新北师大版八年级数学下册第一二单元月考试卷
北师大八年级数学第一次月考试卷
螺溪中学八年级数学单元检测题(第一、二章)班级 姓名 评分“如果你希望成功,当以恒心为良友,以细心为兄弟”一、你一定能选对!(每小题3分,共30分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1、如图(1),带阴影的矩形面积是( )平方厘米 A .9 B .24 C .45 D .512. 观察下列几组数据:(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25,其中能作为直角三角形三边长的有( )组 A .1 B .2 C .3 D .43、如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A. 12米 B. 13米 C. 14米 D. 15米4、若三条线段a 、b 、c 满足222b c a =+,这三条线段组成的三角形是( ) A .锐角三角形 B .直角三角形 C .对角三角形 D .无法判断 5、下列说法正确的是 ( )A .带根号的数都是无理数B .不带根号的数都是有理数C .无理数是无限小数D .无限小数是无理数 6、下列说法正确的是 ( )A .一个数的平方根互为相反数B .平方根等于本身的数是0和1C .立方根等于本身的数是0和1D .算术平方根等于本身的数是0和17、下列计算或命题:①±3都是27的立方根;②1251144251=;③16的算术平方根是2;④8)8(33-=-;⑤6)6(2-=-,其中正确的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个 8、下列说法正确的是( )A .3515= B .2095141251161=+=+C .22)2(22==- D .()232)3(-⨯-=-⨯-9. 在直角三角形中,斜边与较小直角边的和、差分别为8、2,则 较长直角边长为 ( ) (A ) 5 (B) 4 (C) 3 (D) 210.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( ) (A ) m 80 (B) m 30 (C) m 90 (D) m 120二、你能填得又快又准吗?(共20分)1、下列各数:①12-,②0,③722,④3125-,⑤1010010001.0…(相邻两个1之间0的个数逐次增加1),⑥210-,⑦ 2π-,无理数有 _______ (填序号)2、16的平方根是 ;3、6的相反数与它的绝对值的和是 ;4、方程822=x 的解是 ;5、计算:32512⨯= ; 6、估算:50= (误差小于1); 7、比较大小:215- 21;(用“>”或“<”填空)。
北师大版八年级下第一次月考数学试卷 带答案
2015-2016年八年级下第一次月考数学试卷一、选择题(每小题3分,共30分)1.已知等腰三角形的两边长分别为6㎝、3㎝,则该等腰三角形的周长是()㎝? B.12㎝????C.12㎝或15㎝? ? D.15㎝2.如果ba>,那么下列各式一定正确..的是()A. 22ba> B.22ba< C. ba22-<- D. 11-<-ba3.下列命题中正确的是 ( )A.有两条边分别相等的两个等腰三角形全等 B.两腰对应相等的两个等腰三角形全等 C.有两条边分别相等的两个直角三角形全等 D.斜边和一条直角边对应相等的两个直角三角形全等4.下列图形中只能用其中一部分平移可以得到的是().A B C D5.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=2,则AE的长为()A.√3B.1C.√2(第5题图)(第6题图)6.函数y=kx+b(k、b为常数,k≠0)的图象如图所示,则关于x的不等式kx+b>0的解集为().A.x>0 B.x<0 C.x<2 D.x>27.将不等式组的解集在数轴上表示出来,应是().8.已知关于x的不等式组⎩⎨⎧+<-≥-122baxbax的解集为53<≤x,则ab的值为().A.-2 B.21- C.-4 D.41-9.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A. 35°B. 40°C. 50°D. 65°13{xx≥≤A CB D次得到△1、△2、△3、△4…,则△2016的直角顶点的坐标为 ( )A .8065 .8064 C D. 8062(第9题图) ( 第10题图)二、填空题.(每小题4分,共24分)11.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3, 则点P 到AB的距离是 。
北师大版八年级数学下册第一次月考试卷(含答案)
八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第一章《三角形的证明》~第二章《一元一次不等式与一元一次不等式组》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.如图,在△ABC中,AB=AC,D是BC的中点,下列结论中不正确的是()A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD2.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A. ∠A=40°,∠B=50°B. ∠A=40°,∠B=60°C. ∠A=40°,∠B=80°D. ∠A=20°,∠B=80°3.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A. a−c>b−cB. a+c<b+cC. ac>bcD. ab <cb4.若a>b,则()A. a−1≥bB. b+1≥aC. a+1>b−1D. a−1>b+15.不等式组{x−1<−3,2x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−36.某商品进价10元,标价15元,为了促销,现决定打折销售,但每件利润不少于2元,则最多打几折销售()A. 6折B. 7折C. 8折D. 9折7.如图,在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A. 5B. 6C. 7D. 88.如图,AB⊥AC于点A,BD⊥CD于点D.若AC=DB,则下列结论中不正确的是()A. ∠A=∠DB. ∠ABC=∠DCBC. OB=ODD. OA=OD9.如图,点A,B,C在一条直线上,△ABD和△BCE是等边三角形,连接AE,交BD于点P,连接CD,分别交BE,AE于点Q,M,连接BM,PQ,则∠AMD的度数为()A. 45°B. 60°C. 75°D. 90°10.若3a−22和2a−3是实数m的平方根,且t=√m,则不等式2x−t3−3x−t2≥512的解集为()A. x≥910B. x≤910或x≤6.5C. x≥811D. x≤811二、填空题(本大题共5小题,共20.0分)11.如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,BD平分∠ABC,DE⊥BC于点E,AB=7,DE=4,则△ABD的面积为.13.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为______元/千克.14.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为______.15.若关于x的不等式组{3x+5<5x+1 x>a−1 解集为x>2,则a的取值范围是______.三、解答题(本大题共10小题,共100.0分)16.(8分)解不等式组:{3(x+1)>x−1 x+92>2x17.(10分)已知,如图,△ABC中,∠C=90°,AB=10,AC=8,BD为∠ABC的角平分线交AC于D,过点D作DE垂直AB于点E,(1)求BC的长;(2)求AE的长;(3)求BD的长18.(10分)解不等式组{4(x+1)≤7x+13,①x−4<x−83,②并求它的所有整数解的和.19.(10分)某工厂计划生产甲、乙两种机器共10台,其生产成本和利润如下表所示:(1)某工厂计划投入成本26万元,这些成本刚好生产出整数台机器.问:甲、乙两种机器各应安排生间多少台?(2)若工厂计划生产甲机器的数量不少于4台,并共能获利不少于16万元,问:工厂有哪几种生产方案?并说明哪种方案获利最大?最大利润是多少?20.(10分)如图1,A村和B村在一条大河CD的同侧,它们到河岸的距离AC、BD分别为1千米和4千米,又知道CD的长为4千米.(1)现要在河岸CD上建一水厂向两村输送自来水,有两种方案备选择.方案1:水厂建在C点,修自来水管道到A村,再到B村(即AC+AB)(如图2);方案2:作A点关于直线CD的对称点A′,连接A′B交CD于M点,水厂建在M点处,分别向两村修管道AM和BM(即AM+BM)(如图3).从节约建设资金方面考虑,将选择管道总长度较短的方案进行施工,请利用已有条件分别进行计算,判断哪种方案更合适.(2)有一艘快艇Q从这条河中驶过,若快艇Q在CD之间(即点Q在线段CD上),当DQ为多少时?△ABQ为等腰三角形,请直接写出结果.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数表达式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(10分)如图,在四边形ABCD中,E是边BC的中点,F是边CD的中点,且AE⊥BC,AF⊥CD.(1)求证:AB=AD;(2)若∠BCD=114°,求∠BAD的度数.23.(10分)用※定义一种新运算:对于任意实数m和n,规定m※n=m2n−mn−3n,如:1※2=12×2−1×2−3×2=−6.(1)求(−2)※√3;(2)若3※m≥−6,求m的取值范围,并在所给的数轴上表示出解集.24.(12分)甲、乙两台智能机器人从同一地点出发,沿着笔直的路线行走了450cm.甲比乙先出发,并且匀速走完全程,乙出发一段时间后速度提高为原来的2倍.设甲行走的时间为x(s),甲、乙行走的路程分别为y1(cm),y2(cm),y1,y2与x之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)乙比甲晚出发___________s,乙提速前的速度是___________cm/s,m=___________,n=___________;(2)当x为何值时,乙追上了甲?(3)何时乙在甲的前面?25.(12分)(1)如图①,点A、点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6√3,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案1.D2.D3.B4.C5.C6.C7.A8.C9.B10.B11.4012.1413.1014.x>315.a≤316.解:{3(x+1)>x−1①x+92>2x②解不等式①得x>−2,解不等式②得x<3,∴不等式组的解集为−2<x<3.17.解:(1)∵∠C=90°,AB=10,AC=8,∴BC=√102−82=6;(2)∵BD为∠ABC的角平分线,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,{BD=BDCD=DE,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=6,∴AE=AB−BE=10−6=4;(3)设CD=DE=x,则AD=8−x,在Rt△ADE中,AE2+DE2=AD2,即42+x2=(8−x)2,解得x=3,所以,CD=DE=3,在Rt△BCD中,BD=√62+32=3√5.18.解:−3≤x<2.所有整数解的和为−5.19.解:(1)设甲、乙两种机器各应安排生间x台,(10−x)台,2x+5(10−x)=26,解得,x=8,则10−x=2,答:甲、乙两种机器各应安排生间8台、2台;(2)设生产甲种机器的数量为a台,{a+3(10−a)≥16a≥4,解得,4≤a≤7,∵a是整数,∴a=4,5,6,7,即工厂有四种进货方案,方案一:生产甲种机器4台,乙种机器6台;方案二:生产甲种机器5台,乙种机器5台;方案三:生产甲种机器6台,乙种机器4台;方案四:生产甲种机器7台,乙种机器3台;设利润为w元,w=a+3(10−a)=−2a+30,∴当a=4时,w取得最大值,此时w=22,即方案一获利最大,最大利润是22万元.20.解:(1)方案1:AC+AB=1+5=6,方案2:AM+BM=A′B=√CD2+(AC+BD)2=√41,∵6<√41,∴方案1更合适;(2)(方法不唯一)如图,①若AQ1=AB=5或AQ4=AB=5时,CQ1=CQ4=√52−12=2√6(或√24)>4∴(不合题意,舍去)②若AB=BQ2=5或AB=BQ5=5时,DQ=√52−42=3,③当AQ3=BQ3时,设DQ3=x,则有x2+42=(4−x)2+128x=1∴x=1,8;即:DQ=18故当DQ=3或1时,△ABQ为等腰三角形.821.解:(1)大货车、小货车各有12辆、8辆.(2)设到A地的大货车有x辆,则到A地的小货车有(10−x)辆,到B地的大货车有(12−x)辆,到B地的小货车有(x−2)辆,∴y=900x+500(10−x)+1000(12−x)+700(x−2)=100x+15600(2≤x≤10,且x为整数).(3)根据题意,得15x+10(10−x)≥140.解得x≥8.∴8≤x≤10.∴当x=8时,y取最小值,y最小=100×8+15600=16400.22.解:(1)连接AC,∵点E 是边BC 的中点,AE ⊥BC ,∴AB =AC(三线合一)同理AD =AC ,∴AB =AD ;(2)∵AB =AC ,AD =AC ,∴∠B =∠1,∠D =∠2,∴∠B +∠D =∠1+∠2,即∠B +∠D =∠BCD ,∵∠BAD +(∠B +∠D)+∠BCD =(4−2)⋅180°=360°,∠BCD =114°, ∴∠BAD =360°−114°−114°=132°.23.(1)3√3.(2)m ≥−2.解集在数轴上表示图略.24.解:(1)15 15 31 45(2)设y 1=k 1x.∵点A(31,310)在OA 上,∴31k 1=310.解得k 1=10.∴y 1=10x .设BC 段对应的函数关系式为y 2=k 2x +b ,∵点B(17,30),C(31,450)在BC 上,∴{17k 2+b =30,31k 2+b =450,解得{k 2=30,b =−480.∴y 2=30x −480(17≤x ≤31).当y 1=y 2时,则10x =30x −480,解得x =24.∴当x =24时,乙追上了甲.(3)由图象可知,当x >24且x ≤45时,乙在甲的前面.25.解:(1)如图①中,作点A 关于直线l 的对称点A′,连接A′B 交直线l 于P ,连接PA.则点P 即为所求的点.(2)如图②中,作DM//AC ,使得DM =EF =2,连接BM 交AC 于F ,∵DM=EF,DM//EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3√3,在Rt△ADO中,OD=√AD2−OA2=3,∴BD=6,∵DM//AC,∴∠MDB=∠BOC=90°,∴BM=√BD2+DM2=√62+22=2√10.∴DE+BF的最小值为2√10.(3)如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4√3,∴四边形ABCD的周长最大值为12+4√3.。
北师大版2021-2022学年八年级数学下册第二次月考测试题(附答案) (2)
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
北师大版八年级数学下册全册复习课件(共206张PPT)精选全文
第一章 | 复习
针对第8题训练
1.在直角三角形中,一条直角边长为a,另一条边长为2a,那么
它的三个内角之比为( D ) A.1∶2∶3 B.2∶2∶1 C.1∶1∶2 D.以上都不对
2.如图1-10,△ABC中,∠ACB=90°,BA的垂直平分线交
CB边于点D,若AB=10,AC=5,则图中等于60°的角的个数为
第一章 | 复习
6.直角三角形的性质及判定 性质(1):在直角三角形中,如果一个锐角等于30°,那么它 所对的直角边等于斜边的___一__半____; 性质(2):直角三角形的两个锐角互余. 判定:有两个角互余的三角形是直角三角形. 7.勾股定理及其逆定理 勾股定理:直角三角形两条直角边的平方和等于斜边的 __平__方___. 逆定理:如果三角形两边的平方和等于第三边的平方,那么 这个三角形是_直__角______三角形.
第二章 | 复习
考点攻略
►考点一 不等式的性质 例1 >
>
< <
[易错地带] 不等式两边都乘(或除以)同一个复数时,不等号的 方向要改变。
第二章 | 复习
►考点二 一元一次不等式(组)的解法 例2
第二章 | 复习 [技巧总结]
第二章 | 复习
难易度
易
1,2,3,4,5,6,7,8,11,12,13,14, 15,17,18,19,20
中
9,10,21,22
难
16,23,24
第一章 | 复习
知识与 技能
全等三角形
等腰三角形 及直角三角
形
直角三角形 和勾股定理
及逆定理
线段的垂直 平分线及角
平分线
逆命题
反证法
2,16,17,22,24 1,4,10,14,20,21,23,24
新北师大版八年级数学下册第一二单元月考试卷(最新整理)
C.m<2
D.m>2
4.根据不等式的性质,下列变形正确的是( )
A.由 a>b 得 ac2>bc2
B.由 ac2>bc2 得 a>b
1
C.由- a>2 得 a<2
2
D.由 2x+1>x 得 x>1
5.如图,直线 y=kx+b 与坐标轴的两交点分别为 A(2,0)和 B(0,-3),则不等式 kx+b+3≤0 的
八年级数学下册考试卷
1.已知 a<b,则下列不等式一定成立的是( )
A.a+3>b+3
B.2a>2b
C.﹣a<﹣b
D.a﹣b<0
2.不等式 2x+3>0 的最小整数解(
A.-1
B.1
C.0
) D.2
3.若点 P(1-m,2m-4)在第四象限内,则 m 的取值范围是( )
A.m<1
B.1<m<2
8.若等腰三角形的周长为 26cm,一边为 11cm,则腰长为(
A.11cm
B.7.5cm
C.11cm 或 7.5cm
) D.以上都不对
9. 如 图 所 示 , 在 △ ABC 中 , 点 D 是 BC 上 一 点 , ∠ BAD= 80°, AB= AD= DC, 则 ∠ C 的 度 数 为
()
A.25°
B.30°
C.35°
D.40°
2x 1 5 18.解不等式组 3x 6 0 ,并把解集在数轴上表示出来。
答案第 1 页,总 2 页
3x 1 2(x 1)
19.解不等式组 x 4 x
,并把解集在数轴上表示出来
23.如 图 ,Rt△ ABC 中 ,∠ C=90° ,AD 平 分 ∠ CAB,DE⊥ AB 于 E,若 AC=6,BC=8,CD=3. (1)求 DE 的长; (2)求△ADB 的面积.
A如意湖新北师大版2014学年八年级下册数学第一次月考试卷
第 4题第 5题第 6题第 8题ABCD 第10题A B C D如意湖中学八年级数学第二学期第四次质量检测A姓名 班级 得分一、选择题(每题3分,共24分)1.不等式组⎩⎨⎧<>-421x x 的解集是 ( )(A)x <3 (B)3<x <4 (C)x <4 (D)无解 2.一个等腰三角形的顶角是40°,则它的底角是( )A .40°B .50°C .60°D .70°3.3.不等式组25x x >-⎧⎨⎩≤的解集在数轴上可表示为4. 如图,在△ABC 和△DEF 中,已知AC=DF ,BC=EF ,要使△ABC ≌△DEF ,还需要的条件是( )A.∠A=∠DB.∠ACB=∠FC.∠B=∠DEFD.∠ACB=∠D5.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为( )A.30°B.36°C.45°D.70°6.如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC ,其中正确结论的个数是( ) A.1个 B.2个 C.3个 D.4个7.以下图形中是中心对称图形而不是轴对称图形的是( )A .正三角形 B. 圆 C.等腰梯形 D.平行四边形8. 点E 在正方形ABCD 内,满足∠AEB =90°.AE =6,BE =8,则阴影部分的面积是( )A .48B .60C .76D .80 二、填空题(每题3分,共24分) 9. 不等式6-2x >0的解集是________.10.如图,△ABC 中,∠C=90°,∠A =30° ,BD 平分∠ABC 交AC 于D ,若CD =2cm ,AC= . 11.“直角三角形的两个锐角相等”的逆命题是_____________________________. 12.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是 . 13.已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC = . 14.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了 支. 15.Rt ⊿ABC 中,∠C=90º,∠B=30º,则AC 与AB 两边的等量关系是 .16. 不等式的解集在数轴上表示如图所示,则该不等式可能是_____________.三. 基础题(每题6分,共36分)17.解不等式53>-x 18. 解不等式 31xx -<.19. 解不等式组 ⎩⎨⎧>+<-063512x x 20. 解不等式组⎩⎨⎧≥--<-46)1(562x xD EC B A21.如图,DC ⊥CA ,EA ⊥CA , CD=AB ,CB=AE .求证:∠CBD =∠E .22、如图,△ABC 绕点C 逆时针方向旋转后,顶点A 旋转到了点D.(1)指出这一旋转的旋转角;(2)画出旋转后的三角形.四.提高题(每题8分,共16分)23.小王和小赵原有存款分别为800元和1800元,从本月开始,小王每月存款400元,小赵每月存款200元,如果设两人存款时间均为x (月),小王的存款总额是1y 元,小赵的存款总额是2y 元.(1)试分别写出1y 、2y 与x 之间的关系式;(2)到第几个月时,小王的存款额超过小赵的存款额?24.如图,CE ⊥AB ,BF ⊥AC ,CE 与BF 相交于D ,且BD=CD. 求证:AD 平分∠BAC.ACBD .O ..OCBA第24题五.综合题(每题10分,共20分)25.如图,在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形. (1)如果以正方形小格的边长为1个单位长度,将△ABC 先向右平移4个单位长度,再向上平移2个单位长度,请画出得到的△A 1B 1C 1;(2)请你在所给的方格纸中,以O 为对称中心,作出与△ABC 成中心对称的图形△A 2B 2C 2; (3)求出△A 1B 1C 1和△A 2B 2C 2的面积26.某校长暑假带领该校“三好学生”去旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括校长在内都6折优惠”若全票价是1200元.(1)设学生数为x ,甲旅行社收费y 甲,乙旅行社收费y 乙,分别写出两家旅行社的收费与学生人数的关系式.(2)当学生人数是多少时,两家旅行社的收费是一样的? (3)就学生人数讨论那家旅行社更优惠.。
北师大版八年级数学下第一次月考数学试卷
北师大版八年级数学第一次月考数学试卷(考试时间:100分钟,分值:120分)一.选择题(3×10=30分)1.下列不等式中,属于一元一次不等式的是()A.x>1B.3x2﹣2<4C.<2D.4x﹣3<2y﹣7 2.如图,在足球场内,A,B,C表示三个足球运动员,为做折返跑游戏,现准备在足球场内放置一个足球,使它到三个运动员的距离相等,则足球应放置在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两内角平分线的交点处第2题第 4题第7题第8题3. 将不等式组{4x>−83x−5≤1的解集在数轴上表示出来,则下列选项正确的是()A.B.C.D.4.如图,BE=CF,AE⊥BC,DF⊥BC,要直接根据“HL”证明Rt△ABE≅Rt△DCF,则还要添加一个条件是()A.∠A=∠D B.∠B=∠C C.AE=BF D.AB=DC5. 下列不一定成立的是()A.若a<b,则 c−a>c−b .B. 若ac2<bc2,则 a<bC. 若a−c<b−c,则 a<b.D. 若a< b,则 ac2<bc2.6. 郑州市出租车的收费标准是:起步价10元(即行驶距离不超过3千米都需付10元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为18元,依题意,可列出不等式()A.10+2x<18 B.10+2x≤18 C.10+2(x-3)≤18 D.10+2(x-3)<18 7.如图,直线y1=kx+b,y2=mx﹣n交于点P(1,m),则不等式mx﹣b>kx+n的解集是()A.x>0 B.x<0 C.x>1 D.x<18. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=28°,则∠CBD=()A.15°B.16°C.18°D.20°9. 关于x的不等式组{x−a>02x−5<1−x有且仅有5个整数解,则a的取值范围是()A.﹣5<a≤﹣4B.﹣5≤a<﹣4C.﹣4<a≤﹣3D.﹣4≤a<﹣310.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A.6B.9 C.6 D.3二、填空题(3×5=15分)11 . 假期里全家去旅游,爸爸开小型客车走中间车道,你给爸爸建议车速为km/h.12.已知△ABC中,∠B≠∠C,求证:AB≠AC.若用反证法证这个结论,应首先假设.13. 若(m-1)x>m-1的解集为x<1,则m的取值范围是.14.如图,在△ABC中,∠BAC=60°,角平分线BE,CD相交于点P,若AP=4,AC=6,则S△APC=15. 小华用一张直角三角形纸片玩折纸游戏,如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1.第一步,在AB边上找一点D,将纸片沿CD折叠,点A落在A'处,如图2;第二步,将纸片沿CA'折叠,点D落在D′处,如图3.当点D′恰好落在原直角三角形纸片的边上时,线段A′D′的长为.第14题第15题二、解答题16(10分)下面是小明同学解不等式x−13≥x−32+1的过程.去分母,得2(x-1)≥3(x−3)+1.①去括号,得2x-2≥3x−9+1. ②移项、合并同类项得﹣x≥﹣6.③两边都除以﹣1,得x≥6.④(1)他的解题过程中在第步和第步有错误,请你分别指出错误原因:;。
八年级数学下册第一次月考试卷北师大版
八年级数学下册第一次月考试卷北师大版班级————————姓名__________一、选择题(共20分)1.用不等式表示“x2是非负数”正确的是()A.x2<0B.x2﹥0C.x2 ≤0D.x2≥0 2.下列各式是不等式的有()个。
①—3<0②4x+3y>0 ③x=4 ④x+y ⑤x≠5 ⑥x+2>y+3 A.1 B.2 C.3 D.43.已知x>y,下列不等式一定成立的是()A.x—6<y—6B.3x<3yC. —2x>—2yD.2x+1>2y+14.不等式组25xx>-⎧⎨⎩≤的解集在数轴上可表示为A B C D5. 下列各等式从左到右的变形是因式分解的是()A.6a2b=3a2·2b B.mx+nxy-xy=mx+xy(n-1) C.am-a=a(m-1) D.(x+1)(x-1)=x2-16.()是不等式x—4≥0的解。
A. 1B.2C.3D.47.长度为3,7,x的三条线段可以围成一个三角形,则x可以是()。
A. 3B.4C.5D.108.不等式x+3≥0,有()个负整数解。
A. 1B.2C.3D.49.19992+1999能被()整除。
A. 1995B.1996C.2000D.200110.已知ab=7,a+b=6,则多项式a2b+ab2的值是()。
A. 13B.1C.42D.14二.填空题。
(共20分)11.用不等式表示“x+1是负数”:___________。
12.已知a<b,则a—3______b—3.13. 不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。
14.将不等式x+3﹤—1化成“x>a”或“x<a”的形式:_____________。
15.不等式2x—3≤0的解集为_____________。
16.不等式4(x+1)≤64的正整数为_____________。
17.已知y1= —x+3,y2=3x—4,当x______时,y1>y2.18.多项式2x2+x3—x中各项的公因式是_____________。
北师大八年级(下)第一次月考数学试卷含答案
八年级(下)第一次月考数学试卷一.选择题:(每题3分,共36分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n22.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF3.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或175.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个6.等腰三角形一腰上的高与底边的夹角为40°,则顶角的度数为()A.40°B.80°C.100° D.80°或100°7.不等式组的解集在数轴上可表示为()A.B.C.D.8.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣110.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④11.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题(每题3分,共12分)13.如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是.(写出一种情况即可)14.已知关于x的不等式组无解,则a的取值范围是.15.某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为.16.命题“两直线平行,同位角相等.”的逆命题是.三.解答题(7个大题,共52分)17.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.18.如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.19.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.20.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?21.如图,△ABC,△CDE是等边三角形.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系.并加以证明.参考答案与试题解析一.选择题:(每题3分,共36分)1.若m>n,下列不等式不一定成立的是()A.m+2>n+2 B.2m>2n C.>D.m2>n2【考点】不等式的性质.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.2.如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是()A.DE=DF B.AE=AF C.OD=OF D.OE=OF【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【分析】首先运用角平分线的性质得出DE=DF,再由HL证明Rt△ADE≌Rt△ADF,即可得出AE=AF;根据SAS即可证明△AEG≌△AFG,即可得到OE=OF.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF;∵AD是△ABC的角平分线,∴∠EAO=∠FAO,在△AEO和△AFO中,,∴△AEO≌△AFO(SAS),∴OE=OF;故选C.3.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB 上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.4.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.5.下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形的两底角相等;③等腰三角形底边上的中线与底边上的高相等;④等腰三角形两底角的平分线相等.A.1个 B.2个 C.3个 D.4个【考点】等腰三角形的性质.【分析】等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.【解答】解:①等腰三角形的两腰相等;正确;②等腰三角形的两底角相等;正确;③等腰三角形底边上的中线与底边上的高相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.6.等腰三角形一腰上的高与底边的夹角为40°,则顶角的度数为()A.40°B.80°C.100° D.80°或100°【考点】等腰三角形的性质.【分析】首先根据题意画出图形,然后根据直角三角形两锐角互余求出底角的度数,再根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:∵BD⊥AC,∠CBD=40°,∴∠C=50°,∵AB=AC,∴∠ABC=∠C=50°,∴∠A=180°﹣∠ABC﹣∠C=80°,即顶角的度数为80°.故选B.7.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围,它们相交的地方就是不等式组的解集.【解答】解:不等式可化为:在数轴上可表示为:故选C.8.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D,如果EC=3cm,则AE等于()A.3cm B.4cm C.6cm D.9cm【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】求出AE=BE,推出∠A=∠1=∠2=30°,求出DE=CE=3cm,根据含30度角的直角三角形性质求出即可.【解答】解:∵DE垂直平分AB,∴AE=BE,∴∠2=∠A,∵∠1=∠2,∴∠A=∠1=∠2,∵∠C=90°,∴∠A=∠1=∠2=30°,∵∠1=∠2,ED⊥AB,∠C=90°,∴CE=DE=3cm,在Rt△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=6cm,故选C.9.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x>k1x+b的解集为()A.x>3 B.x<3 C.x>﹣1 D.x<﹣1【考点】一次函数与一元一次不等式.【分析】观察函数图象得到,当x<﹣1时,直线y=k2x都在直线y=k1x+b,的上方,于是可得到不等式k2x>k1x+b的解集.【解答】解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选D.10.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【考点】等腰三角形的判定.【分析】根据等腰三角形的判定逐一进行判断即可.【解答】解:选②AD=BE;③AF=BF,不能证明△ADF与△BEF全等,所以不能证明∠1=∠2,故不能判定△ABC是等腰三角形.故选C.11.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等解答即可.【解答】解:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.12.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【考点】等边三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题3分,共12分)13.如图,△ABC和△DCB中,∠A=∠D=90°,边AC与DB相交于点O,要使△ABC≌△DCB,则需要添加的一个条件是AB=DC.(写出一种情况即可)【考点】全等三角形的判定.【分析】本题要判定△ABC≌△DCB,已知∠A=∠D=90°,隐含的条件是BC=BC,那么只需添加一个条件即可.添边的话可以是AB=DC,符合HL.【解答】解:所添加条件为:AB=DC,∵∠A=∠D=90°,∴在Rt△ABC和△RtDCB中,∵,∴△ABC≌△DCB(HL).故答案为AB=DC.(答案不唯一)14.已知关于x的不等式组无解,则a的取值范围是a≥10.【考点】不等式的解集.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.15.某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试.那么,若要参加复试,初试的答对题数至少为17.【考点】一元一次不等式的应用.【分析】设要参加复试,初试的答对题数至少为x道,根据某次数学竞赛初试有试题25道,阅卷规定:每答对一题得4分,每答错(包括未答)一题得(﹣1)分,得分不低于60分则可以参加复试,可列出不等式求解.【解答】解:设要参加复试,初试的答对题数至少为x道,4x﹣(25﹣x)≥60x≥17.若要参加复试,初试的答对题数至少为17道.故答案为:17.16.命题“两直线平行,同位角相等.”的逆命题是同位角相等,两直线平行.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:∵原命题的条件为:两直线平行,结论为:同位角相等.∴其逆命题为:同位角相等,两直线平行.三.解答题(7个大题,共52分)17.解不等式(组)(1)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.(2),并写出不等式组的整数解.【考点】一元一次不等式组的整数解;在数轴上表示不等式的解集;解一元一次不等式;解一元一次不等式组.【分析】(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.(2)先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:(1)去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:;(2)由①得x≥﹣1,由②得x<3,所以不等式组的解集是﹣1≤x<3,则整数解是﹣1,0,1,2.18.如图,△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.(1)求证:AB垂直平分CD;(2)若AB=6,求BD的长.【考点】线段垂直平分线的性质;等边三角形的判定与性质;含30度角的直角三角形.【分析】(1)根据旋转的性质得到△ACD是等边三角形,根据线段垂直平分线的概念判断即可;(2)根据直角三角形的性质计算即可.【解答】(1)证明:∵线段AC绕点A顺时针旋转60°得到线段AD,∴AD=AC,∠CAD=60°,∴△ACD是等边三角形,∵∠BAC=30°,∴∠DAB=30°,∴∠BAC=∠DAB,∴AO⊥CD,又CO=DO,∴AB垂直平分CD;(2)解:∵AB垂直平分CD,∴BD=BC,∠ADB=∠ACB=90°,∴BD=AB=3.19.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【考点】等腰三角形的判定;角平分线的性质.【分析】由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C,∴△ABC为等腰三角形.20.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,改经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?【考点】二元一次方程组的应用.【分析】(1)设每台电脑机箱进价为x元、每台液晶显示器的进价为y元,然后根据购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,购进电脑机箱两台和液晶显示器5台,共需要资金4120元列出组求解即可;(2)设购买电脑机箱x台,则购买液晶显示器(50﹣x)台,然后根据两种商品的资金不超过22240元,且利润不少于4100元列不等式组求解,从而可求得x 的范围,然后根据x的取值范围可确定出进货方案,并求得最大利润.【解答】解:(1)设每台电脑机箱进价为x元、每台液晶显示器的进价为y元.根据题意得:,解得:.答:设每台电脑机箱进价为60元、每台液晶显示器的进价为800元.(2)设购买电脑机箱x台,则购买液晶显示器(50﹣x)台.根据题意得:.解得:24≤x≤26.经销商共有三种进货方案:①购买电脑机箱24台,购买液晶显示器26台;②购买电脑机箱25台,购买液晶显示器25台;③购买电脑机箱26台,购买液晶显示器24台.第①种进货方案获利最大,最大利润=10×24+160×26=4400元.21.如图,△ABC,△CDE是等边三角形.(1)求证:AE=BD;(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN;(3)连结MN,猜想MN与BE的位置关系.并加以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AE=BD,只要证明△ACE≌△BCD(SAS)即可.(2)欲证明CM=CN,只要证明△BCM≌△ACN(ASA)即可.(3)结论:MN∥BE.只要证明△MNC是等边三角形,即可推出∠CMN=∠BCM,推出MN∥BE.【解答】(1)证明:∵△ABC和△DCE均为等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠BCD=∠ACE=120°,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴AE=BD.(2)证明:∵△ACE≌△BCD,∴∠CBD=∠CAE,又∵BC=AC,∠BCM=∠ACN=60°,在△BCN和△ACN中,,∴△BCM≌△ACN(ASA)∴CM=CN(3)结论:MN∥BE.理由:∵∠BCA=∠DCE=60°,∴∠MCN=180°﹣60°﹣60°=60°,∵CM=CN,∴△CMN是等边三角形,∴∠CMN=∠BCM=60°,∴MN∥BE.。
北师大版八年级下册数学第一次月考试卷
北师大版八(Ba)年级下册数学第一次月考试卷一.选择题(共(Gong)10小题)1.已知(Zhi)等腰三角形的一边长为3cm,且它的周长为12cm,则它的底边长为()A.3cm B.6cm C.9cm D.3cm或(Huo)6cm2.如图是某商场一楼与二楼之间(Jian)的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升(Sheng)的高度h 是()A. m B.4 m C.4 m D.8 m3.如(Ru)图,在△ABC中,DE垂直平分AB,交边(Bian)AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的周长为10,则BC的长为()A.2 B.4 C.6 D.84.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A.1 B.2 C. D.45.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<07.当x<a<0时,x2与ax的大小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax8.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣29.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.6010.如下图所示,D为BC上一点,且(Qie)AB=AC=BD,则图中∠1与(Yu)∠2的关系(Xi)是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°二(Er).填空题(共10小题)11.等腰三角形的(De)一个内角为40°,则顶角的度数为.12.如(Ru)图,在△ABC中(Zhong),AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则(Ze)用含a、b的代数式表示△ABC的周长为.13.如图,AB=AC,FD⊥BC于D,DE⊥AB于E,若∠AFD=145°,则∠EDF=度.14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=度.15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为.16.如图,△ABC中,∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于度.17.如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长是cm.18.如图所(Suo)示,△ABC中(Zhong),∠C=90°,AD平(Ping)分∠BAC,AB=7cm,CD=3cm,则(Ze)△ABD的面(Mian)积是.19.若关于x的不等(Deng)式(1﹣a)x>2可化(Hua)为x<,则a的(De)取值范围是.20.关于x的两个不等式<1与1﹣3x>0的解集相同,则a=.三.解答题(共10小题)21.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求证:AB=AC.22.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.23.如图,△ABC中,∠B=90°,AB=BC,AD是△ABC的角平分线,若BD=1,求DC的长.24.如图,△ABC的边BC的垂直平分线MN交AC于点D,若△ADB的周长是10cm,AB=4cm,求AC的长.25.如图(Tu),在△ABC中(Zhong),∠C=90°,AD平(Ping)分∠BAC,DE⊥AB,如(Ru)果DE=5cm,∠CAD=32°,求CD的长度(Du)及∠B的度(Du)数.26.已知等腰(Yao)三角形△ABC,AB=AC,一腰上的中线把这个三角(Jiao)形的周长分成12和15两部分,求这个三角形的三边长.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=5,求OM的长度.28.如(Ru)图,在Rt△ABC中(Zhong),∠C=90°,AD平(Ping)分∠CAB,DE⊥AB于点(Dian)E.若AC=6,BC=8,CD=3.(1)求DE的(De)长;(2)求(Qiu)△BDE的(De)周长.29.如(Ru)图,△ABC中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,PE⊥AB、PF⊥BC、PD⊥AC,垂足分别为E、F、D,求PD的长.30.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN 相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若(Ruo)∠MFN=70°,求(Qiu)∠MCN的(De)度数.北师大版八年级下册数(Shu)学第一次月考试卷参考答(Da)案与试题解析一.选择(Ze)题(共10小题)1.已知等腰三角形的一边长为3cm,且(Qie)它的周长为12cm,则它的底边长为()A.3cm B.6cm C.9cm D.3cm或(Huo)6cm【分(Fen)析】分3cm是等腰三角形的腰或底(Di)边两种情况进行讨论即可.【解(Jie)答】解:当3cm是等腰三角形的腰时,底边长=12﹣3×2=6cm,∵3+3=6,不能构成三角形,∴此种情况不存在;当3cm是等腰三角形的底边时,腰长==4.5cm.∴底为3cm,故选A.【点评】本题考查等腰三角形的性质、三角形三边关系定理等知识,解题的关键是学会分类讨论,注意三角形三边要满足三边关系定理,属于中考常考题型.2.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A. m B.4 m C.4 m D.8 m【分析】过C作CM⊥AB于M,求出∠CBM=30°,根据含30度的直角三角形性质求出CM 即可.【解答】解:过C作CM⊥AB于M则CM=h,∠CMB=90°,∵∠ABC=150°,∴∠CBM=30°,∴h=CM=BC=4m,故(Gu)选B.【点(Dian)评】本题考查了(Liao)含30度角的直角三角形性质的应用,构造直角三角形是解此题的关键所在,题目比较好,难度也不大.3.如(Ru)图,在△ABC中,DE垂直平分(Fen)AB,交边AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的(De)周长为10,则BC的长为()A.2 B.4 C.6 D.8【分(Fen)析】根(Gen)据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可..【解答】解:∵DE垂直平分AB,∴DA=DB,∴CD+BD+BC=10,∴CD+AD+BC=10,即AC+BC=10,∴BC=4,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.4.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A.1 B.2 C. D.4【分(Fen)析】作(Zuo)PE⊥OA于E,根据角(Jiao)平分线的性质解答.【解(Jie)答】解(Jie):作PE⊥OA于(Yu)E,∵点(Dian)P是∠AOB平(Ping)分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.5.式子:①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个【分析】找到用不等号连接的式子的个数即可.【解答】解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选C.【点评】用到的知识点为:用“<,>,≤,≥,≠”连接的式子叫做不等式.6.若3x>﹣3y,则下列不等式中一定成立的是()A.x+y>0 B.x﹣y>0 C.x+y<0 D.x﹣y<0【分析】根据不等式的性质,可得答案.【解答】解:两边都除以3,得x>﹣y,两边都加y,得x+y>0,故(Gu)选:A.【点(Dian)评】本题考(Kao)查了不等式的性质,熟记不等式的性质并根据不等式的性质求解是解题关键.7.当(Dang)x<a<0时(Shi),x2与ax的大(Da)小关系是()A.x2>ax B.x2≥ax C.x2<ax D.x2≤ax【分(Fen)析】根据不等式的两边(Bian)都除以或乘以同一个负数,不等式的符号要发生改变求出即可.【解答】解:∵x<a<0,∴两边都乘以x得:x2>ax,故选A.【点评】本题考查了对不等式性质的应用,注意:不等式的两边都除以或乘以同一个负数,不等式的符号要发生改变.8.若不等式组有解,则实数a的取值范围是()A.a≥﹣2 B.a<﹣2 C.a≤﹣2 D.a>﹣2【分析】先解不等式组,然后根据题意可得a>﹣2,由此求得a的取值.【解答】解:,解不等式x+a≥0得,x≥﹣a,由不等式4﹣2x>x﹣2得,x<2,∵不等式组:不等式组有解,∴a>﹣2,故选D.【点评】本题考查了不等式组有解的条件,属于中档题.9.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.60【分(Fen)析】作(Zuo)DE⊥AB于E,根据角平(Ping)分线的性质求出DE,根据三角形的面积公式计算即可.【解(Jie)答】解(Jie):作DE⊥AB于(Yu)E,∵AD是(Shi)△ABC的角(Jiao)平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2 B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°【分析】由已知AB=AC=BD,结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理解答.【解答】解:∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即(Ji)3∠1﹣∠2=180°.故(Gu)选:D.【点(Dian)评】主要考查了等腰三角形的性(Xing)质及三角形的外角、内角和等知识;(1)三角形的外角等于与它不相邻的两个内(Nei)角和;(2)三角形的内角和是180度.求角的度数常常要用(Yong)到“三角形的内角和是180°这一隐含的条件.二(Er).填空题(共10小题)11.等腰三角形的一个(Ge)内角为40°,则顶角的度数为100°或40°.【分析】已知等腰三角形的一个内角为40°,则这个角有可能是底角,也有可能是顶角,所以应该分情况进行分析,从而得到答案.【解答】解:当这个角是顶角时,则顶角的度数为40°,当这个角是底角时,则顶角的度数180°﹣40°×2=100°,故其顶角的度数为100°或40°.故填100°或40°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的运用;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a、b的代数式表示△ABC的周长为2a+3b.【分析】由题意可知:AC=AB=a+b,由于DE是线段AC的垂直平分线,∠BAC=36°,所以易证AE=CE=BC=b,从可知△ABC的周长;【解答】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是线段AC的垂直平(Ping)分线,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB﹣∠ECA=36°,∴∠BEC=180°﹣∠ABC﹣∠ECB=72°,∴CE=BC=b,∴△ABC的周长(Chang)为:AB+AC+BC=2a+3b故(Gu)答案为:2a+3b.【点(Dian)评】本题考查线段垂直平分线的性(Xing)质,解题的关键是利用等腰三角形的性质以及垂直平分线的性质得出AE=CE=BC,本题属于中等题型.13.如(Ru)图,AB=AC,FD⊥BC于(Yu)D,DE⊥AB于(Yu)E,若∠AFD=145°,则∠EDF=55度.【分析】首先求出∠C的度数,再根据等腰三角形的性质求出∠A,从而利用四边形内角和定理求出∠EDF.【解答】解:∵∠AFD=145°,∴∠CFD=35°又∵FD⊥BC于D,DE⊥AB于E∴∠C=180°﹣(∠CFD+∠FDC)=55°∵AB=AC∴∠B=∠C=55°,∴∠A=70°根据四边形内角和为360°可得:∠EDF=360°﹣(∠AED+∠AFD+∠A)=55°∴∠EDF为55°.故填55.【点(Dian)评】本题考查的是四边形内角和定(Ding)理以及等腰三角形的性质;解题关键是先求出∠A的(De)度数,再利用四边形的内角和定理求出所求角.14.如(Ru)图,在△ABC中(Zhong),AB=AC,∠A=40°,AB的垂直平分线(Xian)MN交AC于点D,则∠DBC=30度(Du).【分(Fen)析】根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,等边对等角的性质,是基础题,熟记性质是解题的关键.15.如图,Rt△ABC中,∠C=90°,AB=10,AC=6,D是BC上一点,BD=5,DE⊥AB,垂足为E,则线段DE的长为3.【分析】由垂直的定义得到∠DEB=90°,根据相似三角形的性质即可得到结论.【解(Jie)答】解(Jie):∵DE⊥AB,∴∠DEB=90°,∴∠C=∠DEB,∵∠B=∠B,∴△BED∽△BCA,∴,即(Ji)=,∴DE=3,故答(Da)案为:3.【点(Dian)评】本题考查了相似三角形的判定和性质,垂直的定义,熟练(Lian)掌握相似三角形的判定和性质是解题的关键.16.如(Ru)图,△ABC中(Zhong),∠BAC=100°,DF、EG分别是AB、AC的垂直平分线,则∠DAE等于20度.【分析】图中涉及两条垂直平分线,要根据其特点,转化为关于等腰三角形的知识解答.【解答】解:∵DF、EG分别是AB、AC的垂直平分线∴(1)DA=DB,则∠B=∠DAF,设∠B=∠DAF=x度(2)EA=EC,∠C=∠EAG,设∠C=∠EAG=y度因为∠BAC=100°所以x+y+∠DAE=100°根据三角形内角和定理,x+y+x+y+∠DAE=180°解得∠DAE=20°.【点评】主要考查线段的垂直平分线的性质和等腰三角形的性质.17.如图(Tu),在△ABC中,DE是AC的垂直平分(Fen)线,AE=3cm,△ABD的周(Zhou)长为13cm,则△ABC的周(Zhou)长是19cm.【分(Fen)析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行(Xing)线段的等量代换可得答案.【解(Jie)答】解(Jie):∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.18.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=7cm,CD=3cm,则△ABD的面积是cm2.【分析】过点D作DE⊥AB,由角平分线的性质可知DE=CD=3,再根据S=AB•DE即可△ABD得出结论.【解答】解:过点D作DE⊥AB,∵AD平分∠BAC,∴DE=CD=3,S△ABD=AB×DE=×7×3=cm2.故答(Da)案为:cm2.【点(Dian)评】本题考查的是角平分线的性质及三角形的面积公式,根据题意作出辅助(Zhu)线是解答此题的关键.19.若关于(Yu)x的不等式(1﹣a)x>2可(Ke)化为x<,则a的取值(Zhi)范围是a>1.【分(Fen)析】依据不等式的(De)性质解答即可.【解答】解:∵不等式(1﹣a)x>2可化为x<,∴1﹣a<0,解得:a>1.故答案为:a>1.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.20.关于x的两个不等式<1与1﹣3x>0的解集相同,则a=1.【分析】求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可.【解答】解:由<1得:x<,由1﹣3x>0得:x<,由两个不等式的解集相同,得到=,解得:a=1.故答案为:1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.三.解答题(共10小题)21.已知:△ABC内部一点O到两边AB、AC所在直线的距离相等,且OB=OC.求(Qiu)证:AB=AC.【分(Fen)析】证(Zheng)明Rt△BOF≌Rt△COE,根据全等三角形(Xing)的性质得到∠FBO=∠ECO,根据等腰三(San)角形的性质得到∠CBO=∠BCO,得(De)到∠ABC=∠ACB,根据等(Deng)腰三角形的判定定理证明结论.【解(Jie)答】证明:在Rt△BOF和Rt△COE中,,∴Rt△BOF≌Rt△COE,∴∠FBO=∠ECO,∵OB=OC,∴∠CBO=∠BCO,∴∠ABC=∠ACB,∴AB=AC.【点评】本题考查的是角平分线的性质、全等三角形的判定,掌握全等三角形的判定定理、等腰三角形的判定定理是解题的关键.22.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的读数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°﹣100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B=(180°﹣140°)÷2=20°.【点(Dian)评】此题很简单,考查了等(Deng)腰三角形的性质,关键是根据三角形外角的性质及三角形的内角和定理解答.23.如(Ru)图,△ABC中(Zhong),∠B=90°,AB=BC,AD是(Shi)△ABC的角平分线(Xian),若BD=1,求DC的长.【分(Fen)析】过(Guo)D作DE⊥AC于E,根据角平分线性质求出DE=1,求出∠C=45°,解直角三角形求出DC即可.【解答】解:过D作DE⊥AC于E,∵△ABC中,∠B=90°,AD是△ABC的角平分线,BD=1,∴DE=BD=1,∵∠B=90°,AB=BC,∴∠C=∠BAC=45°,在Rt△DEC中,sin45°=,∴DC==.【点评】本题考查了三角形内角和定理,等腰三角形的性质,角平分线的性质,解直角三角形的应用,主要考查学生综合运用性质进行推理和计算的能力.24.如图,△ABC的边BC的垂直平分线MN交AC于点D,若△ADB的周长是10cm,AB=4cm,求AC的长.【分(Fen)析】根据线段垂直平分线上的点到(Dao)线段两端点的距离相等可得BD=CD,然后根据△ADB的周长(Chang)求出AC+AB=10cm,再求(Qiu)解即可.【解(Jie)答】解(Jie):∵MN是线段BC的垂直平(Ping)分线,∴BD=CD,∵△ADB的(De)周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm.∵AB=4cm,∴AC=6cm.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出AC+AB是解题的关键.25.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE;再根据角平分线的定义求出∠BAC,然后利用直角三角形两锐角互余求解即可.【解答】解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE=5cm,又∵AD平分∠BAC,∴∠BAC=2∠CAD=2×32°=64°,∴∠B=90°﹣∠BAC=90°﹣64°=26°.【点(Dian)评】本题考查了角平分线上的点到角的两边的距离相等的性质,角平分线的定义,熟记性质是解题的关(Guan)键.26.已(Yi)知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分(Fen)成12和15两部分,求这个三角形的三边长.【分(Fen)析】如图(Tu),在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程(Cheng)即可得到结论.【解(Jie)答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,+y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12,+y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.【点评】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.27.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=5,求OM的长度.【分析】作PH⊥MN于H,根据直角三角形的性质得到OH=OP=6,根据等腰三角形的性质求出MH,计算即可.【解(Jie)答】解(Jie):作PH⊥MN于(Yu)H,∵∠AOB=60°,∴∠OPH=30°,∴OH=OP=6,∵PM=PN,PH⊥MN,∴MH=NH=2.5,∴OM=OH﹣MH=3.5.【点(Dian)评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所(Suo)对的直角边等于斜边的一半是解题的关键.28.如(Ru)图,在Rt△ABC中(Zhong),∠C=90°,AD平(Ping)分∠CAB,DE⊥AB于点E.若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△BDE的周长.【分析】(1)根据角平分线上的点到角的两边距离相等可得DE=CD;(2)利用勾股定理列式求出AB的长度,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AE=AC,然后求出BE,再根据三角形的周长的定义列式计算即可得解.【解答】解:(1)∵∠C=90°,AD平分∠CAB,DE⊥AB,∴DE=CD,∵CD=3,∴DE=3;(2)∵∠C=90°,AC=6,BC=8,∴AB===10,在(Zai)Rt△ACD和(He)Rt△AED中(Zhong),,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6,∴BE=AB﹣AE=10﹣6=4,∴△BDE的周(Zhou)长=BD+DE+BE=BD+CD+BE=BC+BE=8+4=12.【点(Dian)评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记各性质是解题的关键,难点在(Zai)于(2)三角形周长的转换.29.如(Ru)图,△ABC中(Zhong),∠B=90°,两直角边AB=7,BC=24,三角形内有一点P到各边的距离相等,PE⊥AB、PF⊥BC、PD⊥AC,垂足分别为E、F、D,求PD的长.【分析】连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.【解答】解:连接AP,BP,CP.设PE=PF=PD=x.∵△ABC中,∠B=90°,两直角边AB=7,BC=24,∴AC=25.=×AB×CB=84,∵S△ABCS△ABC=AB×x+AC×x+BC×x=(AB+BC+AC)•x=×56x=28x,则(Ze)28x=84,x=3.故PD的(De)长为3.【点(Dian)评】本题考查了勾股定理,三角形的面积.注意构造辅助线,则直角三角形的面积有两种表示方法:一是(Shi)整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即(AB+AC+BC)x,然(Ran)后即可计算x的值.30.如(Ru)图,在△ABC中,DM、EN分别垂(Chui)直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若(Ruo)△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的(De)周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点(Dian)评】本题考查了线段(Duan)垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.。
北师大版数学八年级下册 第二章 一元一次不等式与一元一次不等式组 《板块专题20道—月考真题—能力培养》
一元一次不等式与一元一次不等式组1.(2019春•禅城区校级月考)如果关于x的方程5x+a=3(x﹣1)﹣2的根为非负数,则a 的取值范围()A.a≥5B.a≤5C.a≥﹣5 D.a≤﹣52.(2019春•盐湖区校级月考)给出下列数学表达式:①﹣3<0;②4x+3y>0;③x=5;④x2﹣xy+y2;⑤x+2>y﹣7.其中不等式的个数是()A.5个B.4个C.3个D.2个3.(2019春•盐湖区校级月考)x与5的差是非正数,用不等式表示为()A.x﹣5<0B.x﹣5≤0C.x﹣5>0D.x﹣5≥04.(2019春•中原区校级月考)下列不等式变形中,错误的是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a≤b,则ac2≤bc2D.若ac2≤bc2,则a≤b5.(2019春•海州区校级月考)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5B.﹣6<a≤﹣5C.﹣6<a<﹣5D.﹣6≤a≤﹣56.(2019春•盐湖区校级月考)某小区便利店负责人上午买回来30千克黄瓜,价格为每千克x元,下午他又买回来20千克黄瓜,价格为每千克y元,后来他以每千克元的价格卖完后,发现自己赔了钱,其原因是()A.x<y B.x>yC.x≤y D.x≥y7.(2019春•海沧区校级月考)下列按条件列出的不等式中,不正确的是()A.x超过0,则x>0B.x是不大于0的数,则x≤0C.x是不小于﹣1的数,则x≥﹣1D.x+y是负数,则x+y≤08.(2019春•南岗区校级月考)如果不等式(2﹣a)x<a﹣2的解集为x>﹣1,则a必须满足的条件是()A.a>0B.a>2C.a≠1D.a<19.(2019春•南岸区校级月考)已知关于x的不等式(a﹣2)x>1的解集为x<,则a 的取值范围()A.a>2B.a≥2C.a<2D.a≤210.(2019春•九龙坡区校级月考)如图,直线y=kx+b与直线y=﹣交于点A(m,2),则关于x的不等式kx+b x+的解集是()A.x≤2B.x≥1C.x≤1D.x≥211.(2019秋•雨花区校级月考)当0≤x≤4时,关于x的不等式≥2x﹣2恒成立,则m的取值范围为.(2019春•新华区校级月考)根据“x的3倍与8的和比x的5倍大”,列出的不等式是.12.13.(2019秋•双流区校级月考)对x,y定义一种新运算T,规定:T(x,y)=,这里等式右边是通常的四则运算,若关于m的不等式组只有两个整数解,则实数P的取值范围.14.(2019春•西湖区校级月考)关于x、y的方程组,其中﹣3≤a≤1,给出下列结论:①是方程组的解;②当﹣3≤a≤1时,无论a取什么实数,x+y的值始终不变;③当a=1时,方程组的解也是方程2x+y=4﹣a的解;④x、y为自然数的解有4对.其中正确的序号为.15.(2019春•京口区校级月考)已知一次函数y=kx+b与y=mx+n的图象如图所示,若kx+b <mx+n,则x的取值范围为.16.(2019秋•九龙坡区校级月考)解不等式(组)(1)≥﹣1(2)17.(2019秋•思明区校级月考)为迎接:“国家卫生城市”复检,某市坏卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购A、B买两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.求出购买费用最少时的购买方案?18.(2019秋•呼兰区月考)某自行车行销售甲、乙两种品牌的自行车,若购进甲品牌自行车5辆,乙品牌自行车6辆,需要进货款9500元,若购进甲品牌自行车3辆,乙品牌自行车2辆需要进货款4500元.(1)求甲、乙两种品牌自行车每辆进货价分别为多少元?(2)今年夏天,车行决定购进甲、乙两种品牌自行车共50辆,在销售过程中,甲品牌自行车的利润率为80%,乙品牌自行车的利润率为60%,若将所购进的自行车全部销售完毕后其利润不少于29500,那么此次最多购进多少辆乙种品牌自行车?19.(2019春•涧西区校级月考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠,现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)顾客到哪个厂家购买更划算?20.(2019春•西湖区校级月考)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若营业员A某月的总收入不低于3500元,那么营业员A当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式,如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如采购买甲服装1件,乙服装2件,丙服装3件共需370元,某顾客想购买甲、乙、丙服装各一件共需多少元?。
北师大版八年级数学下第二次月考复习试题
北师大版八年级数学下第二次月考复习试题一、填空题1、如图,ED 为△ABC 的AC 边的垂直平分线,且AB=5,△BCE 的周长为8,则BC = .(第1题图) (第2题图) (第5题图)2、如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D ,交AB 于E ,若DB =10cm ,则AC = .3、若x 是非负数,则5231x-≤-的解集是______.4、k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y 小于15、如图,已知△ABD 沿BD 平移到了△FCE 的位置,BE =10,CD =4,则平移的距离是 。
6、如图,Rt ⊿AOB 中,∠AOB=90°,绕点O 顺时针旋转后与△COD 重合,若∠AOD =127°,则旋转角度是 。
(第6题图) (第7题图) (第12题图)7、△ABC 和△DCE 是等边三角形,则在此图中,△ACE 绕着 点 旋转 度可得到△ 。
8、分解因式:m 3-4m = .9、.若ax 2+24x +b =(mx -3)2,则a = ,b = ,m = .10、已知2+x a 与2-x b 的和等于442-x x,则a= , b =11、分式方程3-x x +1=3-x m有增根,则m=12、如图,在平行四边形ABCD 中,AB=4cm ,AD=7cm ,∠ABC 平分线互AD于E ,交CD 的延长线于点F ,则DF= 13、ABCD 的周长为6cm 3, 60=∠B ,6cm =AB ,则AD 与BC 的距离______=AE cm ,=_____________cm².AC DE B14、若□ABCD 的周长为100cm ,两条对角线相交于点O ,△AOB 的周长比△BOC 的周长多10cm ,那么AB= cm ,BC= cm 。
二、选择题1、在Rt △ABC 中,∠ACB =90°,AC =CB ,CD 是斜边AB 的中线,若AB =22,则点D 到BC 的距离为( ) A.1B.2C.2D.22 2、如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ;② CM =CN ;③ AC =DN. 其中,正确结论的个数是( ). A .3个 B .2个 C . 1个 D .0个3、如图3,在等边ABC ∆中,,D E 分别是,BC AC 上的点,且BD CE =,AD 与BE 相交于点P ,则12∠+∠的度数是( ).A .045B .055C .060D .0754、若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是( ).(A)k <2 (B)k ≥2(C)k <1(D)1≤k <25、不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2 (B)m ≥2 ( C)m ≤1 (D)m ≥16、如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30° (B )45° (C )90° (D )135°7、把一副三角板如上图甲放置,其中90ACB DEC ∠=∠=,45A ∠=,30D ∠=斜边6AB =,7DC =,把三角板DCE 绕着点C 顺时针旋转15得到△11D CE (如图乙),此时AB 与1CD 交于点O ,则线段1AD 的长度为A.58、下列多项式中,不能用完全平方公式分解因式的是( )(A)412m m ++ (B)222y xy x -+- (C)224914b ab a ++- (D)13292+-n n 9、两个连续的奇数的平方差总可以被 k 整除,则k 等于( )(A)4 (B)8 (C)4或-4 (D)8的倍数10、关于x 的方程)2(423-+=-x x x m x 有增根,则增根有可能是( ) A 、0 B 、 2 C 、0或2 D 、111、若分式方程a x ax =-+1无解,则a =( ) A 、-1 B 、 1 C 、-1或1 D 、-210、如图,已知平行四边形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是 ( ) A 、 线段EF 的长逐渐增大 B 、线段EF 的长逐渐减小 C 、线段EF 的长不改变 D 、线段EF 的长不能确定ABOCD(第6题)DCAE B AD 1OE 1BC图甲图乙 FE RPADCB三、解答题1、将下列各式分解因式:(1)22)(16)(9n m n m --+; (2)4224817216b b a a +-;2、化简x x x x x x x x 4)44122(22-÷+----+3、解分式方程(1)、164412-=-x x (2)、0)1(213=-+--x x x x4、关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围.5、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人?宿舍有几间?6、列分式方程解应用题:八年级(1)班的学生周末乘汽车到游览区游览,游览区距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达游览区,已知快车的速度是慢车速度的1.5倍,求慢车的速度。
【北师大版】八年级下册数学第一次月考卷01(第一章、第二章)附答题卡
2023-2024学年八年级数学下学期第一次月考卷01基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章、第二章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列数学表达式中:①20-<,②230x y +>,③2x =,④222x xy y ++,⑤3x ≠,⑥12x +>中,不等式有( ) A .1个B .2个C .3个D .4个2.下列说法不正确的是( ) A .若a b >,则22a b +>+ B .若a b >,则1122a b -<- C .若a b >,则22ac bc >D .若22a b >,则a b >3.不等式组10240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.若不等式组12x x k <≤⎧⎨>⎩有解,则k 的取值范围是( )A .12k ≤<B .2k ≥C .1k <D .2k <5.用反证法证明命题钝角三角形中必有一个内角小于45°时,首先应该假设这个三角形中( ) A .每一个内角都大于等于45° B .每一个内角都小于45° C .有一个内角大于等于45°D .有一个内角小于45°6.等腰三角形一腰上的高与另一腰的夹角为40︒,则这个等腰三角形的顶角为( ) A .50︒B .130︒C .50︒或130︒D .140︒7.用三角尺可按下面方法画角平分线:如图摆放使得三角板刻度相同,即PM PN =,画射线OP ,则OP 平分AOB ∠.作图过程用了OMP ONP ≌△△,那么OMP ONP ≌△△所用的判定定理是( )A .SSSB .AASC .HLD .ASA8.到三角形三个顶点距离都相等的点是( ) A .三角形的三条角平分线的交点 B .三角形的三边垂直平分线的交点 C .三角形的三条高线的交点 D .三角形的三条中线的交点9.如图,在ABC 中,90,30C B ∠=︒∠=︒,以A 为圆心、任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M 、N 为圆心、大于MN 的长的一半为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,给出下列说法:①AD 是BAC ∠的平分线;②120ADB ∠=︒;③点D 在AB 的垂直平分线上;④D 点是线段BC 的中点.其中正确的个数是( )A .1B .2C .3D .410.如图所示三角形纸片ABC 中,B C ∠=∠,将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD . 再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF ,若2AE =,则ABC 的周长为13,则AF 长为( )A .1.2B .1.5C .1.4D .111.一次函数1y ax b =+与2y cx d =+的图象如图所示,下列结论:①当0x >时,10y >,20y >;②函数y ax d =+的图象不经过第一象限;③3d ba c --=;④d a b c <++.其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .16B .10C .8D .2第II 卷二、填空题(本题共6小题,每小题3分,共18分.)13.已知a 、b 为常数,且0a ≠,如果不等式0ax b +<的解集是1x >,那么不等式ax b >-的解集是 .14.如图,在ABC 中,9060C BAC ADC ∠=︒∠=∠=︒,,则CD 与BD 的数量关系是 .15.我们用[]a 表示不大于a 的最大整数,例如:[]1.51=,[]2.32=,若[]41x +=,则x 的取值范围是 .16.如图,ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,MN 经过点O ,与AB ,AC 相交于点M 、N ,且MN BC ∥,7cm AB =,9cm AC =,则AMN 的周长为 .17.关于x 的不等式组36152x m x x >-⎧⎨-<+⎩的整数解仅有4个,则m 的取值范围是 .18.如图,M N ,为44⨯方格纸中格点上的两点,若以MN 为边(P 在格点上),使得MNP △为等腰三角形,则点P 的个数为 个.三、解答题(本题共8小题,共66分.第19-20题每题6分,第21-23题每题8题,其他每题10分,解答应写出文字说明、证明过程或演算步骤.) 19.解不等式:()3312x x ---≤,并把它的解集在数轴上表示出来.20.解不等式组()211212x x x ⎧-<+⎪⎨+>⎪⎩,并求不等式组的正整数解.21.如图,已知ABC ,(1)根据要求作图,在边BC 上求作一点D .使得点D 到点AB 、AC 的距离相等,在边AB 上求作一点E .使得点E 到A 、D 的距离相等;(不要求写作法,但需要保留作图痕迹和结论) (2)在第(1)小题所作的图中,求证:∥DE AC .22.如图,在四边形ABCD 中,90,A B E ∠=∠=︒是AB 上的一点,且AD BE ==,12DE CE ∠=∠、.(1)求证:Rt Rt ADE BEC △≌△; (2)若30AED ∠=︒,求CD 的长.23.西安某校计划购买A ,B 两种树木共100棵,进行校园绿化,经市场调查:购买A 种树木3棵,B 种树木4棵,共需470元,购买A 种树木5棵,B 种树木2棵,共需410元. (1)求A ,B 两种树木每棵各多少元?(2)布局需要,决定再次购进A ,B 两种树木共50棵,恰逢该供应商对两种树木的售价进行调价,A 种树木售价比第一次购买时提高了8%,B 种树木按第一次购买时售价的9折出售.如果这所学校此次购买A ,B 两种树木的总费用不超过3260元,那么该校最多可购买多少B 种树木? 24.如图,在平面直角坐标系中,一次函数y kx b =+的图象经过点()1,5C ,且与x 轴相交于点()6,0B ,与一次函数26y x =-的图象相交于点A ,点A 的横坐标为4.(1)求k ,b 的值;(2)请直接写出关于x 的不等式26kx b x +>-的解集;(3)设点E 在直线y kx b =+上,且2BCD BDE S S =△△,求点E 的坐标.25.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =.(1)求证:DB DE =;(2)过点A 作AF BC ∥,交ED 延长线于点F ,交AB 于M ,连接BF . ①若12EM =,则BD = . ②求证:AB 垂直平分DF .26.如图①,在ABC 中,延长AC 到D ,使CD AB =,E 是AD 上方一点,且A BCE D ∠=∠=∠,连接BE .(1)求证:BCE 是等腰三角形;(2)如图①,若90ACB ∠=︒,将DE 沿直线CD 翻折得到DE ',连接BE '和CE ',BE '与CE 交于F ,若BE ED '∥,求证:F 是BE '的中点;(3)在如图②,若90ACB ∠=︒,AC BC =,将DE 沿直线CD 翻折得到DE ',连接BE '交CE 于F ,交CD 于G ,若AC a =,()0AB b b a =>>,求线段CG 的长度.12023-2024学年八年级数学下学期第一次月考卷·答题卡一、单项选择题(本题共12小题,每小题3分,共36分。
北师大版八年级数学第一次月考试卷
北师大版八年级(下)第一次月考数学试卷班级姓名一、选择题(每小题4分,共40分)1.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.2.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.3.一个等腰三角形的顶角是100°,则它的底角度数是()A .30°B.60°C.40°D.不能确定4.不等式x﹣4<0的正整数有()A.1个B.2个C.3个D.无数多个5.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BD C.AC=AD且BC=BD D.以上都不正确6.在数轴上与原点的距离小于5的点对应的x满足()A.﹣5<x<5 B.x<5 C.x <﹣5或x>5 D.x>57.如图,当y<0时,自变量x的范围是()A.x<﹣2 B.x>﹣2 C.x<2 D.x>28.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A.30°B.36°C.45°D.70°9.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折10.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()1 / 12A.6 B.7 C.8 D.9二、填空题:(每小题4分,共20分)11.不等式组的解集是x>2,那么m的取值范围.12.等腰三角形ABC中∠A=40°,则∠B=.13.直角三角形中,两直角边长分别为12和5,则斜边中线长是.14.不等式组的整数解是.15.不等式组的解集是x<m﹣2,则m的取值应为.三、画图题(5分)16.在角AOB内部求作一点P,使PC=PD,并且点P到角AOB两边的距离相等。
【新】北师大版八年级下册第一次月考数学试卷含答案 (2)
八年级(下)第一次月考数学试卷一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或123.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>44.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣26.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.57.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.68.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥310.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.三.解答题:本大题共6小题,满分56分.17.解不等式:.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里.每小题4分,共40分.1.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.x+3>y+3 C. D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的性质1,可判断A、B;根据不等式的性质2,可判断C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都减3,不等号的方向不变,故A正确;B、不等式的两边都加3,不等号的方向不变,故B正确;C、不等式的两边都乘以,不等号的方向不变,故C正确;D、不等式的两边都乘以﹣3,不等号的方向改变,故D错误;故选:D.【点评】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或12【考点】等腰三角形的性质;三角形三边关系.【分析】分2是腰长与底边长两种情况讨论求解.【解答】解:①2是腰长时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,②2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长=2+4+4=10,综上所述,它的周长是10.故选C.【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系进行判定.3.已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4【考点】解一元一次不等式;一元一次方程的解.【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【解答】解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C.【点评】本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.4.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【考点】等腰三角形的判定与性质.【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.【点评】此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.5.关于x的不等式x﹣b>0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【考点】一元一次不等式的整数解.【分析】表示出已知不等式的解集,根据负整数解只有﹣1,﹣2,确定出b的范围即可.【解答】解:不等式x﹣b>0,解得:x>b,∵不等式的负整数解只有两个负整数解,∴﹣3≤b<﹣2故选D.【点评】此题考查了一元一次不等式的整数解,弄清题意是解本题的关键.6.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5【考点】勾股定理;等腰三角形的性质.【专题】动点型.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.7.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3 B.4 C.5 D.6【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD 的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选:C.【点评】此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.8.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC 恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个【考点】全等三角形的判定与性质;角平分线的性质;相似三角形的判定与性质.【分析】根据等腰三角形的性质三线合一得到BD=CD,AD⊥BC,故②③正确;通过△CDE≌△DBF,得到DE=DF,CE=BF,故①④正确.【解答】解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故②③正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故①正确;∵AE=2BF,∴AC=3BF,故④正确.故选A.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.9.如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a满足﹣3≤a<0时,k 的取值范围是()A.﹣1≤k<0 B.1≤k≤3 C.k≥1 D.k≥3【考点】一次函数与一元一次不等式.【分析】把点的坐标代入直线方程得到a=﹣,然后将其代入不等式组﹣3≤a<0,通过不等式的性质来求k的取值范围.【解答】解:把点(0,3)(a,0)代入y=kx+b,得b=3.则a=﹣,∵﹣3≤a<0,∴﹣3≤﹣<0,解得:k≥1.故选C.【点评】本题考查了一次函数与一元一次不等式.把点的坐标代入直线方程得到a=﹣是解题的关键.10.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE==,∴DF=EF﹣ED=,∴B′F==.故选:A.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.二、填空题:本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分11.不等式(x﹣m)>3﹣m的解集为x>1,则m的值为4.【考点】解一元一次不等式.【分析】先根据不等式的基本性质把不等式去分母、去括号、再移项、合并同类项求出x的取值范围,再与已知解集相比较即可求出m的取值范围.【解答】解:去分母得,x﹣m>3(3﹣m),去括号得,x﹣m>9﹣3m,移项,合并同类项得,x>9﹣2m,∵此不等式的解集为x>1,∴9﹣2m=1,解得m=4.故答案为:4.【点评】考查了解一元一次不等式,解答此题的关键是掌握不等式的性质,(1)不等式两边同加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边同乘(或同除以)同一个正数,不等号的方向不变;(2)不等式两边同乘(或同除以)同一个负数,不等号的方向改变.12.设a、b是直角三角形的两条直角边,若该直角三角形的周长为6,斜边长为2.5,则ab的值是3.【考点】勾股定理.【分析】根据勾股定理得出a2+b2的值,再利用完全平方公式求出ab的值.【解答】解:∵a、b是直角三角形的两条直角边,直角三角形的周长为6,斜边长为2.5,∴a+b=3.5,a2+b2=2.52=6.25,(a+b)2=12.25,∴a2+b2+2ab=12.25,∴2ab=6,解得:ab=3.故答案为:3.【点评】此题主要考查了勾股定理以及完全平方公式,正确应用完全平方公式是解题关键.13.已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是①②④.(填写所有真命题的序号)【考点】命题与定理;平行线的判定与性质.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.【点评】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,难度适中.14.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为x>.【考点】一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式2x>ax+4的解集即可.【解答】解:∵函数y=2x过点A(m,3),∴2m=3,解得:m=,∴A(,3),∴不等式2x>ax+4的解集为x>.故答案为:,【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.15.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE 为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【考点】等边三角形的判定与性质;三角形的重心;三角形中位线定理.【专题】压轴题.【分析】根据等边三角形的性质,可得AD的长,∠ABG=∠HBD=30°,根据等边三角形的判定,可得△MEH的形状,根据直角三角形的判定,可得△FIN的形状,根据面积的和差,可得答案.【解答】解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.=S△EFG﹣S△EMH﹣S△FINS五边形NIGHM=×42﹣×22﹣××1=,故答案为:.【点评】本题考查了等边三角形的判定与性质,利用了等边三角形的判定与性质,直角三角形的判定,利用图形的割补法是求面积的关键.16.在△ABC中,AB=2,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为或.【考点】勾股定理;等腰直角三角形.【专题】分类讨论.【分析】分①点A、D在BC的两侧,设AD与边BC相交于点E,根据等腰直角三角形的性质求出AD,再求出BE=DE=AD并得到BE⊥AD,然后求出CE,在Rt△CDE中,利用勾股定理列式计算即可得解;②点A、D在BC的同侧,根据等腰直角三角形的性质可得BD=AB,过点D作DE⊥BC 交BC的反向延长线于E,判定△BDE是等腰直角三角形,然后求出DE=BE=2,再求出CE,然后在Rt△CDE中,利用勾股定理列式计算即可得解.【解答】解:①如图1,点A、D在BC的两侧,∵△ABD是等腰直角三角形,∴AD=AB=×2=4,∵∠ABC=45°,∴BE=DE=AD=×4=2,BE⊥AD,∵BC=1,∴CE=BE﹣BC=2﹣1=1,在Rt△CDE中,CD===;②如图2,点A、D在BC的同侧,∵△ABD是等腰直角三角形,∴BD=AB=2,过点D作DE⊥BC交BC的反向延长线于E,则△BDE是等腰直角三角形,∴DE=BE=×2=2,∵BC=1,∴CE=BE+BC=2+1=3,在Rt△CDE中,CD===,综上所述,线段CD的长为或.故答案为:或.【点评】本题考查了勾股定理,等腰直角三角形的性质,难点在于要分情况讨论,作出图形更形象直观.三.解答题:本大题共6小题,满分56分.17.解不等式:.【考点】解一元一次不等式.【分析】利用不等式的基本性质,即可求得原不等式的解集.【解答】解:去分母得:6(5x+1)﹣3(x﹣2)>2(5x﹣1)+4(x﹣3),去括号得:0x+6﹣3x+6>10x﹣2+4x﹣12,移项得:30x﹣3x﹣10x﹣4x>﹣2﹣12﹣6﹣6,合并同类项得:13x>﹣26,系数化为1得:x>﹣13.【点评】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键.18.若关于x、y的二元一次方程组的解满足x+y<2,求a的取值范围.【考点】二元一次方程组的解;解一元一次不等式.【专题】计算题;一次方程(组)及应用;一元一次不等式(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:方程组,解得:,∴x+y=1+a,∵x+y<2,∴1+a<2,解得:a<4.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【考点】全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.【分析】(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.由(1),可得OD=DC=CM﹣DM,再根据CM=ON,推得OD=ON﹣DM即可.【解答】解:(1)当点M在线段CD上时,线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:如图1,,∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.(2)当点M在线段CD延长线上时,线段OD、ON、DM之间的数量关系是:OD=ON﹣DM.证明:如图2,,由(1),可得OD=DC=CM﹣DM,又∵CM=ON,∴OD=DC=CM﹣DM=ON﹣DM,即OD=ON﹣DM.【点评】(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.20.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.【考点】全等三角形的判定与性质.【分析】连接BE,根据已知条件先证出∠BCE=∠ACD,根据SAS证出△ACD≌△BCE,得出AD=BE,再根据勾股定理求出AB,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt△BAE中,根据AB、AE的值,求出BE,从而得出AD.【解答】解:如图,连接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE====9,∴AD=9.【点评】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD≌△BCE.21.某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?【考点】一次函数的应用.【分析】(1)根据题意可知进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,由此可得出y与x的关系式;(2)先求出x的取值范围,再由x为整数即可得出结论.【解答】解:(1)根据题意得,进行加工的人数为(30﹣x)人,采摘的数量为0.4x吨,加工的数量为(9﹣0.3x)吨,直接出售的数量为0.4x﹣(9﹣0.3x)=(0.7x﹣9)吨,y=4000×(0.7x﹣9)+10000×(9﹣0.3x)=﹣200x+54000;(2)根据题意得,0.4x≥9﹣0.3x,解得x≥12,∴x的取值是12≤x≤30的整数.∵k=﹣200<0,∴y随x的增大而减小,∴当x=13时利润最大,即13名工人进行苹果采摘,17名工人进行加工,获利最大.【点评】本题考查的是一次函数的应用,根据题意列出关于x、y的关系式是解答此题的关键.22.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.【考点】全等三角形的判定与性质;角平分线的性质;等腰直角三角形.【专题】证明题;几何综合题.【分析】(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”证明△ABE和△ACF全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明Rt△ACM和Rt△ECM 全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”证明△ADE和△CDN全等,根据全等三角形对应边相等证明即可.【解答】证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在Rt△ACM和Rt△ECM中,,∴Rt△ACM≌Rt△ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在△ADE和△CDN中,,∴△ADE≌△CDN(ASA),∴DE=DN.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.。
北师大版 八年级数学第一次月考测试卷试题
1八年级数学一、二、三章测试卷试题考号________班级________姓名_________成绩___________一、选择题(本大题共12小题每题3分,共36分)1. 已知直角三角形的一条直角边和斜边的长分别为3和5,则第三条边的长为( )A. 4B. 5C. 3D. 都不对2. 如图,字母B 所代表的正方形的面积是( )A .12 B. 144 C. 13 D. 1943、如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A. 8米B. 9米C. 10米D. 11米 4、一直角三角形的两直角边长为12和16,则斜边长为( )A. 12B. 16C. 18D. 20 3. 下列各组数中,不能满足勾股定理的逆定理是()A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,10 4. 三角形的三边长为a ,b ,c ,且满足(a +b )2=c 2+2ab ,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形 5. 若x -3是4的平方根,则x 的值为( )A. 2B. ±2C. 1或5D. 166. 若点A (a ,a +5)在x 轴上,则点A 到原点的距离为( )A. -5B. 0C. 5D. 不能确定7.下列各数中,是无理数的是( )A.8 B .0 C. 4 D .-47138.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 9.在平面直角坐标系中,点(4,-5)关于x 轴对称的点的坐标为( )A .(4,5)B .(-4,-5)C .(-4,5)D .(5,4)10.点P (m +3,m +2)在直角坐标系的y 轴上,则点P 的坐标为( )A .(0,-1)B .(1,0)C .(3,0)D .(0,-5)11.若一个正数的平方根是x -5和x +1,则x 的值为( )A .2B .-2C .0D .无法确定 12.计算12×13+5×3的结果在( ) A .4至5之间 B .5至6之间 C .6至7之间 D .7至8之间二、填空题(每小题每题4分,共24分) 1.如图是某校的平面示意图的一部分,若用“(0,0)”表示图书馆的位置,“(0,-3)”表示校门的位置,则教学楼的位置可表示为________.2.若第二象限内的点P (x ,y )满足|x |=2,y 2=36,则点P 的坐标是________. 3.如果a -1+2-b =0,那么1a+6b=________.4、一个三角形的三边的比是3∶4∶5,它的周长是24,则它的面积是____________. 5在实数①,②,③3.14,④,⑤π中,是无理数的有______;(填写序号)6、在平面内,确定物体位置,一般需要 ______个数据。
初二月考北师大版数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √4B. √-4C. √-3D. √162. 下列各式中,正确的是()A. 2a + 3b = 5B. 2a = 3bC. a = 2b + 1D. 2a + 3b = 2a + 33. 若a、b为实数,且a + b = 0,则下列各式中正确的是()A. a² + b² = 0B. a² - b² = 0C. a² + 2ab = 0D. a² - 2ab = 04. 下列各数中,属于无理数的是()A. √2B. √9C. √-1D. √165. 若x² = 4,则x的值为()A. ±2B. ±4C. ±1D. ±36. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²7. 下列各数中,有最小值的是()A. √2B. √3C. √5D. √68. 若a > b,则下列各式中正确的是()A. a² > b²B. a² < b²C. a³ > b³D. a³ < b³9. 下列各数中,能被3整除的是()A. 24B. 25C. 26D. 2710. 下列各式中,正确的是()A. a³ = a² aB. a³ = a a aC. a³ = a² + aD. a³ = a² - a二、填空题(每题3分,共30分)11. 若a² = 9,则a的值为______。
初二数学下月考试卷(北师大版)
东 华 中 学 试 题 库 命题人:刘倩 审卷人:杨学松第 1 页 共 2 页东华中学2012—2013年第二学期八年级数学第一次月考试卷温馨提示:自信、认真、绝不放弃是一个人成功必备的良好品质,相信同 学们能通过自己的努力给自己一个满意的答复。
一.选择题(每空3分,共30分)1.已知a b >,则下列不等式中正确的是 ( )A .33a b ->-B .33a b ->-C .33a b ->-D .33a b ->-2.下列多项式能用平方差公式分解因式的是 ( )( A ) x 2-16 ( B ) x 2 +10x+25 ( C ) x 2 +4 ( D ) )x 2+5x 3.下列各式从左.到右.是因式分解的是 ( ) A 、(a +3)(a -3)=a 2-9 B 、x 2+x -5=(x -2)(x +3)+1 C 、a 2b +ab 2=ab(a +b) D 、x 2+1=x(x +x1)4.如果2592++kx x 是一个完全平方式,那么k 的值是 ( ) A 、 15 B 、 ±5 C 、 30 D ±30 5.不等式组2112x x -<⎧⎨-⎩,≤的解集在数轴上表示为 ( )6.下列各式是完全平方式的是 ( )A.212+-x xB.x x 212-+C.22y xy x ++D.122-+x x7.若)5)(3(+-x x 是qpx x++2的因式,则p 为 ( )A 、-15B 、-2C 、8D 、28.不等式组⎩⎨⎧>-<+-m x x x 62的解集是4>x ,那么m 的取值范围是 ( )A .4≥mB .4≤mC .4<mD .4=m9.关于x 的方程632=-x a 的解是非负数,那么a 满足的条件是 ( )A .3>aB .3≤aC .3<aD .3≥a10.把多项式)2()2(2a m a m -+-分解因式等于 ( )A 、))(2(2m m a +-B 、))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)二.填空题(本题共10小题,每小题3分,共30分)11.x 与5的差不小于x 的2倍.用不等式表示为12.中各项的公因式是_______13. 分解因式:x 2-4= ________14. 因式分解=________________.15.-5x >3的解集是16. 已知函数y=2x —3,当x 时,y <5.17. 已知,a+b=13 ,ab=10, 则22ab b a += .18. 不等式组⎩⎨⎧-<-<-2235x x 的解集是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册考试卷
1.已知a <b ,则下列不等式一定成立的是( )
A .a+3>b+3
B .2a >2b
C .﹣a <﹣b
D .a ﹣b <0 2.不等式2x+3>0的最小整数解是( ) A .-1 B .1 C .0 D .2
3.若点P (1-m ,2m-4)在第四象限内,则m 的取值范围是( ) A .m <1 B .1<m <2 C .m <2 D .m >2 4.根据不等式的性质,下列变形正确的是( )
A .由a >b 得ac 2>bc 2
B .由ac 2>bc 2
得a >b C .由
-
1
2
a >2得a < 2 D .由2x+1>x 得x >1 5.如图,直线y=kx+
b 与坐标轴的两交点分别为A (2,0)和B (0,-3),则不等式kx+b+3≤0的解为( )A .x ≤0 B .x ≥0 C .x ≥2 D .x ≤2
第5题图 第6题图 第9题图 6.如图,数轴上表示的是下列哪个不等式组的解集( )
A .⎩⎨⎧->≥23x x
B .⎩⎨⎧-≥<23x x
C .⎩⎨⎧-≤>23x x
D .⎩⎨⎧->≤2
3
x x
7.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的( ) A 、三条中线的交点; B 、三边垂直平分线的交点; C 、三条高的交点; D 、三条角平分线的交点; 8.若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )
A.11cm
B.7.5cm C .11cm 或7.5cm D.以上都不对
9.如图所示,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C 的度数为( ) A .25° B .30° C .35° D .40°
10.有下列长度的三条线段,能组成等腰三角形的是( )
A .2cm ,2cm ,4cm
B .3cm ,8cm ,3cm
C .3cm ,4cm ,6cm
D .5cm ,4cm ,4cm 二、填空题
11.不等式组201322
x x -<⎧⎪
⎨-≤⎪⎩的非负整数解是
12.若不等式组3
x x m >⎧⎨
>⎩
的解集是x >3,则m 的取值范围是 . 13.如图,数轴所表示的不等式的解集是 .
14.如图,直线y 1=x+b 与y 2=kx ﹣1相交于点P ,点P 的横坐标为﹣1,则关于x 的不等式x+b >kx
﹣1的解集 .
第13题图 第14题图 第15题图
15.如图,在△ABC 中,边AB 的垂直平分线分别交BC 于点D ,交AB 于点E .若AE=3,△ADC 的周长为8,则△ABC 的周长为 . 三、解答题16.解不等式24
x -≥13x
-,并把它的解集在数轴上表示出来.
17.解不等式:1371
6366
x -≤--<,并求其非负整数解.
18.解不等式组⎩⎨
⎧>+<-0
635
12x x ,并把解集在数轴上表示出来。
19.解不等式组⎩⎨⎧-≤->+x
x x x 4)
1(213,并把解集在数轴上表示出来
20.若干学生分住宿舍,每间4人余20人;每间住8人有一间不空也不满,则宿舍有多少间?学生多少人?
21.列一元一次不等式(组)解决实际问题:元旦联欢会上,班级为同学们买了一批小礼物,如果每个人分3个,还多5个;如果每个人分4个,就会有一个人能分到但分不到4个,若已知班级学生的人数是奇数,试问这些小礼物共有多少个?
22某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是会员卡租书,办卡每月12元,租书费每册0.4元。
小军经常来该店租书,若每月租书数量为x 册, (1)写出零星租书方式应付金额y 1(元)与租书数量x (册)之间的函数关系式; (2)写出会员卡租书方式应付金额y 2(元)与租书数量x (册)之间的函数关系式; (3)小军选取哪种租书方式更合算?
23.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3. (1)求DE 的长; (2)求△ADB 的面积.
24.已知:如图,锐角△ABC 的两条高BD 、CE 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;
(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.
25.如图,ABC △是等边三角形,BD 是中线,延长BC 至E ,使CE=CD ,求证:ED BD =.
A
E
B
D
26.如图,在ABC ∆中,DE 是AC 的垂直平分线,AE=3cm ,ABD ∆的周长为13cm ,求ABC ∆的周
长
E
D
C
B
A
小学二(2)班班规
一、安全方面
1、每天课间不能追逐打闹。
2、中午和下午放学要结伴回家。
3¡¢公路上走路要沿右边走,过马路要注意交通安全。
4¡¢不能在上学路上玩耍、逗留。
二、学习方面
1、每天到校后,不允许在走廊玩耍打闹,要进教室读书。
2、每节课铃声一响,要快速坐好,安静地等老师来上课。
3、课堂上不做小动作,不与同桌说悄悄话,认真思考,积极回答问题。
4、养成学前预习、学后复习的好习惯。
每天按时完成作业,保证字迹工整,卷面整洁。
5、考试时做到认真审题,不交头接耳,不抄袭,独立完成答卷。
三、升旗排队和两操方面
1、升旗时,要快速出教室排好队,做到快、静、齐,安静整齐地排队走出课室门,班长负责监督。
2、上午第二节后,快速坐好,按要求做好眼保健操。
3、下午预备铃声一响,在座位上做眼保健操。
四、卫生方面
1、每组值日生早晨7:35到校做值日。
2、要求各负其责,打扫要迅速彻底,打扫完毕劳动工具要摆放整齐。
3、卫生监督员(剑锋,锶妍,炜薪)要按时到岗,除负责自己的值日工作外,还要做好记录。
五、一日常规
1¡¢每天学生到齐后,班长要检查红领巾。
2¡¢劳动委员组织检查卫生。
3、每天负责领读的学生要督促学生学习。
4、上课前需唱一首歌,由文娱委员负责。
5¡¢做好两操。
6¡¢放学后,先做作业,然后帮助家长至少做一件家务事。
7¡¢如果有人违反班规,要到老师处说明原因。
班训:
坐如钟站如松快如风静无声
班规:
课堂听讲坐如钟,精神集中认真听;
排队升旗站如松,做操到位展雄风;
做事迅速快如风,样样事情记得清;
自习课上静无声,踏实学习不放松;个人努力进步快,团结向上集体荣;我为领巾添光彩,标兵集体记我功。
扣分标准
8 座位周围有垃圾-2
-1
9 课间操、眼保健操不认
真做
10 升旗时违反纪律-2
-1
11 来学校不进教室,在走
廊聊天打闹
12 体育课打闹说话、排队
-2
不整齐
注:每人基本分60分起,学期末核算总分,作为学期评先依据。