七年级数学下册 9.3 一元一次不等式组学案(新版)新人教版(优选.)
七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版
第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。
教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。
为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。
在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。
最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。
教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。
〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。
重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。
课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册
解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1
2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1
2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①
人教版七年级数学下册第九章9.3.2应用一元一次不等式组解决六种方案问题课件(共41张PPT)
2000a3000(40a)102000
根据题意得: a40a
解得18≤a<20.
∵a为正整数,∴a=18或19.
∴一共有2种分配方案,分别为:
方案一:分配18人清理养鱼网箱、22人清理捕鱼网箱;
方案二:分配19人清理养鱼网箱、21人清理捕鱼网箱.
类型 5 调运方案
7.(中考·长沙)2016年5月6日,中国第一条具有自主知识产 权的长沙磁悬浮线正式开通运营,该线路连接了长沙火 车南站和黄花国际机场两大交通枢纽,沿线生态绿化带 走廊的建设尚在进行中,届时将给乘客带来美的享受.星 城渣土运输公司承包了某标段的土方运输任务,
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
型渣土运输车与3辆小型渣土运输车一次共运输土方31 t, (2)根据题意,得y=(105-80)x+(70-50)(60-x)=
(2)设该渣土运输公司决定派出大型渣土运输车m辆,则派
方案一:购买30件文化衫、15本相册;
5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方 (2)该服装厂在生产这批时装时,当生产N型号的时装多少套时,所获得的利润最大?最大利润为多少?
2.某服装厂现有A种布料70 m,B种布料52 m,现计划用这 两种布料生产M,N两种型号的时装共80套,已知做一 套M型号的时装需用A种布料0.6 m,B种布料0.9 m, 可获得利润45元;做一套N型号的时装需用A种布料1.
1 m,B种布料0.4 m,可获得利润50元.若设生产N型号的 时装套数为x套,用这些布料生产这两种型号的时装所获 得的总利润为y元.
类型 3 进货方案
5.(中考·凉山州)为了推进我州校园篮球运动的发展,2017 年四川省中小学生男子篮球赛于2月在西昌成功举办.在 此期间,某体育文化用品商店计划一次性购进篮球和排 球共60个,其进价与售价间的关系如下表:
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
新人教版初中7七年级数学下册全册完整教案(最新)
新人教版七年级数学下册全册教案(新教材)特别说明:本教案为最新人教版教材(改版后)配套教案,各单元教学内容如下:第五章相交线与平行线第八章二元一次方程组5.1 相交线 8.1 二元一次方程组5.2 平行线及其判定 8.2 消元——解二元一次方程组5.3 平行线的性质 8.3 实际问题与二元一次方程组5.4 平移 8.4 三元一次方程组的解法第六章实数第九章不等式与不等式组6.1 平方根 9.1 不等式6.2 立方根 9.2 一元一次不等式6.3 实数 9.3 一元一次不等式组第七章平面直角坐标系第十章数据的收集、整理与描述7.1 平面直角坐标系 10.1 统计调查7.2 坐标方法的简单应用 10.2 直方图10.3 课题学习从数据谈节水12课题:5.1.1 相交线【学习目标】1.了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。
2.理解对顶角性质的推导过程,并会用这个性质进行简单的计算。
3.通过辨别对顶角与邻补角,培养识图的能力。
【学习重点】邻补角和对顶角的概念及对顶角相等的性质。
【学习难点】在较复杂的图形中准确辨认对顶角和邻补角。
【自主学习】1.阅读课本P 1图片及文字,了解本章要学习哪些知识?应学会哪些数学方法?培养哪些良好习惯?,2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化? . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化? .3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P 2内容,探讨两条相交线所成的角有哪些?各有什么特征?【合作探究】1.画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?例如:(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。
9.3一元一次不等式组(课时2)课件(新人教版七年级数学下)
巩固复习 解一元一次不等式组的步骤: (1)分别解两个一元一次不等式; (2)将两个一元一次不等式的解集表示 在同一个数轴上; (3)通过数轴确定两个一元一次不等式 解集的公共部分; (4)写出一元一次不等式组的解集.
9.3 一元一次不等式 组
1 x 2 x 2
x 2 1 x 3
x 5 x 3
x 1 x 4
2、解下列不等式组
2 x 3 9 x 2 x 5 10 3x
2.问题探究
例1 x取哪些整数值时,不等式 5x 2 3 (x 1 )
1 3 与 x 1 7 x都成立? 2 2
【分析】求出这两个不等式组成的不等式组的解集,解集中的整数就x可取 的整数值. 解:解不等式组
5 x 2 3( x 1) 1 3 x 1 7 x 2 2
得
5 x4 2
所以x可取的整数值是-2,-1,0,1,2,3,4.
问题探究
例2 x取哪些整数值时,1 2x 5 7 成立?
这个式子是 什么含义?
例题
例3. 3个小组计划在10天内生产500件产品(每 天产量相同),按原先的生产速度,不能完成 任务;如果每个小组每天比原先多生产1件产品, 就能提前完成任务.每个小组原先每天生产多少 件产品?
解:设每个小组原先每天生产x件产品,依题意,得 由(1)得x< 16 2 3 10 x 500 ① 3 3 10( x 1) 500 ② 由(2)得x> 15 2 5 不等式的解集为
2 2 15 x 16 . 3 3
因为产品的数量是整数,所以 x=16. 答:每个小组原先每天生产16件产品.
人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (100)
人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案)(本小题满分6分)解不等式组,并把解集在数轴上表示出来.⎪⎩⎪⎨⎧-<--+≥+-②;①x x x x 8)1(313523【答案】12≤<-x ,数轴详见解析. 【解析】试题分析:分别解不等式①和不等式②,然后综合得到不等式组的解集. 试题解析:解:由①得:1≤x ,由②得:2->x , 综合得:12≤<-x . 在数轴上表示这个解集为:考点:一元一次不等式组的解法. 92.(本题满分8分)解不等式组{x +23<12(1−x )≤5并把解集在数轴上表示出来.【答案】-32≤x <1,数轴详见解析. 【解析】 化简:{2−2x ≤5x +2<3{x ≥−32x <1∴−32≤x <1 93.(1)解不等式4(x ﹣1)+3≥3x ,(2)(6分) 解不等式组: ,并把解集在数轴上表示出来(6分)【答案】(1)解:去括号得:4x ﹣4+3≥3x , 移项得:4x ﹣3x ≥4﹣3 则x ≥1. 把解集在数轴上表示为:②解:,由①得:x ≥3, 由②得:x <5, 故不等式组的解集为:3≤x <5 【解析】试题分析:分析题目,按照相应的步骤去括号,移项,合并同类型,系数化为1,解题即可。
考点:解一元一次不等式点评:本题考查解一元一次不等式的方法,熟练掌握步骤即可。
94.若关于x 的不等式11a x a +>+()的解集为1x >,则a 的取值范围是__________.【答案】a>﹣1【解析】试题分析:由不等式的基本性质2:不等式两边同除以一个正数,不等号方向不变.可判断a+1的符号,再求a的取值范围.解:由不等式(a+1)x>a+1,解集为x>1,可知,不等号方向没有改变,由不等式性质2,得a+1>0,解得a>﹣1,故答案为a>﹣1.点评:本题考查了不等式的解集.关键是通过观察不等式的解集,由不等式性质2,判断x的系数的符号.95.(1)解不等式组:.(2)计算:【答案】(1)1≤x<2;(2)【解析】试题分析:(1)首先根据不等式的解法分别求出两个不等式的解,然后求出不等式组的解;(2)根据负指数幂、0次幂以及锐角三角形函数求出各值,然后进行计算.试题解析:(1),解①得:x≥1,解②得:x<2,则不等式组的解集是:1≤x<2.(2)原式==考点:不等式组的解法、实数的计算.96.(每小题5分,共10分)(1)解方程组(2)解不等式组并把不等式组的解集在数轴上表示出来【答案】(1)x 2y 1⎧=⎨=-⎩(2)-2≤x <1【解析】试题分析:(1)根据加减消元法或代入消元法解这个二元一次方程组;(2)根据题意分别解这个不等式组的两个不等式,求取不等式的合集,再用数轴表示.试题解析:(1)由①得x=y+3 ③ 把③代入②得 3(y+3)-8y=14 解之得 y=-1把y=-1代入③得 x=2所以方程组的解为x 2y 1⎧=⎨=-⎩(2)由①得 5x-12≤8x-6 解之得 x ≥-2 由②得 3x-1<2 解之得 x <1所以不等式组的解集为-2≤x <1 用数轴表示为考点:二元一次方程组的解法,不等式组的解法97.据统计某外贸公司2012年、2013年的进出口贸易总额分别为3300万元和3760万元, 其中2013年的进口和出口贸易额分别比2012年增长20%和10%.(1)试确定2012年该公司的进口和出口贸易额分别是多少万元;(2)2014年该公司的目标是:进出口贸易总额不低于4200万元, 其中出口贸易额所占比重不低于60%, 预计2014年的进口贸易额比2013年增长10%, 则为完成上述目标,2014年的出口贸易额比2013年至少应增加多少万元?【答案】(1)2012年进口贸易额为1300万元,出口贸易额为2000万元.(2)374万元.【解析】试题分析:(1)可以设2012年进口贸易额为x万元,出口贸易额为y万元,据进出口贸易总额为3300万元,且参照12年增长比例可得到关于13年进出口贸易总额为3760万的两个关于x、y的方程,求方程组的解即可.(2)由第(1)问可知13年的进口贸易额为1300×1.2=1560万元,出口贸易额为2000×1.1=2200万元.设2014年的出口贸易额比2013年至少增加z万元,根据进出口贸易总额不低于4200万元,其中出口贸易额所占比重不低于60%可得到两个关于z的不等式,求不等式组的解集即可.试题解析:设2012年进口贸易额为x 万元,出口贸易额为y 万元,则:()()3300120%110%3760x y x y +=+++=⎧⎨⎩, 解得:13002000x y ==⎧⎨⎩ . 答:2012年进口贸易额为1300万元,出口贸易额为2000万元. (2)设2014年的出口贸易额比2013年增加Z 万元, 由2013年的进口贸易额是:1300(1+20%)=1560万元, 2013年的出口贸易额是:2000(1+10%)=2200万元, 则:()()()()1560110%22004200220060%1560110%2200z z z +++≥+≥+++⎧⎪⎨⎪⎩, 解得:284374z z ≥≥⎧⎨⎩,所以z ≥374,即2009年的出口贸易额比2008年至少增加374万元. 考点:1.二元一次方程组的应用;2.一元一次不等式组的应用. 98.解下列不等式、不等式组,并将其解集在数轴上表示出来: (1)223125+<-+x x , (2)⎪⎩⎪⎨⎧->---->-.6)2(3)3(2,132x x xx【答案】(1)12x >;(2)66x -<<. 【解析】试题分析:(1)根据解不等式的一般步骤解答即可,一般步骤为:去分母,去括号,移项及合并同类项,系数化为1即可得解;(2)先求出两个不等式的解集,再求其公共解. 试题解析:(1)去分母,得:(5)232x x +-<+, 去括号,得:5232x x +-<+, 移项,得:3252x x -<-+, 合并同类项,得:21x -<-, 不等式两边都除-2,得:12x >, 所以原不等式的解集为12x >; 如图所示:(2) 1 232(3)3(2) 6 x xx x ⎧->-⎪⎨⎪--->-⎩①②由①得,326x x ->-, 解得6x >-,由②得,26366x x --+>-, 解得6x <,两个不等式的解集表示在数轴上如图,所以原不等式组的解集为66x -<<.考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集;3.解一元一次不等式.99.解下列不等式,并把解集在数轴上表示出来。
人教版数学七年级下册知识重点与单元测-第九章9-3实际问题与一元一次不等式(基础巩固)
第九章 不等式与不等式(组)9.3 实际问题与一元一次不等式(基础巩固)【要点梳理】知识点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+. 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B型车x辆”,而在答中应为“至少需要11辆 B型车”.这一点应十分注意.【典型例题】类型一、行程问题例1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外(包括100m)的安全地区,导火索至少需要多长?【思路点拨】设导火索要xcm长,根据导火索燃烧的速度为0.8cm/s,人跑开的速度是5m/s,为了使点导火索的战士在爆破时能跑到离爆破点100m的安全地区,可列不等式求解.【答案与解析】x≥解得:16答:导火索至少要16cm长.【总结升华】本题考查一元一次不等式在实际问题中的应用,关键是以100m的安全距离作为不等量关系列不等式求解.类型二、工程问题例2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要完成多少土方?【思路点拨】假设以后几天平均每天完成x土方,一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,那么该土方工程还剩300-60=240土方,现在要比原计【答案与解析】解得:x≥80答:现在要比原计划至少提前两天完成任务,以后几天平均每天至少要完成80土方.【总结升华】解本类工程问题,主要是找准正确的工程不等式,如本题,以天数作为基准列不等式.举一反三:【变式】某人计划20天内至少加工400个零件,前5天平均每天加工了33个零件,此后,该工人平均每天至少需加工多少个零件,才能在规定的时间内完成任务?【答案】解:设以后平均每天加工x 个零件,由题意的:5×33+(20﹣5)x≥400, 解得:x≥2153. ∵x 为正整数,∴x 取16.答:该工人以后平均每天至少加工16个零件.类型三、利润问题例3.水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?【答案与解析】解:设余下的水果可以按原定价的x 折出售,根据题意得:1t =1000kg10001000(107)(107)20001022x ⨯-⨯+-⨯≥ 解得:8x ≥答:余下的水果至少可以按原定价的8折出售.【总结升华】本题考查一元一次不等式的应用,关键以利润作为不等量关系列不等式. 举一反三:【变式】某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折【答案】六.类型四、方案选择例4.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【思路点拨】(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.【答案与解析】解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.【总结升华】本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键.【巩固练习】一、选择题1.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于( )米.A .1B .1.2C .1.3D .1.52. 哥哥今年5岁,弟弟今年3岁,以下说法正确的为( )A .比弟弟大的人一定比哥哥大B .比哥哥小的人一定比弟弟小C .比哥哥大的人可能比弟弟小D .比弟弟小的人绝不会比哥哥大3.小红和爸爸、妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,体重只有妈妈一半的小红和妈妈坐在跷跷板的另一端,这时爸爸那一端仍然着地,小红的体重应小于( )A .49kgB .50kgC .24kgD .25kg4.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%,则至少可打( ) A .六折 B .七折 C .八折 D .九折5.设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,结果如图所示,那么这三种物体的质量按从大到小的顺序排列应为( )A . ■、●、▲B . ■、▲、●C . ▲、●、■D . ▲、■、●6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( )A.7人B. 8人C. 10人D.11人二、填空题7.当x_______时,代数式-3x+5的值是正数;当x_______时,它的值不大于4;当x______时,它的值不小于2.8.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_______元.9.有10名菜农,每名可种茄子3亩或辣椒2亩,已知茄子每亩的收入是0.5万元,辣椒每亩的收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排________名菜农种茄子.10.用一根长不足160 cm的铁丝围成一个宽是x cm,长是宽的2倍的长方形,则可列不等式_______.11.某种品牌的电脑的进价为5000元,按物价局定价的9折销售时,利润不低于700元,则此电脑的定价最少为___________元.12.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到任务要比原计划至少提前2填完成任务,以后几天平均每天至少完成千米.三、解答题13.某工人计划在15天里加工408个零件,前三天每天加工24个,问以后每天至少加工多少个零件才能在规定时间内超额完成任务?14.某种飞机进行飞行训练,飞出去的速度为1200km/h,飞回机场的速度为1500km/h,飞机油箱中的燃油只能保持2.5h的飞行,则飞机最多飞出多少千米就应返回?(结果精确到10km)15.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?16.沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器,下表是两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于8200元的金额再采购这两种型号的电器共30台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;若不能,请说明理由.答案与解析一、选择题1. 【答案】C;【解析】解:设导火线的长度为x米,由题意得,>+,解得:x >1.3.故选C .2. 【答案】D ;3. 【答案】D ;【解析】解:设小红的体重为xkg ,由题意可得: 2150(2)x x x x +<-+,解得:25x <.4. 【答案】B ;【解析】解:设打x 折,由题意得:1200800105%800x ⨯-≥,解得x ≥7,所以至少应打7折.5. 【答案】B ; 【解析】由图可得: 2■>■+▲ ①,●+▲=3● ②,由①②得■>▲,2●=▲,所以可得:■>▲>●.6. 【答案】D ;【解析】设小朋友人数为x 人,可得:8710x x >+,解得:10x >,所以小朋友至少为11人.二、填空题7.【答案】53<,≥13,≤1; 【解析】 由5350,3x x -+><得;由35x -+≤4得x ≥13;由35x -+≥2得x ≤1. 8.【答案】85;【解析】设售价为x 元,则60x ≥5100得x ≥85.9.【答案】4;【解析】设最多只能安排x 名菜农种茄子,则有(10-x)人种辣椒,那么种茄子的收入为3×0.5x 万元,种辣椒的收入为2×0.8×(10-x)万元,那么总收入为3×0.5x+2×0.8(10-x)万元.根据题意:3×0.5x+2×0.8(10-x)≥15.6,解得x ≤4,故最多安排4名菜农种茄子10.【答案】x+2x <80;11.【答案】6334;【解析】设定价为x 元,则0.95000x -≥700,解得x ≥163333. 12.【答案】80;【解析】解:设以后几天平均每天完成x 千米,由题意得: 60+(6﹣1﹣2)x≥300,解得:x≥80,故以后几天平均每天至少完成80千米,故答案为:80.三、解答题13.【解析】解:设三天后每天加工x 个零件,根据题意得:24×3+(15-3)x >408,解得 x >28.因为x 为正整数,所以以后每天加工的零件数至少为29个.14.【解析】解:设飞机最多飞出x 千米就应返回,则:2.512001500x x +<. 解得x <216663. ∴x 取1660.∴飞机最多飞出1660千米就应返回.15.【解析】解:设该同学买x 支钢笔,根据题题意,得:15×6+8x ≥200,解得 x ≥3134.故该同学至少要买14支钢笔才能打折.16.【解析】解:(1)设A 、B 两种型号电器的销售单价分别为x 元和y 元,由题意,得:2x+3y=1700,3x+y=1500,解得x=400元,y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;(2)设采购A种型号电器a台,则采购B种型号电器(30﹣a)台,依题意,得320a+250(30﹣a)≤8200,解得a≤10,a取最大值为10,∴超市最多采购A种型号电器10台时,采购金额不多于8200元;(3)依题意,得(400﹣320)a+(300﹣250)(30﹣a)≥2100,解得a≥20,∵a的最大值为10,∴在(2)的条件下超市不能实现利润至少为2100元的目标.。
人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (66)
人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案)若关于x 的一元一次不等式11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x a ,且关于y 的分式方程24111y a y y y ---=--有非负整数解,则符合条件的所有整数a 的积为________.【答案】0.【解析】【分析】先解关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩,再根据其解集是x ≤a ,得a 小于5;再解分式方程,根据其有非负整数解,同时考虑增根的情况,得出a 的值,再求积即可.【详解】 解:由不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩解得:5x a x ≤⎧⎨<⎩ , ∵解集是x a ≤∴5a <;由关于y 的分式方程24111y a y y y ---=--得241y a y y -+-=-, ∴32y a =+, ∵有非负整数解,∴302a +≥, ∴3a ≥-,∴53a >≥-且a 的值有4,3,2,1,0,-1,-2,-3并且当1a =-时,1y =,分式方程不存在,为增根,∴它们的积为:()()43210230⨯⨯⨯⨯⨯-⨯-=.【点睛】本题综合考查了含参一元一次不等式,含参分式方程得问题,正确理解题意是解题的关键.52.已知关于x 的不等式20x m -<的正整数解恰好是1,2,3,4,那么m 的取值范围是_______【答案】8<m ≤10【解析】【分析】先求出不等式的解集,根据已知得出关于m 的不等式组,求出即可.【详解】解:不等式20x m -<的解集是:2m x , ∵不等式的正整数解恰是1,2,3,4,∴452m∴m 的取值范围是810m .故答案为:810m【点睛】本题考查一元一次不等式的整数解的应用,求出关于m 的不等式组,准确确定m 的界点值是解答此题的关键之处.53.若不等式组3x a x ≥⎧⎨⎩<无解,则a 的取值范围是__________. 【答案】3a ≥【解析】【分析】本题可用反证法,若不等式组3x a x <≥⎧⎨⎩有解,先求出a 的取值范围,反之,若不等式组无解,则a 的取值范围为a 之前取值范围在数轴上的对立解。
【核心素养目标】数学人教版七年级下册9.3 一元一次不等式组 教案含反思(表格式).doc
9.3一元一次不等式组二、探究新知二、探究新知知识点一:一元一次不等式组的概念及解集问题:用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?师生活动:学生独立思考,教师引导学生分析解题思路.设用x min 将污水抽完.根据已知条件,我们知道x满足:30x>120 ① 和30x<1500 ①这两个不等式同时成立.为此,我们用大括号把上述两个不等式联立起来,得教师总结:像这样的组合叫做一元一次不等式组.总结一元一次不等式组的概念例如:x同时满足不等式30x>1200和30x<1500,类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组,记作一元一次不等式组的特征① 含同一个未知数,且未知数的次数为1;① 包含2个或2个以上的一元一次不等式;① 左边用一个大括号括起来.追问:怎样确定上面的不等式组中x的取值范围?师生活动:学生独立思考,教师引导学生类比方程组的求解方法,感悟不等式组的求解.设计意图:锻炼学生的抽象能力,渗透模型思想;通过问题引导,培养自主学习习惯,提高学习信心;锻炼运算能力.设计意图:梳理一元一次不等式组的特征,便于学生理解.设计意图:通过回顾一元一次方程组的求解方法,引导学生思考一元一次不提问:一元一次方程组是如何求解的? 预设:求出方程组的公共解. 教师叙述: 类比方程组的求解,不等式组中的各不等式解集的公共部分,就是不等式组中 x 可以取值的范围. 例如 ,由不等式①,解得 x >40;由不等式②, 解得 x <50.我们在同一数轴上把 x >40 与 x <50 表示出来,如图所示,容易发现它们的公共部分是40<x <50. 不等式组的解集 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集. 解不等式组就是求它的解集. 做一做: 求下列不等式组的解集:你能发现什么规律? 师生活动:学生独立思考作图求解,选四名学生板书作图,教师根据板书引导学生总结规律.板书设计: 等式的解法——重点在于求公共部分;培养学生的类比推理能力,发展应用意识.设计意图:通过运用数轴理解一元一次不等式组的公共解,感受“形”在解题上的直观和便捷;进一步渗透数形结合思想.设计意图:通过练习,让学生自主探索一元一次不等式组集的求解规律,发展学生的自主学习能力;培养作图能力,锻炼一元一次不等式组的解法,提高解题技巧.2⎧⎪⎪⎨⎪⎪⎩8 .->+,> x x x ①②归纳总结例1 解不等式组:师生活动:学生独立思考完成计算,学一名学生板书,教师巡视.解:解不等式①,得x ≤3.解不等式②,得x <-3. 把不等式①②的解集在数轴上表示出来,如图.由图可知,不等式①②的解集的公共部分就是 x <-3,所以这个不等式组的解集是 x <-3.知识点二:一元一次不等式组的应用问题:x 取哪些整数值时,不等式 5x + 2>3(x - 1) 与 - 1≤7 - 都成立?师生活动:学生独立思考,师生共同分析解题思路——求出这两个不等式组成的不等式组的解集,解集中的整数就是 x 可取的整数值,学生独立完成计算.例2 用若干辆载重量为 8 t 的汽车运一批货物,若每辆汽车只装 4 t ,则剩下 20 t 货物;若每辆汽车装满 8 t ,则最后一辆汽车不满也不空. 请你算一算:有多少辆汽车运这批货物?师生活动:学生独立思考并计算,选一名学生板书,教师巡视;学生完成后教师讲解,总结解题方法.设计意图:通过例题培养作图能力,巩固一元一次不等式组的解法,规范解题步骤,提高解题技巧.设计意图:锻炼学生的实践能力和应用意识,发展运算能力.设计意图:考查学生对抽象能力,会运用一元一次不等式组解决简单的实际问题,感受数学与现实世界的紧密联系.2⎧⎪⎪⎨⎪⎪⎩8 .->+,> x x x ①②131722x x --≤131722x x --≤三、当堂练习总结列一元一次不等式组解实际问题的一般步骤:三、当堂练习1. 选择下列不等式组的正确解集:2. 解不等式组:3. x取哪些整数值时,不等式2 -x ≥0 与都成立?设计意图:考查对简单一元一次不等式组的解法的掌握.设计意图:考查学生能否利用数轴表示一元一次不等式组的解集,从而解一元一次不等式组.设计意图:考查解复杂一元一次不等式组的能力.板书设计9.3 一元一次不等式组① 含同一个未知数,且未知数的次数为1;① 包含2 个或2 个以上的一元一次不等式;① 左边用一个大括号括起来.1211233x x---<2⎧⎪⎪⎨⎪⎪⎩8.->+,>x xx①②教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
9.3 一元一次不等式组 人教版数学七年级下册同步练习(含解析)
第九章 不等式与不等式组9.3 一元一次不等式组基础过关全练知识点1 一元一次不等式组及其解法1.(2022山东潍坊中考)不等式组x+1≥0,x―1<0的解集在数轴上表示正确的是( )A B C D2.(2021广西贵港中考)不等式1<2x-3<x+1的解集是( )A.1<x<2B.2<x<3C.2<x<4D.4<x<53.(2020四川广元中考)关于x的不等式组x―m>0,7―2x>1的整数解只有4个,则m的取值范围是( )A.-2<m≤-1B.-2≤m≤-1C.-2≤m<-1D.-3<m≤-24.如图所示,点C位于点A、B之间(点C不与A、B重合),点C表示1-2x,则x的取值范围是 .5.(2022天津中考)解不等式组2x≥x―1,①x+1≤3.②请结合题意填空,完成本题的解答.(1)解不等式①,得 ;(2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .6.(2020山东聊城中考)<7―32x,≥x3+x―44,并写出它的所有整数解.7.(2019湖北黄石中考)若点P,2x―9,其中x满足不―10≥2(x+1),x―1≤7―32x,求点P所在的象限.知识点2 列一元一次不等式组解决实际问题8.李华爸爸计划以60 km/h的平均速度行驶4 h从家去往某地开会,因路上堵车,实际行驶2 h时只行驶了100 km,但是前方路段限速80 km/h.为了按时参会,他在后面的行程中的平均速度为v km/h,则v的取值范围是 .9.【新独家原创】已知某商店某品牌水杯的售价是156元/个,商家出售一个该品牌水杯可获利20%~30%.设该品牌水杯的进价为x元/个,则x的取值范围是 .10.【教材变式·P130T6变式】为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质羊若干只.在准备发放的过程中发现:公羊刚好每户1只,若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.求这批优质羊共多少只.11.(2020河北石家庄二中期末)王老师为了准备奖品,购买了笔记本和钢笔共16件,笔记本一本5元,钢笔一支8元,一共110元.(1)笔记本、钢笔各多少件?(2)王老师计划再购买笔记本和钢笔共8件(钢笔和笔记本每样至少一件),但是两次总花费不得超过160元,有多少种购买方案?请将购买方案一一写出.能力提升全练12.(2022湖南邵阳中考,10,★★☆)关于x的不等式组13x>23―x,x―1<12(a―2)有且只有三个整数解,则a的最大值是( )A.3B.4C.5D.613.(2021广西北部湾经济区中考,12,★★☆)定义一种运算:a*b= a,a≥b,b,a<b,则不等式(2x+1)*(2-x)>3的解集是( )A.x>1或x<13B.―1<x<13C.x>1或x<-1D.x>13或x<-114.(2022福建漳州期中,12,★☆☆)甲种蔬菜保鲜的适宜温度t(单位:℃)的范围是1≤t≤5,乙种蔬菜保鲜的适宜温度t的范围是3≤t≤8,将这两种蔬菜放在一起同时保鲜,则保鲜的适宜温度t的范围是 .15.(2022青海中考,12,★★☆)不等式组2x+4≥0,6―x>3的所有整数解的和为 .16.(2021黑龙江龙东地区中考,15,★★☆)关于x的一元一次不等式组2x―a>0,3x―4<5无解,则a的取值范围是 .17.(2022四川遂宁中考,19,★★☆)某中学为落实教育部办公厅印发的《关于进一步加强中小学生体质管理的通知》文件要求,决定增设篮球、足球两门选修课程,需要购进一批篮球和足球.已知购买2个篮球和3个足球共需费用510元;购买3个篮球和5个足球共需费用810元.(1)求篮球和足球的单价分别是多少元;(2)学校计划采购篮球、足球共50个,并要求篮球不少于30个,且总费用不超过5 500元,有哪几种购买方案?素养探究全练18.【运算能力】某计算程序如图所示,若开始输入的x的值为正整数.规定:程序运行到“判断结果是否大于10”为一次运算,当x=2时,输出结果为 .若经过2次运算输出结果,求x可以取的所有值. 19.【运算能力】(2022吉林省第二实验学校期中)如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x-6=0的解为x=3,不等式组x―1>0,x<4的解集为1<x<4,则方程2x-6=0是不等式组x―1>0,x<4的关联方程.(1)在方程①3x-3=0;②23x+1=0;③x-(3x+1)=-9中,不等式组2x―9<0,―x+8<x+1的关联方程是 .(填序号)(2)若不等式组3x+6>x+1,x>3(x+1)的一个关联方程的解是整数,且这个关联方程是x+m=0,则常数m= .(3)①解两个方程:x+32=1和x+22+1=x+73.②是否存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程?若存在,直接写出所有符合条件的整数m的值;若不存在,请说明理由.答案全解全析基础过关全练1.B x+1≥0①,x―1<0②,由①得x≥-1,由②得x<1,∴不等式组的解集为-1≤x<1,表示在数轴上如图所示:故选B.2.C 不等式可化为1<2x―3,①2x―3<x+1,②由不等式①,得x>2,由不等式②,得x<4,故原不等式的解集是2<x<4,故选C.3.C 由题意得,不等式组的解集为m<x<3,由不等式组的整数解只有4个,得到整数解为2,1,0,-1,∴-2≤m<-1.4.答案-12<x<0解析 根据题意得1<1-2x<2,解得-12<x<0,∴x的取值范围是-12<x<0.5.解析 (1)解不等式①,得x≥-1.(2)解不等式②,得x≤2.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为-1≤x≤2.6.解析<7―32x,①≥x3+x―44,②解不等式①,得x<3,解不等式②,得x≥-45,∴不等式组的解集为-45≤x<3,它的所有整数解为0,1,2.7.解析―10≥2(x+1),①x―1≤7―32x,②解不等式①得x≥4,解不等式②得x≤4,则不等式组的解集是x=4,∴x―13=1,2x-9=-1,∴点P的坐标为(1,-1),∴点P在第四象限.8.答案70≤v≤80解析 由题意可得,(4―2)v+100≥60×4,v≤80,解得70≤v≤80.9.答案120≤x≤130解析 可列不等式:1561+30%≤x≤1561+20%,解得120≤x≤130.10.解析 设该村共有x户,则母羊共有(5x+17)只.由题意,得5x+17―7(x―1)>0,5x+17―7(x―1)<3,解得212<x<12.∵x为整数,∴x=11,∴这批优质羊共11+5×11+17=83(只).答:这批优质羊共83只.11.解析 (1)设笔记本有x本,钢笔有y支,依题意,得x+y=16,5x+8y=110,解得x=6,y=10.答:笔记本有6本,钢笔有10支.(2)设购买笔记本m本,则购买钢笔(8-m)支,依题意,得5m+8(8―m)+110≤160, 8―m>0,解得423≤m<8.又∵m为正整数,∴m可以为5,6,7,∴共有3种购买方案,方案1:购买笔记本5本,钢笔3支;方案2:购买笔记本6本,钢笔2支;方案3:购买笔记本7本,钢笔1支.能力提升全练12.C13x>23―x①,x―1<12(a―2)②,由①得x>1,由②得x<a,∴1<x<a,∵不等式组有且仅有三个整数解,即2,3,4,∴4<a≤5,∴a的最大值是5,故选C.13.C 由题意得2x+1≥2―x,2x+1>3或2x+1<2―x, 2―x>3,解得x>1或x<-1,故选C.14.答案3≤t≤5解析 根据题意可知1≤t≤5, 3≤t≤8,解得3≤t≤5.故答案为3≤t≤5.15.答案0解析 2x+4≥0①,6―x>3②,由①得x≥-2,由②得x<3,∴-2≤x<3,x可取的整数有-2,-1,0,1,2,∴所有整数解的和为-2-1+0+1+2=0,故答案为0.16.答案a≥6解析 2x―a>0,①3x―4<5,②解不等式①得x>12a,解不等式②得x<3,∵不等式组无解,∴12a≥3,∴a≥6,故答案为a≥6.17.解析 (1)设篮球的单价为a元,足球的单价为b元,由题意可得2a+3b=510, 3a+5b=810,解得a=120, b=90.答:篮球的单价为120元,足球的单价为90元. (2)设采购篮球x个,则采购足球(50-x)个,∵要求篮球不少于30个,且总费用不超过5 500元,∴x≥30,120x+90(50―x)≤5 500,解得30≤x≤3313,∵x为整数,∴x的值可以为30,31,32,33,∴共有四种购买方案,方案一:采购篮球30个,采购足球20个;方案二:采购篮球31个,采购足球19个;方案三:采购篮球32个,采购足球18个;方案四:采购篮球33个,采购足球17个.素养探究全练18.解析 当x =2时,第1次运算结果为2×2+1=5,第2次运算结果为5×2+1=11,∴当x =2时,输出结果为11.若经过2次运算输出结果,则有(2x +1)×2+1>10,2x +1≤10,解得1.75<x ≤4.5.∵x 为正整数,∴x 可以取的所有值是2、3、4.19.解析 (1)①3x -3=0,3x =3,x =1;②23x +1=0,23x =-1,x =-32;③x -(3x +1)=-9,x -3x -1=-9,-2x =-8,x =4,解不等式组2x ―9<0,―x +8<x +1,得3.5<x <4.5,所以不等式组2x ―9<0,―x +8<x +1的关联方程是③,故答案为③.(2)解不等式组3x +6>x +1,x >3(x +1),得-2.5<x <-1.5,所以不等式组的整数解是x =-2,∵不等式组3x +6>x +1,x >3(x +1)的一个关联方程的解是整数,且这个关联方程是x +m =0,∴把x =-2代入方程x +m =0,得-2+m =0,解得m =2,故答案为2.(3)①x +32=1,x +3=2,x =-1.x +22+1=x +73,3(x +2)+6=2(x +7),3x +6+6=2x +14,3x -2x =14-6-6,x =2.②不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,理由:解不等式组x+m>2,2x+3m≤2,得2―m<x≤2―3m2,假如方程x+32=1和x+22+1=x+73都是关于x的不等式组x+m>2,2x+3m≤2的关联方程,则2-m<-1且2―3m2≥2,<―1,≥2,得不等式组无解,所以不存在整数m,使得方程x+32=1和x+22+1=x+73都是关于x 的不等式组x+m>2,2x+3m≤2的关联方程.。
人教版数学七年级下册第56课时《9.3一元一次不等式组(一)》教学设计
人教版数学七年级下册第56课时《9.3一元一次不等式组(一)》教学设计一. 教材分析《9.3一元一次不等式组(一)》是人教版数学七年级下册的重要内容,主要介绍了如何解一元一次不等式组。
通过这一章节的学习,学生能够理解一元一次不等式组的解法,并能够应用到实际问题中。
本节课的教学内容主要包括一元一次不等式组的定义、解法以及解的不等式组的性质。
二. 学情分析在开始本节课的学习之前,学生已经掌握了一元一次方程的知识,并能够解一元一次方程。
然而,对于不等式,学生可能还较为陌生。
因此,在教学过程中,教师需要引导学生从一元一次方程过渡到一元一次不等式,并通过对不等式的观察、操作和思考,逐渐理解一元一次不等式组的解法。
三. 教学目标1.知识与技能目标:学生能够理解一元一次不等式组的定义,掌握解一元一次不等式组的方法,并能够应用到实际问题中。
2.过程与方法目标:通过观察、操作和思考,学生能够培养解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,培养对数学的兴趣。
四. 教学重难点1.重点:一元一次不等式组的解法。
2.难点:理解不等式组的解法,并能够应用到实际问题中。
五. 教学方法1.引导法:教师通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。
2.实践操作法:学生通过观察、操作和思考,亲自实践,从而加深对知识的理解。
3.案例分析法:教师通过分析实际问题,引导学生运用所学知识解决实际问题。
六. 教学准备1.教学课件:教师需要准备一元一次不等式组的课件,以便进行课堂讲解。
2.练习题:教师需要准备一些练习题,以便学生在课堂上进行操练和巩固。
七. 教学过程1.导入(5分钟)教师可以通过提出问题,引导学生回顾一元一次方程的知识,从而引出本节课的主题——一元一次不等式组。
2.呈现(15分钟)教师通过讲解和展示课件,向学生介绍一元一次不等式组的定义和解法。
在这个过程中,教师可以结合具体的例子,让学生观察和操作,从而加深对知识的理解。
一元一次不等式组的应用(教学设计)七年级数学下册(人教版)
人教版初中数学七年级下册9.3.2 一元一次不等式组的应用 教学设计一、教学目标:1.熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题.2.理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力.二、教学重、难点:重点:正确分析实际问题中的不等关系,列出不等式组.难点:建立不等式组解实际问题的数学模型.三、教学过程:复习回顾口答题(回答下列不等式组的解集)⎩⎨⎧<->53x x ⎩⎨⎧-≤<60x x ⎩⎨⎧<>26x x ⎩⎨⎧-≥-<85x x ⎩⎨⎧<<3212x x ⎩⎨⎧-<≥27x x ⎩⎨⎧->->165x x ⎩⎨⎧≥≤11x x _______ _______ _______ _______ _______ _______ _______ _______ 同大取大、同小取小、大小小大中间找、大大小小找不到问题引入问题:3个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?解:设每个小组原先每天生产x 件产品,由题意,得{3×10x <500 3×10(x +1)>500解不等式组,得1523<x <1623根据题意,x 的值应是整数,所以x=16.答:每个小组原先每天生产16件产品.总结提升应用一元一次不等式组解实际问题的步骤:典例解析例1.某班有若干学生住宿,若每间住4人,则有20人没宿舍住;若每间住8人则有一间没有住满人,试求该班宿舍间数及住宿人数?解:设有x 间宿舍,则有(4x+20)人住宿,依题意可得{(4x +20)−8(x −1)>0(4x +20)−8(x −1)<8解得5< x<7因为宿舍间数是整数;所以x=6.住宿人数:4x+20=44(人)答:该班有6间宿舍及44人住宿.【针对练习】为了美化环境,张老师组织班级部分同学在操场植树,班级购买了若干树苗,若每人植4棵,还剩37棵,若每人植6棵,最后一人有树植,但不足3棵,这批树苗共有多少棵? 解:设共有x 人参与植树,则这批树苗共有(4x +37)棵,依题意得:{4x +37>6(x −1) 4x +37<6(x −1)+3解得:20<x <432.又∵x 为正整数,∴x =21,∴4x +37=4×21+37=121.答:这批树苗共有121棵.例2.某工厂现有甲种原料360kg ,乙种原料290kg ,计划利用这两种原料生产A ,B 两种产品共50件,已知生产一件A 产品需要甲原料9kg ,乙原料3kg ,生产一件B 产品需要甲原料4kg ,乙原料10kg ,有哪几种符合的生产方案?请你设计出来.【分析】本题不等关系:A 甲+ A 乙 甲种原料≤360B 甲+ B 乙 乙种原料≤290解:设生产A 种产品x 件, B 种产品(50-x )件.由题意得:{9x+4(50-x)≤360 3x+10(50-x)≤290解得:30≤x≤32∵x 的值应是整数∴x=30,31,32∴有三种生产方案方案一:A 种30件,B 种20件;方案二:A 种31件,B 种19件;方案三:A 种32件,B 种18件.例3.某超市计划同时购进一批甲、乙两种商品,若购进甲商品10件和乙商品8件,共需要资金880元;若购进甲商品2件和乙商品5件,共需要资金380元.(1)求甲、乙两种商品每件的进价各是多少元?(2)该超市计划购进这两种商品共50件,而可用于购买这两种商品的资金不超过2520元.根据市场行情,销售一件甲商品可获利10元,销售一件乙商品可获利15元.该超市希望销售完这两种商品所获利润不少于620元.则该超市有哪几种进货方案?(1)解:设甲商品每件的进价是x 元,乙商品每件的进价是y 元,根据题意得,{10x +8y =8802x +5y =380解得:{x =40y =60 答:甲商品每件的进价是40元,乙商品每件的进价是60元;(2)解:设购进甲商品a 件,则购进乙商品(50−a )件,根据题意得,{40a +60(50−a )≤252010a +15(50−a )≥620解得:24≤a ≤26∵a 为正整数,故a =24,25,26∴有三种进货方案,方案一:购进甲商品24件,乙商品26件;方案二:购进甲商品25件,乙商品25件;方案三:购进甲商品26件,乙商品24件.【针对练习】某服装店老板到厂家选购A、B两种品牌的服装,若购进A品牌服装5套,B品牌服装6套,需要950元;若购进A品牌服装3套,B品牌服装2套,需要450元.(1)求A,B两种品牌服装每套进价分别为多少元;(2)若销售1套A品牌服装可获利30元,销售1套B品牌的服装可获利20元,根据市场需求,服装店老板决定,购进B品牌服装的数量比购进A品牌服装数量的2倍还多4套,且B品牌服装最多可购进40套,这样服装全部售出后,可使总获利不少于1200元,问有几种进货方案?如何进货?(1)设A种品牌服装每套进价x元,B种品牌服装每套进价y元,根据题意得:{5x+6y=950 3x+2y=450解得:{x=100 y=75答:A种品牌服装每套进价100元,B种品牌服装每套进价75元;(2)设购进A品牌m套,则购进B种品牌(2m+4)套,根据题意得:{2m+4≤4020(2m+4)+30m≥1200解得:16≤m≤18,∵m为整数,∴m的值为16、17、18,∴共有三种进货方案,方案一:购进A种服装16件、B种服装36件;方案二:购进A种服装17件、B种服装38件;方案三:购进A种服装18件、B种服装40件.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
七年级数学下册一元一次不等式组导学案1
⎩⎨⎧<+>-⎪⎩⎪⎨⎧<=+⎩⎨⎧-><⎩⎨⎧>+<-033172)4(1112)3(21)2(133672)1(a a x x x x x y 9.3 一元一次不等式组(学案1)备课人:韩莉莉时间 授课人 学生[学习目标]1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义;2、掌握一元一次不等式组的解法。
[重点难点] 重点:一元一次不等式组的解法是;难点:一元一次不等式组的解集的表示。
[教学过程]一. 复习导入解下列一元一次不等式,并把解集用数轴表示出来。
(1)233(2)x x -<+(2)35x -≤(3)112x -< (4)、52113x x ->+二.自学指导阅读教材第137—138页,并回答下列问题:1. 什么是一元一次不等式组?2.下列不等式中哪些是一元一次不等式?3.如何在数轴上表示下列不等式组?(1)⎩⎨⎧>>24x x(2)⎩⎨⎧><24x x (3)⎩⎨⎧<>24x x(4)⎩⎨⎧<<24x x 温馨提示:上面的表示可以用口诀来概括:大大取大,小小取小,大小小大取中间,大大小小无解(如果在画出的数轴上没有公共部分则这个不等式无解)。
注意:如果不等号中带有等号,空心圆就要变成 。
x >44.什么是一元一次不等式组的解集?几个不等式的解集的 ,叫做由它们所组成的不等式组的解集。
解不等式组就是 。
三.我来试一试例 解下列不等式组:(1)⎩⎨⎧-<++>-)2(148)1(112x x x x (2)⎪⎩⎪⎨⎧-<-++≥+)2(21352)1(1132x x x x 解:解不等式①得解不等式②得把不等式①和②的解集在数轴上表示出来所以不等式组的解集是讨论:解一元一次不等式组的步骤是什么?四.当堂检测1. 解下列不等式组,并把解集在数轴上表示出来。
人教版七年级下册数学课件:9.3一元一次不等式组(共32张PPT)
大大小小解不了
例1:利用数轴判断下列不等式组是否有解集?如有,请写出。
x 2 (1)x 3
-2 0 3
不等式组的解集是X>3
(2)xx
2 3
-2 0 3
不等式组的解集是X< -2
x 2 (3)x 3
-2 0 3
不等式的解集是-2<X<3
x 2
(4)x 3
是 1、0、-1、-2、-3
∴m 必须满足-4<m≤-3
x ≥-5 (1)不等式组 x> -2 的解集是 ( B )
A. x ≥-5 B. x >-2 C. 无解 D.5 x 2
(2)不等式组
x≥2
x≤1
的解集是( C )
x x A. ≥2 B. x≤2 C. 无解 D. =2.
(3)不等式组
不等式组的解集为 x< 1
两小取小
例2.写出下列不等式组的解集:
x 1 (2)x 3
01 2 3
不等式组的解集为 x>3
两大取大
例2.写出下列不等式组的解集:
x 1 (3)x 3
01 2 3
不等式组的解集为 1<x< 3
大小小大中间找
例2.写出下列不等式组的解集:
x 1 (4)x 3
01 2 3
1、
1 2
x
1
7
3 2
x
2 (x+2) < x+5
2、
3 (x-2)+8 >2x
5x 2 3(x 1) ①
1 2
x
1
7
3 2
x
②
解:解不等式①,得 x 5 2
(完整版)9.3-一元一次不等式组-教学设计-教案
3212x x -≤-9.3:一元一次不等式组教学设计教师:张华海一、 教学目标知识与技能:1、了解一元一次不等式组及其解集的概念。
2、会利用数轴求不等式组的解集。
过程与方法:1、培养学生分析简单实际问题,抽象出数学关系的能力。
2、培养学生初步数学建模的能力。
情感态度价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。
感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。
二、 教学重点/难点重点:不等式组的解法及其步骤。
难点:确定两个不等式解集的公共部分。
三、 教学用具多媒体课件四、 教学过程(一)、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。
1、不等式的三个基本性质是什么?2、一元一次不等式的解法是怎样的?3、解一元一次不等式(1)3(2x+5)>2(4x+3) (2)二、讲授新知展示课本问题3:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么大约多少时间能将污水抽完?题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。
解:设x需要分钟才能将污水抽完,那么总的抽水量为30x吨,由题可知题中的x应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。
同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。
记着40≤x≤50(引导发现,此就是不等式组的解集。
)不等式解集的概念:不等式组中的几个不等式解集的公共部分。
由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。
学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。
三、例题讲解教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。
人教版七年级数学下册优质课《一元一次不等式》教案
9.1.1不等式及其解集课型:新授课学习目标了解不等式概念,理解不等式的解集,能正确表示不等式的解集教学重点不等式的解集的表示教学过程一、问题导学1、问题一辆匀速行驶的汽车在11:00距离A地50千米,要在12:00之前驶过A地,车速应满足什么条件?二、导入新课1、不等式:用“>”或“<”号表示大小关系的式子,叫不等式.解析:(1)用≠表示不等关系的式子也叫不等式(2)不等式中含有未知数,也可以不含有未知数;(3)注意不大于和不小于的说法例1 用不等式表示(1)a与1的和是正数; (2)y的2倍与1的和大于3;(3)x的一半与x的2倍的和是非正数;(4)c与4的和的30%不大于-2;(5)x 除以2的商加上2,至多为5; (6)a与b两数的和的平方不可能大于3.2、下列式子中哪些是不等式?(1)a + b = b + a (2)- 3 > - 5 (3)x≠ 1(4)x +3 > 6 (5) 2m < n (6)2x – 3(7)a2 + b2 ≥2ab2、不等式的解不等式的解:能使不等式成立的未知数的值,叫不等式的解.解析:不等式的解可能不止一个.例2 下列各数中,哪些是不等是x+1<3的解?哪些不是?-3,-1,0,1,1.5,2.5,3,3.5练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5 的解?再找出另外的小于0的解两个.2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?3、不等式的解集:一个含有未知数的不等式的所有解组成这个不等式的解集.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 例3 下列说法中正确的是( )A.x=3是不是不等式2x>1的解;B.x=3是不是不等式2x>1的唯一解;C.x=3不是不等式2x>1的解;D.x=3是不等式2x>1的解集4、不等式解集的表示方法例4 在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1分析:按画数轴,定界点,走方向的步骤答解:注意:1.实心点表示包括这个点,空心点表示不包括这个点2.大于向右走,小于向左走.三.典题训练1、教材122页练习:1,2,32、不等式x < 5有多少个解?有多少个正整数解?3、在数轴上表示下列不等式的解集(1)x>3 (2)x<2 (3)y≥-1 (4)y≤0(5)x≠4四、课堂小结9.1.2不等式的性质课型:新授学习目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;2、初步体会不等式与等式的异同;学习重点:理解并掌握不等式的性质。
人教版七年级数学下册第九章第三节一元一次不等式组作业习题(含答案) (38)
人教版七年级数学下册第九章第三节一元一次不等式组作业复习题(含答案) 解不等式组512(1)131722x x x x +-⎧⎪⎨--⎪⎩ ,并在数轴上表示它的解集. 【答案】14x -【解析】【分析】解不等式组中的每一个不等式,再根据“大大取较大,小小取较小,大小小大取中间,大大小小无解”确定不等式组的解集;【详解】由①得1x - x ≥-1, 由②得:4x ,∴不等式组的解集为14x -正确表示不等式组的解集:【点睛】本题考查解一元一次不等式组,熟练掌握计算法则是解题关键.72.(1)分解因式:①22363mx mxy my -+ ②2x (x 2)(x 2)---(2)解不等式组,并把解集在数轴上表示出来. 45133(1)7x x x x -⎧-≤⎪⎨⎪--<⎩ 【答案】(1)① 23()m x y -;②(1)(1)(2)x x x +--;(2)122x -<≤【解析】【分析】(1)①直接提取公因式3m ,再利用完全平方公式分解因式得出答案;②先去括号合并同类项,再利用平方差公式进行计算即可;(2)分别解不等式进而得出不等式组的解;【详解】解:(1)①原式223(2)m x xy y =-+23()m x y =-②原式 2(1)(2)x x =--(1)(1)(2)x x x =+--(2)解不等式①,得:12x ≤解不等式②,得:2x >- 则不等式组的解集为122x -<≤【点睛】此题考查提公因式法与公式法分解因式,解一元一次不等式组,在数轴上表示不等式的解集,解题关键在于掌握运算法则.73.如果关于x 的方程20x m ++=的解也是不等式组()122238x x x x -⎧>-⎪⎨⎪-≤-⎩一个解,求m 的取值范围.【答案】m ≥0.【解析】【分析】已知方程的解也是不等式组的一个解,则先要解一元一次方程,用含m 的代数式表示出方程的解;接下来解不等式组,确定x 的取值范围;用含m 的代数式替换x 可建立关于m 的不等式,通过解不等式便可使问题得解.【详解】解方程x+2+m=0得x=-m-2. 解不等式12x ->x-2,得x <53, 解不等式2(x-3)≤x-8,得x ≤-2, 所以不等式组()122238x x x x -⎧>-⎪⎨⎪-≤-⎩的解集为x ≤-2. 结合题意可得-2-m ≤-2,解得m ≥0.【点睛】此题考查一元一次不等式组的解,解题关键在于掌握运算法则.74.解不等式组,并在数轴上表示它们的解集.26321054x x x x -<⎧⎪+-⎨-≥⎪⎩ 【答案】613x <≤,数轴见解析【解析】【分析】分别解两个不等式,取两个不等式解集的交集,并在数轴上表示出来即可.【详解】26321054x x x x -<⎧⎪⎨+--≥⎪⎩①② 由①解得:x >-6,由②解得:x ≤13,故不等式组的解集为−6<x ⩽13,在数轴上表示为:【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则.75.解方程(组)()10.20.10.1-0.3-10.30.2x x -=- ()2()()()2134123223x y x y x y x y -⎧+-=-⎪⎨⎪+--=⎩()3212143x x -+-≥- ()4()2731423133x x x x ⎧--⎪⎨+≥-⎪⎩< 【答案】()1-1x =;()221x y =⎧⎨=⎩;()3 x ⩾−12;()4 x ⩾−1. 【解析】【分析】(1)按照解方程的步骤依次进行即可得;(2)将原方程组化为一般式后加减消元法求解即可得;(3)根据解不等式的基本步骤依次进行即可得;(4)根据解不等式组的步骤求解即可.【详解】 (1)213-1=32x x --, 去分母,得:2(2x −1)−6=3(x −3),去括号,得:4x −2−6=3x −9,移项、合并,得:x=−1;(2)原方程组化简为511153x y x y -=--+=⎧⎨⎩①② ①+②×5,得:14y=14,解得y=1,将y=1代入①,得:5x −11=−1,解得:x=2,∴方程组的解为:21x y =⎧⎨=⎩; (3)去分母,得:3(2x −1)−4(x+2)⩾−12,去括号,得:6x −3−4x −8⩾−12,移项、合并,得:2x ⩾−1,系数化为1,得:x ⩾−12; (4)解不等式2x −7<3(x −1),得:x>−4, 解不等式43x+3⩾1−23x ,得:x ⩾−1, ∴不等式组的解集为x ⩾−1.【点睛】此题考查解一元一次不等式组,解一元一次方程,解二元一次方程组,解题关键在于掌握运算法则.76.记()R x 表示正数x 四舍五入后的结果,例如(2.7)3,(7.11)7(9)9R R R ===(1)()R π =_ , R =(2)若1132R x ⎛⎫-= ⎪⎝⎭,则x 的取值范围是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题9.3一元一次不等式组
学习目标:1、一元一次不等式组的解集和解法(重点)
2、一元一次不等式组的解集的理解(难点)
01、自主学习案 1、知识回顾
解不等式x +2<6与3-x <1,把它们的解集在同一数轴上表示出来并找出解集的公共部分
2、预习课本p126问题
用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水, 估计积存的污水超过
1200吨不足1500吨, 那么大约需要多少时间能将污水抽完?
学法指导:若设需要x 分钟才能将污水抽完.总的抽水量可表示为 吨.
由题意,积存的污水超过1200。
这实际上包括了两个不等式:02、课堂探究案 自主探究
像上面,类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组. 分别求这两个不等式的解集,得 ① ② 同时满足不等式①、②的未知数x 应是这两个不等式解集的公共部分. 在同一数轴上表示这两个不等式的解集, 并找出公共部分.
归纳: 叫做这个不等式组的解集.
的过程叫做解不等式组.
合作探究 1、解不等式组:⎩⎨
⎧>+>- ②. ①, 821213x x x
2、一元一次不等式组解集四种类型如下表:
应用探究
解不等式3≤2x -1≤5.
〖思路导航〗先将它写成不等式组形式,再找出解集的公共部分。
03、随堂达标案
1.下列不等式组中,是一元一次不等式组的是( )
A .⎩⎨⎧x>2x<-3
B .⎩⎪⎨⎪⎧x +1>0
y -2<0
C .⎩⎪⎨⎪⎧3x -2>0
(x -2)(x +3)>0 D .⎩
⎪⎨⎪⎧3x -2>0x +1>1x
2.下列四个数中,为不等式组⎩⎪⎨⎪⎧3x -6<0,
3+x>3
的解的是( )
A .-1
B .0
C .1
D .2
3.不等式组⎩⎨⎧x≥-1,
x<2
的解集在数轴上表示正确的是( )
4.不等式组⎩⎪⎨⎪⎧x +1>0,
x -3>0
的解集是( )
A .x >-1
B .x >3
C .-1<x <3
D .x <3
5.如果不等式组⎩⎨⎧2x -1>3(x -1),
x<m
的解集是x <2,那么m 的取值范围是( )
A .m =2
B .m >2
C .m <2
D .m≥2
6.若不等式组⎩⎪⎨⎪⎧x +a≥0,
1-2x>x -2
无解,则实数a 的取值范围是( )
A .a ≥-1
B .a <-1
C .a ≤1
D .a ≤-1
7、已知点A (1-a ,a +2)在第二象限,则a 的取值范围是: 。
8、(选做题)如果不等式组⎩⎨⎧<>2
x a
x 无解,求a 的取值范围 。
课堂小结
1、解不等式组的基本步骤
2、不等式组解集的四种表示形式 学习反思
课题9.3一元一次不等式组(2)
学习目标:1、准确分析实际问题中的不等关系,列出不等式组(重点) 2、建立解决简单的实际问题的不等式组模型(难点) 01、自主学习案 〖1〗知识回顾
1、解一元一次不等式应用题和解一元一次不等式组的基本步骤
2、解下列不等式组,并把解集在数轴上表示出来
(1)⎩⎪⎨⎪⎧x -3<1,①
4x -4≥x +2;② (2)⎩
⎪⎨⎪⎧2(x -1)≥x +1,①x -2>1
3(2x -1).②
〖2〗预习课本P129例2并思考:怎样求不等式组解集中的局部解(如整数解)
02、课堂探究案 自主探究
一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,
x -5≤0
的解集中,整数解的个数是( )
A .4
B .5
C .6
D .7
合作探究
在关于x ,y 的方程组⎩
⎪⎨⎪⎧2x +y =m +7,
x +2y =8-m 中,未知数满足x ≥0,y >0,那么m 的取值范围在
数轴上应表示为( )
应用探究
若不等式组⎩
⎪⎨⎪⎧2x -b≥0,
x +a≤0的解集为3≤x ≤4,求不等式a x +b <0的解集
03、随堂达标案
1、不等式组⎩⎪⎨⎪
⎧x -3≥0,12
(x +3)≤1的解集在数轴上表示正确的是( )
A .
B .
C .
D .
2、已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是( )
3、不等式组⎩⎪⎨⎪
⎧x -1≥0,1-12
x<0的最小整数解是( )
A .1
B .2
C .3
D .4
4、若不等式组⎩⎪⎨⎪⎧1+x>a ,
2x -4≤0
有解,则a 的取值范围是( )
A .a ≤3
B .a <3
C .a <2
D .a ≤2
5、小红读一本500页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读( )
A .50页
B .60页
C .80页
D .100页
6、若不等式组⎩⎪⎨⎪⎧2x +a -1>0,
2x -a -1<0
的解集为0<x <1,则a 的值为( )
A .1
B .2
C .3
D .4
7、若不等式组⎩⎨⎧x>3,
x>m
的解集是x >3,则m 的取值范围是______________。
8、若关于x 的不等式组⎩⎨⎧x 2+x +13>0,①
3x +5a +4>4(x +1)+3a②
恰有三个整数解,求实数a 的取
值范围。
〖思路导航〗先求出不等式组的解集,因为恰好有三个整数解,由此确定a 的取值范围。
9、(选做题)三个小组计划在10天内生产500件产品(每天生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务,每个小组原先每天生产多少件产品?
〖解法指导〗先求出不等式组的解集,再根据题意确定整数解。
课堂小结
1、怎样求不等式组的某些特殊解
2、如何利用不等式组解决比较简单的实际问题
学习反思
最新文件---------------- 仅供参考--------------------已改成-----------word文本--------------------- 方便更改
赠人玫瑰,手留余香。