b)=c 2,则 ( )A.a 边的对角是直角B.b 边的对角是直角C.c 边的对角是直角D. 是斜三角形5. 以下列各组中的三个数为边长的三角形是直角三角形的个数有( ) ①6、7、8,②8、15、17,③ 7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2 个 C 、3 个 D 、4个 6. 将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不是直角三角形 二、填空题1. 在 Rt △ABC 中,∠ C=90°,①若 a=5, b=12,则 c= ______ ;②若 a=15,c=25 ,则 b= _________ ;③若 c=61 ,b=60,则 a= _________ ;④若 a ∶b=3∶ 4,c=10 则 S Rt △ ABC = _________2. 现有长度分别为 2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .3. 勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明2 2 2 22. 在△ ABC 中, BC=m-n , AC=2m ,n AB=m +n (m>n ) 。
八年级数学勾股定理全章复习与巩固(提高)巩固练习
【巩固练习】 一.选择题1. 在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°3.在下列说法中是错误的( ) ¥A .在△ABC 中,∠C =∠A 一∠B ,则△ABC 为直角三角形.B .在△ABC 中,若∠A :∠B :∠C =5:2:3,则△ABC 为直角三角形. C .在△ABC 中,若35a c =,45b c =,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.4.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A . ?2900mB . 1200mC . 1300mD . 1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( ) %A .ab =h 2B .a 2+b 2=h 2C .111a b h += D .222111a b h+= 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )7. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( ) A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+ C.()()222221,2,1a m b m c m =-==+|D.()()2222221,2,1a m b m c m =-==+8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A . 90B . 100!C .110 D . 121二.填空题9. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______./10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE=1cm ,P 为对角线BD 上的任意一点,则AP+EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为1米,∠B=90°,BC=4米,AC=8米,当正方形DEFH运动到什么位置时,即当AE=米时,有DC2=AE2+BC2.:15. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD,求:△ABC的面积.》18.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.19. 有一块直角三角形纸片,两直角边AC =6cm,BC =8cm, ①如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,且与AB重合, 则CD =_________.图1 图2】②如图2,若将直角∠C沿MN折叠,使点C落在AB中点H上,点M、N分别在AC、BC 上,则2AM、2BN与2MN之间有怎样的数量关系并证明你的结论.20. 如图1,四根长度一定....的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.)ABHMNAC B(D【答案与解析】 一.选择题1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=,222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.2.【答案】C ; ?【解析】连接AC ,计算AC 2=BC 2=5,AB 2=10,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°. 3.【答案】D ;【解析】D 选项222224+≠,故不是直角三角形.4.【答案】C ;【解析】作A 点关于河岸的对称点A′,连接BA′交河岸与P ,则PB+PA=PB+PA′=BA′最短,如图,BB′=BD+DB′=1200,B′A′=500,BA′=1300(m ).5.【答案】D ; (【解析】解:根据直角三角形的面积可以导出:abc h=.再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h .两边同除以a 2b 2,得222111a b h +=.6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325.7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,长方形KLMJ 的面积为10×11=110.故选C .—二.填空题 9.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形. 10.【答案】3;【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 11.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4. 12.【答案】5 }【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.13.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5.14.【答案】4916【解析】连接CD ,假设AE=x ,可得EC=8﹣x .∵DE=1,∴DC 2=DE 2+EC 2=1+(8﹣x )2,AE 2+BC 2=x 2+16,∵DC 2=AE 2+BC 2,∴1+(8﹣x )2=x 2+16,x =4916. 15.【答案】3,2, 8; :【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.16.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三.解答题 17.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , ^即AF =3-2x ,AE =4-3x ,PHNMCBA ∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC += ∴ △ABC 是直角三角形,∠A =90°. ∴ 1143622ABC S AB AC ==⨯⨯=△ 18.【解析】解:如图,作AD ⊥BC ,交BC 于点D , ∵BC=8cm , 《∴BD=CD=BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时, ∵AP 2=PD 2+AD 2=PC 2﹣AC 2,∴PD 2+AD 2=PC 2﹣AC 2,∴PD 2+32=(PD+4)2﹣52∴PD=, ∴BP=4﹣==, ∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=, ~∴BP=4+==, ∴t=25秒,∴点P 运动的时间为7秒或25秒.19. 【解析】 解:①3;② 2AM +2BN =2MN证明:过点B 作BP ∥AC 交MH 延长线于点P ,连接NP , .∴∠A =∠PBH在△AMH 和△BPH 中 ∠A =∠PBH AH =BH∠AHM =∠BHP ∴△AMH ≌△BPH ∴AM =BP ,MH =PH 又∵NH ⊥MP 。
八年级数学下册勾股定理全章复习与巩固(基础)巩固练习及答案解析
勾股定理全章复习与巩固(基础)巩固练习一.选择题1.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( )A.5mB.7mC.8mD.10m2.如图,从台阶的下端点B到上端点A的直线距离为( )A.21012 B.3C.586 D.53.下列命题中是假命题的是()A.三个内角的度数之比为1:3:4的三角形是直角三角形;B.三个内角的度数之比为1:3:2的三角形是直角三角形;C.三边长度之比1:3:2的三角形是直角三角形;D.三边长度之比2:2:2的三角形是直角三角形;4. 如图所示,在△ABC中,AB=AC=5,BC=6,点E、F是中线AD上的两点,则图中阴影部分的面积是().A.6 B.12 C.24 D.305.下列三角形中,是直角三角形的是( )A.三角形的三边满足关系a b c+= B.三角形的三边比为1∶2∶3C.三角形的一边等于另一边的一半D.三角形的三边为9,40,416.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元7.(2018•江阴市模拟)如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1448. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cmcm D.122cm B.42cm C.62二.填空题9.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.10.若等边三角形的边长为2,则它的面积为______.11.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC 的距离是______米.12.下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c、、满足222+=,那么这个三a b c角形是直角三角形.13.(2018•杭州模拟)如图,圆柱形容器中,高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为cm.(容器厚度忽略不计)14.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.15.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是102cm,则其中最大的正方形的边长为______cm.16.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.三.解答题17.若直角三角形两直角边的比是3:4,斜边长是20,求此三角形的面积.18.(2018春•安次区校级月考)甲乙两船从位于南北走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.19.如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD的长.20.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B '处,点A 的对应点为A ',折痕分别与AD ,BC 边交于点M ,N .求BN 的长.【答案与解析】 一.选择题 1.【答案】C ;【解析】树高为3358=+=.2.【答案】A ;=3.【答案】B ; 4.【答案】A ;【解析】由题意BEF CEF S S =△△,∴ 13462ABD S S ==⨯⨯=△阴影.5.【答案】D ;6.【答案】C ;【解析】作高,求得高为15 m ,所以面积为120151502⨯⨯=2m .7.【答案】A ;【解析】解:过D 作BM 的垂线交BM 于N ,∵图中S 2=S Rt △DOI ,S △BOC =S △MND ,∴S2+S4=S Rt△ABC.可证明Rt△AGE≌Rt△ABC,Rt△DNB≌Rt△BHD,∴S1+S2+S3+S4=S1+S3+(S2+S4),=Rt△ABC的面积+Rt△ABC的面积+Rt△ABC的面积=Rt△ABC的面积×3=12×5÷2×3=90.故选:A.8.【答案】C;【解析】设AE=x,则DE=BE=9-x,在Rt△ABE中,. 二.填空题9.【答案】8;10.;⨯=2211.【答案】30;12.【答案】①④;【解析】①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c、、满足222+=”也是a b c正确的,这是勾股定理的内容.13.【答案】130;【解析】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为120cm,底面周长为100cm,在容器内壁离容器底部40cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm与蚊子相对的点A处,∴A′D=50cm,BD=120cm,∴在直角△A′DB中,A′B===130(cm).故答案是:130.14.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132. 15.【答案】【解析】根据勾股定理,四个小正方形的面积和等于最大正方形的面积. 16.【答案】81;三.解答题 17.【解析】解:设此直角三角形两直角边分别是3x ,4x ,由勾股定理得: ()()2223420x x +=化简得:216x =∴直角三角形的面积为: 21346962x x x ⨯⨯==.18.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,∵602+802=1002, ∴∠BAC=90°,∵C 岛在A 北偏东35°方向, ∴B 岛在A 北偏西55°方向. ∴乙船所走方向是北偏西55°方向.19.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出()222(30)1020x x -=++, 解得x =5. 所以BD =5. 20. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=. 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=. ∴ 222CN B C B N ''+=.∵ C B '=3, ∴ 222(9)3x x -+=.解得5x =.∴5BN .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【巩固练习】一.选择题1. 在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.在下列说法中是错误的( )A .在△ABC 中,∠C=∠A 一∠B,则△ABC 为直角三角形.B .在△ABC 中,若∠A:∠B:∠C=5:2:3,则△ABC 为直角三角形.C .在△ABC 中,若35a c =,45b c =,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.4.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )A .ab =h 2B .a 2+b 2=h 2C .111a b h +=D .222111a b h+= 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A.25B.325C.2197D.4057. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+C.()()222221,2,1a m b m c m =-==+D.()()2222221,2,1a m b m c m =-==+ 8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )二.填空题9. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE=1cm ,P 为对角线BD 上的任意一点,则AP+EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要cm.14.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为1米,∠B=90°,BC=4米,AC=8米,当正方形DEFH运动到什么位置时,即当AE=米时,有DC2=AE2+BC2.15. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC 边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三.解答题17.如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD,求:△ABC的面积.18.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s 的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.19. 有一块直角三角形纸片,两直角边AC = 6cm ,BC = 8cm , ①如图1,现将纸片沿直线AD 折叠,使直角边AC 落在斜边AB 上,且与AB 重合, 则CD = _________.图1 图2② 如图2,若将直角∠C 沿MN 折叠,使点C 落在AB 中点H 上,点M 、N 分别在AC 、BC 上,则2AM 、2BN 与2MN 之间有怎样的数量关系?并证明你的结论.20. 如图1,四根长度一定....的木条,其中AB =6cm ,CD =15cm ,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2);位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为x ,请用x 的代数式表示AD 的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.【答案与解析】一.选择题1.【答案】D ;【解析】因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=, 222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.B M N AC B D【解析】连接AC ,计算AC 2=BC 2=5,AB 2=10,根据勾股定理的逆定理,△ABC 是等腰直角三角形,∴∠ABC =45°.3.【答案】D ;【解析】D 选项222224+≠,故不是直角三角形.4.【答案】C ;【解析】作A 点关于河岸的对称点A ′,连接BA ′交河岸与P ,则PB+PA=PB+PA ′=BA ′最短,如图,BB ′=BD+DB ′=1200,B ′A ′=500,BA ′=1300(m ).5.【答案】D ; 【解析】解:根据直角三角形的面积可以导出:ab c h =.再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2= 222a b h.两边同除以a 2b 2,得222111a b h +=. 6.【答案】B ;【解析】()222222AC BC AC BC AC BC AB AB CD +=++⋅=+⋅=169+2×13×6=325.7.【答案】B ;【解析】()()22141m m m -+=+.8.【答案】C ;【解析】如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,长方形KLMJ 的面积为10×11=110.故选C .二.填空题9.【答案】6;【解析】延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形.【解析】设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.11.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4.12.【答案】5【解析】作E 点关于直线BD 的对称点E ′,连接AE ′,则线段AE ′的长即为AP+EP 的最小值5.13.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5.14.【答案】4916【解析】连接CD ,假设AE=x ,可得EC=8﹣x .∵DE=1,∴DC 2=DE 2+EC 2=1+(8﹣x )2,AE 2+BC 2=x 2+16,∵DC 2=AE 2+BC 2,∴1+(8﹣x )2=x 2+16,x =4916. 15.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.16.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12 在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三.解答题17.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x ,∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC +=∴ △ABC 是直角三角形,∠A =90°.∴ 1143622ABC S AB AC ==⨯⨯= △ 18.【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=BC=4cm ,∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP 2=PD 2+AD 2=PC 2﹣AC 2,∴PD 2+AD 2=PC 2﹣AC 2,∴PD 2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.P H N M C BA19. 【解析】解:①3;② 2AM +2BN =2MN证明:过点B 作BP ∥AC 交MH 延长线于点P ,连接NP ,∴∠A =∠PBH在△AMH 和△BPH 中∠A =∠PBHAH =BH∠AHM =∠BHP∴△AMH ≌△BPH∴AM =BP ,MH =PH又∵NH ⊥MP∴MN =NP∵BP ∥AC ,∠C =90︒∴∠NBP =90︒∴222NP BN BP =+∴2AM +2BN =2MN20.【解析】解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=.∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++.化简,得6x =180.解得 x =30.即 BC =30.∴ AD =39.。