六年级数学培优题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学培优题含答案
一、培优题易错题
1.用火柴棒按下图中的方式搭图形.
(1)按图示规律填空:
图形符号①②③④⑤
火柴棒根数________________________________________
【答案】(1)4;6;8;10;12
(2)2n+2
【解析】【解答】解:(1)填表如下:
图形符号①②③④⑤
火柴棒根数4681012
【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;
(2)由(1)可得规律:2+2n.
2.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.
(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;
(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8
①第几次滚动后,小圆离原点最远?
②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)
(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.
【答案】(1)-4π
(2)解:①第1次滚动后,|﹣1|=1,
第2次滚动后,|﹣1+2|=1,
第3次滚动后,|﹣1+2﹣4|=3,
第4次滚动后,|﹣1+2﹣4﹣2|=5,
第5次滚动后,|﹣1+2﹣4﹣2+3|=2,
第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,
则第6次滚动后,小圆离原点最远;
②1+2+4+3+2+8=20,
20×π=20π,
﹣1+2﹣4﹣2+3﹣8=﹣10,
∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π
(3)解:设时间为t秒,
分四种情况讨论:
i)当两圆同向右滚动,
由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,
小圆与数轴重合的点所表示的数为:πt,
2πt﹣πt=6π,
2t﹣t=6,
t=6,
2πt=12π,πt=6π,
则此时两圆与数轴重合的点所表示的数分别为12π、6π.
ii)当两圆同向左滚动,
由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,
小圆与数轴重合的点所表示的数:﹣πt,
﹣πt+2πt=6π,
﹣t+2t=6,
t=6,
﹣2πt=﹣12π,﹣πt=﹣6π,
则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.
iii)当大圆向右滚动,小圆向左滚动时,
同理得:2πt﹣(﹣πt)=6π,
3t=6,
t=2,
2πt=4π,﹣πt=﹣2π,
则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.
iiii)当大圆向左滚动,小圆向右滚动时,
同理得:πt﹣(﹣2πt)=6π,
t=2,
πt=2π,﹣2πt=﹣4π,
则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π
【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,
故答案为:﹣4π;
【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.
3.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.
(1)写出图中格点四边形DEFG对应的S,N,L.
(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.
【答案】(1)解:根据图形可得:S=3,N=1,L=6
(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,
,
解得a ,
∴S=N+ L﹣1,
将N=82,L=38代入可得S=82+ ×38﹣1=100
【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.
4.如果,那么我们规定 .例如:因为,所以 .
(1)根据上述规定,填空:
________, ________, ________.
(2)若记,, .求证: .
【答案】(1)3;0;-2
(2)解:依题意则
∵
∴
【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,
故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.
5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.
(1)用含的代数式表示点对应的数:________;
(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.
①用含的代数式表示点在由到过程中对应的数:________ ;
②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);
③当PQ=3 时,求 t的值.________
【答案】(1)
(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,
【解析】(1)点所对应的数为:
( 2 )①
② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒
当时,:,:
,解之得
当时,:,:
,解之得
【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.