第四章酶的提取与分离纯化
酶的分离纯化

超声波破碎法
化学破碎法: 甲苯、丙酮、丁醇、氯仿等有机溶剂和Triton、
Tween等表面活性剂
酶促破碎法
自溶法 加酶处理
G+菌:溶菌酶 G-菌:溶菌酶、巯基乙醇等 酵母菌:β-葡聚糖酶和溶菌酶 霉菌:几丁质酶
四、抽提 指在一定的条件下,用适当的溶剂处理含酶原料,使酶充
分溶解到溶剂中的过程,也称为酶的提取。
2、按膜孔径或截留物质的大小:
微滤 —— 超滤 —— 纳滤 、电渗析 、透析 —— 反渗透
膜
孔
径大
小
灰尘 细菌
膜
病毒 生物大分子 生物小分子 盐类 水
灰尘 细菌 病毒 生物大分子
生物小分子 盐类 水
微滤(MF)
(0.2-2um)
超滤(UF)
(10-200nm)
灰尘 细菌 病毒 生物大分子 生物小分子
选择性热变性法、选择性酸碱变性法、 选择性表面变性法
亲和层析、亲和电泳
ห้องสมุดไป่ตู้
第三节 酶的沉淀分离
盐析沉淀法√、等电点沉淀法、有机溶剂沉淀法、复合沉淀法
一、盐析沉淀法 1、原理: 2、硫酸铵盐析的优点
优点:①在水中溶解度大,溶解的温度系数小; ②价廉,便宜; ③可保护酶。
缺点:溶解过程随浓度增加的体积变化是非线性的变化。
(25℃)
当溶液体积不大,要达到的盐浓度不高,可以加 入饱和硫酸铵溶液;当溶液体积较大,要达到的盐 浓度又较高,此时加入固体硫酸铵较好。
4、为了得到较好的盐析效果,应控制下列因素
(1)不同酶,盐析时所需的盐浓度各不相同。实际料液中目 标酶的盐析沉淀操作前,所需的硫酸铵浓度或饱和度可通过实 验确定。
(2)加盐操作时,防止局部盐浓度过高,防止产生泡沫。
微生物学第四章酶的分离纯化

(二)有机溶剂沉淀法
1、作用原理 ①去水膜;②降低介电常数;③破坏氢键。
2、操作注意 低沸点,易燃易爆;低温操作,沉淀析出后要尽
快分离。
(三)等电点沉淀
1、原理
2、实际操作 与其他方法一起使用(盐析、有机溶剂沉淀、复
中空纤维超滤膜组件
借助于一定孔径的半透膜,将不同大小、不同形 状和不同特性的物质颗粒或分子进行分离的技术。
膜分离技术已被国际上公认为20世
纪末至21世纪中期最有发展前途,甚
至会导致一次工业革命的重大生产技
术,所以可以称为前沿技术,是世界
渗出液各国ຫໍສະໝຸດ 究的热点。广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
合沉淀)。 单独使用时,主要是用于从粗酶液中除去某些等
电点相距较大的杂蛋白 。
3、注意 加酸碱调节pH值时,防止局部酸碱过高。
(四)选择性变性沉淀法
选择一定的条件使酶液中存在的某些蛋白质等杂 质变性沉淀,而不影响所需的酶。
1、热变性法:根据目的酶与杂蛋白热稳定性差异, 可以在较高温度下,使杂蛋白变性沉淀,而酶则保持 可溶状态。
(78.3%)
凝胶电泳
(88.9%)
共六步,总收率仅为16%
staehelin等人: 硫酸铵盐析 免疫亲和层析
阳离子交换层析 仅三步,总收率达81.0%
在实践工作中选择方法时:
首先,应对被纯化的酶的理化性质有一个比较全面的 了解;
其次,判断采用的方法和条件是否得当,始终以活力 回收率和纯化倍数为指标;
常用中性盐:(NH4)2SO4
优点:①溶解度大,温度系数小; ②价廉易得; ③可保护酶。
酶的提取与分离纯化

.
2
酶的提取、分离纯化技术路线
细胞破碎 动物、植物或微生物细胞
酶提取( 粗提) 酶分离纯化
发酵液
酶浓缩 酶贮存
离心分离,过滤分离,沉淀分 离,层析分离,电泳分离,萃 取分离,结晶分离等。
.
3
酶分离纯化不同阶段
酶的纯化过程,约可分为三个阶段:
(1) 粗蛋白质 (crude protein): 采样 → 均 质打破细胞 → 抽提出全蛋白,多使用 盐析沉淀 法;可以粗略去除蛋白质以外的物质。
.
14
3、超声波破碎法
超声波:通常人的耳朵可听到的 声音频率范围为16-20kHz,频率 高于20 kHz的波。
其破碎机理可能与空化现象引起 的冲击波和剪切作用有关。在超 声波作用下,细胞膜由于空穴作 用而破碎。
由于空化作用而使液体形成局部 减压引起液体内部发生流动,旋 涡生成与消失时,产生很大的压 力使细胞膜破裂到达破碎细胞的 效果。
.
5
表4-1 细胞破碎方法及其原理
分类
细胞破碎方法
捣碎法
机械破碎法 研磨法
匀浆法
温度差破碎法
压力差破碎法 物理破碎法 超声波破碎法
反复冻融法
干燥法
细胞破碎原理
通过机械运动产生的剪切力, 使组织、细胞破碎
通过各种物理因素的作用,使 组织、细胞的外层结构破坏, 而使细胞破碎
.
6
化学破碎法
添加有机溶剂、 通过各种化学试剂对细胞膜 添加表面活性剂 的作用,而使细胞破碎
.
22
2、表面活性剂
可促使细胞某些组分溶解,其增溶作用有助于细胞 的破碎。表面活性剂可与细胞膜中的磷脂及脂蛋白 作用而破坏膜结构,增加膜的通透性。
酶的提取与分离纯化课件

18
提取目标:
a. 将目的酶最大限度地溶解出来。 b. 保持生物活性。
注意:温度升高,溶解度加大。但为防止酶失活, 一般采用低温下(0~10℃)操作。
19
提取原则
a. 相似相溶。 b. 远离等电点的pH值,溶解度增加。
20
提取方法:
(一)盐溶液提取 常用稀盐(常用NaCl)溶液(盐溶),
酶的提取与分离纯化
知识回顾
酶蛋白制备
构分
发
分
建离
酵
离
表选
生
纯
达育
产
化
产酶菌株
发酵液
酶制品
2
第四章 酶的提取与分离纯化
预处理(pretreatment):包括固液分离和细胞 破碎(分离胞内产物)等。
初步纯化(rough fractionation) (提取):除 去与目的产物性质差异很大的杂质。
高度纯化(fine fractionation) (精制):除去 与产物性质相似的杂质。
脂蛋白 脂多糖 (11% ~ 22%)
磷脂 蛋白质
葡聚糖(30% ~ 40%) 多聚糖
甘露聚糖(30%) (80% ~ 90%)
几丁质(1% ~ 2%)
脂类
蛋白质(6% ~ 8%) 蛋白质
脂类(8.5% ~ 13.5%)
9
细菌细胞壁的结构
10
酵母菌细胞壁的结构 M—甘露聚糖;P—磷酸二酯键;G—葡聚糖
6
(二)发酵液的固液分离
1 . 影响发酵液过滤的因素 1)菌种 2)培养基组成 2. 提高过滤性能的方法
1)絮凝和凝聚 2)稀释、加热 3)加助滤剂,常用硅藻土等。
7
二、细胞破碎(胞内酶)
酶工程-04-酶的提取与分离纯化

三足离心机 32 武汉生物工程学院生物工程系酶工程教研室
1、差速离心
采用不同的离心速度和离心时间,使不同沉降速度的颗粒 先后分离的方法。
应用范围:大小和密度有较大差别的颗粒。
大
中
小
33 武汉生物工程学院生物工程系酶工程教研室
2、密度梯度离心
在离心管中用5~60%的蔗糖溶液,形成由管底到液面逐渐 降低的梯度,将样品放在密度梯度溶液的表面,经过离心,不 同大小、具有一定沉降系数差异的颗粒在密度梯度溶液中形成 若干条不连续的区带。
广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
渗出液 40
膜分离技术的地位和影响
美国官方文件曾说“18世纪电器改变了整个工业进程 ,而20世纪膜技术将改变整个面貌”,“目前没有一 种技术,能像膜技术这么广泛地被应用”
日本和欧洲则把膜技术作为21世纪的基盘技术进行研 究和开发。
常用的离心介质:铯盐,如CsCl,Cs2SO4,CsBr
36 武汉生物工程学院生物工程系酶工程教研室
先把一定浓度的铯盐溶液与样品液混合均匀,也可将一定量 的铯盐加到样品液中使之溶解。 在选定的离心力作用下,经过足够时间的离心分离。 铯盐在离心力的作用下,在离心力场中沉降,自动形成密度 梯度。 样品中不同浮力密度的颗粒在其各自的等密度点位置上形成 区带。
梯度介质:蔗糖密度梯度系统
34 武汉生物工程学院生物工程系酶工程教研室
密度梯度的制备:密度梯度混合器
35 武汉生物工程学院生物工程系酶工程教研室
3、等密度梯度离心
当欲分离的不同颗粒的密度范围处于离心介质的密度范围 时,在离心力的作用下,不同浮力密度的颗粒一直移动到与他 们各自的浮力密度恰好相等的位置,形成区带。
酶工程 第四章酶的分离纯化 第一节细胞破碎

第一节 细胞破碎
2.表面活性剂处理 表面活性剂可以和细胞膜中的磷脂及脂蛋白相互作用, 使细胞膜结构破坏,增加膜的透过性。
表面活性剂有离于型和非离子型之分,对细胞破碎效 果而言,离子型表面活性剂较有效,但由于离子型表面活 性剂会使酶的结构破坏,引起酶变性失活。所以,在酶的 提取方面一般不采用离子型表面活性剂。而采用非离子型 的特里顿(Triton)、吐温(Tween)等表面活性剂。例如,用 特里顿X—100处理诺卡氏菌细胞,从而提取胆甾醇氧化 酶,用胆酸盐处理细胞,提取一种膜结合的葡聚糖酶等。 处理完后,可采用凝胶层析等方法,将表面活性剂除去, 以免影响酶的进一步分离纯化。
•
ቤተ መጻሕፍቲ ባይዱ
由于溶菌酶等上述列举的酶价格较高,而且外加酶本身混入细胞
破碎液中成为杂质,故此,外加溶菌酶的方法难以用于大规模工业生
产。
第一节 细胞破碎
2.自溶法
将细胞在一定的pH值和适宜的温度条件下保温一段时 间,通过细胞本身存在的酶系将细胞破坏,使胞内物质释 出的方法称为自溶法。
自溶法效果的好环取决于自溶条件。主要有温度、pH 值、离子强度等。自溶时间一般较长,不易控制,为防止 其他微生物在自溶液中滋长,必要时可加入甲苯、氯仿、 叠氮钠等杀菌剂。
第一节 细胞破碎
三、渗透压法
渗透破碎是破碎细胞最温和的方法之一。细胞在低渗 溶液中由于渗透压的作用,溶胀破碎。如红血球在纯水中 会发生破壁溶血现象。但这种方法对具有坚韧的多糖细胞 壁的细胞,如植物、细菌和霉菌不太适用,除非用其他方 法先除去这些细胞外层坚韧的细胞壁。
四、化学破碎法
化学破碎法是应用各种化学试剂与细胞膜作用,使细 胞膜的结构改变或破坏的方法。
表面活性剂处理法对膜结合酶的提取特别有效,在实 验室和生产中均已成功使用。
06 第四章 酶的分离纯化2思维导图

结晶
盐析结晶 有机溶剂结晶 透析平衡结晶 等电结晶
浓缩与干燥
真空干燥 冷冻干燥 喷雾干燥 气流干燥 吸附干燥
利用离子交换剂上的可解离基团对各种离子亲和力不同而使组分分离 阳离子交换剂、阴离子交换剂、不同离子对离子交换剂的亲和力 操作过程:预处理、装柱、上柱、洗脱收集、再生 使用多孔凝胶,利用流动相中所含各种组分相对分子质量不同而使各组分分离 葡聚糖凝胶、琼脂糖凝胶、聚丙烯酰胺凝胶 操作过程:装柱、上样、洗脱、再生 利用生物分子与配基之间所具有的可逆的亲和力,使生物分子分离纯化 将酶等两性物质的等电点特性与离子交换层析特性结合在一起,实现组分分离
酶按照电荷性质不同各自向着与其等电点相等的pH处移动聚焦,从而彼此分离
等电聚焦电泳
分辨率高,区带越来越窄,样品可加在任意部位,可分离低浓度样品,可准确测定等电 点
电泳过程要求无盐溶液,在等电点时溶解度低或可能变性的组分不适用
萃取分离
有机溶剂萃取 双水相萃取
超临界萃取
反胶束萃取
利用待分离物质与杂质在超临界流体中的溶解度不同而达到分离的一种萃取技术 超临界流体密度接近液体、黏度接近气体,适于作为萃取溶剂 等温变压流程、等压变温流程、等温等压与膜分离
非膜过滤
粗滤 微滤
膜过滤
加压膜分离
电场膜分离 透析
微滤 超滤 反渗透
层析分离
吸附层析 分配层析 离子交换层析
凝胶层析 亲和层析 聚焦层析
利用吸附剂对不同物质的吸附力不同而使混合物中各组分分离 溶剂洗脱法、置换洗脱法、前缘洗脱法 吸附剂与洗脱剂的选择 利用各组分在两相中的分配系数不同而使各组分分离 纸层析、薄层层析
电泳分离
凝胶孔径、凝胶强度、聚合时间
常规PAGE、浓度梯度PAGE、SDS-PAGE
酶工程 第四章酶的分离纯化 第二节酶的提取

第二节 酶的提取
3.提取液的体积 提取液的用量增加,可提高提取率。但是过量的提取 液,使酶浓度降低,对进一步的分离纯化不利。故提取液 的用量一般为含酶原料体积的3~5倍。可一次提取,也可 分几次提取,若辅以缓侵搅拌,则可提高提取率。 4.添加保护剂 在酶提取过程中,为了提高酶的稳定性,防止酶变性 失活,可以加入适量的酶作用底物,或其辅酶,或加入某 些抗氧化剂等保护剂。
第二节 酶的提取
4.有机溶剂提取 有些与脂质结合比较牢固或分子中含非极性基团较多 的酶,不溶或难溶于水、稀酸、稀碱和稀盐溶液中,需用 有机溶剂提取。常用的有机溶剂是与水能够混溶的乙醇、 丙酮、丁醇等。其中丁醇对脂蛋白的解离能力较强,提取 效果较好,已成功地用于琥珀酸脱氢酶、细胞色素氧化酶、 胆碱酯酶等的提取。
第二节 酶的提取
一、酶提取的主要方法
根据酶提取时所采用的溶剂或溶液的不 同,酶的提取方法主要有盐溶液提取、酸 溶液提取、碱溶液提取和有机溶剂提取等。
第二节 酶的提取
1.盐溶液提取
大多数酶溶于水,而且在一定浓度的盐存在条件下, 酶的溶解度增加,这称之为盐溶现象,然而盐浓度不能太 高,否则溶解度反而降低,出现盐析现象。所以一般采用 稀盐溶液进行酶的提取,盐浓度一般控制在0.02~ 0.5mol/L的范围内。例如,用固体发酵生产的麸曲中的 α-淀粉酶、糖化酶、蛋白酶等胞外酶,用0.15mo1/L的氯 化钠溶液或0.02~0.05mol/L的磷酸缓冲液提取;酵母醇 脱氢酶用0.5~0.6mol/L的磷酸氢二钠溶液提取;6-磷酸 葡萄糖脱氢酶用0.1mol/L的碳酸钠提取;枯草杆菌碱性磷 酸酶用0.1mol/L的氯化镁提取等。有少数酶,如霉菌产生 的脂肪酶,用清水提取比盐溶液提取的效果较好。
第四章 酶的分离纯化

提高温度,降低溶液粘度、增加扩散面积、縮 短扩散距离,增大浓度差等都有利于提高酶分
子的扩散速度,从而增大提取效果。
为了提高酶的提取率并防止酶的变性失活,在 提取过程中还要注意控制好温度、pH值等提取
条件。采用低温下(0--10℃)操作。
12
一、酶的主要提取方法
提取方法 盐溶液提取
酸溶液提取 碱溶液提取 有机溶剂提 取
Go Go
Go Go
2
第一节 酶的提取、分离纯化技术路线
细胞破碎 动物、植物或微生物细胞 发酵液
酶提取
酶分离纯化
酶浓缩
酶贮存 离心分离,过滤分离,沉淀分 离,层析分离,电泳分离,萃 取分离,结晶分离等。
3
酶分离纯化不同阶段
酶的纯化过程,约可分为三个阶段:
(1) 粗蛋白质 (crude protein): 取样 → 均质打破
利用不同蛋白质在不同的盐浓度条件下溶解度不同的特性, 通过在酶液中添加一定浓度的中性盐,使酶或杂质从溶液中 析出沉淀,从而使酶与杂质分离
利用两性电解质在等电点时溶解度最低,以及不同的两性电 解质有不同的等电点这一特性,通过调节溶液的pH值,使酶 或杂质沉淀析出,从而使酶与杂质分离 利用酶与其它杂质在有机溶剂中的溶解度不同,通过添加一 定量的某种有机溶剂,使酶或杂质沉淀析出,从而使酶与杂 质分离 在酶液中加入某些物质,使它与酶形成复合物而沉淀下来, 从而使酶与杂质分离 选择一定的条件使酶液中存在的某些杂质变性沉淀,而不影 20 响所需的酶,从而使酶与杂质分离
酶的提取是指在一定的条件下,用适当的溶剂或溶液处 理含酶原料,使酶充分溶解到溶剂或溶液中的过程。 酶提取时首先应根据酶的结构和溶解性质,选择适当的 溶剂。一般说来,极性物质易溶于极性溶剂中,非极性 物质易溶于非极性的有机溶剂中,酸性物质易溶于碱性 溶剂中,碱性物质易溶于酸性溶剂中。 酶都能溶解于水,通常可用水或稀酸、稀碱、稀盐溶液 等进行提取,有些酶与脂质结合或含有较多的非极性基 团,则可用有机溶剂提取。
酶工程4-1--3 酶的提取与分离提纯 酶的提取与分离提纯

用于提取在稀碱溶液中溶解度大 且稳定性较好的酶
用于提取那些与脂质结合牢固或 含有较多非极性基团的酶
有机溶剂提取 可与水混溶的有机溶剂
主要影响因素
扩散的影响:
酶分子的扩散速度与温度、溶液黏度、扩散面积、扩散距离以及两相 界面的浓度差有密切关系。提高温度、降低溶液黏度、增加扩散面积、缩 短扩散距离, 增大浓度差等都有利于提高酶分子扩散速度, 从而增大提取效 果。 含酶原料的颗粒体积越小,则扩散面积越大,有利于提高扩散速度;适当的搅 拌可以使提取液中的酶分子迅速离开原料颗粒表面,从而增大两相界面的浓 度差,有利于提高扩散速率;适当延长提取时间,可以使更多的酶溶解出来,直 至达到平衡。
2. 酸溶液提取
3. 碱溶液提取 4. 有机溶剂提取
表4-2 酶的主要提取方法
提取方法 盐溶液提取 使用的溶剂或溶液 0.02~0.5mol/L的盐溶液 提取对象 用于提取在低浓度盐溶液中溶解 度较大的酶 用于提取在稀酸溶液中溶解度大, 且稳定性较好的酶
酸溶液提取
碱溶液提取
pH值为2~6的水溶液
pH值为8~12的水溶液
指溶液中加入的饱和硫酸铵的体积与混合溶液总体积之比值。
饱和度=
溶液中饱和硫酸铵的体积
溶液的总体积
3) 调整盐浓度的方式
a.
饱和溶液法(添加饱和硫酸铵溶液)
适用于:蛋白质溶液体积不太大,而达到的盐浓度又 不太高时。
配制饱和硫酸铵溶液
在水中加入过量的固体硫酸铵, 加热至50~60℃, 保 温数分钟 , 趁热滤去过量未溶解的硫酸铵 , 滤液在0℃ 或 25℃平衡1~2 天, 有固体析出, 此溶液即为饱和硫酸铵溶 液, 其饱和度为1。
利用酶与其他杂质在有机溶剂中的溶解度不同, 通过添加 一定量的某种有机溶剂, 使酶或杂质沉淀析出, 从而使酶 与杂质分离 在酶液中加入某些物质, 使它与酶形成复合物而沉淀下来, 从而使酶与杂质分离
酶的提取与分离纯化

选择性变性沉淀法
定义:选择一定的条件使杂蛋白变性沉淀,而不影 响所需酶的方法。
方法:热处理,改变PH或加入某些金属离子 应用此法必须对与分离的酶以及酶液中的杂蛋白的 种类含量及其物理和化学性质有较全面的了解。
4 离心分离
离心分离
离心机的选择
离心方法的选用
离心条件的确定
离心机的选择
1 常速离心机 常速离心机又称低速离心机,最大转速在8000r/min以内,相对离心力(RCF )在1*104g 以下,主要用于细胞,细胞碎片和培养基残渣的分离,也用于酶的结晶等较大颗粒的分 离。 2 高速离心机 最大转速在(1~2.5)*104r/min,相对离心力达到1*104~1*105g,在酶的分离中主要用于沉 淀,细胞碎片和细胞器等的分离。由于转速过高,引起温度过高引起酶失活,故有的安 有冷冻装置,谓之高速冷冻离心机。 3超速离心机 转速能达到(2.5~12)*104r/min,相对离心力能达到5*105甚至更高。主要用于DNA,RNA, 蛋白质等生物大分子以及细胞,病毒等的分离纯化,样品纯度系数的检测,以及沉降系 数和相对分子质量的测定。超速离心机可分为制备用超速离心机,分析用超速离心机和 分析—制备两用超速离心机。
等电点沉淀法 利用两性电解质在等电点的溶解度最低的特点和不同的物质具有不同的等电 点的特 点,通过调节溶液的PH,使酶或杂质沉淀析出,从而使酶和杂质分离 有机溶剂沉淀法 和杂 利用酶在有机溶剂具有不同溶剂的特点,通过加入一定量的有机溶剂,使酶 质分离
盐析沉淀法
定义:盐析沉淀法简称盐析,是利用不同的蛋白质在不同的盐浓度下溶解度不同的 特性,通过在酶液中加入一定浓度的中性盐,使目标酶或杂质从酶液中析出,从 而达到使酶与杂质分开的方法。 原理:盐离子会改变蛋白质表面的电荷,同时改变了水的活度,使分子表面的水 化膜发生改变。 酶的溶解度和离子强度有确定的定量关系 ㏒(S/S0)=-Ks I
酶的分离纯化 ppt课件

凝胶电泳
(88.9%)
共六步,总收率仅为16%
staehelin等人:
硫酸铵盐析
免疫亲和层析
阳离子交换层析 仅三步,总收率达81.0%
武汉生物工程学院生物工程系酶工程教研室
在实践工作中选择方法时:
首先,应对被纯化的酶的理化性质有—个比较全面的了解;
其次,判断采用的方法和条件是否得当,始终以测定酶 活性为标准。
适用于耐热的酶,注意常要加适当的酶保护剂。 (2)加凝聚剂或絮凝剂
(3)调pH值 二、固液分离 方法:(1)离心分离;(2)过滤;(3)双水相萃取
武汉生物工程学院生物工程系酶工程教研室
三、细胞破碎
捣碎法:捣碎机
机械破碎法
研磨法:研钵、细菌磨、石磨、球磨等 匀浆法:匀浆器
物理破碎法
温度差破碎法:冻融交替法 压力差破碎法:高压冲击法、突然降压法、渗透压变化
各国研究的热点。
广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
武汉生物工程学院生物工程系酶工程教研室
一、膜分离的类型
1、按推动力不同可分为: (1)扩散膜分离:渗透、透析 (2)压力差膜分离:微滤、超滤、纳滤、反渗透 (3)电位差膜分离:电渗析
2、按膜孔径或截留物质的大小:
水
超滤(UF)
(10-200nm)
纳滤(MF) 反渗透滤(RO)
(2-10nm)
(<2nm)
武汉生物工程学院生物工程系酶工程教研室
各种膜分离法的原理和应用范围
膜分离法 截留的颗粒大小 截留的主要物质 过滤介质 应用举例
微 滤(MF) 0.2~2um
超 滤 (UF) 10nm~200nm 纳滤
酶的分离与提纯

酶的催化活性又可以作为选择分离纯化方法和操
作条件的指标,在整个酶的分离纯化过程中的每一
步骤,始终要测定酶的总活力和比活力,这样才能 知道经过某一步骤回收到多少酶,纯度提高了多少, 从而决定着每一步骤的取舍。
酶活力也称为酶活性,是指酶催化一定化学反应的能力。 酶活力的大小可用在一定条件下,酶催化某一化学反应 的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活 力愈低。测定酶活力实际就是测定酶促反应的速度。酶 促反应速度可用单位时间内、单位体积中底物的减少量 或产物的增加量来表示。一般以产物增量来表示酶促反 应速度。 防止酶在分离纯化过程中丧失活性.
• ①比色法 如果酶反应的产物可与特定的化学试剂反应而
生成稳定的有色溶液,且生成颜色的深浅与产物的浓度 在一定的范围内有线性关系可用此法。 • ②量气法:主要用于有气体产生的酶促反应。如氨基酸 脱羧酶、脲酶的活力测定。产生的二氧化碳量可用特制
的仪器如瓦氏呼吸仪测定之。根据气体变化和时间的关
系,即可求得酶反应的速度。来自 标。需注意:
• 在酶的分离纯化过程中进行酶活力及酶比活力 表测定的原因是:一方面,防止酶变性失活。
一旦活力明显下降,就要考虑换一种纯化方法;
另一方面,计算纯化效率。通过总活力和比活, 评估纯化效率,寻找最佳方法。
为防止酶在分离纯化过程中丧失活性。进行酶活回收率和酶
比活力提高比的测定。 1.酶活性回收率:反应提纯过程中酶活力的损失情况 总活力水收率=纯化后总活力/纯化前总活力*100% 由于酶是具有生物活性的催化物质,对反应的条件要求高, 所以反应后会由于环境的变化失活。 2.酶比活力提高比:指的是反应前后的酶比活力的比值。
酶比活力
• 酶比活力是在特定条件下,单位重量(mg)蛋白质或RNA所
酶的提取、分离、纯化及其活力测定

酶的提取、分离、纯化及其活力测定一、实验目的酶是植物体内具有催化作用的蛋白质,植物体内的生化反应,一般都是在酶的作用下进行的,没有酶的催化反应,植物的生命也就停止了,因此对酶的研究是阐明生命现象本质中十分重要的部分。
为要研究酶首先要将酶从组织中提取出来,加以分离、纯化,不同的研究目的对酶制剂的纯度要求也不相同,有些工作只需要粗的酶制剂即可,而有些工作则要求较纯的酶制剂,需根据不同情况区别对待。
在酶的提取和纯化过程中,自始至终都需要测定酶的活性,通过酶活性的测定以监测酶的去向。
二、实验原理(一)酶的提取1.酶的存在位置?存在于动植物以及微生物的细胞的各个部位。
2.如何将酶从细胞中分离?从高等植物中提取酶常遇到一些实际问题,首先是细胞中含有许多种酶,每种酶的浓度又很低,只占细胞总蛋白质中的极小部分(叶中的双磷酸核酮糖羧化酶除外),而许多植物组织中蛋白质的含量又很低。
此外,各种酶的存在状态不同,有在细胞外的外酶,在细胞内的内酶,内酶中又有与细胞器一定结构相结合的结合酶,也有的存在于细胞质中,提取时都应区别对待,作不同处理。
如果酶仅存在于细胞质中,只要将细胞破碎,酶就会转移到提取液中;但如果是与细胞器(如细胞壁、细胞核、线粒体、原生质膜、微粒体等)紧密结合的酶,这时如仅仅破碎细胞还不够,还需要用适当的方法将酶从这些结构上溶解下来。
其次,细胞中存在抑制物质,如酚,酸,离子等,它们通常在液泡中,当细胞破碎时,这些物质象蛋白质一样从细胞中释放出来,进入提取液中,特别是酚类物质,具有游离的酚羟基,能与蛋白质肽键的氧原子形成强的氢键,不能为一般的实验方法,如透析和凝胶过滤所解离。
酚易氧化产生醌,醌为一种强氧化剂,会使蛋白质的功能团发生氧化或发生聚合,使蛋白质上的反应基团,如—SH,—NH2,通过1,4—加成反应而发生不可逆的聚合作用,使酶失活,也使植物组织和提取液产生棕色,以致影响酶活性的测定。
因此如果没有特殊需要,一般常选用植物的非绿色部分或者黄化的幼苗,在这些组织中一般酚类化合物含量较低。
酶的提取和分离纯化

酶分离纯化的工艺流程设计
设计时需要考虑的因素:
酶源材料 前期工艺过程 产品对纯度的要求 酶存在的状态 设备条件 动力、原料成本及工时费用
酶分离纯化的工艺流程设计
合理的工艺应以降低成本,提高效能,同时 又提高产品纯度和质量为前提。
对一个方法好坏的评价标准是: 1.酶的回收率 2.酶产品的比活力
此法效率较低
机械破碎法
3.匀浆法
利用匀浆器所产生的剪切力将组织细胞破 碎。匀浆器一般由硬质磨砂玻璃制成,也 可由硬质塑料可不锈钢等制成。通常用来 破碎那些易于分散,比较柔软,颗粒细小 的组织细胞。
此法细胞破碎程度较高,对酶的破坏也较 少,但难于在工业生产上应用。
11.2.2 物理破碎法
通过温度、压力、声波等各种物理因素的 作用,使组织细胞破碎的方法,统称为物 理破碎法。此法多用于微生物细胞的破碎
所以在纯化前往往须先加以浓缩。沉淀法 可浓缩并去除部分杂质,此外,浓缩的方 法有 (1)蒸发法 (2)反复冻融法 (3)胶过滤 (4)超滤法
2.初步提纯
除去大分子的核酸和粘多糖 (1)加硫酸链霉素、聚乙烯亚胺、鱼精蛋白或
MnCl2可使核酸沉淀移去。必要时使用核酸酶。 (2)常用醋酸铅、乙醇、单宁和离子型表面活性
材料选择及其前处理
动物材料:事先剔除结缔组织、脂肪组织 植物材料:果实种子事先去皮壳,油质种
子用乙醚等脱脂 微生物发酵物:先将菌体和发酵物分离 胞外酶
酶 胞内酶 结酶 溶酶
11.2 细胞破碎
除了动植物体液中的酶和微生物胞外酶之 外,大多数酶都存在于细胞内,因此提取和分 离纯化前须将进行细胞的破碎。 破碎细胞的方法有:
剂等处理解决,有时也用酶。
经过初步提纯,余下来的大分子为酶与杂蛋白, 分离纯化的主要工作,同时也是比较困难的工作, 就是将酶从杂蛋白中分离出来。
酶提取和分离纯化的大致流程

酶提取和分离纯化的大致流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!酶提取和分离纯化的大致流程。
1. 细胞破裂。
机械法,例如匀浆、研磨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
22
2、表面活性剂
可促使细胞某些组分溶解,其增溶作用有助于细胞 的破碎。表面活性剂可与细胞膜中的磷脂及脂蛋白 作用而破坏膜结构,增加膜的通透性。
三、化学破碎法
化学破碎法取决于化学试剂的类型以及细 胞壁膜的结构与组成,不同化学试剂对各 种微生物作用的部位和方式有所不同。
常用的化学试剂:有机溶剂和表面活性剂
.
21
1、有机溶剂
能破坏细胞壁中的类脂。 常用试剂:甲苯、丙酮、丁醇、氯仿等。 可使细胞膜的磷脂结构破坏,从而改变细胞膜的透
过性,再经提取可使膜结合酶或胞内酶等释放出胞 外。
酶促破碎法
自溶法 外加酶制剂法
通过细胞本身的酶系或外加 酶制剂的催化作用,使细胞 外层结构受到破坏,而达到 细胞破碎
.
7
一、机械破碎法
通过机械运动所产生的 剪切力的作用,使细胞破 碎的方法 1、机械捣碎法: 器械:捣碎机。 常用于动物内脏、植物叶 芽等比较脆嫩的组织细胞 破碎,也可用于微生物, 特别是细菌的细胞破碎。
JY92-II D超声波 细胞粉碎机
. 超声波细胞粉碎机(液晶显示) 15
3、超声波破碎法
超声波细胞破碎的程度与输出功率和破碎时间有密切关系。 影响因素:细胞浓度、溶液粘度、pH值、温度以及离子强度等。 必须根据细胞种类以及酶的特性加以选择。 一般操作条件为:音频10 kHz或20 kHz;功率100~150W;温度 0~10℃;pH4~7;处理时间3~10 min,最好间隔几次操作;细 胞浓度和溶液粘度不宜太高,最好采用对数生长期的细胞进行破 碎。细胞浓度一般以1 g湿菌体加1~2 mL缓冲液为宜。
第四章 酶的提取与分离纯化
The Extraction, Separation and Purification of Enzyme
.
1
酶的提取与分离纯化定义
将酶从细胞或其它酶原料中提取出来,再 与杂质分开,而获得所需酶制品的技术过 程,主要包括细胞破碎、提取、离心分离、 过滤与膜分离、沉淀分离、层析分离、电 泳分离、萃取分离、浓缩、干燥、结晶等。
干燥法条件变化剧烈,容易引起蛋白质或其他活 性物质变性。
.
19
三、化学破碎法
应用各种化学试剂与细胞膜作用,使细胞膜的 结构改变或破碎的方法。
某些化学试剂,如有机溶剂、变性剂、表面活 性剂、抗生素、金属螯合剂等,可以改变细胞 壁和膜的通透性(渗透性),从而使细胞内物 质有选择地渗透出来。
.
20
.
2
酶的提取、分离纯化技术路线
细胞破碎 动物、植物或微生物细胞
酶提取( 粗提) 酶分离纯化
发酵液
酶浓缩 酶贮存
离心分离,过滤分离,沉淀分 离,层析分离,电泳分离,萃 取分离,结晶分离等。
.
3
酶分离纯化不同阶段
酶的纯化过程,约可分为三个阶段:
(1) 粗蛋白质 (crude protein): 采样 → 均 质打破细胞 → 抽提出全蛋白,多使用 盐析沉淀 法;可以粗略去除蛋白质以外的物质。
.
5
表4-1 细胞破碎方法及其原理
分类
细胞破碎方法
捣碎法 机械破碎法 研磨法
匀浆法
温度差破碎法 压力差破碎法 物理破碎法 超声波破碎法 反复冻融法 干燥法
细胞破碎原理
通过机械运动产生的剪切力, 使组织、细胞破碎
通过各种物理因素的作用,使 组织、细胞的外层结构破坏, 而使细胞破碎
.
6
化学破碎法
添加有机溶剂、 通过各种化学试剂对细胞膜 添加表面活性剂 的作用,而使细胞破碎
.
8
一、机械破碎法
2、研磨法 器械:研钵、细菌磨等。设备简单,效率较低,常 用于微生物和植物组织细胞的破碎。
.
9
一、机械破碎法
3、匀浆法 器械:匀浆器。 通常用于破碎那些易于 分散、比较柔软、颗粒 细小的组织细胞,细胞 破碎程度较高,其机械 切力对酶的破坏也较少, 但难于在工业生产上应 用。
只适用于细胞壁较脆弱的菌体,破损率低,常需 反复多次。
在冻融过程中可能引起某些蛋白质变性。
.
18
5、干燥法
多种方法使细胞干燥,如气流干燥、真空干燥、 喷雾干燥和冷冻干燥等。
通过干燥使细胞壁膜的结合水分丧失,从而改变 细胞的渗透性。当采用丙酮、丁醇或缓冲液等对 干燥细胞进行处理时,胞内物质就容易被抽提出 来。
.
10
二、物理破碎法
各种物理因素:温度、压力、声波等的作用, 使组织细胞破碎的方法。
多用于微生物细胞的破碎。
.
11
1、温度差破碎法
利用温度的突然变化,由于热胀冷缩的作用使 细胞破碎。
温度差破碎法对那些较脆弱、易破的细胞破碎 效果好,但在酶的提取时,不能在过高的温度 下操作,以免酶失活。
此法难以用于工业生产。
.
14
3、超声波破碎法
超声波:通常人的耳朵可听到的 声音频率范围为16-20kHz,频率 高于20 kHz的波。
其破碎机理可能与空化现象引起 的冲击波和剪切作用有关。在超 声波作用下,细胞膜由于空穴作 用而破碎。
由于空化作用而使液体形成局部 减压引起液体内部发生流动,旋 涡生成与消失时,产生很大的压 力使细胞膜破裂到达破碎细胞的 效果。
.
12
2、压力差破碎法
高压细胞破碎机
(1)高压冲击法 (2)突然降压法
取决因素: a.压力差 b.压力减低的速度 c.细胞种类和生长期
此法对大肠杆菌等革兰氏阴性菌效果较佳,最 好使用对数生长期的细胞。
.
13
(3)渗透压差法
步骤:
高渗平衡→转入低渗溶液→低渗溶胀破裂
适用范围:
膜结合的酶、细胞间质酶等的提取 无壁或壁破坏
(2) 部分纯化 (partially purified): 初步的 纯化,使用各种 柱层析法。
(3) 均质酶 (homogeneous): 目标酶的进一步 精制纯化,可用制备式电泳 或 HPLC。
.
4
第一节 细胞破碎(Cell Disruption )
细胞破碎:是通过各种方法使细法特点:
处理少量样品时操作简单、快捷、液量损失 少、效果好;
是最常用的物理破碎法,特别适用于微生物 细胞的破碎。
超声波振荡易引起温度的剧烈上升,操作时常 在细胞悬浮液中加入冰块或在夹套中通入冷却 剂进行冷却。
.
17
4、反复冻融法
将待破碎的细胞放在低温下(-15~-20℃)突然 冷冻,然后在室温(或40℃)下缓慢地融解,如 此反复冻融多次,由于细胞内形成冰粒使剩余胞 液的盐浓度增高而引起细胞溶胀破碎。