核外遗传PPTppt教用课件

合集下载

二十章核外遗传信息的传递

二十章核外遗传信息的传递

Ct DNA基因组成有以下特点:
(1)基因组由两个IR和一个 SSC及一个 LS (2)IRA和IRB,编码相同,方向相反。 (3)ctDNA启动子和原核生物的相似,基因产
生单顺反子或多顺反子的mRNA; (4)不同ctDNA基因组成和数目几乎是相同的,
产物多为类囊体的成分或和氧化还原反应有关;
(5)其tRNA基因中有内含子,有的位于D环上, 此和原核及真核生物核tRNA都不相同;
突变
(部分呼吸)
四分体的基因型, 表型和分离比
→ 小 菌 落 (pet-): 大菌落 =2:2
→全为大菌落[P + N] →小菌落[P -S](迅 速形成孢子) →小菌落[P -S](长 时间分裂)
比 例 不 等 (1 ~ 99%)
正常线粒体
小菌落线粒体
mt DNA密码子与核基因密码子的差异 (1)AUA编码Met,而不是Ile; (2)UGA编码Trp,而不是终止密码子 (3)AGA,AGG编码Arg,而不是终止密码
6
6
其它
NADH 脱氢酶
6
6
铁氧化还原酶
3
3
核酮糖 BP 羧化酶
1
1
未鉴定
29
29
总计
110 124
参考 B.Lewin: 《GENES》Ⅵ.1997,Table 24。2
第四节 线粒体遗传
一.线粒体基因组(mt DNA) (一)mt DNA的基因组成
(1)闭合环状DNA (2) 基因数目和排列顺序相同 (3)有D环和2个复制起始点 (5)基因间没有间隔,因此每个基因不可
叶绿体基因组
Ct DNA的基因组成
表 20-6 叶绿体基因组的组成
地钱

核外遗传

核外遗传
ቤተ መጻሕፍቲ ባይዱ
些细胞质基因在遗传时并不表现母系遗传现象)
2. 遗传方式是非孟德尔式的,杂交后代一般不出 现一定的分离比例。 3. 连续的回交能把母本的核基因全部置换掉,但 母本的细胞质基因及其控制的性状仍不消失
第二节 叶绿体遗传
1. 叶绿体的遗传表现
紫茉莉的花斑叶色遗传
天竺葵的花斑叶色遗传
玉米叶片的埃型条纹的遗传
2、
3、 4、 5、
S(RR)1
保持系 ——N(rr) 5
质核不育型的三系配套(三系二区)
S rr
不育系
×
N rr 保持系
S rr
×
N RR
恢复系
S rr
S Rr F1杂交种 N rr N RR
光温敏雄性不育性与两系法

光温敏雄性不育性:

不育性表现受遗传与环境因素共同影响,也称 为生态不育型
从实验结果看出:
正反交结果不同,子一代总是表现出母本的性状 ,
与父本提供的花粉无关。
原因:精卵结合中形成的合子父母双亲所提供的 遗传物质不均等造成的。
细胞质遗传的主要特点
核外遗传因子由一个亲本而来的 ,不经过有丝分裂
或减数分裂,它们的行为不按核基因的方式进行:
1. 正反交的结果不一样,F1表现母系遗传。(有

减数分裂产物时线粒体随机分配结果:

全部为野生型菌落(+/-)
或混合型菌落
• 野生型菌落(+/-, +) • 小菌落(-) 抑制型小菌落
中性小菌落的遗传

由于缺乏线粒体基因组,故 完全不具有线粒体负责的
ATP合成电子传递途径(有
氧呼吸)

细胞生长的能量来源依赖于

遗传学第八章 核外遗传分析课件

遗传学第八章 核外遗传分析课件
遗传学 第八章 核外遗传分析
2、 性比(sex-ratio,SR)因子
◇SR因子是胞质中的一种原生动物,在雌蝇 和雄蝇中都能发现,但对发育中的雄性幼 虫是致死的,所以后代中雌蝇比例远大于 雄蝇比例。
◇将SR雌蝇的卵细胞质注入正常雌蝇可诱导 SR现象。
◇有证据表明,产生雄性致死毒素的可能是原 生动物内的病毒。
基因型与表型的关系
细胞质基因 正常(N) 不育(S)
核基因型
RfRf(可育) Rfrf(可育) rfrf(不育) N(RfRf)可育 N(Rfrf)可育 N(rfrf)可育 S(RfRf)可育 S(Rfrf)可育 S(rfrf)不育
遗传学 第八章 核外遗传分析
(二)可能的遗传机制 1、线粒体与雄性不育的关系 2、叶绿体与雄性不育的关系
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
• KSS综合征(Keams-Sayre Syndrome)是多 系统线粒体病,主要症状为眼肌麻痹和色素性视 网膜炎。患者骨骼肌细胞mtDNA有2.0kb7.0kb的缺失。 遗传学 第八章 核外遗传分析
五、叶绿体遗传及其分子基础
(一)衣藻的叶绿体遗传
◇ 衣藻细胞中只有一个叶绿体,约含50个 拷贝的环状ds-DNA分子。 ◇ 不同交配型(mt+,mt-)的单倍体衣藻 杂交,形成短暂2n时期,进行减数分裂。 ◇ 虽然杂交双方融合时为合子提供等量细 胞质,但叶绿体只由mt+方传递,表现单亲 遗传。
遗传学 第八章 核外遗传分析
遗传学 第八章 核外遗传分析
(二)叶绿体遗传的分子基础 1、叶绿体基因组
大小:环状双链DNA分子。大小120-190kb。 其基因序列中不含5-甲基胞嘧啶。
◆ cpDNA编码约100种蛋白质和RNAs,包 括45个编码RNA的基因,27个编码与基因表达 有关的蛋白的基因,18个编码类囊体膜的蛋白基 因和10个与电子传递功能有关的基因。

《核外遗传分析》课件

《核外遗传分析》课件

核外遗传的特点
核外基因组结构简单,基 因密度高,复制和转录过 程相对简单。
核外基因组具有母系遗传 的特点,即线粒体基因组 和叶绿体基因组只来自母 本。
核外基因组在进化上相对 保守,但在某些物种中也 可能发生基因重组和突变 。
核外遗传分析的意义
核外遗传分析有助于深入了解生 物的进化历程和物种起源。
详细描述
表观遗传学分析在核外遗传分析中扮演着重要的角色。表观遗传学标记如DNA甲基化和 组蛋白修饰等可以影响基因的表达水平,进而影响生物体的表型。通过分析这些表观遗 传学标记,可以深入了解基因表达的调控机制,为疾病诊断和治疗提供新的思路和方法

转录组学分析
总结词
转录组学分析主要研究基因转录本的种类和丰度,通过分析转录本的变化,揭示基因表达的动态变化 和调控机制。
和思路。
02
个体化用药
根据个体的核外遗传变异情况,可以制定针对个体的个性化用药方案,
提高药物的疗效并降低副作用。
03
药物反应差异研究
不同个体对同一种药物的反应可能存在差异,这种差异可能与个体的核
外遗传变异有关,通过研究这种关系可以更好地理解药物反应的个体差
异。
个体化医疗的核外遗传分析应用
精准医疗
基于个体的核外遗传变异情况,可以为患者提供精准、个性化的 治疗方案,提高治疗效果。
技术发展的挑战
技术更新换代
01
核外遗传分析技术不断发展,需要不断更新知识和技术,以适
应新的分析需求。
技术局限性
02
目前核外遗传分析技术仍存在一定的局限性,如检测灵敏度、
特异性等方面仍有待提高。
技术普及
03
如何将核外遗传分析技术普及到临床实践中,提高其在医学研

分子遗传学核外遗传

分子遗传学核外遗传
ห้องสมุดไป่ตู้
染色体外DNA可以在细胞内自 主复制和传播,影响基因的表达
和细胞功能。
染色体外DNA的变异和扩增可 以导致基因组不稳定和疾病的发
生。
03
核外遗传物质的特性
遗传方式的多样性
01
核外遗传物质包括线粒体DNA和叶绿体DNA,它们分别通过母 系和父系遗传。
02
线粒体DNA和叶绿体DNA的基因组结构简单,基因数目较少,
生物燃料
利用核外遗传物质改良微 生物,提高微生物产乙醇 等生物燃料的能力,降低 生产成本和提高产量。
05
核外遗传物质的挑战与前 景
核外遗传物质研究的挑战
技术难度
核外遗传物质的研究需要高精度 的技术手段,如测序技术、基因 编辑等,这些技术目前仍处于不 断发展和完善阶段,存在一定的
技术难度。
样本获取
分子遗传学的重要性
基础研究
分子遗传学为生命科学领域的基 础研究提供了重要的理论支撑, 推动了生物学、医学、农学等领
域的发展。
医学应用
分子遗传学在医学领域的应用广泛, 如疾病诊断、治疗和预防等方面, 为人类健康提供了有力支持。
农业实践
分子遗传学在农业领域的应用,如 品种改良、抗逆性育种等方面,提 高了农业生产效率和可持续性。
核外遗传物质的研究需要大量的 样本,包括细胞、组织等,这些 样本的获取需要耗费大量时间和 精力,且存在一定的伦理问题。
数据解读
核外遗传物质的研究会产生大量 的数据,如何解读这些数据,挖 掘其中的生物学意义,需要具备 深厚的生物学和数据分析知识。
核外遗传物质研究的前景
疾病诊断与治疗
随着核外遗传物质研究的深入,人们将更加了解疾病的发病机制, 为疾病的诊断和治疗提供新的思路和方法。

第十章核外遗传分析

第十章核外遗传分析
核基因 A:a=1:1,表型全部为poky突变
44
1.4 粗糙脉孢菌 poky 小菌落遗传
野生型与 poky 突变体旳菌丝融合 →异核体 →异核体内两种不同核形成两种不同旳分生 孢子→不同旳菌株: 有野生型核旳菌株体现出 poky 小菌落性状, 有 poky 小菌落性状旳菌株却体现出野生型菌 落旳性状.
42
1.3 链孢霉缓慢生长突变型(Poky)旳遗传
正交:
正常 mt A
(+) (野生型)
缺失 mt
a
接合时只提供核
(-) (poky)
A AAAa a a a
子囊孢子从“+” 接合型那里得到正常线粒体,全部野生型。 核基因 A:a=1:1
43
反交:
A
(+) (poky)
a
(-) (野生型)
A AAA a a a a
34
第四节 线粒体遗传及其遗传基础
35
1. 线粒体遗传
1.1 酵母旳小菌落遗传
野生型酵母生长快, 形成旳菌落 较 大, 所以称大菌落( grande) 20 世纪40 年代,法国学者埃弗雷西(B. Ephrassi)在面包 酵母中发觉了一种突变型生长缓慢, 形成旳菌落很小, 所 以称小菌落突变体(petite mutant)。 后来发觉该突变体缺乏 细胞色素 a, b 和细胞色素c氧化酶, 是线立体基因全部丢失(突变)旳成果。
8
5. 有细胞质中旳附加体或共生微生物决定旳性状, 其体现类似病毒旳转导或感染,即可传递给其他 细胞。
6. 基因定位困难。 因为1)杂交后裔不体既有百分 比旳分离;2)带有保值基因旳细胞器在细胞分裂 时旳分配不是均匀旳。
9
核外遗传现象旳发觉

第十三章-核外遗传分析

第十三章-核外遗传分析
裂时分配是不均匀的。
细胞质遗传:正交和反交的遗传表现不同。
核遗传:表现相同,其状表现于母本时才能遗传给子代,
故又称母性遗传。
母性遗传:
真核生物有性过程:
卵细胞:有细胞核、大量的细胞质和细胞器。
∴能为子代提供核基因和全部或绝大部分胞质基因。
精细胞:只有细胞核,细胞质或细胞器极少或没有。
mtDNA被恢复。在校正事情中有时出现mtDNA的重排,因为
在线粒体基因组中编码蛋白质的基因是广泛散布的,这些缺失
和重排导致有氧呼吸中酶的缺陷,而产生小菌落。
人们提出抑制小菌落对正常的线粒体有抑制效应可能是:
(1)、抑制型线粒体mtDNA可能比正常的线粒体复制得更快,
在细胞中简单地蔓延,所观察的在品种间的抑制性的变异,
DNA进行了比较研究,发现小菌落线粒体DNA除有一些片断
多次重复外,线粒体基因组中还有大片段缺失。可见酵母小菌
落突变是由于线粒体DNA的遗传变异,致使线粒体不能正常执
行其功能,线粒体中蛋白质合成受阻,造成了呼吸代谢的缺陷。
3、抑制小菌落(suppressive petites)
抑制小菌落对野生型产生影
倍体细胞融合产生二倍体对细胞质是大小相同贡献相等的。
中性小菌落的本质是什么?
根据氯化铯密度梯度离心,测出小菌落细胞中线粒体DNA
与大菌落的线粒体DNA明显不同,有时小菌落中甚至还测不出
线粒体DNA 的存在。这说明,小菌落突变使线粒体DNA严重
缺损或大部分丢失。用分子杂交和限制酶分析方法对小菌落线
粒体DNA全部缺失或严重变异的类型与野生型大菌落的线粒体
S至80 S大小不等的颗粒,由两个大小不等的亚基组成,每个亚基只
有一条由线粒体DNA转录而来的rRNA分子。

核外遗传

核外遗传

27
二、线粒体遗传的分子基础 1. 线粒体DNA特征: – 裸露、双链、环状(线状或放射状)DNA, – 多拷贝:Thousands / cell – GC含量低 – 没有重复序列 – 重链(H)和轻链(L):重链中富含G,轻链中富
含C
29
30
31
2. 线粒体基因组
人、鼠、牛:16kb 玉米:570kb 细胞色素 c 氧化酶I、II、III 细胞色素 b
36
第 四 节 叶绿体的遗传
一、叶绿体遗传的表现: 1. 紫茉莉中花斑植株:
白色、绿色、花斑三种枝条
,而且白色和绿色组织之间有明
显的界限。
37
.柯伦斯杂交试验:
接受花粉的枝条 白色 绿色 花斑 提供花粉的枝条 白色、绿色、花斑 白色、绿色、花斑 白色、绿色、花斑 杂种植株的表现 均为白色 均为绿色 白色、绿色、花斑 但不成比例
38
39
40
解释
• 花斑植株 细胞质中的叶绿体数量比较少 • 在细胞分裂时有些细胞中会分不到叶绿体 因此变成白色,所以形成花斑植株 • 在雌性胚子形成时,
–如果配子具有完全的叶绿体因此形成绿色植株、 –如果没有叶绿体会形成白色植株、 –如果具有少量的叶绿体会形成花斑植株
41
本章内容
第一节 核外遗传的概念 第二节 母性影响 第三节 线粒体遗传 第四节 叶绿体遗传 第五节 共生体的遗传
15
母本
正交:
右旋(+ +)×左旋 (s s)
反交:
左旋(s s)× 右旋(+ +)
F1
均右旋(+ s)
均左旋(+ s)
F2
均右旋 ( 1SS∶2Ss∶1ss)

医学:遗传学-核外遗传学

医学:遗传学-核外遗传学
分子生物学时代
随着分子生物学技术的发展,核外遗传学得到了更深入的研究,发现了更多细胞质基因 及其功能。
当前研究
目前,核外遗传学已经成为遗传学领域的一个重要分支,对于理解生物体的复杂性和疾 病机制具有重要意义。
02 核外遗传学的基本概念
表观遗传学
01
表观遗传学研究基因表达的调控机制,这些机制不涉及DNA序列的改变,而是 通过DNA甲基化、组蛋白修饰和非编码RNA等机制来调控基因表达。
医学遗传学-核外遗传学
目录
• 核外遗传学概述 • 核外遗传学的基本概念 • 核外遗传学的应用 • 核外遗传学的挑战与前景
01 核外遗传学概述
核外遗传学的定义
核外遗传学是一门研究细胞质遗传物 质的学科,主要关注细胞质中非染色 体DNA和RNA分子的结构和功能。
核外遗传学与核遗传学相对应,核遗 传学主要研究细胞核内染色体的遗传 物质。
药物反应预测
了解患者的基因变异情况有助于预测患者对特定药物的反应,避免 无效治疗和药物浪费。
个体化医疗与精准医学
个体化预防
根据个体的基因变异情况,可以为个体提供 针对性的预防措施,降低患病风险。
精准筛查
通过核外遗传学研究,可以开发针对特定人群的高 效筛查方法,提高早期发现率。
遗传咨询
通过对患者的基因变异进行分析,可以为患 者提供遗传咨询,帮助其了解自身遗传信息 并制定合适的生育计划。
04 核外遗传学的挑战与前景
核外遗传学面临的挑战
技术难度
核外遗传物质如线粒体DNA和细胞质DNA的检测和分析技术相对 复杂,需要高精度的实验设备和专业的技术人员。
样本获取
核外遗传物质的样本获取相对困难,需要特殊的处理和保存方法, 以确保样本质量和稳定性。

第10章:细胞质遗传(核外遗传)

第10章:细胞质遗传(核外遗传)

第二节 细胞器基因组与核基线粒体DNA 的电镜 照片( 照片( 转引自 Russell,1992)
1)、大小变化较大: 1)、大小变化较大: 从哺乳动物的约16 从哺乳动物的约16 kb 到高等植物的数十万bp 到高等植物的数十万bp 如玉米的为570kb) (如玉米的为570kb) 2)、DNA分子形态 分子形态: 2)、DNA分子形态: 裸露的闭合环 状双链结构, 状双链结构,但也 有线性的。 有线性的。 4)、组成成分: 4)、组成成分: G、C的含量比 如酵母,G ,G、 A、T少,如酵母,G、 含量仅为21%; C含量仅为21%; 5)、浮力密度: 5)、浮力密度: 浮力密度较低, 浮力密度较低, 两条单链密度不同, 两条单链密度不同, 一条为重链(H ),另 (H链 一条为重链(H链),另 一条为轻链(L (L链 一条为轻链(L链); 6)、 个复制起点, 6)、有2个复制起点,分 别复制H 别复制H和L链。D环复制。 7)、细胞内有多个mt,每个mt mt,每个mt有 几个DNA DNA。 7)、细胞内有多个mt,每个mt有1~几个DNA。
dd →向左
受精卵 纺锤体 向中线 的左侧 分裂时 为左旋
四、持续饰变(附带介绍) 持续饰变(附带介绍)
环境引起的表型改变通过雌配子传递给子代, 环境引起的表型改变通过雌配子传递给子代,连续 传递但不能隔代遗传,而且随着繁殖代数的增加, 传递但不能隔代遗传,而且随着繁殖代数的增加,性状 逐渐恢复原状,这种遗传现象叫持续饰变。 逐渐恢复原状,这种遗传现象叫持续饰变。
这又是 一因多效 面粉蛾(欧洲麦蛾)有一色素物质由A 控制: 面粉蛾(欧洲麦蛾)有一色素物质由A和a控制: 的表现
二、短暂的母性影响举例
野生型(A):幼虫皮肤灰色,成虫眼睛深褐色; 野生型(A):幼虫皮肤灰色,成虫眼睛深褐色; (A):幼虫皮肤灰色 突变型(a):幼虫皮肤白色,成虫眼睛红色。 (a):幼虫皮肤白色 突变型(a):幼虫皮肤白色,成虫眼睛红色。 反交 正交

核外遗传

核外遗传

二、分子基础
分子特点: (一)、线粒体 )、线粒体DNA分子特点: 线粒体 分子特点
与原核生物的DNA一样,没有重 一样, ⑴. 与原核生物的 一样 复序列; 复序列; 浮力密度比较低; ⑵. 浮力密度比较低; 含量比 、 少 ⑶. G、C含量比A、T少,如酵母 、 含量 mtDNA的GC含量为 含量为21%; 的 含量为 ; 两条单链的密度不同 单链的密度不同, ⑷. 两条单链的密度不同,分别为重 和轻链(L); 链(H)和轻链 ; 和轻链 非常小, ⑸. mt DNA非常小,仅为核 非常小 仅为核DNA十 十 万分之一。 万分之一。
§14.6 母性影响
• 小结: 小结:
母性影响不是由核外基因引起 母性影响不是由核外基因引起 由核基因 的产物在核外积累引起(短暂的)、或由受精前母体基因 的产物在核外积累引起(短暂的)、或由受精前母体基因 )、 型决定(持久的) 型决定(持久的) 这些都赖于母体核基因的影响
§14.2 线粒体遗传及分子机制
线粒体的蛋白是由线粒体本身和核基因共同编码
的,是一种半自主性的细胞器。 是一种半自主性的细胞器。 半自主性的细胞器
§14.3 叶绿体遗传及分子机制
二、分子基础
(一)、低等植物的叶绿体基因组 )、低等植物的叶绿体基因组
1、仅能编码叶绿体本身结构和组成的一部分物质; 、仅能编码叶绿体本身结构和组成的一部分物质; 叶绿体本身结构和组成的一部分物质 如各种RNA、核糖体(70S)蛋白质、光合作用膜 如各种 、核糖体( )蛋白质、 蛋白 羧化酶8个大亚基 和RuBp羧化酶 个大亚基。 羧化酶 个大亚基。 2、 特性:与抗药性、温度敏感性和某些营养缺陷有关。 、 特性:与抗药性、温度敏感性和某些营养缺陷有关。
§14.6 母性影响

细胞质遗传(核外遗传)

细胞质遗传(核外遗传)

• •
系但有类似表型的患者中发现相同的突变

有异质性的存在,而且异质性程度与疾病严重程度呈 正相关。


点突变
已知的疾病中,2/3的点突变发生在与线粒体内蛋 白质翻译有关的tRNA和rRNA基因上 1/3点突变发生于编码mRNA的基因

大片段重组

缺失和重复,以缺失为主 8637—16073之间7.4kb缺失(与衰老有关的退 行性疾病) 4977bp 、7345bp和7599bp缺失与精子活动力 障碍有关( Kao et al)




mtDNA进行半保留复制, 其H链复制的起始点(OH) 与L链复制起始点(OL) 相隔2/3个mtDNA。 在静止期或分裂的细胞都 可能活跃复制,复制过程 H链先复制 复制受核基因的控制


线粒体DNA不仅能复制,且线粒体具有完整的遗 传系统:有核糖体、tRNA,能转录和翻译 编码线粒体部分蛋白质(占少数),基因表达受 核基因调控 大部分线粒体蛋白由核基因编码 线粒体为半自主性细胞器
异质性

如果同一组织或细胞中的mtDNA分子都是一致的,称为 同质性(homoplasmy)。 在克隆和测序的研究中发现一些个体同时存在两种或两种 以上类型的mtDNA,这是由于mtDNA发生突变,导致一 个细胞内同时存在野生型mtDNA和突变型mtDNA,称为 异质性(heteroplasmy)。


(ND1、ND2、ND3、ND4L、ND4、ND5和ND6)

1个编码的结构蛋白质为CoQH2-细胞色素c还原酶复合体 (复合体Ⅲ)中细胞色素b的亚基


脊椎动物mtDNA全序列结构的共同特点是:
①基因数目和排列顺序相同,两条链均有编码功能 ②其中2个rRNAs,14个tRNAs和12个蛋白质基因在重链上 (H),另8个tRNAs基因和1个蛋白质基因在轻链(L)上 ③有一个D环,与mtDNA的复制有关 ④有2个复制起始点,分别复制H和L链 ⑤基因间没有间隔, tRNA基因通常位于mRNA基因和rRNA 基因之间 ⑥某些蛋白质的密码子与核基因通用密码子不同 ⑦线粒体中的tRNA兼用性(反密码子摆动)更大 ⑧mtDNA仅编码氧化呼吸酶类少部分亚基

第九章核外遗传

第九章核外遗传

• 真菌异核体实验
说明:核的来源对小菌 落这个表型性状的发育 并无影响,而核外基因
才是控制小菌落性状的
遗传因子,这种遗传因 子通过异核体的细胞质

传递给它的无性分生孢
子。
第二节 细胞内敏感性物质的遗传
• 草履虫放毒性的遗传
• 草履虫放毒必须有两种因子同时存在: (1)细胞质因子——卡巴粒 (2)核基因K,为显性基因
第九章 核外遗传
第一节 核外遗传的性质与特点
性质:非孟德尔式遗传
特点:
1.细胞器基因组通过细胞质由一代传到下一代;
2.亲本等位基因的分离比为4:0; 3.正反交的结果不同,杂交子代某些性状只有母本表性特征; 4.核外因子不能进行遗传作图
紫茉莉的遗传
原因: 叶绿体在细胞质中。就细胞质而言,雌雄 两性配子的贡献不同。胚珠中的雌配子含 有细胞质,而花粉管中的雄配子很少含有 细胞质,而且通常不含有包括叶绿体在内 的质体的,所以,叶绿体的遗传符合细胞 质遗传的特征,种子后代的叶绿体种类决 定于种子产生于哪一种枝条上,而与花粉 来自哪一种枝条无关。
• 线粒体DNA 的组成
如人类线粒体基因组: 16569bp;
13个蛋白质编码区域(细胞色素b、细胞色素氧化酶的3个亚基、
ATP酶的2个亚基、NADH脱氢酶的7个亚基的编码序列); 2个rRNA(16S和12S)基因; 22个tRNA基因;
线粒体基因的转录和翻译系统
• 不同线粒体的核糖体为55S~80S,由2个亚 基组成,每个亚基有一条rRNA分子; • 线粒体的rRNA由线粒体自身的DNA编码, 线粒体的tRNA也是由线粒体自身的DNA编 码; • 线粒体mRNA没有5´端帽子结构,起始密 码子直接位于5´端; • 线粒体核糖体蛋白由核基因编码。

遗传学课件 (1)_PPT幻灯片

遗传学课件 (1)_PPT幻灯片
摩尔根是遗传学史上的巨人,一生共写了22本书和大约370 篇文章,是第一个获得诺贝尔奖的遗传学家……
(2). 数量遗传学与群体遗传学基础 (1920-) 费希尔等:数理统计方法在遗传分析中的应用
1918年, 费希尔发表了重要文献“根据孟德尔遗传假设的亲属间相 关
的研究” ,成功运用多基因假设分析资料,首次将数量变 异
划分为各个分量,开创了数量性状遗传研究的思想方法。 1925年,首次提出了方差分析(ANOVA)方法, 为数量遗传学的发展
奠定了基础。
(3). 微生物遗传学及生化遗传学 (1940-1953)
➢ 1901-1903年,狄·弗里斯发表“突变学说”,认为,突变是生物进化的因素。 ➢ 1903年,Sutton和Boveri分别提出染色体遗传理论,认为:遗传因子位于细
胞核内染色体上(即萨顿-鲍维里假说),从而将孟德尔遗传规律与 细胞学研究结合起来 ➢ 1906年,贝特森(英国的遗传学家)首创“遗传学(Genetics)”,并引入了F1 代F2代、等位基因、合子等概念 ➢ 1909年,约翰生(丹麦的遗传学家)发表“纯系学说”,并提出“gene”、 “基 因型(genotype)”、和“表现型(phenotype)”等概念,以代替孟 德 尔所谓的“遗传因子” ➢ 1908年,哈德和温伯格分别推导出群体遗传平衡定律
崭新的科学 - 古老的问题
繁殖方式多样性和幼体发育差异性 遗传现象的纷杂
神话传说和权威对科学的臆测 误导学科的发展
“桂实生桂,桐实生桐 ” “橘生淮南则为橘,生于淮北则为枳 ”
公元前4000年的伊拉 克古代巴比伦石刻上记 载了马头部性状在五个 世代的遗传
古代学者对遗传现象的看法
希波克拉底 (Hippocrates,前460—— 前377,古希腊医师 ,“医 学之父” )

遗传学第10章核外遗传分析

遗传学第10章核外遗传分析
遗传学第10章核外遗传分析
目录
• 核外遗传分析概述 • 核外遗传物质的种类和特性 • 核外遗传分析的方法和技术 • 核外遗传在生物科学研究中的应用 • 核外遗传分析的挑战和前景 • 参考文献
01
核外遗传分析概述
核外遗传的概念
01
核外遗传是指基因组中位于细胞 核外的遗传物质,如线粒体和叶 绿体中的DNA。
在生物多样性研究中的应用
要点一
生物多样性评估
要点二
生态适应性
核外遗传物质的分析有助于评估生物多样性。通过比较不 同物种的核外遗传物质,可以揭示物种之间的差异和多样 性,为保护生物多样性提供科学依据。
核外遗传物质的分析有助于研究生物的生态适应性。通过 比较不同环境下的生物种群,可以了解生物如何适应不同 的生态环境,为生态保护和恢复提供指导。
叶绿体遗传物质
总结词
叶绿体是植物细胞中的光合作用器官,也含有自身的遗传物质,称为叶绿体 DNA。
详细描述
叶绿体DNA是环状的,基因组相对较小,通常只包含约120个基因。这些基因 主要参与光合作用和叶绿素合成等过程。叶绿体DNA的突变可以导致植物生长 异常、育性降低和抗逆性减弱等。
质粒和转座子
总结词
04
核外遗传在生物科学研 究中的应用
在物种进化研究中的应用
物种进化研究
核外遗传物质,如线粒体DNA和叶绿体 DNA,提供了物种进化的重要信息。通过 比较不同物种的核外遗传物质,可以揭示物 种之间的亲缘关系和进化历程。
生物分类学
核外遗传物质的分析有助于生物分类学的研 究。通过核外遗传物质的差异,可以对生物 进行更准确的分类和鉴定。
03
核外遗传分析的方法和 技术
核外DNA的提取和纯化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S(Rfrf)。
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
3.三系二区制种法
不育系:指雄性不育的品系。 S(rfrf) 保持系:与不育系杂交,使不育系结籽并保持不育系的雄
性不育特性的品系。如: ♀ S(rfrf) ×♂ N(rfrf)→ S(rfrf) 恢复系:与不育系杂交产生雄性可育的子代,使雄性不育 系的育性得以恢复的品系。如: ♀ S(rfrf) × ♂ N(RfRf) → S(Rfrf) ♀ S(rfrf) × ♂ S(RfRf) → S(Rfrf)
一、与感染颗粒有关的遗传
• 果蝇的CO2敏感型: • 敏感型♀ x 野生型♂ 敏感型 • 敏感型 ♂ x 野生型 ♀ 极少数敏感型 • 极少数敏感型是由于精子带有极少的细
胞质。 • 目前知道这是由于σ因子引起的,有人认
为σ因子是一种病毒,称σ病毒。
二、高等植物叶绿体的遗传
1.紫茉莉花斑遗传:1909年,德国Correns
核外遗传PPTppt教用课件
五、禾谷类作物的雄性不育
雄性不育:雄蕊发育不正常,不能产生有正常功能 的花粉,但其雌蕊发育正常,能接受正常花粉而受 精结实。
类型: ①核不育型 ②质-核互作不育型
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
1.核不育型:是由核内染色体上基因所决定的雄性不 育类型。
线粒体基因组结构更象原核生物的基因组结构 而与真核基因组有比较大的区别,如基因排列 紧密、裸露、闭合环状等。
一个线粒体有1~几个DNA分子,人线粒体有 2~3个。
线粒体基因组的遗传密码:
线粒体有独立的蛋白质翻译系统,其核糖体大小也与 原核生物相似。1979年发现线粒体遗传密码与通用密 码有些不同。表现出遗传密码的不通用性。
白色 绿色
花斑
紫茉莉花斑(绿白斑)性状的遗传
接受花粉的枝条 (母本) 白色
绿色
花斑
提供花粉的枝条 (父本) 白色 绿色 花斑 白色 绿色 花斑 白色 绿色 花斑
杂种表现 (子一代)
白色
绿色
白色、绿色、花斑
白色


绿色






花斑

2.玉米埃型条斑遗传
埃型条斑(striped iojap trait) 有关的基因称作ij IjIj (+/+):正常野生型 ij/ij:质体突变率增加,质体
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
③核-质不育的遗传基础
1)这种类型的不育既与核基因有关,也与细胞质基因有关。 2)细胞质基因:N为雄性可育基因,S为雄性不育基因,表
现为核外遗传现象。 3)核基因:Rf为雄性可育基因,rf为不育基因,Rf对rf显性,
表现为孟德尔式遗传。 不育的基因型:S(rfrf) 可育的基因型:N(RfRf),N(Rfrf),N(rfrf),S(RfRf),
核外遗传PPTppt教用课件
4. 水稻两系法杂交育种
水稻光敏核不育: 长日照条件下为不育(>14h,制种); 短日照条件下为可育(<13.75h,繁种)。
水稻温敏核不育: >28℃,不育; <23-24℃育性转为正常
核外遗传PPTppt教用课件
DD
F1
dd Dd
F2
全右旋
F3
3:1
反交:
P

dd
F1
F2 F3
X

DD
Dd 左旋
全右旋 3:1
椎实螺的外壳旋转方向
原因:椎实螺外壳旋转方向是由受精卵分裂时纺锤体分裂 方向决定的,并由受精前的母体基因型决定。
右旋──受精卵纺锤体倾向于中线右侧45度。 左旋──受精卵纺锤体倾向于中线左侧45度。 母体基因型→纺锤体分裂方向→外壳旋转方向
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
草履虫的放毒型与敏感型
放毒型 敏感型
KK+卡巴粒 Kk+卡巴粒 kk+卡巴粒 (永久) (永久) (短暂)
KK
Kk
kk
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
短 暂 接 合
自 交
核外遗传PPTppt教用课件
长 时 接 合
刚开始时是放 毒型,几代后 成为敏感型。
突变为败育的质体,不能 全部形成叶绿素,表现白 色、绿色相间条斑或是白 化苗。
(A) 母本正常 (IjIj, 绿色): P :♀ +/+ × ij/ij ♂
↓ F1: +/ ij (绿色)
↓ F2:+/+ +/ij ij/ij
3绿色 :1条斑或白色
(B) 母本是条斑 (ijij) P :♀ ij/ij × +/+♂
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
一区
不育系 x 保持系 ♀ S(rf rf) x ♂ N(rf rf)
S(rf rf) N(rf rf) 不育 可育
核外遗传PPTppt教用课件
二区 制种区
不育系 x 恢复系 ♀ S(rf rf) x ♂ N(Rf Rf)
S(Rf rf) N(Rf Rf) 杂交种 可育
↓ F1: +/ ij(条斑、绿色、白色)
♀+/ ij(条斑)× +/+♂
F2 :
↓ +/+ +/ij
绿色、条斑、白色
3. 细胞质遗传的特点
正交和反交的遗传表现不同。 不符合孟德尔式遗传,杂交后代一般不出现
一定的分离比。 F1代通常只表现母方的性状。
4. 细胞质遗传的机制
受精卵中父母双亲所提供的遗传物质不均等。核 来自于父母双方,细胞质几乎完全来自其母亲。

细胞器

基因组
质 基
叶绿体基因组( CpDNA)

组 非细胞器 细胞共生体基因组
基因组
细菌质粒基因组
第一节 母性影响
一、短暂的母性影响
面粉蛾 野生型(A):幼虫皮肤灰色,成虫眼睛深褐色 突变型(a):幼虫皮肤白色,成虫眼睛红色。 杂合体(Aa)与隐性纯合体的正反交结果不一样
♂ Aa x ♀ aa
在细胞分裂过程中,细胞质中的遗传物质随机、 不均等地分配到子细胞。
母性影响与细胞质遗传的异同
相同点:正反交结果不一致 不同点: ■ 细胞质遗传的性状,表型是稳定的,受细胞质
基因控制; ■ 母性影响的性状,有持久性的,也有短暂性的,
受核基因控制。
三、线粒体的遗传
1.酵母菌小菌落的遗传
1949年,法国 B.Ephrnssi发现酵母小菌落突变 大菌落→大菌落+小菌落(1%~2%)
3.人类线粒体的遗传
O:卵子 S:精子 Z:受精卵 A、B、C:子细胞
线粒体疾病典型系谱
线粒体(mitochondria)遗传:
线粒体基因组的大小及特征:
1963年发现了线粒体DNA,为裸露环状(极 少数线状)DNA分子。动物细胞线粒体DNA 一般在14~39kb,但原生动物可达50kb。植物 线粒体DNA比动物 线粒体DNA大,可达 200kb~2500kb。
四、感染遗传—草履虫放毒型遗传
概念:存在于植物或动物细胞质中的寄生物可使宿主的表型 发生改变,这些寄生物通常是伴随着细胞质遗传的,它们也 能感染新的细胞或新的有机体,这种遗传方式称为感染遗传。
草履虫 大核(1个),多倍体,主要负责营养; 小核(2个),二倍体,主要负责遗传。
生殖方式 ①无性生殖(裂殖) ②有性生殖(接合生殖和自体受精)。
msms纯合隐性表现为雄性不育。
msms × MsMs ↓ Msms(可育) ↓⊗
MsMs Msms msms 3可育 ∶ 1不育
核外遗传PPTppt教用课件
核外遗传PPTppt教用课件
2.质-核互作不育型
①概念:由细胞质基因和核基因相互作用控制的不育 类型。
②花粉败育时间: 1)在玉米、小麦和高梁等作物中,这种不育类型的 花粉败育多数发生在减数分裂以后; 2)在水稻、矮牵牛、胡萝卜等植物中,败育发生在 减数分裂过程中或在此之前。
密码子
核基因
线粒体基因
人类
酵母
果蝇
CUU CUC leu leu
thr
leu
CUA CUG
AUA
ile
met
met
met
UGA
stop
trp
trp
trp
AGA AGG arg stop
arg
ser
线粒体的核质共同控制:
由于线粒体的DNA分子较小,所以能编 码的遗传信息量有限,如人的线粒体基因组 共编码13个mRNA,2个rRNA及22个tRNA, 总共只有37个基因。因此线粒体的蛋白质更 多的是由核基因编码的,是一个典型的核质 共同控制的细胞器。
第八章 核外遗传
核外遗传(extranuclear inheritance)也称细胞 质遗传(cytoplasmic inheritance),是指由核 外(细胞质)的遗传物质所控制的遗传,从 这个意义上说母性影响并不属于核外遗传的 范畴。
第一节 母性影响 第二节 核外遗传
线粒体基因组(mtDNA)
草 履 虫 的 接 合 生 殖
草履虫的自体受精
核外遗传PPTppt教用课件
草履虫的放毒型与敏感型
放毒型:带有卡巴(Kappa)粒(直径0.2μm,外有 双层膜,内含DNA、RNA、蛋白质、脂类),产生 草履虫毒素。
敏感型:无卡巴粒,不产生草履虫素。 放毒型的遗传基础:
细胞质中的卡巴粒和核内K基因,同时存在时才 能保证放毒型的稳定。
小菌落→小菌落
小菌落酵母×正常个体 ↓
二倍体正常 ↓
单倍体正常,无小菌落。
正常线粒体
相关文档
最新文档