勾股定理常见练习题
初二数学下册画图练习题
初二数学下册画图练习题在初二数学的下册中,画图练习是非常重要的一环。
通过画图练习,同学们可以加深对数学知识的理解,提升解题能力。
本文将介绍一些常见的数学画图练习题,并提供详细的解题步骤和技巧。
一、勾股定理的应用勾股定理是初中数学中重要的一条定理,它描述了直角三角形中三边之间的关系。
通过画图练习,可以更好地理解和应用勾股定理。
例题1:已知直角三角形的直角边长分别为3cm和4cm,求斜边的长。
解题步骤:1. 用尺子和铅笔工具在纸上绘制一个直角三角形,其中一条直角边为3cm,另一条直角边为4cm。
2. 在纸上用尺子测量斜边的长度,不断调整尺子的位置,直到测量出准确的斜边长度。
3. 记录下斜边的长度,得到最终结果。
例题2:已知直角三角形的斜边长为5cm,一条直角边长为3cm,求另一条直角边的长。
解题步骤:1. 用尺子和铅笔工具在纸上绘制一个直角三角形,其中斜边的长度为5cm,一条直角边为3cm。
2. 使用尺子在纸上找到一个长度为5cm的线段,将其放置于纸上直角边的起点,与斜边相连,确定另一条直角边的终点。
3. 用尺子测量出另一条直角边的长度,记录下最终结果。
二、图形的绘制和计算通过绘制图形和进行计算,可以帮助同学们更好地理解和应用图形的属性和计算方法。
例题3:一块长方形的面积为12平方厘米,宽度为2厘米,求其长度。
解题步骤:1. 用尺子和铅笔工具在纸上绘制一个长方形,宽度为2厘米。
2. 在纸上用尺子测量长方形的面积,即长方形的长度与宽度的乘积,即12平方厘米。
3. 通过计算得到长度为6厘米,记录下最终结果。
例题4:已知一个正方形的面积为16平方厘米,求其边长。
解题步骤:1. 用尺子和铅笔工具在纸上绘制一个正方形。
2. 在纸上用尺子测量正方形的面积,即正方形的边长的平方,即16平方厘米。
3. 通过计算得到边长为4厘米,记录下最终结果。
三、坐标系中的图形通过在坐标系中绘制图形,可以更好地理解图形的位置和性质,并进行计算和判断。
勾股定理(2)
13
13
1 BC• AD 1 AC• BH
2
2
H
B 10 D C
例1 如图,在Rt△ABC中,BC=24,AC=7,求AB的长.
解:在Rt△ABC中 ,根据勾股定理
B
AB2 AC 2 BC 2
72 242 625
Q AB 0 AB 25 25 24
如果将题目变为:
D
C
B
A
判断:
• 一个圆柱状的杯子,由内部测得其底面 直径为4cm,高为10cm,现有一支12cm 的吸管任意斜放于杯中,则吸管 ____ 露出杯口外. (填“能”或“不能”)
一个门框的尺寸如图所示,一块长3m,宽 2.2m的薄木板能否从门框内通过?为什么?
连结AC,在Rt△ABC中,根据勾股定理,
B
D
C
AD 36 9 27 3 3cm
1
( 2) S ABC
BC AD 2
1 6 3 3 9 3(cm2 ) 2
例3 如图,∠ACB=∠ABD=90°,CA=CB,
∠DAB=30°,AD=8,求AC的长。
D
解:∵∠ABD=90°,∠DAB=30°
C
又AD=8
学以致用
例1 飞机在空中水平飞行,某一时刻刚好飞
到一个男孩头顶上方4000米处,过了20秒,飞
机距离这个男孩头顶5000米。飞机每小时飞行
多少千米?
C
B
20秒后
4000米
5000米
A
试一试:
在我国古代数学著作 《九章算术》中记载了一道 有趣的问题,这个问题的意 思是:有一个水池,水面是 一个边长为10尺的正方形,在 水池的中央有一根新生的芦 苇,它高出水面1尺,如果把 这根芦苇垂直拉向岸边,它 的顶端恰好到达岸边的水面, 请问这个水池的深度和这根 芦苇的长度各是多少?
勾股定理常见练习试题
(一)情境引入如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?(二)合作探究(1)观察下面两幅图并填表:A 的面积 (单位面积)B 的面积 (单位面积)C 的面积 (单位面积)左图 右图(2)问:①、图形A 、B 、C 的面积有何关系?②、图形A 、B 、C 的面积与三角形的边长有何关系? ③、由①、②可得出直角三角形三边长有什么结论?1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:AB CC BAcba HG FEDCBA方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5..勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数) 题型一:已知两边求第三边【例1】直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_____15____2cm .【例2】已知直角三角形的两边长为5、12,则另一条边长是____13或____________. 【例3】作出长度为10的线段。
勾股定理复习易错题四套题由简到难(附带答案)
勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形ABC中,∠C=90°,BC=24,CA=7,AB=.3.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是 cm2.5.如图2,在△ABC中,∠C=90°,BC=60c m,CA=80c m,一只蜗牛从C点出发,以每分钟20c m的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.6.已知x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上(设梯子上端要到达或超过挂拉花的高度才能挂上),小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为和.(注:两直角边长均为整数)二、选择题1.下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,162.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( )A .10cmB .3cmC .4cmD .5cm4.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的( )A .2倍B .3倍C .4倍D .5倍5.下列说法中, 不正确的是( )A .三个角的度数之比为1∶3∶4的三角形是直角三角形B .三个角的度数之比为3∶4∶5的三角形是直角三角形C .三边长度之比为3∶4∶5的三角形是直角三角形D .三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a +b )2=c 2+2ab ,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形7.某直角三角形的周长为30,且一条直角边为5,则另一直角边为( )A .3B .4C .12D .138.如果正方形ABCD 的面积为29,则对角线AC 的长度为( )A .23B .49CD .29 三、简答题1.(10分)如图4,你能计算出各直角三角形中未知边的长吗?2.(10分)如图5所示,有一条小路穿过长方形的草地ABCD ,若AB =60m ,BC =84m ,AE =100m ,则这条小路的面积是多少?3.(10分)如图6,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A ,CD =1c m ,求AB 的长.4.(10分)小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方案吗?5.(10分)如图7,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?6.(10分)如图8所示,四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证:AC⊥CD.参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.207.0.7 8.4,6二、1~4.CBDA 5~8.BBCA三、1.(1)5x=;(2)24x=2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、(1)84,85.(2)任意一个大于1的奇数的平方可以拆成两个连续整数的和,并且这两个连续整数与原来的奇数构成一组勾股数.(3)略.八年级下册第十八《勾股定理》水平测试一、填空题(每小题3分,共24分)1.一个三角形的三个内角之比为1∶2∶3,则三角形是三角形;若这三个内角所对的三边分别为a、b、c(设最长边为c),则此三角形的三边的关系是.2.已知等腰直角三角形的斜边长为2,则直角边长为,若直角边长为2,则斜边长为.3.在Rt△ABC中,∠C=90°,①若AB=41,AC=9,则BC=;②若AC=1.5,BC =2,则AB=.4.已知两条线段的长分别为11cm和60cm,当第三条线段的长为 cm时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.6.如图2,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.7.等腰直角三角形有一边长为8c m,则底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.二、选择题(每小题3分,共24分)1.如图4,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)()A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm4.如图5,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.215.在直角三角形中,斜边与较小直角边的和、差分别为18、8,则较长直角边的长为()A.20 B.16 C.12 D.86.在△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF8.如图7,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2 B.BD2C.BC2 D.DE2三、简答题(共58分)1.一个三角形三条边的比为5∶12∶13,且周长为60c m,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方和小朱进行游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点?5.如图10(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索(本题14分)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(用含有m的代数式表示).(2)如果a+b-c=m,观察上表猜想:l(3)证明(2)中的结论.参考答案:一、1.直角,222a b c +=2.1,2 3.40,2.5 4.615.14 6.12 7.4或,16或32 8.10 二、1~4.DBDC 5~8.CCBA 三、1.2120cm2.图略3.不正确,可添加DB BC ⊥或5cm DB =4.小方先到达终点54条四、解:(1)从上往下依次填12,1,32; (2)4S m l =; (3)证明略.点击《勾股定理》之特色题本文将在各地课改实验区的中考试题中,涉及《勾股定理》知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1(成都市)如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF , 再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______.【解析】:求解这类题目的常见策略是:“从特殊到一般”.即是先通过观察几个特殊的数式中的变数与不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于 此题,由勾股定理、正方形的面积计算公式易求得:2111S ==, 222S == 2324S == 248S ==照此规律可知:25416S ==,观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -= 因此,817822128S -===二.考查阅读理解能力的材料分析题例2(临安)阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: (3)本题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,本题属于“判断纠错型”题目.集中考查了因式分解、勾股定理等知识.在由得到等式2222222()()()c a b a b a b -=+-没有错,错在将这个等式两边同除了一个可能为零的式子ABC D EFGHIJ22a b -.若220a b -=,则有()()0a b a b +-=,从而得a b =,这时,ABC 为等腰三角形.因此:(1) 选C .(2) 没有考虑220a b -=(3) ABC ∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3(长春)如图,在Rt △ABC 中,∠C = 90°,AC = 4,BC = 3.在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画现草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)示例图 备用图【解析】:要在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点”的动态探究题例4(泉州):如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60.⑴求AO 与BO 的长;⑵若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行. 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD=2:3,试计算梯子顶端A 沿NO 下滑多少米?X k b1.c o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但若是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”,结合勾股定理求解,还是容易解答的.⑴AOB Rt ∆中,∠O=90,∠α= 60 ∴,∠OAB= 30,又AB=4米,∴122OB AB ==米.由勾股定理得:OA ===. ⑵设2,3,AC x BD x ==在COD Rt ∆中,2,23,4OC x OD x CD ==+= 根据勾股定理:222OC OD CD +=∴()()2222234x x ++= -∴(213120x x +-= ∵0x ≠ ∴0381213=-+x∴x =所以,即梯子顶端A 沿NO .勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….(1)记正方形ABCD 的边长为1a =1,依上述方法所作的4a 正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,的值.(2)根据以上规律写出第n 个正方形的边长n a 的表达式. 分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1.由勾股定理,得AC同理,AE =2,EH = a 2a 3=2,a 4=(2) ∵011a ==, 12a ==, 232a ==, 34a ==,∴1n n a -= ()1,n n ≥是自然数.点拨:探究开放题形式新颖、思考方向不确定,因此综合性和逻辑性较强,它着力于考查观察、分析、比较、归纳、推理等方面的能力,对提高同学们的思维品质和解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图(1)是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 和b ,斜边长为c .图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有苦干个,你能运用图(1)所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).解:(1)所拼图形图3所示,它是一个直角梯形.(2)由于这个梯形的两底分别为a 、b ,腰为(a +b ),所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积和,所以梯形的面积又可表示为:2111222ab ab c ++.Xk b1.c om∴221111()2222a b ab ab c +=++. ∴222a b c +=. (3)所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考查解题者的动手能力和创新设计的才能。
勾股定理典型解题技巧及练习
专题复习一 勾股定理常见勾股数如下:3、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162= 289172=; 324182=; 361192=; 400202=;441212=; 484222= 529232=; 576242=; 625252=; 676262=;729272= 4、已知斜边和一条直角边求另一条直角边由a 2+b 2=c 2可得 a 2= c 2- b 2=(c+b) (c-b) (平方差公式) 例如,已知c=61, b=60, 则a 2= c 2-b 2= (61+60) (61-60) =121, 则 a=11已知c=41, b=40, 则a 2= c 2-b 2= (41+40) (41-40) =81, 则 a=9已知c=17, b=8, 则a 2= c 2-b 2= (17+8) (17-8) =25 x 9=52 x 32= (5 x 3)2 则 a = 5 x 3 =155、直角三角形斜边的中线等于斜边的一半。
如图,CD 为斜边AB 的中线,过D 作D E ⊥AC 于E,DF ⊥BC 于F 在RT ▲ADE 和RT ▲DBF 中,∠DAE=∠BDF , AD=DB ∠ADE=∠DBFRT ▲ADE ≌RT ▲DBF ∴ EA=FD, 有因CEDF 为矩形, ∴FD=CE=EA=1/2 CART ▲ADE ≌RT ▲CDE ∴ CD=AD=DB=1/2 AB6、直角三角形30°角的对边等于斜边的一半7、三角形内角平分线上的点到两边的距离相等8、任意三角形三个内角的角平分线相交于一点。
该点称三角形的内心(内切圆圆心)。
9、任意三角形三个边上的垂线(高)相交于一点。
该点称三角形的垂心 10、任意三角形三个边上的中线相交于一点。
该点称三角形的重心。
11、任意三角形三个边上的垂直平分线(中垂线)相交于一点。
勾股定理必考题型
勾股定理必考题型勾股定理是数学中一项基本且重要的定理,广泛应用于几何与代数问题的解决中。
对于学习数学的人来说,熟练掌握勾股定理及相关题型是必不可少的。
本文将介绍一些与勾股定理相关的必考题型,帮助读者更好地准备数学考试。
一、直角三角形边长求解在考试中,常见的问题是给出一个直角三角形的斜边长以及一条直角边的长度,要求求解另一条直角边的长度。
例如,已知一个直角三角形的斜边长为5,一条直角边长为3,要求求解另一条直角边的长度。
解题思路:根据勾股定理可以得到斜边长的平方等于两直角边长的平方和,即a²=b²+c²。
将已知数据代入公式,得到5²=3²+c²,即25=9+c²。
解方程可得c=4,即另一直角边的长度为4。
二、直角三角形判定另一种常见的题型是给出三条边的长度,要求判定其是否能构成一个直角三角形。
例如,给出三条边的长度为3、4、5,要求判定其是否能构成一个直角三角形。
解题思路:将三个边长按照从小到大的顺序排列,即3、4、5。
然后,将最小边的平方与其他两边的平方的和相比较。
如果相等,则构成一个直角三角形。
在本示例中,3²+4²=9+16=25=5²,因此可以判定这三条边能构成一个直角三角形。
三、勾股数求解勾股数是指满足勾股定理的整数解,即满足a²+b²=c²,其中a、b、c 均为整数。
在数学考试中,常常会要求学生求解勾股数。
例如,题目给出一个直角三角形的斜边长为13,要求求解两条直角边的长度。
解题思路:根据题目给出的条件,可得到三个十字数(a、b、c)满足a²+b²=c²。
为了求解满足13²=a²+b²的整数解,我们可以通过穷举法得到。
在这个例子中,我们可以先从1开始尝试,试验直到a或b的平方值超过169。
我们很快就可以发现,3²+4²=9+16=25=5²,符合勾股定理。
勾股定理(知识点+题型分类练习)(word文档物超所值)
A B Ca c 弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。
常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中为斜c 边。
3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。
)②记住常见的勾股数可以提高解题速度,如;;;;8,15,17等3,4,56,8,105,12,137,24,25③用含字母的代数式表示组勾股数:n (为正整数);221,2,1n n n -+2,n ≥n (为正整数)2221,22,221n n n n n ++++n (,为正整数)2222,2,m n mn m n -+,m n >m n 4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边);若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)A5.直角三角形的性质(1)直角三角形的两个锐角互余。
可表示如下:∠C=90°∠A+∠B=90°⇒ (2)在直角三角形中,30°角所对的直角边等于斜边的一半。
初二(八年级)下册数学勾股定理典型习题
初二(八年级)下册数学勾股定理典型习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方。
2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a a b b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,b,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数cba HG FED CBAbacbac cabcab a bcc baED CBA①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理及常见题型分类
勾股定理及常见题型分类一、知识要点:1.勾股定理是指直角三角形斜边的平方等于两直角边平方和。
2.勾股定理的证明方法包括几何证明和代数证明,其中几何证明使用勾股树。
3.勾股定理的逆定理是指若一个三角形的三边满足勾股定理,则该三角形是直角三角形。
4.勾股定理常见题型包括勾股定理的应用、勾股定理的证明和勾股定理的逆定理。
二、典型题题型一:“勾股树”及其拓展类型求面积1.如图所示,正方形A、B、C、D构成了一棵勾股树,求最大正方形E的面积。
2.如图所示,直线l上有三个正方形a、b、c,已知a、c 的边长分别为6和8,求b的面积。
3.如图所示,以Rt△ABC的三边为直径分别向外作三个半圆,探索三个半圆的面积之间的关系。
4.如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是S1+S2=S3.5.如图所示,依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是4、5、6、7.题型二:勾股定理与图形问题1.如图所示,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,依此类推,第n个等腰直角三角形的斜边长是n+1.2.如图所示,求该四边形的面积。
3.如图所示,已知在△ABC中,∠A=45°,AC=2,AB=3+1,则边BC的长为3.4.如图所示,某公司的大门为长方形ABCD,上部为以AD为直径的半圆,已知AB=2.3m,BC=2m,卡车高2.5m,宽1.6m,判断卡车是否能通过公司的大门,并说明理由。
5.如图所示,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
题型三:已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm、2cm,则斜边长为√5cm。
2.已知直角三角形的两边长为3cm、2cm,则另一条边长的平方是5cm²。
人教版八年级下册数学《勾股定理》经典例题
一、选择题(每题2分,共20分)1、下列几组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤321,421,521;⑥4,7.5,8.5其中能构成直角三角形的有( )组A.2B.3C.4D.5知识的灵活运用:知道一些常见的勾股数:① 3、4、5;② 6、8、10;③ 9、12、15;④ 5、12、13;(对其进行扩大倍数包括缩小相同倍数都一样成立)⑤ 8、15、17;⑥ 7、24、25;⑦ 20、21、29 ;⑧ 12、35、372、已知△ABC 中,∠A =12∠B =13∠C ,则它的三条边之比为( )【等腰直角三角形三边的比例关系,三个角的比例关系】A.1∶1∶2B.1∶3∶2C.1∶2∶3D.1∶4∶1知识的灵活运用:周长、面积、三边比例、角度之比、求高、求边长、同时扩大相同倍数还是特殊三角形、给定特殊边的时候去判断角是多少度的问题、与面积结合出题的问题,求面积之比的问题、给定特殊角的时候要注意做垂直辅助线等等。
3、放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定4、如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A.L 1B.L 2C.L 3D.L 4AB C图25mBCAD图1BCAED 图35、如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定6、在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( )A.5,4,3B.13,12,5C.10,8,6D.26,24,107、如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1B.D.28、直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( )A.182B.183C.184D.1859、直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm10、三角形的三边长满足关系:(a +b )2=c 2+2ab ,则这个三角形是( ) A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形11、如下图,一块直角三角形的纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(每题3分,共30分)1、如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.2、若三角形的三边满足::5:12:13a b c =,则这个三角形中最大的角为 ;3、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ;4、“同角(等角)的余角相等”是的逆命题_______________ ___CDB5、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是 ;(铺地毯的题)6、在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .7、如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,正方形A ,B ,C 的面积分别是8cm 2,10cm 2,14cm 2,则正方形D 的面积是 cm 2.8、如图2,在△ABC 中,∠C =90°,BC =60c m ,CA =80c m ,一只蜗牛从C 点出发,以每分钟20c m 的速度沿CA →AB →BC 的路径再回到C 点,需要 分钟的时间. 9、如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为 和 .(注:两直角边长均为整数) 三、解答题 (共50分)1、(8分)三个半圆的面积分别为S 1=4.5π,S 2=8π,S 3=12.5π,把三个半圆拼成如图所示的图形,则△ABC 一定是直角三角形吗?说明理由。
勾股定理必考题型
勾股定理必考题型
勾股定理是数学中的一个重要定理,也是中考数学中的重要考点之一。
以下是几个常见的勾股定理必考题型:
1.直接应用勾股定理求直角三角形的边长。
这类题目通常会给出直角三角形两条边的长度,要求找出第三条边的长度。
解题时,可以直接应用勾股定理进行计算。
2.运用勾股定理的逆定理判断三角形是否为直角三角形。
题目可能会给出一个三角形三条边的长度,要求判断这个三角形是否为直角三角形。
解题时,可以运用勾股定理的逆定理进行判断。
3.综合运用勾股定理和相似三角形解决问题。
这类题目通常涉及到几何图形的构造、拼接和分割,需要通过勾股定理找出边长之间的关系,再通过相似三角形进一步解决问题。
4.解决生活中的实际问题。
例如:通过勾股定理计算建筑物的高度、桥梁的长度等。
这类题目需要将实际问题转化为数学问题,再通过勾股定理求解。
勾股定理之“风吹树折”模型-2023年新八年级数学核心知识点与常见题型(北师大版)(解析版)
重难点:勾股定理之“风吹树折”模型【知识梳理】风吹树折类题就数学知识本身其实很简单,考查的就是句股定理,最多设个未知数列方程就能求解,但是对很多同学来说,它的难点在于语言文字如何转化成数学模型.【考点剖析】一.选择题(共2小题)1.一旗杆在其的B处折断,量得AC=5米,则旗杆原来的高度为()A.米B.2米C.10米D.米【分析】可设AB=x,则BC=2x,进而在△ABC中,利用勾股定理求解x的值即可.【解答】解:由题意可得,AC2=BC2﹣AB2,即(2x)2﹣x2=52,解得x=,所以旗杆原来的高度为3x=5,故选:D.【点评】能够利用勾股定理求解一些简单的直角三角形.2.如图,一根旗杆折断之前的高度是24米,旗杆顶部落在离旗杆底部12米处,旗杆在离地面多少米处断裂()A.15B.12C.9D.21【分析】利用勾股定理,用一边表示另一边,代入数据即可得出结果.【解答】解:由图形及题意可知,设旗杆在离地面x米处断裂,有(24﹣x)2﹣x2=144,得x=9,故选:C.【点评】本题主要是考查学生对勾股定理的熟练掌握.二.填空题(共3小题)3.如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有高.【分析】根据旗杆未断部分与折断部分及地面正好组成直角三角形,利用勾股定理解答即可.【解答】解:由勾股定理得斜边为:=15米,则原来的高度为9+15=24米.故答案为:24m.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.4.如图,今年第8号台风“桑美”是50多年以来登陆我国大陆地区最大的一次台风,一棵大树受“桑美”袭击于离地面5米处折断倒下,倒下部分的树梢到树的距离为7米,则这棵大树折断前有米(保留到0.1米).【分析】首先根据勾股定理求得折断的树高是=,所以折断前树的高度是5+≈13.6米.【解答】解:在Rt△ABC中,AC==≈8.6米,5+8.6=13.6米.故答案为:13.6.【点评】考查了勾股定理的应用,比较简单.5.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.【分析】根据题意构建直角三角形ABC,利用勾股定理解答.【解答】解:如图,BC即为大树折断处4m减去小孩的高1m,则BC=4﹣1=3m,AB=9﹣4=5m,在Rt△ABC中,AC===4.【点评】此题考查直角三角形的性质及勾股定理的应用,要根据题意画出图形即可解答.三.解答题(共6小题)6.如图,受台风影响,一棵大树在高于地面5米处折断,大树顶部落在距离大树底部10米处的地面上,问这棵大树原来有多高?【分析】该大树折断后,折断部分与地面、原来的树干恰好构成一直角三角形,设大树高为x,则折断部分为x﹣5,由勾股定理可得出方程:52+102=(x﹣5)2,解该方程可得出大树原来的高.【解答】解:设大树断掉的部分长为x米,利用勾股定理:52+102=(x﹣5)2,解得x=5+5,答:大树原来的高为(5+5)米.【点评】利用勾股定理解应用题,关键在于把折断部分、大树原来部分和地面看作一个直角三角形,利用勾股定理列出方程求解.7.某地遭台风袭击,马路边竖有一根高为7m的电线杆AC,被台风从离地面2m的B处吹断裂,倒下的电线杆顶部C′是否会落在距离它的底部4m的快车道上?说说你的道理.【分析】电线杆折断后构成一个直角三角形,利用勾股定理求出AC′的长,即可得出正确结论.【解答】解:根据题意,AB=2m,则BC=7﹣2=5m,于是AC′==,又因为>4,∴电线杆顶部C′会落在距它的底部4m的快车道上.【点评】此题是勾股定理在生活中应用的典型例子,只要善于观察,便可用数学知识解决生活中的诸多问题.8.如图,一次“台风”过后,一根旗杆被台风从离地面9米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断前至少有多高?【分析】根据旗杆未断部分与折断部分及地面正好组成直角三角形,利用勾股定理解答即可.【解答】解:由勾股定理得斜边为=15米,则原来的高度为9+15=24米.【点评】此题主要考查学生对勾股定理的运用,比较简单.9.台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,求旗杆在什么位置断裂的?【分析】旗杆折断的部分,未折断的部分和旗杆顶部离旗杆底的部分构成了直角三角形,运用勾股定理可将折断的未知求出.【解答】解:设旗杆未折断部分长为x米,则折断部分的长为(16﹣x)m,根据勾股定理得:x2+82=(16﹣x)2,可得:x=6m,即距离地面6米处断裂.【点评】本题的关键是建立数学模型,将实际问题运用数学思想进行求解.10.如图,一次“台风”过后,一根旗杆被台风从高地面5米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断裂前至少有多高?【分析】先根据勾股定理求出BC的长,再由旗杆高度=AB+BC解答即可.【解答】解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC==13m,∴旗杆的高=AB+BC=13+5=18m.答:这根旗杆被吹断裂前有18【点评】本题考查的是勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.11.学校的一棵大树被风吹断了,如图,距地面6m处折断,折断的树梢顶部落在距树干底部8m处,求此树原高是多少米?(图1)有两棵大树,一棵高8m,另一棵高2m,BC=6,一只小鸟从一棵树梢飞到另一棵树梢,至少飞多少米?(图2)一架长10m的梯子斜靠在墙上,梯子顶端距地面8m,现将梯子顶端沿墙面下滑2m,则梯子底端与墙面距离是否也增长2m?请说明理由(图3)【分析】解决本题的关键是找出合适的直角三角形,并且运用勾股定理求解.(1)△ABC为直角三角形,可以运用勾股定理;(2)将BC向上平移2m,可以得到直角三角形,在三角形中已知2边,求第3边.(3)在直角三角形ABC中求AB,在直角三角形中求BE.【解答】(1)在直角三角形ABC中,AC2=AB2+BC2,所以AC==10m;∴此树原高=10+6=16m.(2)两点之间,直线最短,所以最短距离为直接从D点飞到A点,所以最短距离为:AD==m;(3)在直角三角形ABC中,AB=8m,AC=10m,则BC==6m,现将梯子顶端下移至D点,则BD=6m,DE=10m,所以在直角三角形BDE中,BE==8m,8m=2m,因此梯子底端与墙面的距离增加了2m.【点评】本题考查的是在直角三角形中勾股定理的应用,找出题目中的隐藏信息是解决本题的关键.【过关检测】一.选择题(共2小题)1.(2021秋•长沙期中)一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米B.15米C.25米D.30米【分析】如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.【解答】解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,∵CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选:B.【点评】本题主要利用定理﹣﹣在直角三角形中30°的角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.2.(2021秋•常宁市期末)如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=9,在直角三角形ABC中,根据勾股定理得:AB==15米.所以大树的高度是15+9=24米.故选:D.【点评】本题考查了勾股定理.熟记9,12,15这组勾股数,计算的时候较快.二.填空题(共7小题)3.(2021秋•郓城县校级月考)如图所示,一棵大树折断后倒在地上,请按图中所标的数据,计算大树没折断前的高度的结果是.【分析】该大树折断后,AB,BC,AC构成直角三角形,且AB,AC已知,则根据勾股定理可以求得BC,大树折断前的高度为AB+BC.【解答】解:大树折断后形成直角△ABC,且BC为斜边,∴AB2+AC2=BC2,∵AB=5米,AC=12米,∴BC==13米,大树折断前的高度为AB+BC=5米+13米=18米.故答案为:18米.【点评】本题考查了勾股定理在实际生活中的应用,本题中明白题目的意思求AB+BC,并根据勾股定理求BC 是解题的关键.4.(2022秋•东方期末)如图,一旗杆离地面6m处折断,旗杆顶部落在离旗杆底部8m处,旗杆折断之前的高度是m.【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:旗杆折断后,落地点与旗杆底部的距离为8m,旗杆离地面6m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=10m,所以旗杆折断之前高度为10m+6m=16m.故此题答案为16m.【点评】本题考查的是勾股定理的正确应用,找出可以运用勾股定理的直角三角形是关键.5.(2021春•鄯善县期末)如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.【分析】根据大树末端部分、折断部分及地面正好构成直角三角形,利用勾股定理解答即可.【解答】解:由勾股定理得,断下的部分为=5米,折断前为5+3=8米.【点评】此题主要考查学生运用勾股定理解决实际问题的能力,比较简单.6.(2023春•云阳县期中)如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有米.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.故答案为:24.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,是基础知识,比较简单.7.(2021秋•靖江市校级期中)《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,则折断处离地面的高度为尺.【分析】设折断处离地面的高度为x尺,则折断的长度为(10﹣x)尺,根据勾股定理列方程解方程即可.【解答】解:设折断处离地面的高度为x尺,则折断的长度为(10﹣x)尺,由勾股定理得x2+32=(10﹣x)2,解得x=4.55,∴折断处离地面的高度为4.55尺,故答案为:4.55.【点评】本题主要考查勾股定理的应用,熟练利用勾股定理列出方程是解题的关键.8.(2021秋•邓州市期末)我国古代的数学名著《九章算术》中有这样一个题目“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽,问绳索AC的长为尺.【分析】设绳索AC的长为x尺,则木柱AB的长为(x﹣3)尺,在Rt△ABC中,根据勾股定理即可列出方程解答即可.【解答】解:设绳索AC的长为x尺,则木柱AB的长为(x﹣3)尺,在Rt△ABC中,由勾股定理得,AC2﹣AB2=BC2,x2﹣(x﹣3)2=82,解得:x=,答:绳索长为尺.故答案为:.【点评】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.9.(2022•灞桥区校级模拟)折竹抵地(源自《九章算术》):“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子处3尺远.则原处还有尺竹子.(1丈=10尺)【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55.答:原处还有4.55尺高的竹子.故答案为:4.55.【点评】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.三.解答题(共1小题)10.(2021秋•广南县期末)如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.【分析】竹子折断后刚好构成一直角三角形,设竹子折断处与根部的距离CB是x米,则斜边为(8﹣x)米.利用勾股定理解题即可.【解答】解:由题意知BC+AC=8,∠CBA=90°,∴设BC长为x米,则AC长为(8﹣x)米,∴在Rt△CBA中,有BC2+AB2=AC2,即:x2+16=(8﹣x)2,解得x=3,∴竹子折断处C与根部的距离CB为3米.【点评】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理常见练习题 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
勾股定理应用题
题型一:已知两边求第三边
1、直角三角形中,以直角边为边长的两个正方形的面积为72
cm,82
cm,则以斜边为边长的正方形的面积为_________2
cm.
2、已知直角三角形的两边长为5、12,则另一条边长是________________.
3、作出长度为10的线段。
4、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面
至少要露出4.6㎝,问吸管要做多长?
针对练习
1、以下列各组数为边长,能组成直角三角形的是()
A.2,3,4 B.10,8,4 C.7,25,24 D.7,15,12
2、已知一个Rt△的两边长分别为3和4,则第三边长的平方是()
A.25 B.14 C.7 D.7或25
3、以面积为9 cm2的正方形对角线为边作正方形,其面积为()
A.9 cm2 B.13 cm2 C.18 cm2 D.24 cm2
题型二:利用勾股定理测量长度
例1:如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?
例2:如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.
例3:如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?
题型三:转化思想
例:如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,
它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)
题型四:利用勾股定理解决实际问题
例:如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为多少米?
巩固练习
1、如图1,直角△ABC的周长为24,且AB:AC=5:3,则BC=()
A.6 B.8 C.10 D.12
图1 图2
A
B
2、如图2,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,
那么梯子的底部在水平方向上滑动了()
A.4米 B.6米 C.8米 D.10米
3、将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子
外面的长为hcm,则h的取值范围是()
A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24
4、已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()
A.6cm2 B.8cm2 C.10cm2 D.12cm2
4题 5题6题5、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,
CD=12cm,且∠A=90°,则四边形ABCD的面积为()
A、36,
B、22
C、18
D、12
6、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则X 的长为厘米。
7、如图,从电线杆离地面6米处向地面拉一条长10米的缆绳,这条缆绳在地面的固定点距离电线杆底部为米。
7题8题
8、如图,在等腰直角△ABC中,AD是斜边BC上的
高,AB=8,则AD2= 。
9、小华和小红都从同一点O出发,小华向北走了9米到A点,小红向东走了12米到了B点,则________
AB米。
10、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为6cm,则正方形A,B,C,D的面积之和为_____cm2。
11、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 200m,结果他
在水中实际游了520m,求该河流的宽度为多少?
课后思考题
如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程
是。