平行线的性质说课稿(供参考)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的性质》(第一课时)说课稿

今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册第五章的5.3节《平行线的性质》(第一课时).下面我就从教材分析;学生情况分析;教学目标的确定;教学重点、教学难点的分析;教法与学法;教学过程设计这几个方面把我的理解和认识作一个说明.

一、说课标

新课程标准对本课的要求是学生在教师的引导讲解下知道两直线平行同位角相等,进而自主探索平行线的其他性质。

在教学活动中,新课标要求应该注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程;注重对平行线性质推导和探索本身的理解,而不是追求探索的数量和技巧。

二、说教材

《平行线的性质》是新人教版七年级数学下册第五章第三小节的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一性质进行验证,再通过课件的演示对学生进行讲解,使学生加深对这一知识

点的理解。在这一性质的基础上经过简单的推理,得到平行线的另外两个性质。

三、说学情

在本节课学习之前,学生已经了解了平行线的概念,经历了两条直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补,可以判定两条直线平行,那么两条平行线被第三条直线所截,同位角、内错角、同旁内角之间会有什么关系呢?学生有进一步探究的愿望和能力。所以本节课的内容对学生来说并不是非常难学。

四、说教学目标

根据数学课程标准的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:

(1)知识与技能目标:探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。(2)过程与方法目标:通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

(3)情感态度与价值观目标:通过问题情境的创设和解决使学生感悟到几何知识来源于实践并反作用于实践及认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。

教学重点、难点分析:

平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动

来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定

本节课的重点为:探究平行线的性质.

由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定本节课的难点为:明确平行线的性质和判定的区别

五、说教法、学法

新课程的理念要求培养学生自主学习,学生是主体,教师起的是引导作用。为了让学生真正成为课堂的主人,这节课我选用以下教学方法:

1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。

2、新技术教学法:在空间与图形教学过程中充分利用多媒体教学技术,给学生以直观的感受,加深学生的印象。

3、鼓励和表扬法:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。

在学法指导上,通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。

六、说教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:〈一〉创设情境激发兴趣

出示问题:世界著名的意大利比萨斜塔,建于公元1173年,为8层圆柱形建筑,全部用白色大理石砌成塔高54.5米.目前,它与地面所成的较小的角为∠1=85º,它与地面所成的较大的角是多少度?揭示三线八角,进而引领学生回顾平行线的判定方法。然后,教师由此设问:根据同位角相等可以判定两直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?从而揭示本节课要探索的问题。

设计意图:(1)利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。

(2)是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.

〈二〉探究新知实验猜想

学生完成的第一个任务:拿出带有平行线的笔记本,随意画截线,选取任意一组同位角,鼓励学生运用多种方法进行探索,如测量或叠合的方法进行验证,由学生自己发现,并用自己的语言来归纳平行线的性质一。

设计意图:这一探究着重面向全体学生,让全体学生都能参与到探究活动中来,全班同学采用不同的方法操作验证,增加了结果的可信度。再通过小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。

学生完成的第二次探究:后两条性质的得出。在大胆猜想和已有知识的背景下,强调学生自主学习,使学生初步养成言之有据的

习惯,从而能进行简单的推理.在这一过程中,教师关注学生独立书写推理过程能否做到知识的合理迁移,书写是否正确.

设计意图:引导学生从“说点儿理”向“说清理”过渡,由模仿到独立操作,逐步培养学生的推理能力,鼓励学生敢于发表自己的观点。

〈三〉归纳性质

平行线的性质

性质1. 两直线平行,同位角相等.

性质2. 两直线平行,内错角相等.

性质3. 两直线平行,同旁内角互补.

设计意图:在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.

试一试用符号语言表达上述三个性质.

学生独立思考回答,教师组织学生互相补充,并出示准确形式. 如图

性质1.∵a∥b(已知),

∴∠1=∠ 2.(两直线平行,同位角相等)

性质2.∵a∥b,(已知)

∴∠2=∠3(两直线平行,内错角相等).

性质3.∵a∥b(已知),

∴∠5+∠6=180o.(两直线平行,同旁内角互补)

相关文档
最新文档