集成电路分析与设计课程实验(一)
集成电路分析与设计

第一章集成电路的发展1.何谓集成电路(Integrated Circuits)?集成电路:指通过一系列特定的加工工艺, 将晶体管,二极管等有源器件和电阻,电容,电感等无源器件,按照一定的电路互连,”集成”在一块半导体晶片上,封装在一个外壳内,执行特定电路或系统功能的一种器件.2.什么是摩尔定律(Moore’s Law)?它对集成电路的发展有什么作用?集成度:大约每三年翻两番,特征尺寸:每六年缩小近一倍事实上,摩尔定律并不是一个物理定律,而是一种预言,一张时间表。
它鞭策半导体产业界不断进步,并努力去实现它。
从根本上讲,摩尔定律是一种产业自我激励的机制,它让人们无法抗拒,并努力追赶,谁跟不上,谁就可能被残酷地淘汰。
摩尔定律已成为一盏照亮全球半导体产业前进方向的明灯。
3.IC发展水平的指标是什么?随着IC工业的发展,这些指标如何变化?集成规模(Integration scale)和特征尺寸(Feature size) 单个芯片上已经可以制作含有几百万个晶体管的一个完整的数字系统或数模混合的电子系统,集成电路的特征尺寸也已发展到深亚微米水平,0.18μm工艺已经走向规模化生产.4.什么是IDM、Fabless和Foundry?理解他们之间的关系。
IDM:集成电路发展的前三十年中,设计、制造和封装都是集中在半导体生产厂家内进行的,称之为一体化制造(IDM,Integrated Device Manufacturer)的集成电路实现模式。
无生产线(Fabless)集成电路设计提供了条件,为微电子领域发展知识经济提供了条件。
Fabless:1.设计公司拥有设计人才和设计技术,但不拥有生产线2.芯片设计公司不拥有生产线而存在和发展,而芯片制造单位致力于工艺实现(代客户加工,简称代工)3.设计单位与代工单位以信息流和物流的渠道建立联系Foundry:Foundry(代客户加工)第二章PN结的形成1.P型、N型半导体的形成及其能带结构图(EF与掺杂的关系)在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,此时自由电子和空穴浓度远远小于由于掺杂带来的空穴浓度,因此自由电子的导电基本可以忽略,这样的半导体叫做P型半导体。
《集成电路设计实践》第一讲_A

课程进度安排(续二)
第9周:Cell-based设计方法及工具 3.1 Cell-based设计流程介绍 3.2 Verilog简介 第10周: 3.3 电路综合 第11周: 3.4 布局布线 3.5 DRC与LVS
课程进度安排(续三)
第12周:项目设计——CYCLIC ADC的设计 4.1 CYCLIC ADC原理 4.2 CYCLIC ADC电路设计 4.3 版图设计考虑 4.4 ADC性能仿真 4.5 设计报告要求 第13周:深亚微米工艺下的集成电路设计方法 5.1 按比例缩小原理 5.2 短沟道效应 5.3 深亚微米工艺下的设计讨论 5.4 SOC设计 第14~16周:项目设计与辅导
课程进度安排(续一)
第5周:Full-custom设计方法及工具 2.1 Full-custom设计流程介绍 2.2 原理图输入与电路网表导出 第6周: 2.3 HSPICE电路仿真 第7周: 2.4 版图编辑 第8周: 2.5 设计规则检查(DRC)与版图电路比对(LVS) 2.6 版图参数提取和后仿真 2.7 分层设计讨论
一. 集成电路设计基础
1.2 版图的基本概念
版图结构
集成电路加工的平面工艺
制 版 加 工
芯片的剖面结构
从平面工艺到立体结 构,需多层掩膜版,故 构,需多层掩膜版,故 版图是分层次的,由多 层图形叠加而成!
一个简单的例子
Vdd 版 图 in metal1
N+ 剖 N-阱 面 N-阱 图 P-substrate N+ P+
逆向电路提取 逆向电路提取
解剖照相 拼图 电路提取 分析与仿真
集成电路分类
集 成 电 路 按用途 数 字 集 成 电 路 模 拟 集 成 电 路 数 模 混 合 集 成 电 路 按集成规模 ULSI ULSI GLSI GLSI 大 规 模 超 大 规 模 集 成 电 路 按制作工艺 GaAs GaAs MOS MOS Bipolar Bipolar 集 成 电 路 集 成 电 路 按生产形式 标 专 准 用 通 集 用 成 集 电 成 路 电 路 ASIC ASIC
本科生课-集成电路版图设计-实验报告

西安邮电大学集成电路版图设计实验报告学号:XXX姓名:XX班级:微电子XX日期:20XX目录实验一、反相器电路的版图验证1)反相器电路2)反相器电路前仿真3)反相器电路版图说明4)反相器电路版图DRC验证5)反相器电路版图LVS验证6)反相器电路版图提取寄生参数7)反相器电路版图后仿真8)小结实验二、电阻负载共源放大器版图验证9)电阻负载共源放大器电路10)电阻负载共源放大器电路前仿真11)电阻负载共源放大器电路版图说明12)电阻负载共源放大器电路版图DRC验证13)电阻负载共源放大器电路版图LVS验证14)电阻负载共源放大器电路版图提取寄生参数15)电阻负载共源放大器电路版图后仿真16)小结实验一、反相器电路的版图验证1、反相器电路反相器电路由一个PMOS、NPOS管,输入输出端、地、电源端和SUB 端构成,其中VDD接PMOS管源端和衬底,地接NMOS管的漏端,输入端接两MOS管栅极,输出端接两MOS管漏端,SUB端单独引出,搭建好的反相器电路如图1所示。
图1 反相器原理图2、反相器电路前仿真通过工具栏的Design-Create Cellview-From Cellview将反相器电路转化为symbol,和schemetic保存在相同的cell中。
然后重新创建一个cell,插入之前创建好的反相器symbol,插入电感、电容、信号源、地等搭建一个前仿真电路,此处最好在输入输出网络上打上text,以便显示波形时方便观察,如图2所示。
图2 前仿真电路图反相器的输入端设置为方波信号,设置合适的高低电平、脉冲周期、上升时间、下降时间,将频率设置为参数变量F,选择瞬态分析,设置变量值为100KHZ,仿真时间为20u,然后进行仿真,如果仿真结果很密集而不清晰可以右键框选图形放大,如图3所示。
图3 前仿真结果3、反相器电路版图说明打开之前搭建好的反相器电路,通过Tools-Design Synthesis-Laout XL新建一个同cell目录下的Laout文件,在原理图上选中两个MOS管后在Laout中选择Create-Pick From Schematic从原理图中调入两个器件的版图模型。
数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告学院:应用科学学院专业班级:电科12 - 1班学号:1207010132姓名:周龙指导教师:刘倩2015年5月20日实验一、反相器版图设计1.实验目的1)、熟悉mos晶体管版图结构及绘制步骤;2)、熟悉反相器版图结构及版图仿真;2. 实验内容1)绘制PMOS布局图;2)绘制NMOS布局图;3)绘制反相器布局图并仿真;3. 实验步骤1、绘制PMOS布局图:(1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层;(4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层;(7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察;2、绘制NMOS布局图:(1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览;3、绘制反相器布局图:(1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟;4. 实验结果4.1 nmos版图4.2 pmos版图4.3反相器的版图4.4反相器的spice文件4.5反相器的仿真曲线5.实验结论通过对仿真曲线的分析,当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
[精品]数字集成电路分析与设计教学大纲.doc
![[精品]数字集成电路分析与设计教学大纲.doc](https://img.taocdn.com/s3/m/14361b0afab069dc5122014d.png)
数字集成电路分析与设计一、课程基本情况课程编号40260103开课单位微纳电子学系课程名称中文名称数字集成电路分析与设计英文名称Digital Integrated Circuit Analysis and Design教学目的与重点教学目的:1)让学生掌握数字集成电路的工作原理与分析方法2)让学生掌握数字集成电路与系统的设计流程和基本方法3)培养学生实际设计数字集成电路与系统的能力教学重点:1) CMOS反相器的特性,数字集成电路分析与设计的关键问题2)组合逻辑链的性能优化3)互连线的延时模型与分析4)同步时序电路的分析和设计5)数据通路运算单元的分析与设计6)存储器的工作原理的理解与分析课程负责人刘雷波吴行军课程类型□文化素质课□公共基础课□学科基础课□专业基础课■专业课□其它教学方式■讲授为主□实验/实践为主□专题讨论为主□案例教学为主□自学为主□其它授课语言■中文口中文+英文(英文授课>50%)□英文□其他外语学分学时学分 3 总学时48考核方式及成绩评定标准作业:15%,课程设计:15%,期中考试(闭卷):30%,期末考试(闭卷):40%教材及主要参考书中文外文教材数字集成电路一电路、系统与设计(第二版),JanM.Rabaey等著,周润德等译,电子工业出版社。
Jan M. Rabaey etc. “Digital Integrated Circuits , A Design Perspective (Second Edition)", Prentice Hall , 2003.主要参考书CMOS数字集成电路一分析与设计(第3版),Sung-Mo Kang等著,王志功等译,清华大学出版社(影Sung-Mo Kang, Yusuf Leblebici,"CMOS Digital IntegratedCircuits-Analysis and Design(ThirdEdition)".三、课程主要教学内容9.4高级互连技术9. 5综述9.6总结第10章存储器(6学时)(教材第12章)10.1分类10.2结构10.3内核--- 存储单元和阵列10.4外围电路10.5可靠性10.6总结。
电子科技大学集成电路实验报告——模拟集成电路

CMOS 模拟集成电路设计及HSPICE 使用实验学时:4学时实验一 CMOS 工艺参数测量 一、实验目的:学习和掌握EDA 仿真软件Hspice ;了解CMOS 工艺技术及元器件模型,掌握MOSFET 工作原理及其电压电流特征;通过仿真和计算,获得CMOS 中NMOS 和PMOS 的工艺参数,,,,,p n p n tp tn k k V V λλ,为后续实验作准备。
二、实验内容:1) 通过Hspice 仿真,观察NMOS 和PMOS 管子的I-V 特性曲线;2)对于给定长宽的MOSFET ,通过Hspice 仿真,测得几组栅-源电压、漏-源电压和漏-源电流数据,代入公式21()()(1)2DSn n n GS tn n DS WI K V V V Lλ=-+,求得对应的工艺参数,,,,,p n p n tp tn k k V V λλ 。
三、实验结果:本实验中所测试的NMOS 管、PMOS 管L=1u ,W 由学号确定。
先确定W 。
W 等于学号的最后一位,若学号最后一位=0,则W=10u 。
所以,本实验中所测试的NMOS 管、PMOS 管的尺寸为:L=1u ,W=( 8 )u 。
(1) 测0.5um 下NMOS 和PMOS 管的I-V 特性曲线所用工艺模型是 TSMC 0.50um 。
所测得的Vgs=1V 时,NMOS 管Vds 从0V 到2.5V 变化时的I-V 特性曲线为:所测得的Vds=1.2V时,NMOS管Vgs从0V到2.5V变化时的I-V特性曲线为:所测得的Vsg=1V时,PMOS管Vsd从0V到2.5V变化时的I-V特性曲线为:所测得的Vsd=1.2V时,PMOS管Vsg从0V到2.5V变化时的I-V特性曲线为:(2)计算TSMC 0.50um工艺库下mos管对应的工艺参数测试NMOS管相关参数,Hspice中仿真用源文件(.sp文件)为:NOMS I-V CharacteristicM1 OUT IN 0 0 CMOSn L=1U W=8UVIN IN 0 1VOUT OUT 0 1.2.OPTIONS LIST NODE POST*.DC VOUT 0 2.5 0.1.DC VIN 0 2.5 0.1*.DC VOUT 0 2.5 0.1 VIN 0.8 1.0 0.2.PRINT DC I(M1).LIB "C:\synopsys\project\tsmc_050um_model.lib" CMOS_MODELS .END所测得的NMOS 管电流曲线为:所测的数据如下表:Ids Vds1V 1.5V Vgs 1V65.4uA 66.5 1.2V14.014.4根据公式21()()(1)2DSn n n GS tn n DS I K V V V Lλ=-+,计算,,n n tn k V λ,分别为: -611910,0.028, 1.37n n tn k V λ≈⨯≈≈测试PMOS 管相关参数,Hspice 中仿真用源文件(.sp 文件)为: POMS I-V CharacteristicM1 OUT IN Vdd Vdd CMOSP L=1U W=8UVIN Vdd IN 1 VOUT Vdd OUT 1.2.OPTIONS LIST NODE POST *.DC VOUT 0 2.5 0.1 .DC VIN 0 2.5 0.1*.DC VOUT 0 2.5 0.1 VIN 0.8 1.0 0.2.PRINT DC I(M2).LIB "C:\synopsys\project\tsmc_050um_model.lib" CMOS_MODELS .END所测得的PMOS 管电流曲线为:所测的数据如下表:Isd Vsd1V 1.5VVsg 1V 1.17 1.181.2V 4.87 5.15计算TSMC 0.50um 工艺中 pmos 参数p p tp ,分别为:-654.8910,0.017,0.927p p tp K V λ≈⨯≈≈综上所述,可得:TSMC 0.50um 工艺参数=n λ0.028=p λ0.017=tn V 0.37V=tp V 0.927V2/119V A K n μ=2/89.54V A K p μ=四、思考题2) 不同工艺,,p n λλ不同。
集成电路课程设计

集成电路课程设计通常包括以下几个步骤:
确定设计题目:根据课程要求和实验室条件,选择一个合适的题目,如数字逻辑门电路、计数器、微处理器等。
理论分析:对所选题目进行理论分析,包括电路的基本原理、功能、性能指标等,并确定电路的总体结构。
电路设计:使用专业软件(如Multisim)设计电路,根据理论分析的结果,搭建电路模型,并对其进行仿真测试。
制作电路板:将设计好的电路原理图转化为PCB图,交给实验室制作电路板。
焊接与调试:将电子元件焊接到电路板上,并进行测试和调试,确保电路正常工作。
编写程序:如果设计题目涉及到微处理器,还需要编写程序并进行调试。
撰写报告:整理实验数据、图表、照片等资料,编写设计报告,对整个设计过程进行总结。
答辩与验收:最后进行答辩,向老师和同学展示设计成果,并进行验收。
在设计过程中,需要注意以下几点:
遵守实验室规章制度,注意安全。
严格按照设计步骤进行,不能跳步或省略任何环节。
在设计过程中要及时记录数据和经验,以便后期整理和总结。
在遇到问题时,要善于查阅资料和请教老师或同学。
设计完成后要及时整理和归档资料,以便日后查阅和使用。
模拟集成电路分析与设计教学实践研究

模拟集成电路分析与设计教学实践研究摘要:模拟集成电路人才的培养与发展是我国芯片技术发展的核心,为了适应时代发展的趋势,本文对模拟集成电路分析与设计的教学实践进行有效地研究。
在教学目标确认的情况下,设计符合当前半导体、芯片的课程内容和教学大纲,然后制定良好的教学方法,并打造实验和设计环境,从而全面展开人才的培养,并对其的实践、创新能力进行有效地引导。
从而为我国半导体人才的教育与培养提供可靠的支持。
关键词:模拟集成电路;电路分析;分析与设计;教学实践在全球进入信息、数据时代的过程中,集成电路产业的发展创新能力,已经成为我国技术发展、转型的重要核心。
现阶段我国集成电路产业的发展相对比较落后,虽然经过多年的发展,但我国自主集成电路产业的研发、创新能力依然较为落后。
同时集成电路产业具有技术、资金、人才集中的特点,从实际的市场角度来讲,我国集成电路产业,拥有14亿人口的市场,因此在市场与资金方面具有一定的优势。
但在技术和人才方面,却存在大量的缺口,不足以支撑集成电路产业的快速发展与创新。
而根据我国技术发展创新的战略要求,我国在高校教育规划中,进一步要求各高校充分重视集成电路产业相关的专业和技术的研究,但在实际展开的过程中,不少课程依然存在较为落后,与当前市场发展脱节的现象。
因此,需要进一步对集成电路专业的相关课程进行深入的研究,在丰富理论教学内容的同时,采取有效的手段提升相关专业课程的合理性与适用性。
一、教学目标的确定教学目标的确定,需要明确课程具体的教学目标,以及学生在学习的过程中,需要获得的知识、能力和素养。
对于模拟集成电路分析与设计课程来说,学生所学习的基本知识需要具备电路分析、电子器件、模拟电子技术、信号分析等方面的基本概念和原理的充分了解。
并在此基础上,学生应当具备对模拟集成电路进行分析、设计、仿真的能力,能够使用相关的软件展开电路设计,并对其进行有效地优化和验证,还需要从实际的角度出发,对实际中存在的集成电路问题提出有效的解决方案,从而让学生在模拟集成电路领域中进行主动思考,并展开有效的创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路分析与设计
课程实验1(2010-03-18)
熟悉Cadence设计软件中的Schematic Editing进行原理图编辑,并使用Spectre工具进行仿真验证。
要求及说明:
1. NMOS和PMOS晶体管的1级模型参数参考教材(拉扎维,P32)中表
2.1,相应的Spectre 模型为hquicmodel_v1.0.scs。
2. 假设VDD=3V,NMOS和PMOS器件的衬底端子(B,除非另有说明)分别接地和VDD (或最正的电压节点),(W/L)=50/2(即W=50u,L=2u)。
3. 采用直流扫描(DC Sweep,改变VX),画出IX和晶体管的跨导关于VX的函数曲线图。
4. 解释分析结果,比较仿真分析结果与你的手工计算结果。
5. 报告截止提交日期为2008年3月25日。
题目:
(参考拉扎维的模拟CMOS集成电路设计P34-35)
2.5 对图2.42的每个电路,画出I
X 和晶体管跨导(g
m
)关于V
X
的函数曲线。
V
X
从0变化到V
DD。
+1.9V
x
V
(b)
1V
x
V 2.42
图
2.6 对图2.43的每个电路,画出I
X 和晶体管跨导(g
m
)关于V
X
的函数曲线。
V
X
从0变化到V
DD。
I 原理图绘制篇
1.右键open Terminal
2.输入icfb&
3.回车启动Cadence
4.Tools – Library Manager…
5.File-Library新建项目
6.输入建立的项目的名称-OK
7.选择Don’t need a Techfile-OK
8. File-Cell View新建项目
9.输入建立的子项目名称-OK
10.输入器件按快捷键I
11.选择Browse – analoglib-nmos4-symbol输入nmos器件
12.在属性框里填写器件的模型和参数:模型名称:nmos、参数W=50u L=2u 点Hide完成
13.修改器件参数如果想修改器件参数,选择该器件后按快捷键q,可以在属性框里修改
14.输入直流电源:快捷键I – analoglib – vdc – symbol
15.放置直流电压源,如果放置位置不满意可以按快捷键m移动位置,移动到指定位置后按ESC 退出
16.修改电压源参数:按q,然后逐一修改
17.输入接地符号GND
18. 按W进行连线
19.Check and Save
请确认保存,不保存仿真无法正常进行
II 仿真验证篇
1.Tools – Analog Environment启动模拟电路仿真环境ADE
2.在ADE中选择Setup-Model Libraries
3.按浏览Browse选择我们需要的模型:hquicmodel_v1.0.scs-OK
4.Add - OK
5.Analyses-Choose…
6.选择DC – Component Parameter
7.通过选择Select Component,选择需要进行参数扫描的电压源,然后在弹出页选DC项,OK
或者自己手动在Choosing Analyses中填写也行
8.填写DC扫描的起止值Start = 0 Stop = 3 OK
9.选择输出节点波形OUTPUTS-To Be Plotted – Select on Schhematic
10.在原理图上选择输出节点波形,电压选连线电流选器件的节点,我们需要器件电流,所以我们选择NMOS的漏端。
11.设置完成后选择netlist and Run运行
12.输出结果。