湖南省邵阳市2018年中考数学提分训练 二次函数(含解析)

合集下载

中考数学压轴题二次函数问题解答题解析版

中考数学压轴题二次函数问题解答题解析版

27.在平面直角坐标系xOy中,已知抛物线(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.【答案】(1);(2)k>1;(3)1或3.(2)把点代入抛物线,得把点代入抛物线,得解得当时,对应的抛物线部分位于对称轴左侧,随的增大而减小,时,,解得,(舍去)综上,或3.【关键点拨】本题考査的知识点是二次函数的代入点求值、二次函数的最值、二次函数与一元二次不等式、方程的关系以及函数平移的问题,解题关键是熟练掌握二次函数的相关知识.28.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1) 50千克(2) 12.529.随着人们生活水平的提高,短途旅行日趋火爆.我市某旅行社推出“辽阳—葫芦岛海滨观光一日游”项目,团队人均报名费用y(元)与团队报名人数x(人)之间的函数关系如图所示,旅行社规定团队人均报名费用不能低于88元.旅行社收到的团队总报名费用为w(元). (1)直接写出当x≥20时,y与x之间的函数关系式及自变量x的取值范围;(2)儿童节当天旅行社收到某个团队的总报名费为3000元,报名旅游的人数是多少?(3)当一个团队有多少人报名时,旅行社收到的总报名费最多?最多总报名费是多少元?【答案】(1);(2)30;(3)36人,3168元.(2)20×120=2400<3000,由题意得:w=xy=x(-2x+160)=3000,-2x2+160x-3000=0,x2-80x+1500=0,(x-50)(x-30)=0,x=50或30,当x=50时,y==60,不符合题意,舍去,当x=30时,y==100>88,符合题意,答:报名旅游的人数是30人;(3)w=xy=x(-2x+160)=-2x2+160x=-2(x2-80x+1600-1600)=-2(x-40)2+3200,∵-2<0,∴x<40,w随x的增大而增大,∵x=36时,w有最大值为:-2(36-40)2+3200=3168,∴当一个团队有36人报名时,旅行社收到的总报名费最多,最多总报名费是3168元.【关键点拨】本题考查了一次函数的应用以及二次函数的应用,正确得出y与x的函数关系式是解题的关键.30.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.(1)求与之间的函数关系式,并写出自变量的取值范围;(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【答案】(1)(2),,144元(2)根据题意知,,,当时,随的增大而增大,,当时,取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.【关键点拨】本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.31.综合与探究如图1所示,直线y=x+c与x轴交于点A(-4,0),与y轴交于点C,抛物线y=-x2+bx+c经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为()【答案】(1)y=-x2-3x+4;(2)5;(3)①或4;②存在,D点坐标为(,)或(-1+,)或(-1-,-)或(-4,3).【解析】(1)将代入将和代入抛物线解析式为(3)①当时,,则关于抛物线对称轴对称的面积为当时由已知为等腰直角三角形,过点作于点,设点坐标为,则为,代入解得的面积为4故答案为:或4【关键点拨】本题考查了直角坐标系下抛物线的综合运用与图形变换,能够综合应用相似形和分类讨论是解答本题的关键.32.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)y x2x﹣3;(2);(3).(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EO OA=3,∴E(0,3).∵C(0,﹣3),∴HC2,AH=2FH=4,∴QH CH=1,在HA上取一点K,使得HK,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQ AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.【关键点拨】本题考查了相似三角形对应边成比例、两边成比例且夹角相等的两个三角形相似、待定系数法求二次函数的表达式、二次函数的图象与性质、数轴上两点间的距离公式,熟练掌握该知识点是本题解题的关键.33.知识背景当a>0且x>0时,因为(﹣)2≥0,所以x﹣2+≥0,从而x+(当x=时取等号).设函数y=x+(a>0,x>0),由上述结论可知:当x=时,该函数有最小值为2.应用举例已知函数为y1=x(x>0)与函数y2=(x>0),则当x==2时,y1+y2=x+有最小值为2 =4.解决问题(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?【答案】(1)6;(2)w有最小值,最小值=201.4元.【关键点拨】本题考查二次函数的应用,反比例函数的应用,函数的最值问题,完全平方公式等知识,解题的关键是学会构建函数解决问题,属于中考常考题型.34.如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x 轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m 的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱周长取最大值时,求点G的坐标.【答案】(1),;(2);(3)或.(2)由已知,点坐标为点坐标为轴(3)如图,过点做于点由(2)同理四边形是平行四边形整理得:,即由已知周长时,最大.点坐标为,,此时点坐标为,当点、位置对调时,依然满足条件点坐标为,或,【关键点拨】本题考查一次函数与二次函数的综合运用,解题的关键是能够根据题意找到有限条件列出解析式或表示出相关坐标.35.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.【答案】(1);(2)△BCD为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t的值为1或4.【解析】(1)将、代入,得:,解得:,此二次函数解析式为.(3)设直线的解析式为,将,代入,得:,解得:,直线的解析式为,将直线向上平移个单位得到的直线的解析式为.联立新直线与抛物线的解析式成方程组,得:,解得:,,点的坐标为,,点的坐标为,.点的坐标为,,,.为直角三角形,分三种情况考虑:①当时,有,即,整理,得:,解得:,(不合题意,舍去);②当时,有,即,整理,得:,解得:,(不合题意,舍去);③当时,有,即,整理,得:.,该方程无解(或解均为增解).[来源:Z&xx&]综上所述:当为直角三角形时,的值为1或4.【关键点拨】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.36.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)①Q(2,3);②Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,MN=9或.理由见解析.(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△OBC=S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P(1,4),∴直线PQ解析式为y=﹣x+5,联立得:,解得:或,即Q(2,3);②设G(1,2),∴PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,联立得:,解得:或,∴Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,∵NH2=(b﹣3)2,∴NF2=(b﹣3)2,若四边形MNED为正方形,则有NE2=MN2,∴42﹣8b=(b2﹣6b+9),整理得:b2+10b﹣75=0,解得:b=﹣15或b=5,∵正方形边长为MN=,∴MN=9或.【关键点拨】此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,根与系数的关系,等腰直角三角形的性质,正方形的性质,勾股定理,以及一次函数与二次函数的性质,熟练掌握待定系数法是解本题的关键.37.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN,∴PM=PN,PM=EN,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m,∴n=﹣m﹣1,当顶点D在x轴上时,P(1,﹣2),此时m的值1,∵抛物线的顶点在第二象限,∴m<1.∴n=﹣m﹣1(m<1).故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).[来源]【关键点拨】本题是二次函数综合题,考查了二次函数的图象与性质.38.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)①S四边形ACFD= 4;②Q点坐标为(1,4)或(,)或(,).∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);【关键点拨】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键.39.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(,0).(1)求抛物线F的解析式;(2)如图1,直线l:y x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2x;(2)y2﹣y1=(m>0);(3)①等边三角形;②点P的坐标为(2)、()和(,﹣2).∴y1m,y2m,∴y2﹣y1=(m)﹣(m)(m>0);②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(2);(ii)当AB为对角线时,有,解得:,∴点P的坐标为();(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(2)、()和(,﹣2).【关键点拨】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质等,熟练掌握待定系数法是解(1)的关键,将一次函数解析式代入二次函数解析式是解(2)的关键,分别求出AB、AA′、A′B的值以及分情况讨论是解(3)的关键.40.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【答案】(1)E(3,1);(2)S最大=,M坐标为(,3);(3)F坐标为(0,﹣).(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴,即,解得:OF=,则F坐标为(0,﹣).【关键点拨】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.41.如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC//x轴,交y轴与点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1);(2)P点坐标为(4,6)或(,- );(3)Q点坐标(3,0)或(-2,15)则抛物线解析式为;(2)当在直线上方时,设坐标为,则有,,当时,,即,整理得:,即,解得:,即或(舍去),此时,;当时,,即,整理得:,即,解得:,即或(舍去),此时,;当点时,也满足;当在直线下方时,同理可得:的坐标为,,综上,的坐标为,或,或,或;过作,截取,过作,交轴于点,如图所示:【关键点拨】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.42.已知抛物线的图象如图所示:(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为.(2)判断△ABC的形状,并说明理由.(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1);(2)△ABC是直角三角形;(3)存在,、、.(3)y x2x+2的对称轴是x,设P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=5.分三种情况讨论:①当AP=AC时,AP2=AC2,n2=5,方程无解;②当AP=CP时,AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③当AC=CP时,AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).综上所述:在抛物线对称轴上存在一点P,使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(,0),(,2),(,2).【关键点拨】本题考查了二次函数综合题.解(1)的关键是二次函数图象的平移,解(2)的关键是利用勾股定理及逆定理;解(3)的关键是利用等腰三角形的定义得出关于n的方程,要分类讨论,以防遗漏.43.空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园A BCD的面积最大,并求面积的最大值.【答案】(1)利用旧墙AD的长为10米.(2)见解析.(2)设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S=,0<x<a∵0<a<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a-a2②如按图2方案围成矩形菜园,依题意得S=,a≤x<50+当a<25+<50时,即0<a<时,则x=25+时,S最大=(25+)2=,当25+≤a,即≤a<50时,S随x的增大而减小[来源:Zxx∴x=a时,S最大==,【关键点拨】本题以实际应用为背景,考查了一元二次方程与二次函数最值的讨论,解得时注意分类讨论变量大小关系.44.如图,已知顶点为的抛物线与轴交于,两点,直线过顶点和点.(1)求的值;(2)求函数的解析式;(3)抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y x2﹣3;(3)M的坐标为(3,6)或(,﹣2).(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°,设DC为y=kx﹣3,代入(,0),可得:k,联立两个方程可得:,解得:,所以M1(3,6);【关键点拨】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.45.如图,已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B 点在A点右侧)与y轴交于C点.(1)求抛物线的解析式和A、B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【答案】(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).(2)当时,,点的坐标为.设直线的解析式为.将、代入,,解得:,直线的解析式为.假设存在,设点的坐标为,过点作轴,交直线于点,则点的坐标为,如图所示.,.,当时,的面积最大,最大面积是16 .,存在点,使的面积最大,最大面积是16 .【关键点拨】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用二次函数的性质求出a的值;(2)根据三角形的面积公式找出关于x的函数关系式;(3)根据MN的长度,找出关于m的含绝对值符号的一元二次方程.。

湖南省邵阳市中考数学提分训练 分式方程(含解析)-人教版初中九年级全册数学试题

湖南省邵阳市中考数学提分训练 分式方程(含解析)-人教版初中九年级全册数学试题

2018年中考数学提分训练: 分式方程一、选择题1.方程的解为()A. B.C.D.2.下列说法中,错误的是()A. 分式方程的解等于0,就说明这个分式方程无解B. 解分式方程的基本思路是把分式方程转化为整式方程C. 检验是解分式方程必不可少的步骤 D. 能使分式方程的最简公分母等于零的未知数的值不是原分式方程的解3.解分式方程时,去分母后变形为()A. 2+(x+2)=3(x-1) B. 2-x+2=3(x-1)C. 2-(x+2)=3(1-x) D. 2-(x+2)=3(x-1)4.若分式方程﹣1= 无解,则m=()A. 0和3 B. 1C. 1和﹣2 D. 35.关于的分式方程解为,则常数的值为( )A. B.C.D.6.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A. =2B. =2C. =2D. =27.若关于x的分式方程- = 有增根x=-1,则k的值为( )A. -1B. 3C. 6D. 98.某工厂计划生产1500个零件,但是在实际生产时,……,某某际每天生产零件的个数,在这个题目中,若设实际每天生产零件x个,可得方程,则题目中用“……”表示的条件应是()A. 每天比原计划多生产5个,结果延期10天完成B. 每天比原计划多生产5个,结果提前10天完成C. 每天比原计划少生产5个,结果延期10天完成D. 每天比原计划少生产5个,结果提前10天完成9.若a使关于x的不等式组至少有三个整数解,且关于x的分式方程+ =2有正整数解,a可能是()A. ﹣3 B. 3C. 5D. 810.用换元法解方程﹣=3时,设=y,则原方程可化为()A. y= ﹣3=0B. y﹣﹣3=0 C. y﹣+3=0 D. y﹣+3=011.关于x的方程产生增根,则m及增根x的值分别为()A. m=-1 x,=-3B. m=1,x=-3 C. m=-1,x=3 D. m=1 ,x=312.关于x的方程的解是正数,则a的取值X围是()A. a>-1B. a>-1且a≠0 C. a<-1 D. a<-1且a≠-2二、填空题13.对分式方程去分母时,应在方程两边都乘以________14.当x=________时,的值相等.15.对于非零的两个实数 a,b,规定 a b= ,若 1 (x+1)=1,则 x 的值为________.16.已知关于x的方程的解是正数,则m的取值X围为________17.A,B两地相距50 km,一艘轮船从A地顺流航行至B地,停靠1 h后,从B地逆流返回A地,共用了6 h.已知水流速度为4 km/h,若设该轮船在静水中的速度为x km/h,则可列方程________18.若关于x的方程= +1无解,则a的值是________19.分式方程=1的解为________20.“国十条”等楼市新政的出台,使得房地产市场交易量和楼市房价都一味呈现止涨观望的态势.若某一商人在新政的出台前进货价便宜8%,而现售价保持不变,那么他的利润率(按进货价而定)可由目前的x%增加到(x+10)%,x等于________.21.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x,可列方程________.三、解答题22.解方程:.23.解方程24.某小区响应某某市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的倍,那么银杏树和玉兰树的单价各是多少?25.某校九年级(2)班的师生步行到距离10千米的山区植树,出发小时后,李明同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点.如果李明同学骑车速度是队伍步行速度的倍.求骑车与步行的速度各是多少?26.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?答案解析一、选择题1.【答案】D【解析】:方程两边同时乘以x(x-2)得4(x-2)=3x4x-8=3xx=8当x=8时,x(x-2)≠0∴x=8是原方程的解。

(名师整理)最新人教版数学中考冲刺压轴题《二次函数》专题训练(含答案解析)

(名师整理)最新人教版数学中考冲刺压轴题《二次函数》专题训练(含答案解析)

中考九年级数学压轴题强化训练:二次函数1、若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 与顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系,此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1) 若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2) 若某“路线”L 的顶点在反比例函数xy 6的图像上,它的“带线” l 的解析式为y =2x-4,求此“路线”L 的解析式;(3) 当常数k 满足21≤k ≤2时,求抛物线L: y =ax 2+(3k 2-2k +1)x + k 的“带线” l 与x 轴,y 轴所围成的三角形面积的取值范围.2、如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式;(2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.3、如图,抛物线y=ax 2+bx-1(a ≠0)经过A (-1,0),B (2,0)两点,与y 轴交于点C 。

(1)求抛物线的解析式及顶点D 的坐标;(2)点P 在抛物线的对称轴上,当△ACP 的周长最小时,求出点P 的坐标;(3) 点N 在抛物线上,点M 在抛物线的对称轴上,是否存在以点N 为直角顶点的Rt △DNM 与Rt △BOC 相似,若存在,请求出所有符合条件的点N 的坐标;若不存在,请说明理由。

4、已知如图,在平面直角坐标系xoy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,⑴求经过A、B、C三点的抛物线的解析式;⑵在平面直角坐标系xoy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;⑶若点M为该抛物线上一动点,在⑵的条件下,请求出当||PM AM-的最大值时点M的坐标,并直接写出||PM AM-的最大值。

中考备考数学总复习第12讲二次函数(含解析)

中考备考数学总复习第12讲二次函数(含解析)

第12讲 二次函数[锁定目标考试]考标要求考查角度1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 二次函数是中考考查的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.[导学必备知识]知识梳理一、二次函数的概念一般地,形如y =______________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的两种形式:(1)一般形式:____________________________;(2)顶点式:y =a (x -h )2+k (a ≠0),其中二次函数的顶点坐标是________.二、二次函数的图象及性质二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0) 图象(a >0)(a <0) 开口方向 开口向上 开口向下对称轴 直线x =-b 2a 直线x =-b 2a顶点坐标 ⎝⎛⎭⎫-b 2a ,4ac -b 24a ⎝⎛⎭⎫-b 2a ,4ac -b 24a增减性 当x <-b 2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大 当x <-b 2a时,y 随x 的增大而增大;当x >-b 2a时,y 随x 的增大而减小最值 当x =-b 2a 时,y 有最______值4ac -b 24a 当x =-b 2a 时,y 有最______值4ac -b 24a三、二次函数图象的特征与a ,b ,c 及b 2-4ac 的符号之间的关系四、二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的________和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.3.设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式.六、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A (x 1,0),B (x 2,0),则x 1+x 2=________,x 1·x 2=________.自主测试1.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-32. 如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四个结论:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )A .2个B .3个C .4个D .1个3.当m =__________时,函数y =(m -3)xm 2-7+4是二次函数.4.(上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________.5.(广东珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.[探究重难方法]考点一、二次函数的图象及性质【例1】 (1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b 2a=--62×(-3)=-1, 4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A .(2)点(-1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y3),∵抛物线对称轴为直线x=1,∴点(0,y3)与点(2,y2)关于直线x=1对称.∴y3=y2.∵a>0,∴当x<1时,y随x的增大而减小.∴y1>y3.∴y1>y2.答案:(1)A(2)>方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应用对称轴公式x=-b2a ,顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法:(1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;(3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根考点二、利用二次函数图象判断a,b,c的符号【例2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a +b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a+b+c=0;根据-b2a=-1,推出b=2a;根据图象关于对称轴对称,得出与x轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.答案:①③方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个C.4个 D.5个考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y=-2x2+4x+1=-2(x-1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y=-2x2的图象.答案:C方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.解:(1)由抛物线的对称性可知AE=BE.∴△AOD≌△BEC.∴OA=EB=EA.设菱形的边长为2m,在Rt△AOD中,m2+(3)2=(2m)2,解得m=1.∴DC=2,OA=1,OB=3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3). (2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧ a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧ a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标.考点五、二次函数的实际应用【例5】 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少;(3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通5一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.[品鉴经典考题]1.(湖南株洲)如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是( )A .(-3,0)B .(-2,0)C .x =-3D .x =-2 2.(湖南郴州)抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3. (湖南娄底)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1x 2=12.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.4.(湖南长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x ,25≤x ≤30,25-0.5x ,30<x ≤35(年获利=年销售收入-生产成本-成本).(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.5. (湖南湘潭)如图,抛物线y =ax 2-32x -2(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.[研习预测试题]1.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( )A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由. 参考答案【知识梳理】一、ax 2+bx +c (1)y =ax 2+bx +c (a ,b ,c 是常数,a ≠0) (2)(h ,k )二、小 大三、y 轴 左 右四、形状六、2.横坐标 4.-b a c a导学必备知识自主测试1.C2.D ∵抛物线与x 轴有两个交点,∴b 2-4ac >0;与y 轴交点在(0,0)与(0,1)之间,∴0<c <1,∴(2)错;∵-b 2a >-1,∴b 2a<1,∵a <0,∴2a <b ,∴2a -b <0; 当x =1时,y =a +b +c <0,故选D.3.-3 由题意,得m 2-7=2且m -3≠0,解得m =-3.4.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3).∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎪⎨⎪⎧ 0=k +b ,3=4k +b ,解得⎩⎪⎨⎪⎧ k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.探究考点方法触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0;∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0.由题图知当x =-1时,y >0,即a -b +c >0.对称轴是直线x =13, ∴-b 2a =13,即2a +3b =0; 由⎩⎪⎨⎪⎧a -b +c >0,2a +3b =0,得c -52b >0. 又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0. ∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3. ∴m =6.(2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3). 触类旁通5.解:(1)(10+7x ) (12+6x )(2)y =(12+6x )-(10+7x )=2-x .(3)∵w =2(1+x )(2-x )=-2x 2+2x +4,∴w =-2(x -0.5)2+4.5.∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元. 品鉴经典考题1.A 点A 到对称轴的距离为2,由抛物线的对称性知,另一个交点的横坐标为-3,所以另一个交点坐标为(-3,0).2.D3.解:(1)由已知得x 1+x 2=m 2-2,x 1x 2=-2m .∵1x 1+1x 2=12,即x 1+x 2x 1x 2=12, ∴m 2-2-2m =12, 解得m =1或m =-2.当m =1时,y =x 2+x -2,得A (-2,0),B (1,0);当m =-2时,y =x 2-2x +4,与x 轴无交点,舍去.∴这个二次函数的解析式为y =x 2+x -2.(2)由(1)得A (-2,0),B (1,0),C (0,-2).假设存在一点P ,使四边形P ACB 是平行四边形,则PB ∥AC 且PB =AC ,根据平移知识可得P (-1,2),经验证P (-1,2)在直线y =x +3上,故在直线y =x +3上存在一点P (-1,2),使四边形P ACB 为平行四边形.4.解:(1)当x =28时,y =40-28=12.所以,产品的年销售量为12万件.(2)①当25≤x ≤30时,W =(40-x )(x -20)-25-100=-x 2+60x -925=-(x -30)2-25,故当x =30时,W 最大为-25,即公司最少亏损25万元;②当30<x ≤35时,W =(25-0.5x )(x -20)-25-100=-12x 2+35x -625=-12(x -35)2-12.5,故当x =35时,W 最大为-12.5,及公司最少亏损12.5万元,综上所述,的第一年,公司亏损,最少亏损是12.5万元;(3)①当25≤x ≤30时,W =(40-x )(x -20-1)-12.5-10=-x 2+61x -862.5, 令W =67.5,则-x 2+61x -862.5=67.5,化简得x 2-61x +930=0,x 1=30,x 2=31,此时,当两年的总盈利不低于6.75万元时,x =30.②当30<x ≤35时,W =(25-0.5x )(x -20-1)-12.5-10=-12x 2+35.5x -547.5, 令W =67.5,则-12x 2+35.5x -547.5=67.5, 化简得x 2-71x +1 230=0,x 1=30,x 2=41,此时,当两年的总盈利不低于67.5万元时,30<x ≤35.所以,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x ≤35.5.解:(1)将点B (4,0)代入y =ax 2-32x -2(a ≠0)中,得a =12.∴抛物线的解析式为y =12x 2-32x -2. (2)∵当12x 2-32x -2=0时,解得x 1=4,x 2=-1, ∴A 点坐标为(-1,0),则OA =1.∵当x =0时,y =12x 2-32x -2=-2,∴C 点坐标为(0,-2),则OC =2.在Rt △AOC 与Rt △COB 中,OA OC =OC OB =12, ∴Rt △AOC ∽Rt △COB .∴∠ACO =∠CBO .∴∠ACB =∠ACO +∠OCB =∠CBO +∠OCB =90°.∴△ABC 为直角三角形.∴△ABC 的外接圆的圆心为AB 中点,其坐标为⎝⎛⎭⎫32,0.(3)连接OM .设M 点坐标为⎝⎛⎭⎫x ,12x 2-32x -2,则S △MBC =S △OBM +S △OCM -S △OBC =12×4×⎝⎛⎭⎫-12x 2+32x +2+12×2×x -12×2×4 =-(x -2)2+4.∴当x =2时,△MBC 的面积有最大值为4,点M 的坐标为(2,-3).研习预测试题1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D.4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎪⎨⎪⎧1-b +c =0,1+b +c =-2,解得⎩⎪⎨⎪⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2, ∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y 取得最大值,②错误. 7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b -2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎪⎨⎪⎧ 4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧ a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t . ∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295. ∴10-t =7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L 2与L 1有关图象的两条相同的性质:对称轴为直线x =2或顶点的横坐标为2;都经过A (1,0),B (3,0)两点.②线段EF 的长度不会发生变化.∵直线y =8k 与抛物线L 2交于E ,F 两点,∴kx 2-4kx +3k =8k ,∵k ≠0,∴x 2-4x +3=8,解得x 1=-1,x 2=5.∴EF =x 2-x 1=6,∴线段EF 的长度不会发生变化.。

湖南省邵阳市2018年中考数学提分训练二元一次方程组含解析

湖南省邵阳市2018年中考数学提分训练二元一次方程组含解析

专题课件2018年中考数学提分训练: 二元一次方程组一、选择题1.下列方程组是二元一次方程组的有()①;②;③;④.A. 0个B. 1个C. 2个 D. 3个2.对于等式2x+3y=7,用含x的代数式来表示y,下列式子正确的是()A. B.C.D.3.方程组的解为()A. B.C.D.4.若,则x,y的值为()A. B.C.D.5.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A. 360B. 480C. 600D. 7206.x1、x2、x3、…x20是20个由1,0,﹣1组成的数,且满足下列两个等式:①x1+x2+x3+…+x20=4,②(x1﹣1)2+(x2﹣1)2+(x3﹣1)2+…+(x20﹣1)2=32,则这列数中1的个数为()A. 8B.10 C.12 D.147.已知是方程kx﹣y=3的解,那么k的值是()A. 2B.﹣2 C. 1D. ﹣18.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24B.0 C. ﹣4 D. ﹣89.满足的是( ).A. m=1,n=3B. m=1,n=-3C. m=-1,n=3D. m =-1,n=-310.如果二元一次方程组的解是二元一次方程3x﹣5y﹣7=0的一个解,那么a值是()A. 3B. 5C. 7D. 911.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )A. B.C. D.12.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+ =0,则△ABC()A. 不是直角三角形B. 是以a为斜边的直角三角形C. 是以b为斜边的直角三角形 D. 是以c为斜边的直角三角形二、填空题13.二元一次方程组解是________.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是________元.15.已知关于x,y的二元一次方程2x+□y=7中,y的系数已经模糊不清,但已知是这个方程的一个解,那么原方程是________.16.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.17.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为________18.若+(b-2)2=0,则a b的值是________.19.若,则=________20.下表是某校初一(7)班20名学生某次数学成绩的统计表:若这20名学生平均成绩为a(a是整数),则a至少是________分.成绩(分)60 70 80 90 100人数(人) 1 5 x y 221.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90 100 130 150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.22.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克粗粮,1千克粗粮,1千克粗粮;乙种粗粮每袋装有1千克粗粮,2千克粗粮,2千克粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中三种粗粮的成本价之和.已知粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是________.()三、解答题23.解方程组:24.若|a-b+1|与互为相反数,试求(a+b)2 017的值25.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.26.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?27.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?答案解析一、选择题1.【答案】C【解析】:①符合二元一次方程组的定义;②x2是二次的,故该选项错误;③方程组有三个未知数,故该选项错误;④符合二元一次方程组的定义.故答案为::C.【分析】二元一次方程组要满足有两个未知数,未知数的次数是1,系数不等于0,分母中不能有未知数。

中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

中考数学(二次函数提高练习题)压轴题训练含详细答案(1)

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC .①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣32)2+94,当n=32时,PM最大=94;②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=2,n2﹣2n﹣3=-3,P(2,-3);当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=3+2(不符合题意,舍),n3=3-2,n2﹣2n﹣3=2-42,P(3-2,2-42);综上所述:P(2,﹣3)或(3-2,2﹣42).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y=x2-2x-3.(2)直线BC的函数表达式为y=x-3.(3)①23.①P1(122),P2(16,74).【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221b ba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB , ∴PQ=3 ∵PQ ⊥y 轴 ∴PQ ∥x 轴,则由抛物线的对称性可得PM=32, ∵对称轴是直线x=1, ∴P 到y 轴的距离是12, ∴点P 的横坐标为−12, ∴P (−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(2-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-62,或1+62,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-62,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12 ab=⎧⎨=-⎩∴y=x2﹣2x﹣3(2)把x=0代入y=x2﹣2x﹣3中可得y=﹣3∴C(0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩ 解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =1±2,∵x >0∴x =1+2. ∴P (1+2,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得1266x x =+=-12x x -=答:两排灯的水平距离最小是考点:二次函数的实际应用.5.对于二次函数 y=ax 2+(b+1)x+(b ﹣1),若存在实数 x 0,使得当 x=x 0,函数 y=x 0,则称x 0 为该函数的“不变值”.(1)当 a=1,b=﹣2 时,求该函数的“不变值”;(2)对任意实数 b ,函数 y 恒有两个相异的“不变值”,求 a 的取值范围;(3)在(2)的条件下,若该图象上 A 、B 两点的横坐标是该函数的“不变值”,且 A 、B 两点关于直线 y=kx-2a+3 对称,求 b 的最小值. 【答案】(1)-1,3;(2)0<a<1;(3)-98【解析】 【分析】(1)先确定二次函数解析式为y=x 2-x-3,根据x o 是函数y 的一个不动点的定义,把(x o ,x o )代入得x 02-x 0-3=x o ,然后解此一元二次方程即可;(2)根据x o 是函数y 的一个不动点的定义得到ax o 2+(b+1)x o +(b-1)=x o ,整理得ax 02+bx o +(b-1)=0,则根据判别式的意义得到△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,把b 2-4ab+4a 看作b 的二次函数,由于对任意实数b ,b 2-4ab+4a>0成立,则(4a )2-4.4a<0,然后解此不等式即可.(3)(利用两点关于直线对称的两个结论,一是中点在已知直线上,二是两点连线和已知直线垂直.找到a ,b 之间的关系式,整理后在利用基本不等式求解可得. 【详解】解:(1)当a=1,b=-2时,二次函数解析式为y=x 2-x-3,把(x o ,x o )代入得x 02-x 0-3=x o ,解得x o =-1或x o =3,所以函数y 的不动点为-1和3;(2)因为y=x o ,所以ax o 2+(b+1)x o +(b-1)=x o ,即ax 02+bx o +(b-1)=0,因为函数y 恒有两个相异的不动点,所以此方程有两个不相等的实数解,所以△=b 2-4a (b-1)>0,即b 2-4ab+4a>0,而对任意实数b ,b 2-4ab+4a>0成立,所以(4a )2-4.4a<0,解得0<a<1.(3)设A (x 1,x 1),B (x 2,x 2),则x 1+x 2b a=- A ,B 的中点的坐标为(1212,22x x x x ++ ),即M (,22b ba a-- ) A 、B 两点关于直线y=kx-2a+3对称, 又∵A ,B 在直线y=x 上,∴k=-1,A ,B 的中点M 在直线y=kx-2a+3上.∴b a -=ba-2a+3 得:b=2a 2-3a 所以当且仅当a=34 时,b 有最小值-98【点睛】本题是在新定义下对函数知识的综合考查,是一道好题.关于两点关于直线对称的问题,有两个结论同时存在,一是中点在已知直线上,二是两点连线和已知直线垂直.6.如图,已知抛物线的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5)。

湖南省邵阳市中考数学提分训练:二次函数(解析版)

湖南省邵阳市中考数学提分训练:二次函数(解析版)

2019年中考数学提分训练: 二次函数一、选择题1.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A. a≤-1或a≥2B. -1≤a<0或0<a≤2C. -1≤a<0或1<a≤D. ≤a≤22.下列命题:①若a+b+c=0,则b2-4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2-4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()A. ①②B. ①③C. ②③D. ①②③3.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤ 或a>D. a≤﹣1或a≥4.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A. 1B. 9C. 16D. 245.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A. 2B. 3C. 4D. 56.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A. B. C.D.7.将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能够成等边三角形,那么平移的距离为()A. 1个单位B. 个单位C. 个单位 D. 个单位8.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m +1)a+b>0D.若m<1,则(m +1)a+b<09.二次函数图象如图3所示.当y<0时,自变量x的取值范围是().A.x<-1B.-1<x<3C.x>3D.x<-1或x>310.对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A. m≥﹣2B. ﹣4≤m≤﹣2C. m≥﹣4 D. m≤﹣4或m≥﹣2二、填空题11.抛物线的顶点坐标为________.12.如果函数(为常数)是二次函数,那么取值范围是________.13.二次函数y=x2+2x-3的最小值为________14.抛物线向下平移个单位后所得的新抛物线的表达式是________.15.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是________.x …﹣1 0 1 2 …y …0 3 4 3 …16.若函数f(x)=ax2+bx+c的图象通过点(﹣1,1)、(α,0)与(β,0),则用α、β表示f(1)得f(1)=________17.如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是________.18.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题19.已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.20.已知抛物线的顶点坐标是(2,1),且该抛物线经过点A(3,3),求该抛物线解析式.21.将抛物线向左平移4个单位,求平移后抛物线的表达式、顶点坐标和对称轴.22.某公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)之间满足正比例函数关系:y A=kx;如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间满足二次函数关系:y B=ax2+bx.根据公司信息部的报告,y A、y B(万元)与投资金额x(万元)的部分对应值(如下表)x 1 5(1)求正比例函数和二次函数的解析式;(2)如果公司准备投资20万元同时开发A、B两种新产品,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?23.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.24.如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.25.如图,已知二次函数的图象抛物线与轴相交于不同的两点,,且,(1)若抛物线的对称轴为求的值;(2)若,求的取值范围;(3)若该抛物线与轴相交于点D,连接BD,且∠OBD=60°,抛物线的对称轴与轴相交点E,点F是直线上的一点,点F的纵坐标为,连接AF,满足∠ADB=∠AFE,求该二次函数的解析式.答案解析一、选择题1.【答案】B【解析】如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:故答案为:B.【分析】分两种情况进行讨论:当 a > 0 时,抛物线y = a x 2经过三角形最左端的点A,此时a的值2,抛物线的开口最小,根据抛物线中二次项的系数的绝对值越大开口越小,从而得出a 取得最大值2,即可得出a的取值范围;当a <0 时,抛物线y = a x 2经过三角形最左端的点B,此时a的值-1,抛物线的开口最小,根据抛物线中二次项的系数的绝对值越大开口越小,从而得出a 取得最小值-1,即可得出a的取值范围;综上所述即可得出答案。

中考数学培优 易错 难题(含解析)之二次函数及答案解析

中考数学培优 易错 难题(含解析)之二次函数及答案解析

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716 (3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m 2=-,22m 2=(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m =-或1m =-时,△BDM 为直角三角形.2.如图,在平面直角坐标系中,抛物线y=ax 2+bx ﹣3(a≠0)与x 轴交于点A (﹣2,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使S △CBK :S △PBQ =5:2,求K 点坐标.【答案】(1)y=38x 2﹣34x ﹣3(2)运动1秒使△PBQ 的面积最大,最大面积是910 (3)K 1(1,﹣278),K 2(3,﹣158) 【解析】【详解】 试题分析:(1)把点A 、B 的坐标分别代入抛物线解析式,列出关于系数a 、b 的解析式,通过解方程组求得它们的值;(2)设运动时间为t 秒.利用三角形的面积公式列出S △PBQ 与t 的函数关系式S △PBQ =﹣910(t ﹣1)2+910.利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的解析式为y=34x ﹣3.由二次函数图象上点的坐标特征可设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △CBK =94.则根据图形得到:S △CBK =S △CEK +S △BEK =12EK•m+12•EK•(4﹣m ),把相关线段的长度代入推知:﹣34m 2+3m=94.易求得K 1(1,﹣278),K 2(3,﹣158). 解:(1)把点A (﹣2,0)、B (4,0)分别代入y=ax 2+bx ﹣3(a≠0),得 423016430a b a b --=⎧⎨+-=⎩, 解得3834a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以该抛物线的解析式为:y=38x 2﹣34x ﹣3; (2)设运动时间为t 秒,则AP=3t ,BQ=t .∴PB=6﹣3t .由题意得,点C 的坐标为(0,﹣3). 在Rt △BOC 中,.如图1,过点Q 作QH ⊥AB 于点H .∴QH ∥CO ,∴△BHQ ∽△BOC , ∴HB OC BG BC=,即Hb 35t =, ∴HQ=35t . ∴S △PBQ =12PB•HQ=12(6﹣3t )•35t=﹣910t 2+95t=﹣910(t ﹣1)2+910. 当△PBQ 存在时,0<t <2∴当t=1时, S △PBQ 最大=910. 答:运动1秒使△PBQ 的面积最大,最大面积是910; (3)设直线BC 的解析式为y=kx+c (k≠0).把B (4,0),C (0,﹣3)代入,得403k c c +=⎧⎨=-⎩, 解得3k 4c 3⎧=⎪⎨⎪=-⎩,∴直线BC 的解析式为y=34x ﹣3. ∵点K 在抛物线上. ∴设点K 的坐标为(m ,38m 2﹣34m ﹣3). 如图2,过点K 作KE ∥y 轴,交BC 于点E .则点E 的坐标为(m ,34m ﹣3).∴EK=34m﹣3﹣(38m2﹣34m﹣3)=﹣38m2+32m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=9 10.∴S△CBK=94.S△CBK=S△CEK+S△BEK=12EK•m+12•EK•(4﹣m)=12×4•EK=2(﹣38m2+32m)=﹣34m2+3m.即:﹣34m2+3m=94.解得 m1=1,m2=3.∴K1(1,﹣278),K2(3,﹣158).点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式和三角形的面积求法.在求有关动点问题时要注意该点的运动范围,即自变量的取值范围.3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c 的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或> 【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t >3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213 (03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.4.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m -4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m 、n 的值分别为 5,-5.5.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】【分析】 (1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小.【详解】(1) ∵抛物线F 经过点C (-1,-2),∴22122m m -=++-.∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-. ∴当m=-2时,P y 的最小值为-2.此时抛物线F 的表达式是()222y x =+-.∴当2x ≤-时,y 随x 的增大而减小.∵12x x <≤-2,∴1y >2y .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得: 660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值; (3)如图2,∵PH ⊥OB 于H , ∴∠DHB=∠AOB=90°, ∴DH ∥AO , ∵OA=OB=6, ∴∠BDH=∠BAO=45°, ∵PE ∥x 轴、PD ⊥x 轴, ∴∠DPE=90°,若△PDE 为等腰直角三角形, 则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4, 即点P (4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.7.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38,则当1352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2. 【详解】解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.()()()()220105001010700500100003038w x a x x a x a x =---+=-++--对称轴为x =35+12a ,且0<a ≤6,则30<35+12a ≤38, 则当1352x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛⎫+---++= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴122,58a a ==(不合题意舍去),∴2a =. 【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

2018年中考数学二次函数压轴题集锦(50道含解析)

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx ﹣2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B (3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC 交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C 作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD 的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形. (3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。

2018年中考数学真题汇编--二次函数压轴题(含答案解析)

2018年中考数学真题汇编--二次函数压轴题(含答案解析)

2018年中考数学真题汇编--二次函数压轴题1.(2018·甘肃)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2.(2018·盐城)如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(−1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为−1,求△DPQ面积的最大值,并求此时点D的坐标;2(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.3.(2018·邵阳)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+ 2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边?若存在,求tan∠MAN的值;若不存的Rt△AMN,使△AMN的面积为△ABC面积的13在,请说明理由.4.(2018·随州)如图1,抛物线C1:y=ax2−2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(−1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=−1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.(2018·杭州临安)如图,△OAB是边长为2+√3的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E//x轴时,求点A′和E的坐标;x2+bx+c经过点A′和E时,求抛物线与x轴的交点(2)当A′E//x轴,且抛物线y=−16的坐标;(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.6.(2018·荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=−2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当1x2−1x1=12时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=√(x1−x2)2+(y1−y2)2)7.(2018·安顺)如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=−1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=−1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=−1上的一个动点,求使△BPC为直角三角形的点P的坐标.8.(2018·株洲)如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+1,连接AF,满足∠ADB=∠AFE,求2a该二次函数的解析式.9.(2018·永州)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,−3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标:如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.10.(2018·南通)已知,正方形ABCD,A(0,−4),B(l,−4),C(1,−5),D(0,−5),抛物线y=x2+mx−2m−4(m为常数),顶点为M.(1)抛物线经过定点坐标是______,顶点M的坐标(用m的代数式表示)是______;(2)若抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点,求m的取值范围;(3)若∠ABM=45∘时,求m的值.11.(2018·湘潭)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2−1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,−1),过点P作PM⊥l 于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.12.(2018·宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(−6,0),B(0,4).过点C(−6,1)的双曲线y=kx(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=______,k=______,点E的坐标为______;(2)当1≤t≤6时,经过点M(t−1,−12t2+5t−32)与点N(−t−3,−12t2+3t−72)的直线交y轴于点F,点P是过M,N两点的抛物线y=−12x2+bx+c的顶点.①当点P在双曲线y=kx 上时,求证:直线MN与双曲线y=kx没有公共点;②当抛物线y=−12x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.13.(2018·浙江)已知,点M为二次函数y=−(x−b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>−(x−b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.14.(2018·恩施)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(−1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.15.(2018·孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(−2,0),B(0,−6),将Rt△AOB绕点O按顺时针方向分别旋转90∘,180∘得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为______,点E的坐标为______;抛物线C1的解析式为______.抛物线C2的解析式为______;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记ℎ=PM+NM+√2BM,求h与x的函数关系式,当−5≤x≤−2时,求h的取值范围.2018年最新中考数学压轴精选15题二次函数类【答案】1. 解:(1)将点B 和点C 的坐标代入函数解析式,得 {c =39a+6+c=0,解得{c =3a=−1,二次函数的解析是为y =−x 2+2x +3;(2)若四边形POP′C 为菱形,则点P 在线段CO 的垂直平分线上, 如图1,连接PP′,则PE ⊥CO ,垂足为E ,∵C(0,3),∴E(0,32),∴点P 的纵坐标32,当y =32时,即−x 2+2x +3=32,解得x 1=2+√102,x 2=2−√102(不合题意,舍), ∴点P 的坐标为(2+√102,32);(3)如图2,P 在抛物线上,设P(m,−m 2+2m +3), 设直线BC 的解析式为y =kx +b , 将点B 和点C 的坐标代入函数解析式,得 {b =33k+3=0, 解得{b =3k=−1.直线BC 的解析为y =−x +3, 设点Q 的坐标为(m,−m +3),PQ =−m 2+2m +3−(−m +3)=−m 2+3m . 当y =0时,−x 2+2x +3=0, 解得x 1=−1,x 2=3, OA =1,AB =3−(−1)=4,S 四边形ABPC =S △ABC +S △PCQ +S △PBQ =12AB ⋅OC +12PQ ⋅OF +12PQ ⋅FB =12×4×3+12(−m 2+3m)×3 =−32(m −32)2+758,当m =32时,四边形ABPC 的面积最大. 当m =32时,−m 2+2m +3=154,即P 点的坐标为(32,154). 当点P 的坐标为(32,154)时,四边形ACPB 的最大面积值为758.2. 解:(1)将A(−1,0)、B(3,0)代入y =ax 2+bx +3,得:{9a +3b +3=0a−b+3=0,解得:{b =2a=−1, ∴抛物线的表达式为y =−x 2+2x +3.(2)(I)当点P 的横坐标为−12时,点Q 的横坐标为72, ∴此时点P 的坐标为(−12,74),点Q 的坐标为(72,−94). 设直线PQ 的表达式为y =mx +n , 将P(−12,74)、Q(72,−94)代入y =mx +n ,得: {−12m +n =7472m +n =−94,解得:{m =−1n =54, ∴直线PQ 的表达式为y =−x +54.如图②,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54), ∴DE =−x 2+2x +3−(−x +54)=−x 2+3x +74,∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+6x +72=−2(x −32)2+8.∵−2<0,∴当x =32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154). (II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t,−t 2+2t +3),点Q 的坐标为(4+t,−(4+t)2+2(4+t)+3), 利用待定系数法易知,直线PQ 的表达式为y =−2(t +1)x +t 2+4t +3. 设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3), ∴DE =−x 2+2x +3−[−2(t +1)x +t 2+4t +3]=−x 2+2(t +2)x −t 2−4t , ∴S △DPQ =12DE ⋅(x Q −x P )=−2x 2+4(t +2)x −2t 2−8t =−2[x −(t +2)]2+8.∵−2<0,∴当x =t +2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8.3. 解:(1)y =x 2+2x +1=(x +1)2的图象沿x 轴翻折,得y =−(x +1)2.把y =−(x +1)2向右平移1个单位,再向上平移4个单位,得y =−x 2+4, ∴所求的函数y =ax 2+bx +c 的解析式为y =−x 2+4; (2)∵y =x 2+2x +1=(x +1)2, ∴A(−1,0),当y =0时,−x 2+4=0,解得x =±2,则D(−2,0),C(2,0); 当x =0时,y =−x 2+4=4,则B(0,4),从点A ,C ,D 三个点中任取两个点和点B 构造三角形的有:△ACB ,△ADB ,△CDB , ∵AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,∴△BCD 为等腰三角形,∴构造的三角形是等腰三角形的概率=13; (3)存在.易得BC 的解析是为y =−2x +4,S △ABC =12AC ⋅OB =12×3×4=6, M 点的坐标为(m,−2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,M 点的坐标为(0,4),N(0,0),则AN =1,MN =4, ∴tan∠MAC =MN AN=41=4;当m =1时,M 点的坐标为(1,2),N(1,0),则AN =2,MN =2,∴tan∠MAC =MN AN=22;②当N 点在BC 上,如图2, BC =√22+42=2√5,∵12BC ⋅AN =12AC ⋅BC ,解得AN =3×42√5=6√55, ∵S △AMN =12AN ⋅MN =2, ∴MN =4AN =2√53, ∴∠MAC =MNAN =2√536√55=59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t , 由②得AH =6√55,则BH =√(√17)2−(6√55)2=7√55, ∵∠NBG =∠HBA , ∴△BNM ∽△BHA , ∴MN AH=BNBH ,即MN 6√55=√17−t7√55,∴MN=6√17−6t7,∵12AN⋅MN=2,即12⋅(√17−t)⋅6√17−6t7=2,整理得3t2−3√17t+14=0,△=(−3√17)2−4×3×14=−15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.4. 解:(1)∵点A的坐标为(−1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2−2ax+c,得:{c=3a+2a+c=0,解得:{c=3a=−1,∴抛物线C1的解析式为y=−x2+2x+3=−(x−1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=−x2+2x+3−k,即y=−(x−1)2+4−k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=√3B′D=√3m,则点B′的坐标为(m+1,0),点G′的坐标为(1,√3m),将点B′、G′的坐标代入y=−(x−1)2+4−k,得:{−m 2+4−k=04−k=√3m,解得:{k1=4m1=0(舍),{m2=√3k2=1,∴k=1;(3)设M(x,0),则P(x,−x 2+2x +3)、Q(x,−x 2+2x +2), ∴PQ =OA =1,∵∠AOQ 、∠PQN 均为钝角, ∴△AOQ ≌△PQN ,如图2,延长PQ 交直线y =−1于点H ,则∠QHN =∠OMQ =90∘, 又∵△AOQ ≌△PQN ,∴OQ =QN ,∠AOQ =∠PQN , ∴∠MOQ =∠HQN , ∴△OQM ≌△QNH(AAS),∴OM =QH ,即x =−x 2+2x +2+1, 解得:x =1±√132(负值舍去), 当x =1+√132时,HN =QM =−x 2+2x +2=√13−12,点M(1+√132,0),∴点N 坐标为(1+√132+√13−12,−1),即(√13,−1); 或(1+√132−√13−12,−1),即(1,−1); 如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=−(−x2+2x+2)−1,解得:x=−1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=−(−x2+2x+2)=6,∴点N的坐标为(4+6,−1)即(10,−1),或(4−6,−1)即(−2,−1);综上点M1(1+√132,0)、N1(√13,−1);M2(1+√132,0)、N2(1,−1);M3(4,0)、N3(10,−1);M4(4,0)、N4(−2,−1).5. 解:(1)由已知可得∠A′OE=60∘,A′E=AE,由A′E//x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=√3b,OE=2b,√3b+2b=2+√3,所以b=1,A′、E的坐标分别是(0,1)与(√3,1).(2)因为A′、E在抛物线上,所以{1=c1=−16⋅(√3)2+√3b+c,所以{c=1b=√36,函数关系式为y=−16x2+√36x+1,由−16x2+√36x+1=0,得x1=−√3,x2=2√3,与x轴的两个交点坐标分别是(−√3,0)与(2√3,0).(3)不可能使△A′EF成为直角三角形.∵∠FA′E=∠FAE=60∘,若△A′EF 成为直角三角形,只能是∠A′EF =90∘或∠A′FE =90∘ 若∠A′EF =90∘,利用对称性,则∠AEF =90∘, A 、E 、A 三点共线,O 与A 重合,与已知矛盾; 同理若∠A′FE =90∘也不可能, 所以不能使△A′EF 成为直角三角形. 6. 解:(1)根据题意得,{−b2a=−216a +4b +c =8c =0,∴{a =14b =1c =0, ∴抛物线解析式为y =14x 2+x ;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2, ∴14x 2+x =kx +4, ∴x 2−4(k −1)x −16=0,根据根与系数的关系得,x 1+x 2=4(k −1),x 1x 2=−16, ∵1x 2−1x 1=12,∴2(x 1−x 2)=x 1x 2, ∴4(x 1−x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2−4x 1x 2]=(x 1x 2)2, ∴4[16(k −1)2+64]=162, ∴k =1;(3)如图,取OB 的中点C , ∴BC =12OB , ∵B(4,8), ∴C(2,4), ∵PQ//OB ,∴点O 到PQ 的距离等于点O 到OB 的距离, ∵S △POQ :S △BOQ =1:2, ∴OB =2PQ ,∴PQ =BC ,∵PQ//OB , ∴四边形BCPQ 是平行四边形, ∴PC//AB ,∵抛物线的解析式为y =14x 2+x②,令y =0, ∴14x 2+x =0, ∴x =0或x =−4, ∴A(−4,0), ∵B(4,8),∴直线AB 解析式为y =x +4,设直线PC 的解析式为y =x +m , ∵C(2,4),∴直线PC 的解析式为y =x +2②,联立①②解得,{x =2√2y =2√2+2(舍)或{x =−2√2y =−2√2+2,∴P(−2√2,−2√2+2).7. 解:(1)依题意得:{−b2a =−1a +b +c =0c =3,解之得:{a =−1b =−2c =3,∴抛物线解析式为y =−x 2−2x +3 ∵对称轴为x =−1,且抛物线经过A(1,0), ∴把B(−3,0)、C(0,3)分别代入直线y =mx +n ,得{n =3−3m+n=0,解之得:{n =3m=1,∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =−1的交点为M ,则此时MA +MC 的值最小.把x =−1代入直线y =x +3得,y =2, ∴M(−1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(−1,2);(3)设P(−1,t), 又∵B(−3,0),C(0,3),∴BC 2=18,PB 2=(−1+3)2+t 2=4+t 2,PC 2=(−1)2+(t −3)2=t 2−6t +10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2−6t +10解之得:t =−2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2−6t +10=4+t 2解之得:t =4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2−6t +10=18解之得:t 1=3−√172,t 2=3−√172;综上所述P 的坐标为(−1,−2)或(−1,4)或(−1,3+√172) 或(−1,3−√172).8. 解:(1)抛物线的对称轴是:x =−b 2a =−−5√32a=√3,解得:a =52;(2)由题意得二次函数解析式为:y =15x 2−5√3x +c , ∵二次函数与x 轴有两个交点, ∴△>0,∴△=b 2−4ac =(−5√3)2−4×15c , ∴c <54;(3)∵∠BOD =90∘,∠DBO =60∘, ∴tan60∘=ODOB =cOB =√3, ∴OB =√33c , ∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得:y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a,0),D(0,12a ), ∴AB =4√3a −√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a),过点A作AG⊥DB于G,∴BG=12AB=AE=3√32a,AG=92a,DG=DB−BG=8√3a −3√32a=13√32a,∵∠ADB=∠AFE,∠AGD=∠FEA=90∘,∴△ADG∽△AFE,∴AEAG =FEDG,∴3√32a92a=6a+12a13√32a,∴a=2,c=6,∴y=2x2−5√3x+6.9. 解:(1)设抛物线的表达式为:y=a(x−1)2+4,把(0,3)代入得:3=a(0−1)2+4,a=−1,∴抛物线的表达式为:y=−(x−1)2+4=−x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,∵E(0,3),,易得的解析式为:y=3x−3,当x=1时,y=3×1−3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),∴NQ=(−m2+2m+3)−(−2m+6)=−m2+4m−3,∵AD//NH,∴∠DAB=∠NQM,∵∠ADB=∠QMN=90∘,∴△QMN∽△ADB,∴QNMN =ABBD,∴−m2+4m−3MN =2√52,∴MN=−√55(m−2)2+√55,∵−√55<0,∴当m=2时,MN有最大值;过N作NG⊥y轴于G,∵∠GPN=∠ABD,∠NGP=∠ADB=90∘,∴△NGP∽△ADB,∴PGNG =BDAD=24=12,∴PG=12NG=12m,∴OP=OG−PG=−m2+2m+3−12m=−m2+32m+3,∴S△PON=12OP⋅GN=12(−m2+32m+3)⋅m,当m=2时,S△PON=12×2(−4+3+3)=2.10. (2,0);(−m2,−14m2−2m−4)11. 解:(1)∵抛物线y=14(x+2)2−1的顶点为(−2,−1)∴抛物线y=14(x+2)2−1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a ∴Rt△PBF中BF=√PF2−PB2=√(14a2+1)2−a2=14a2−1∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+QM的最小值当Q、P、M三点共线时,QP+QM有最小值为点Q纵坐标5.∴QP+PF的最小值为5.,4)12. 6;−6;(−3213. 解:(1)点M为二次函数y=−(x−b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=−(0−b)2+4b+1=5,解得b=2,二次函数的解析是为y=−(x−2)2+9,当y=0时,−(x−2)2+9=0,解得x1=5,x2=−1,∴A(5,0).由图象,得当mx+5>−(x−b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=−x+5,联立EF,AB得方程组{y =−x +5y=4x+1, 解得{x =45y =215,∴点E(45,215),F(0,1). 点M 在△AOB 内,1<4b +1<215∴0<b <45.当点C ,D 关于抛物线的对称轴对称时,b −14=34−b ,∴b =12, 且二次函数图象开口向下,顶点M 在直线y =4x +1上, 综上:①当0<b <12时,y 1>y 2, ②当b =12时,y 1=y 2, ③当12<b <45时,y 1<y 2.14. 解:(1)由OC =2,OB =3,得到B(3,0),C(0,2),设抛物线解析式为y =a(x +1)(x −3), 把C(0,2)代入得:2=−3a ,即a =−23,则抛物线解析式为y =−23(x +1)(x −3)=−23x 2+43x +2;(2)抛物线y =−23(x +1)(x −3)=−23x 2+43x +2=−23(x −1)2+83, ∴D(1,83),当四边形CBPD 是平行四边形时,由B(3,0),C(0,2),得到P(4,23); 当四边形CDBP 是平行四边形时,由B(3,0),C(0,2),得到P(2,−23); 当四边形BCPD 是平行四边形时,由B(3,0),C(0,2),得到P(−2,143); (3)设直线BC 解析式为y =kx +b , 把B(3,0),C(0,2)代入得:{b =23k+b=0,解得:{k =−23b =2, ∴y =−23x +2,设与直线BC 平行的解析式为y =−23x +b , 联立得:{y =−23x +by =−23x 2+43x +2, 消去y 得:2x 2−6x +3b −6=0,当直线与抛物线只有一个公共点时,△=36−8(3b −6)=0, 解得:b =72,即y =−23x +72, 此时交点M 1坐标为(32,52);可得出两平行线间的距离为√1313,同理可得另一条与BC 平行且平行线间的距离为√1313的直线方程为y =−23x +12,联立解得:M 2(3−3√22,√2−12),M 3(3+3√22,−√2−12),此时S =1.15. (−6,0);(2,0);y =−12x 2−4x −6;y =−12x 2−2x +6【解析】1. (1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P 点的纵坐标,根据自变量与函数值的对应关系,可得P 点坐标;(3)根据平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P 点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.2. (1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE//y 轴交直线PQ 于点E ,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−x +54),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+6x +72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x,−x 2+2x +3),则点E 的坐标为(x,−2(t +1)x +t 2+4t +3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =−2x 2+4(t +2)x −2t 2−8t ,再利用二次函数的性质即可解决最值问题. 本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S △DPQ =−2x 2+6x +72;(II)利用三角形的面积公式找出S △DPQ =−2x 2+4(t +2)x −2t 2−8t .3. (1)利用配方法得到y =x 2+2x +1=(x +1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y =(x +1)2得到A(−1,0),解方程−x 2+4=0得D(−2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC =3,AD =1,CD =4,AB =√17,BC =2√5,BD =2√5,然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC 的解析是为y =−2x +4,S △ABC =6,M 点的坐标为(m,−2m +4)(0≤m ≤2),讨论:①当N 点在AC 上,如图1,利用面积公式得到12(m +1)(−2m +4)=2,解得m 1=0,m 2=1,当m =0时,求出AN =1,MN =4,再利用正切定义计算tan∠MAC 的值;当m =1时,计算出AN =2,MN =2,再利用正切定义计算tan∠MAC 的值;②当N 点在BC 上,如图2,先利用面积法计算出AN =6√55,再根据三角形面积公式计算出MN =2√53,然后利用正切定义计算tan∠MAC 的值;③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN =t ,则BN =√17−t ,由②得AH =6√55,利用勾股定理可计算出BH =7√55,证明△BNM ∽△BHA ,利用相似比可得到MN =6√17−6t 7,利用三角形面积公式得到12⋅(√17−t)⋅6√17−6t7=2,根据此方程没有实数解可判断点N 在AB 上不符合条件,从而得到tan∠MAN 的值为1或4或59. 本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的判定、概率公式;理解二次函数图象的图象变换规律,会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式,会利用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.4. (1)由点A 的坐标及OC =3OA 得点C 坐标,将A 、C 坐标代入解析式求解可得;(2)设抛物线C 2的解析式为y =−x 2+2x +3−k ,即y =−(x −1)2+4−k ,′作G′D ⊥x 轴于点D ,设BD′=m ,由等边三角形性质知点B′的坐标为(m +1,0),点G′的坐标为(1,√3m),代入所设解析式求解可得;(3)设M(x,0),则P(x,−x2+2x+3)、Q(x,−x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN 均为钝角知△AOQ≌△PQN,延长PQ交直线y=−1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.5. (1)当A′E//x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+√3,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能:①∠A′EF=90∘,根据折叠的性质,∠A′EF=∠AEF=90∘,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90∘,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.本题着重考查了待定系数法求二次函数解析式、图形旋转变换、直角三角形的判定和性质等知识点,综合性较强.6. (1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k−1),x1x2=−16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC//AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.7. (1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=−1的交点为M,则此时MA+MC的值最小.把x=−1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(−1,t),又因为B(−3,0),C(0,3),所以可得BC2=18,PB2=(−1+3)2+t2=4+t2,PC2=(−1)2+(t−3)2=t2−6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8. (1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60∘的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=12a,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.本题是二次函数综合题,涉及的知识点有:代入法的运用,根与判别式的关系,对称轴公式,解方程,三角形相似的性质和判定,勾股定理等知识,第3问有难度,利用特殊角的三角函数表示A、B两点的坐标是关键,综合性较强.9. (1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点,连接交对称轴于G,此时EG+FG的值最小,先求的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=−2x+6,设N(m,−m2+2m+3),则Q(m,−2m+6),(0≤m≤3),表示NQ=−m2+4m−3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、三角形的面积、轴对称的最短路径问题,根据比例式列出关于m的方程是解题答问题(3)的关键.10. 解:(1)y=x2+mx−2m−4=(x2−4)+m(x−2)=(x−2)(x+2+m),当x=2时,y=0,∴抛物线经过定点坐标是(2,0).∵抛物线的解析式为y=x2+mx−2m−4,∴顶点M的对称轴为直线x=−b2a =−m2当x═−m2时,y=(−m2)2+m⋅(−m2)−2m−4=−14m2−2m−4故答案为:(2,0);(−m2,−14m2−2m−4).(2)设x=−m2,y=−14m2−2m−4则m=−2x,带入y=−m2,−14m2−2m−4.整理得y=−x2+4x−4即抛物线的顶点在抛物线y=−x2+4x−4上运动.其对称轴为直线x=2,当抛物线顶点直线x=2右侧时即m<−4时,抛物线y=x2+mx−2m−4与正方形ABCD 无交点.当m>−4时,观察抛物线的顶点所在抛物线y=−x2+4x−4恰好过点A(0,−4),此时m= 0当抛物线y=x2+mx−2m−4过点C(1,−5)时−5=1+m−2m−4,得m=2∴抛物线y=x2+mx−2m−4(m为常数)与正方形ABCD的边有交点时m的范围为:0≤m≤2(3)由(2)抛物线顶点M在抛物线y=−x2+4x−4上运动当点M在线段AB上方时,过点B且使∠ABM=45∘的直线解析式为y=−x−3联立方程−x2+4x−4=−x−3求交点横坐标的x1=5+√212(舍去)x2=5−√212m=−5+√21当点M在线段AB下方时过点B且使∠ABM=45∘的直线解析式为y=x−5联立方程−x2+4x−4=x−5求交点横坐标为x1=3+√132(舍去)x2=3−√132m=−3+√13∴m的值为−5+√21或−3+√13(1)判断函数图象过定点时,可以分析代入的x值使得含m的同类项合并后为系数为零.(2)由(1)中用m表示的顶点坐标,可以得到在m变化时,抛物线顶点M抛物线在y=−x2+ 4x−4上运动,分析该函数图象和正方形ABCD的顶点位置关系可以解答本题;(3)由已知点M在过点B且与AB夹角为45∘角的直线与抛物线在y=−x2+4x−4的交点上,则问题可解.本题考查含有字母参数的二次函数图象及其性质,解答过程中注意数形结合,关注m的变化过程中,抛物线的变化趋势.11. (1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.本题以二次函数为背景,考查了数形结合思想、转换思想和学生解答问题的符号意思.12. 解:(1)∵A点坐标为(−6,0)∴OA=6∵过点C(−6,1)的双曲线y=kx∴k=−6y=4时,x=−64=−32∴点E 的坐标为(−32,4) 故答案为:6,−6,(−32,4)(2)①设直线MN 解析式为:y 1=k 1x +b 1 由题意得:{−12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得{k 1=1b =−12t 2+4t −12∵抛物线y =−12x 2+bx +c 过点M 、N∴{−12t 2+5t −32=−12(t −1)2+b(t −1)+c−12t 2+3t −72=−12(−t −3)2+b(−t −3)+c 解得{c =5t −2b=−1∴抛物线解析式为:y =−12x 2−x +5t −2 ∴顶点P 坐标为(−1,5t −32) ∵P 在双曲线y =−6x 上∴(5t −32)×(−1)=−6∴t =32此时直线MN 解析式为: 联立{y =x +358y =−6x∴8x 2+35x +49=0∵△=352−4×8×48=1225−1536<0∴直线MN 与双曲线y =−6x 没有公共点.②当抛物线过点B ,此时抛物线y =−12x 2+bx +c 与矩形OADB 有且只有三个公共点 ∴4=5t −2,得t =65当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110∴t =65或t =1110③∵点P 的坐标为(−1,5t −32)∴y P =5t −32当1≤t ≤6时,y P 随t 的增大而增大 此时,点P 在直线x =−1上向上运动 ∵点F 的坐标为(0,−12t 2+4t −12)∴y F =−12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大 此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G(−3,0),与y 轴交于点H(0,3) 当t =4−√3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =kx 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t 表示相关点坐标.13. (1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案; (2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M 的纵坐标的范围,又利用了二次函数的性质:a <0时,点与对称轴的距离越小函数值越大.14. (1)由OC 与OB 的长,确定出B 与C 的坐标,再由A 坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD 是平行四边形;当四边形BCPD 是平行四边形;四边形BDCP 是平行四边形时,利用平移规律确定出P 坐标即可;(3)由B 与C 坐标确定出直线BC 解析式,求出与直线BC 平行且与抛物线只有一个交点时交点坐标,。

中考数学专题训练5.二次函数压轴题(含解析)

中考数学专题训练5.二次函数压轴题(含解析)

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】二次函数压轴题1. 如图①,抛物线y =ax 2+(a +2)x +2(a ≠0)与x 轴交于点A (4,0),与y 轴交于点B ,在x 轴上有一动点P (m ,0)(0<m <4).过点P 作x 轴的垂线交直线AB 于点N ,交抛物线于点M .(1)求a 的值;(2)若PN ∶MN =1∶3,求m 的值;(3)如图②,在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O逆时针旋转得到OP 2,旋转角为α(0°<α<90°),连接AP 2、BP 2,求AP 2+32BP 2的最小值.图① 图②第1题图解:(1)∵A (4,0)在抛物线上,∴0=16a +4(a +2)+2,解得a =-12;(2)由(1)可知抛物线解析式为y =-12x 2+32x +2,令x =0可得y =2,∴OB =2,∵OP =m ,∴AP =4-m ,∵PM ⊥x 轴,∴△OAB ∽△P AN ,∴OB OA =PN P A ,即24=PN 4-m, ∴PN =12(4-m ),∵M 在抛物线上,∴PM =-12m 2+32m +2,∵PN ∶MN =1∶3,∴PN ∶PM =1∶4,∴-12m 2+32m +2=4×12(4-m ),解得m =3或m =4(舍去),即m 的值为3;(3)如解图,在y 轴上取一点Q ,使OQ OP 2=32,第1题解图由(2)可知P 1(3,0),且OB =2,∴OP 2OB =32,且∠P 2OB =∠QOP 2,∴△P 2OB ∽△QOP 2,∴QP 2BP 2=OP 2OB =32, ∴当Q (0,92)时,QP 2=32BP 2,∴AP 2+32BP 2=AP 2+QP 2≥AQ ,∴当A 、P 2、Q 三点在一条直线上时,AP 2+QP 2有最小值,又∵A (4,0),Q (0,92),∴AQ =42+(92)2=1452, 即AP 2+32BP 2的最小值为1452.2. 如图,已知二次函数y =ax 2+bx +4的图象与x 轴交于A (-2,0),B (4,0)两点,与y 轴交于点C ,抛物线的顶点为D ,点P 是x 轴上方抛物线上的一个动点,过P 作PN ⊥x 轴于N ,交直线BC 于M .(1)求二次函数表达式及顶点D 的坐标;(2)当PM =MN 时,求点P 的坐标;(3)设抛物线对称轴与x 轴交于点H ,连接AP 交对称轴于E ,连接BP 并延长交对称轴于F ,试证明HE +HF 的值为定值,并求出这个定值.第2题图解:(1)∵A (-2,0),B (4,0)在二次函数的图象上,将A ,B 点代入二次函数表达式中,得⎩⎪⎨⎪⎧4a +(-2)b +4=016a +4b +4=0, 解得⎩⎨⎧a =-12b =1, ∴二次函数的表达式为y =-12x 2+x +4,将其化为顶点式为y =-12(x -1)2+92,∴顶点D 的坐标为(1,92);(2)由抛物线表达式得点C 的坐标为(0,4),设直线BC 的解析式为y =kx +c (k ≠0),将点B (4,0),点C (0,4)代入得⎩⎪⎨⎪⎧4k +c =0c =4,解得⎩⎪⎨⎪⎧k=-1c =4,∴直线BC 的解析式为y =-x +4,(5分)∵点P 在x 轴上方的抛物线上,∴设点P 的坐标为(t ,-12t 2+t +4)(-2<t <4),∵PN ⊥x 轴于N ,∴点N 的坐标为(t ,0),∵PN 交BC 于M ,∴点M 的坐标为(t ,-t +4),(7分)∵PM =MN ,点P 在点M 的上方,∴PN =2MN ,即-12t 2+t +4=2(-t +4),解得t 1=2,t 2=4(与B 重合舍去),∴当PM =MN 时,点P 的坐标为(2,4);(8分)第2题解图(3)如解图,过点P 作PG ⊥x 轴于点G ,设点P 的坐标为(t ,-12t 2+t +4),∵DH⊥x轴于点H,∴PG∥DH,∴△AHE∽△AGP,△BGP∽△BHF,∴EHPG=AHAG,PGFH=BGBH,∴EH=AH·PGAG,FH=BH·PGBG,(10分)当点G在BH上时,∵AH=BH=3,AG=t+2,BG=4-t,PG=-12t2+t+4,∴EH+FH=3(PGt+2+PG4-t)=3·(-12)(t+2)(t-4)·4-t+t+2(t+2)(4-t)=9,同理,当点G在AH上,由抛物线对称性可知,结果相同.综上可知,HE+HF的结果为定值,且这个定值为9.(14分)3. 如图,在平面直角坐标系中,直线y=12x+1与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.(1)求a、b及sin∠ACP的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连接PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 值,使这两个三角形的面积之比为9 ∶10?若存在,直接写出m 的值;若不存在,说明理由.第3题图解:(1)由12x +1=0,得x =-2,∴A (-2,0),由12x +1=3,得x =4,∴B (4,3).∵y =ax 2+bx -3经过A 、B 两点,∴⎩⎪⎨⎪⎧(-2)2·a -2b -3=042·a +4b -3=3,解得⎩⎪⎨⎪⎧a =12b =-12,如解图,设直线AB 与y 轴交于点E ,则E (0,1). ∵PC ∥y 轴,∴∠ACP =∠AEO .∴sin ∠ACP =sin ∠AEO =OA AE =222+12=255; (2)①由(1)知,抛物线的解析式为y =12x 2-12x -3,∴P (m ,12m 2-12m -3),C (m ,12m +1),∴PC =12m +1-(12m 2-12m -3)=-12m 2+m +4.在Rt △PCD 中,PD =PC ·sin ∠ACP =(-12m 2+m +4)×255=-55(m -1)2+955.∵-55<0,∴当m =1时,PD 有最大值955; ②存在,m =52或329.【解法提示】如解图,分别过点D 、B 作DF ⊥PC ,BG ⊥PC ,垂足分别为点F 、G .第3题解图由图中几何关系可知∠FDP =∠DCP =∠AEO ,∴cos ∠FDP =cos ∠AEO =OE AE =122+12=55, 在Rt △PDF 中,DF =cos ∠FDP ·PD =55PD =-15(m 2-2m -8). 又∵BG =4-m ,∴PBCPCDS S △△=DF BG =-15(m 2-2m -8)4-m =m +25. 当PBCPCD S S △△=m +25=910时,解得m =52; 当PBCPCD S S △△=m +25=109时,解得m =329. ∴m =52或329.4. 如图,在平面直角坐标系中,四边形OABC 是矩形,OA =3,AB =4,在OC 上取一点E ,使OA =OE ,抛物线y =ax 2+bx +c 过A ,E ,B 三点.(1)求B ,E 点的坐标及抛物线表达式;(2)若M 为抛物线对称轴上一动点,则当|MA -ME |最大时,求M 点的坐标;(3)若点D 为OA 中点,过D 作DN ⊥BC 于点N ,连接AC ,若点P 为线段OC 上一动点且不与C 重合,PF ⊥DN 于F ,PG ⊥AC 于G ,连接GF ,是否存在点P ,使△PGF 为等腰三角形?若存在,求出所有满足条件的P 点坐标;若不存在,请说明理由.第4题图解:(1)∵OA =3,AB =4, OA =OE ,∴A (0,3),B (-4,3), E (-3,0). 将A ,B ,E 三点坐标代入y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧c =316a -4b +c =39a -3b +c =0,解得⎩⎪⎨⎪⎧a =1b =4c =3, ∴抛物线的表达式为y =x 2+4x +3;(3分)(2)∵抛物线y =x 2+4x +3的对称轴为直线x =-2,点A 关于对称轴的对称点为点B ,∴当|MA -ME |最大时,M 在直线BE 与直线x =-2的交点处,即连接BE 并延长交直线x =-2于点M ,M 点即为所求,如解图①,(5分)第4题解图①设直线BE 的解析式为y =kx +b (k ≠0),∵直线过B (-4,3),E (-3,0),∴⎩⎪⎨⎪⎧-4k +b =3-3k +b =0, ∴⎩⎪⎨⎪⎧k =-3b =-9, ∴直线BE 的解析式为y =-3x -9.当x =-2时, y =-3,∴M (-2,-3);(7分)(3)设P (x ,0)(x <0),如解图②,过点P 分别作PF ⊥DN 于点F ,PG ⊥AC 于点G ,过点G 作GH ⊥OC 于点H ,交DN 于点Q ,连接GF ,第4题解图②∵OA =3,AB =4,∠AOC =90°,∴AC =5,∵D 为OA 的中点,DN ⊥BC ,∴PF =32,sin ∠1=PG PC =OA AC ,∴PG x +4=35,∴PG =3(x +4)5, ∵cos ∠1=CG PC =OC AC ,∴CG x +4=45, ∴CG =4(x +4)5. ∵△CGH ∽△CAO ,∴GH AO =CG CA =CH CO ,∴GH 3=CG 5=CH 4,∴GH =35CG =35×4(x +4)5=12(x +4)25, CH =45CG =45×4(x +4)5=16(x +4)25,(9分) ∴PH =QF =OC -CH -OP =4-16(x +4)25+x =9(x +4)25, GQ =GH -QH =12(x +4)25-32, ∴在Rt △GQF 中,GF 2=[12(x +4)25-32]2+81(4+x )2625=9(x +4)225-36(x +4)25+94.要使△PGF 为等腰三角形,可分三种情况讨论:(ⅰ)当GF =GP 时, GF 2=GP 2,∴9(x +4)225-36(x +4)25+94=9(x +4)225, ∴x =-3916,∴P 1(-3916,0);(11分)(ⅱ)当FG =FP 时,FG 2=FP 2,∴9(x +4)225-36(x+4)25+94=94,∴x 1=-4,x 2=0.∵点P 不与C 重合,∴x =-4(舍去),∴P 2(0,0);(12分)(ⅲ)当PG =PF 时,3(x +4)5=32,∴x =-32,∴P 3(-32,0).(13分)综上所述,存在P 1(-3916,0),P 2(0,0),P 3(-32,0)使△PFG 为等腰三角形.(14分)5. 已知:直线y =12x -3与x 轴、y 轴分别交于A 、B ,抛物线y =13x 2+bx+c 经过点A 、B ,且交x 轴于点C .(1)求抛物线的解析式;(2)点P 为抛物线上一点,且点P 在AB 的下方,设点P 的横坐标为m . ①试求当m 为何值时,△P AB 的面积最大;②当△P AB 的面积最大时,过点P 作x 轴的垂线PD ,垂足为点D ,问在直线PD 上是否存在点Q ,使△QBC 为直角三角形?若存在,直接写出符合条件的Q 点的坐标,若不存在,请说明理由.第5题图 备用图解:(1)∵直线y =12x -3与x 轴、y 轴分别交于A 、B ,则A (6,0),B (0,-3),又∵抛物线y =13x 2+bx +c 经过点A 、B ,则⎩⎨⎧0=13×62+6b +c -3=c,解得⎩⎨⎧b =-32c =-3,∴抛物线的解析式为y =13x 2-32x -3;(2)①∵点P 的横坐标为m ,∴P (m ,13m 2-32m -3),∵点P 在直线AB 下方,∴0<m <6,第5题解图①如解图①,过点P 作x 轴的垂线,交AB 于点E ,交x 轴于点D ,则E (m ,12m -3),∴PE =12m -3-(13m 2-32m -3)=-13m 2+2m ,∴S △P AB =S △BPE +S △PEA =12PE ·OA=12(-13m 2+2m )×6=-(m -3)2+9,∴当m =3时,△P AB 的面积最大;②在直线PD 上存在点Q ,使△QBC 为直角三角形;点Q 的坐标为(3,94)或(3,-32).【解法提示】直线PD 的解析式为:x =3,易得C (-32,0),D (3,0),当∠BCQ =90°时,如解图②,易证△COB ∽△QDC ,则CO OB =QD DC ,可得Q (3,94);第5题解图②当∠CBQ =90°时,如解图③,易知Q 在AB 上,将x =3代入直线y =12x -3,得y =-32,∴Q (3,-32);第5题解图③当∠BQC =90°时,如解图④,易证△CDQ ∽△QRB ,则CD QR =DQ BR ,即923-DQ=DQ 3,无解.第5题解图④综上所述,在直线PD 上存在点Q ,使△QBC 为直角三角形,点Q 的坐标为(3,94)或(3,-32).6. 如图,抛物线y=x2-4x-5与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求A,B,C三点的坐标及抛物线的对称轴;(2)如图①,点E(m,n)为抛物线上一点,且2<m<5,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,求四边形EHDF周长的最大值;(3)如图②,点P为抛物线对称轴上一点,是否存在点P,使以点P,B,C 为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.图①图②第6题图解:(1)把y=0代入y=x2-4x-5,得x2-4x-5=0,解得x1=-1,x2=5,∵点B在点A的右侧,∴A,B两点的坐标分别为(-1,0),(5,0),把x=0代入y=x2-4x-5,得y=-5,∴点C的坐标为(0,-5),∵y =x 2-4x -5=(x -2)2-9,∴抛物线的对称轴为直线x =2;(4分)(2)由题意可知,四边形EHDF 是矩形,∵抛物线的对称轴为直线x =2,点E 坐标为(m ,m 2-4m -5),∴EH =-m 2+4m +5,EF =m -2,∴矩形EHDF 的周长为2(EH +EF )=2(-m 2+4m +5+m -2)=-2(m 2-5m-3)=-2(m -52)2+372,∵-2<0,2<m <5,∴当m =52时,矩形EHDF 的周长最大,最大值为372;(8分)第6题解图(3)存在点P ,使以点P ,B ,C 为顶点的三角形是直角三角形.如解图,设点P 的坐标为(2,k ),∵B 和C 两点的坐标分别为(5,0),(0,-5),∴BC =52+52=52,①当∠CBP =90°时,∵BC 2+BP 2=CP 2,∴(52)2+(5-2)2+(-k )2=22+(k +5)2,解得k =3,∴P 1(2,3);(10分)②当∠PCB =90°,∵BC 2+PC 2=BP 2,∴(52)2+22+(k +5)2=(5-2)2+(-k )2,解得k =-7,∴P 2(2,-7);(12分)③当∠CPB =90°时,∵PC 2+PB 2=BC 2,∴22+(k +5)2+(5-2)2+k 2=(52)2,解得k =1或k =-6,∴P 3(2,1),P 4(2,-6),综上所述,满足条件的点P 的坐标为(2,3),(2,-7),(2,1)或(2,-6).(14分)7. 如图,抛物线y =-14x 2+bx +c 经过A (2,0),B (-4,0)两点,直线y =2x -2交y 轴于点D ,过点B 作BC ⊥x 轴交直线CD 于点C .(1)求抛物线的解析式;(2)求点B 关于直线y =2x -2对称的点E 的坐标,判断点E 是否在抛物线上,并说明理由;(3)点P 是抛物线上一动点,过点P 作x 轴的垂线,交直线CE 于点F ,是否存在这样的点P ,使以点P 、B 、C 、F 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.第7题图解:(1)∵抛物线y =-14x 2+bx +c 的图象经过点A (2,0),B (-4,0)两点,∴⎩⎪⎨⎪⎧-14×4+2b +c =0-14×16-4b +c =0, 解得⎩⎨⎧b =-12c =2, ∴抛物线的解析式为y =-14x 2-12x +2;(2)点E 在抛物线上,理由如下:如解图①,设直线CD :y =2x -2与x 轴交于点N ,过点E 作EM ⊥x 轴,垂足为点M,令y=2x-2=0,解得x=1,∴点N的坐标为(1,0),点D的坐标为(0,-2),∵BN2=25,BD2=20,DN2=5,BN2=BD2+DN2,∴BD⊥CD,∵点B和点E关于点D对称,∴BE=2BD,∴BE=45,∵当x=-4时,y=2x-2=-10,∴点C的坐标为(-4,-10),∵BN=5,BC=10,∴CN=55,又∵∠MBE=∠BCN,∠CBN=∠BME,∴△CBN∽△BME,∴BECN=MEBN,即4555=ME5,∴ME=4,根据勾股定理得BM=BE2-ME2=80-16=8,∴BM=8,∴OM=4,∴点E 的坐标为(4,-4), 当x =4时,y =-14x 2-12x +2=-14×16-12×4+2=-4, ∴点E 在抛物线上;第7题解图①(3)存在,点P 的坐标为(-1,94)或(-5+3292,3329-1518)或(-5-3292,-3329+1518). 【解法提示】如解图②,设直线CE 的解析式为y =kx +b ′,由(2)得点C (-4,-10),E (4,-4),∴⎩⎪⎨⎪⎧-4k +b ′=-104k +b ′=-4,解得⎩⎨⎧k =34b ′=-7,第7题解图②∴直线CE 的解析式为y =34x -7.∵PF ⊥x 轴,设点P 的坐标为(a ,-14a 2-12a +2),则点F 的坐标为(a ,34a -7),∴PF =|-14a 2-12a +2-(34a -7)|=|-14a 2-54a +9|, 要使以点P 、B 、C 、F 为顶点的四边形为平行四边形, ∵PF ∥BC , ∴PF =BC =10.当-14a 2-54a +9=10时, 解得a 1=-4(舍去),a 2=-1, ∴点P 的坐标为(-1,94), 当-14a 2-54a +9=-10时, 解得a 1=-5+3292, a 2=-5-3292, ∴点P 的坐标为(-5+3292,3329-1518)或(-5-3292, -3329+1518), 综上所述,存在点P ,使以点P 、B 、C 、F 为顶点的四边形为平行四边形,点P 的坐标为(-1,94)或(-5+3292,3329-1518)或(-5-3292,-3329+1518). 8. 如图,已知抛物线y =ax 2+bx (a ≠0)过点A (3,-3)和点B (33,0),过点A 作直线AC ∥x 轴,交y 轴于点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出相应点P 的坐标; (3)抛物线上是否存在点Q ,使得S △AOC =13S △AOQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.第8题图解:(1)将点A (3,-3),B (33,0)分别代入y =ax 2+bx 中,得⎩⎪⎨⎪⎧-3=3a +3b 0=27a +33b, 解得⎩⎨⎧a =12b =-332,∴抛物线的解析式为y =12x 2-332x ;(2)设P 点的坐标为P (m ,12m 2-332m ),则D (m ,-3),∴PD =|12m 2-332m +3|,AD =|m -3|, ∵∠ACO =∠ADP =90°,∴①当△ACO ∽△ADP 时,有AC OC =ADPD , 即33=|m -3||12m 2-332m +3|,∴3|m -3|=|12m 2-332m +3|,∴3(m -3)=12m 2-332m +3或-3(m -3)=12m 2-332m +3,整理得m 2-53m +12=0或m 2-3m =0,解方程m 2-53m +12=0得:m 1=43,m 2=3(点P 与A 点重合,△APD 不存在,舍去);解方程m 2-3m =0得:m 3=0,m 4=3(点P 与A 点重合,△APD 不存在,舍去);此时P 点的坐标为P (0,0)或P (43,6); ②当△ACO ∽△PDA 时,有AC OC =PD AD , 即33=|12m 2-332m +3||m -3|,∴3|12m 2-332m +3|=|m -3|,∴3(12m 2-332m +3)=m -3或-3(12m 2-332m +3)=m -3, 整理得3m 2-11m +83=0或3m 2-7m +43=0,解方程3m 2-11m +83=0,得:m 1=833,m 2=3(点P 与A 点重合,△APD 不存在,舍去);解方程3m 2-7m +43=0,得:m 1=433,m 2=3(点P 与A 点重合,△APD 不存在,舍去);此时P 点的坐标为P (833,-43)或P (433,-103),综上可知:以点A 、D 、P 为顶点的三角形与△AOC 相似时,点P 的坐标为:P (0,0)或P (43,6)或P (833,-43)或P (433,-103);(3)存在.在Rt △AOC 中,OC =3,AC =3,根据勾股定理得OA =23, ∵S △AOC =12OC ·AC =332,S △AOC =13S △AOQ , ∴S △AOQ =932,∵OA =23,∴△AOQ 边OA 上的高为92,如解图,过点O作OM⊥OA,截取OM=92,第8题解图过点M作MN∥OA交y轴于点N,∵AC=3,OA=23,∴∠AOC=30°,又∵MN∥OA∴∠MNO=∠AOC=30°,∴在Rt△OMN中,ON=2OM=9,即N(0,9),过点M作MH⊥x轴交x 轴于点H,∵∠MNO=30°,∴∠MOH=30°,∴MH=12OM=94,OH=934,即M(934,94),设直线MN的解析式为y=kx+9(k≠0),把点M的坐标代入得94=934k+9,即k=-3,∴y=-3x+9,联立得⎩⎨⎧y =-3x +9y =12x 2-332x,解得⎩⎪⎨⎪⎧x =33y =0或⎩⎪⎨⎪⎧x =-23y =15,即Q (33,0)或(-23,15).9. 如图,抛物线经过原点O (0,0),与x 轴交于点A (3,0),与直线l 交于点B (2,-2). (1)求抛物线的解析式;(2)点C 是x 轴正半轴上一动点,过点C 作y 轴的平行线交直线l 于点E ,交抛物线于点F ,当EF =OE 时,请求出点C 的坐标;(3)点D 为抛物线的顶点,连接OD ,在抛物线上是否存在点P ,使得∠BOD =∠AOP ?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.第9题图 备用图解:(1)由题意可设抛物线的解析式为y =ax 2+bx , 将A (3,0),B (2,-2)代入y =ax 2+bx 中,得⎩⎪⎨⎪⎧9a +3b =04a +2b =-2,解得⎩⎪⎨⎪⎧a =1b =-3, ∴抛物线的解析式为y =x 2-3x ;(2)设直线l的解析式为y=kx,将B(2,-2)代入y=kx中,得-2=2k,解得k=-1,∴直线l的解析式为y=-x,设点C的坐标为(n,0),则点E的坐标为(n,-n),点F的坐标为(n,n2-3n).①当点C在点A的左侧时,如解图①所示,EF=-n-(n2-3n)=-n2+2n,OE=n2+(-n)2=2n,∵EF=OE,∴-n2+2n=2n,解得n1=0(C,E,F三点均与原点重合,舍去),n2=2-2,∴点C的坐标为(2-2,0);②当点C在点A的右侧时,如解图②所示,EF=n2-3n-(-n)=n2-2n,OE=n2+(-n)2=2n,∵EF=OE,∴n2-2n=2n,解得n1=0(C,E,F均与原点重合,舍去),n2=2+2,∴点C的坐标为(2+2,0);综上所述,当EF =OE 时,点C 的坐标为(2-2,0)或(2+2,0); (3)存在点P 使得∠BOD =∠AOP ,点P 的坐标为(145,-1425)或(165,1625). 【解法提示】抛物线的解析式为y =x 2-3x =(x -32)2-94,∴顶点D 的坐标为(32,-94),设抛物线的对称轴交直线l 于点M ,交x 轴正半轴于点N ,过点D 作DG ⊥OB 于点G ,过点P 作PH ⊥x 轴于点H ,如解图③所示,∵直线l 的解析式为y =-x , ∴∠MON =45°,∴△ONM 为等腰直角三角形,ON =MN =32,OM =2ON =322, ∴DM =94-32=34, 在Rt △DGM 中,∵∠DMG =∠NMO =45°, ∴Rt △DGM 为等腰直角三角形, ∴MG =DG =34×22=328, ∴OG =OM +MG =322+328=1528.设点P 的坐标为(c ,c 2-3c ),当点P 在x 轴下方时,如解图③所示,OH =c ,HP =3c -c 2,第9题解图③∵∠HOP =∠BOD ,∴tan ∠HOP =tan ∠BOD ,∴HP OH =DG OG ,即3c -c 2c =3281528, 解得c 1=0(P 点与O 点重合,舍去),c 2=145,∴点P 的坐标为(145,-1425);当点P 在x 轴上方时,如解图④所示,OH =c ,HP =c 2-3c ,第9题解图④同理可得c 2-3c c =3281528, 解得c 1=0(P 点与O 点重合,舍去),c 2=165,∴P 点的坐标为(165,1625).综上所述,存在点P 使得∠BOD =∠AOP ,点P 的坐标为(145,-1425)或(165,1625).10. 在平面直角坐标系中,直线y =12x -2与x 轴交于点B ,与y 轴交于点C ,二次函数y =12x 2+bx +c 的图象经过B ,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图①,连接DC ,DB ,设△BCD 的面积为S ,求S 的最大值;(3)如图②,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标...;若不存在,请说明理由.图① 图②第10题图解:(1)直线y =12x -2中,令y =0,解得x =4,令x =0,解得y =-2,∴点B (4,0),C (0,-2),将点B (4,0),C (0,-2)代入y =12x 2+bx +c 中,得⎩⎪⎨⎪⎧8+4b +c =0c =-2,解得⎩⎨⎧b =-32c =-2, ∴二次函数的表达式为y =12x 2-32x -2;第10题解图①(2)如解图①,过点D 作DE ∥y 轴,交BC 于点E ,设点D 的坐标为(x ,12x 2-32x -2)(-1<x <4),则点E (x ,12x -2),∴DE =12x -2-(12x 2-32x -2)=-12x 2+2x ,∴S =S △CDE +S △BDE =12(-12x 2+2x )×4=-x 2+4x =-(x -2)2+4,∴当x =2时,S 有最大值,S 的最大值为4;(3)存在,满足条件的点D 的横坐标为2或2911.【解法提示】令y =0,则12x 2-32x -2=0,解得x 1=-1,x 2=4,∴A (-1,0),∵B (4,0),C (0,-2),∴AB 2=52=25,AC 2=12+(-2)2=5,BC 2=42+22=20,∴AB 2=AC 2+BC 2,∴△ABC 是以∠ACB 为直角的直角三角形,如解图②,取AB 的中点P ,第10题解图②∴P (32,0),∴P A =PC =PB =52,∴∠CPO =2∠ABC ,∴tan ∠CPO =OC OP =tan2∠ABC =43,过点D 作x 轴的平行线交y 轴于点R ,交BC 的延长线于点G ,连接CR , ①当∠DCM =2∠ABC =∠DGC +∠CDG ,∵DG ∥x 轴,∴∠DGC =∠ABC ,∴∠CDG =∠ABC ,∴tan ∠CDG =tan ∠ABC =OC OB =12,即CR DR =12,设点D (x ,12x 2-32x -2),∴DR =x ,RC =-12x 2+32x ,∴-12x 2+32x x=12,解得x 1=0(舍去),x 2=2, ∴点D 的横坐标为2;②当∠MDC =2∠ABC ,∴tan ∠MDC =43,设MC =4k ,∴DM =3k ,DC =5k ,∵tan ∠DGC =3k MG =12,∴MG =6k ,∴CG =2k ,∴DG =35k ,∵∠MGD =∠RGC ,∠DMG =∠CRG =90°, ∴△DMG ∽△CRG ,∴DM CR =DG CG ,∴CR =255k ,RG =2CR =455k ,即3k CR =35k 2k ,∴DR =35k -455k =1155k ,∴DR CR =1155k 255k =x -12x 2+32x , 解得x 1=0(舍去),x 2=2911, ∴点D 的横坐标为2911,综上所述,满足条件的点D的横坐标为2或2911.。

中考数学知识点过关培优训练卷:二次函数的最值(含解析答案)

中考数学知识点过关培优训练卷:二次函数的最值(含解析答案)

中考数学知识点过关培优训练卷:二次函数的最值一.选择题1.已知二次函数y =﹣(x ﹣h )2+4(h 为常数),在自变量x 的值满足1≤x ≤4的情况下,与其对应的函数值y 的最大值为0,则h 的值为( )A .﹣1和6B .2和6C .﹣1和3D .2和32.已知二次函数y =﹣(x ﹣k +2)(x +k )+m ,其中k ,m 为常数.下列说法正确的是( )A .若k ≠1,m ≠0,则二次函数y 的最大值小于0B .若k <1,m >0,则二次函数y 的最大值大于0C .若k =1,m ≠0,则二次函数y 的最大值小于0D .若k >1,m <0,则二次函数y 的最大值大于03.已知点A (t ,y 1),B (t +2,y 2)在抛物线的图象上,且﹣2≤t ≤2,则线段AB长的最大值、最小值分别是( )A . 2,2B .2,2C .2,2D .2,2 4.对于题目“当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.”:甲的结果是2或,乙的结果是﹣或﹣,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确5.若min {a ,b ,c }表示a ,b ,c 三个数中的最小值,当y =min {x 2,x +2,8﹣x }时(x ≥0),则y 的最大值是( )A .4B .5C .6D .76.四位同学在研究函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)时,甲发现当x =1时,函数有最大值;乙发现﹣1是方程ax 2+bx +c =0的一个根;丙发现函数的最大值为﹣1;丁发现当x =2时,y =﹣2,已知四位中只有一位发现的结论时错误的,则该同学是( )A .甲B .乙C .丙D .丁7.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0 B.有最小值﹣3、最大值6C.有最小值0、最大值6 D.有最小值2、最大值68.正实数x,y满足xy=1,那么的最小值为()A.B.C.1 D.9.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为5m,最大值为5n,则m+n的值为()A.0 B.﹣1 C.﹣2 D.﹣310.设函数y=﹣x2+2ax﹣1在﹣1≤x≤1的范围内的最大值记为n,下列说法错误的是()A.当a≤﹣1时,n=﹣2a﹣2 B.当﹣1≤a≤1时,n=a2﹣1C.当a≥1时,n=2a﹣2 D.n的最小值为0二.填空题11.已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.12.如果二次函数(m为常数)的图象有最高点,那么m的值为.13.函数y=(x﹣2)2+1取得最小值时,x=.14.如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB=6,则线段EF的取值范围是.15.定义符号max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{2,﹣3}=2,max{﹣4,﹣2}=﹣2,则max{﹣x2+2x+3,|x|}的最小值是.16.当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.17.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD 和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.18.已知二次函数y=x2﹣8x+m的最小值为1,那么m的值等于.19.如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D 作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF 的面积和最小时,则EF的长度为.20.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C 移动,点Q在边BC上,从点C向点B移动,若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是.三.解答题21.如图,点E,F,G,H分别在菱形ABCD的四边上,BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH,∠A=60°,AB=a.(1)设BE=x,求HE的长度;(用含a,x的代数式表示)(2)求矩形EFGH面积的最大值.22.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B 以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过多少秒,四边形APQC 的面积最小.23.如图,在菱形ABCD中,AB=6,∠ADC=120°,P为对角线AC上的一点,过P作PE∥AB交AD与E, PF∥AD交CD于F,连接BE、BF、EF(1)求AC的长;(2)求证:△BEF为等边三角形;(3)四边形BEPF面积的最小值为24.阅读下面的材料,回答问题:爱动脑筋的小明发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣2x+2=(x2﹣2x+1)+1=(x﹣1)2+1≥1;因此x2﹣2x+2有最小值是1.(1)尝试:﹣2x2﹣4x+3=﹣2(x2+2x+1﹣1)+3=﹣2(x+1)2+5,因此﹣2x2﹣4x+3有最大值是;(2)拓展:已知实数x,y满足x2+3x+y﹣3=0,则y﹣x的最大值为;(3)应用:有长为28米的篱笆,一面利用墙(墙的最大可用长度为16米),围成一个长方形的花圃.能围成面积最大的花圃吗?如果能,请求出最大面积.25.如图,在△ABG中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AG 上,与△ADC另两边分别交于点E、F,DE∥AB,将正方形平移,使点D保持在AC上(D 不与A重含),设AF=x,正方形与△ABC重叠部分的面积为y.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)x为何值时y的值最大?26.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值.27.某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)之间的函数关系如下表:随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y 1 与x 之间的函数关系式,根据如图所示的变化趋势,直接写出y 2与x 之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p 1(万件)与月份x 满足关系式p 1=0.1x +1.1(1≤x ≤9,且x 取整数),10至12月的销售量p 2(万件)p 2=﹣0.1x +2.9(10≤x ≤12,且x 取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.28.定义:对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数,当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y =x ﹣1,它的相关函数为y =已知二次函数y =﹣x 2+6x (1)直接写出已知二次函数的相关函数为y = ;(2)当点B (m ,)在这个二次函数的相关函数的图象上时,求m 的值;(3)当﹣3≤x ≤7时,求函数y =﹣x 2+6x的相关函数的最大值和最小值.29.如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s 的速度向终点O移动,动点N从点O开始沿边OB以2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.(1)求S关于t的函数关系式,并直接写出t的取值范围;(2)判断S有最大值还是有最小值,用配方法求出这个值.30.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=,max{0,3}=;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.参考答案一.选择题1.解:∵当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小, ∴①若h <1≤x ≤4,x =1时,y 取得最大值0,可得:﹣(1﹣h )2+4=0,解得:h =﹣1或h =3(舍);②若1≤x ≤4<h ,当x =4时,y 取得最大值0,可得:﹣(4﹣h )2+4=0,解得:h =6或h =2(舍).综上,h 的值为﹣1或6,故选:A .2.解∵y =﹣(x ﹣k +2)(x +k )+m =﹣(x +1)2+(k ﹣1)2+m ,∴当x =﹣1时,函数最大值为y =(k ﹣1)2+m ,则当k <1,m >0时,则二次函数y 的最大值大于0.故选:B .3.解:∵点A (t ,y 1),B (t +2,y 2)在抛物线的图象上∴y 1=t 2,y 2=(t +2)2=t 2+2t +2∴AB 2=(t +2﹣t )2+(y 2﹣y 1)2=22+(t 2+2t +2﹣t 2)2=4+(2t +2)2=4(t +1)2+4 ∴AB 2与t 是二次函数的关系,由抛物线性质可知:当t =﹣1时,AB 2取得最小值,AB 2=4,AB =2当t =2时,AB 2取得最大值,AB 2=4×(2+1)2+4=40,AB =故选:C .4.解:二次函数的对称轴为直线x =m ,①m <﹣2时,x =﹣2时二次函数有最大值,此时﹣(﹣2﹣m )2+m 2+1=4,解得m =﹣,与m <﹣2矛盾,故m 值不存在;②当﹣2≤m ≤1时,x =m 时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.所以甲、乙的结果合在一起也不正确,故选:D.5.解:用特殊值法:这种问题从定义域0开始枚举代入:x=0,y=min{0,2,8}=0;x=1,y=min{1,3,7}=1;x=2,y=min{4,4,6}=4;x=3,y=min{9,5,5}=5;x=4,y=min{16,6,4}=4;x=5,y=min{25,7,3}=3;…∴y的最大值是5,故选:B.6.解:四人的结论如下:甲:b+2a=0,且a<0,b>0;乙:a﹣b+c=0;丙:a<0,且$\frac{4ac﹣b2}{4a}=﹣1$,即:4ac﹣b2=﹣4a;丁:4a+2b+c=﹣2.由于甲、乙、丁正确,联立,解得:c=﹣2,a=>0,与甲矛盾,故其中必有一个错误,所以丙是正确的;若甲乙正确,则:c=﹣3a,b=﹣2a,代入丙:﹣12a2﹣4a2=﹣4a,得:a=>0,与甲矛盾,故甲乙中有一个错,所以丁正确;若乙正确,则b=a+c,代入丙:4ac﹣(a+c)2=﹣4a,化简,得:﹣(a﹣c)2=﹣4a,故a ≥0,与丙中a <0矛盾,故乙错误.因此乙错误.故选:B .7.解:由二次函数的图象可知,∵﹣5≤x ≤0,∴当x =﹣2时函数有最大值,y 最大=6;当x =﹣5时函数值最小,y 最小=﹣3.故选:B .8.解:由已知,得x =,∴=+=(﹣)2+1,当=,即x =时,的值最小,最小值为1.故选:C .9.解:二次函数y =﹣(x ﹣1)2+5的大致图象如下:.①当m ≤0≤x ≤n <1时,当x =m 时y 取最小值,即5m =﹣(m ﹣1)2+5, 解得:m =﹣4或m =1(舍去).当x =n 时y 取最大值,即5n =﹣(n ﹣1)2+5,解得:n =2或n =﹣2(均不合题意,舍去);②当m ≤0≤x ≤1≤n 时,当x =m 时y 取最小值,即5m =﹣(m ﹣1)2+5, 解得:m =﹣4或m =1(舍去).当x=1时y取最大值,即5n=﹣(1﹣1)2+5,解得:n=1,或x=n时y取最小值,x=1时y取最大值,5m=﹣(n﹣1)2+5,n=1,∴m=5,∵m<0,∴此种情形不合题意,所以m+n=﹣4+1=﹣3.故选:D.10.解:∵y=﹣x2+2ax﹣1的对称轴为x=﹣=a,A,当a≤﹣1时,y的最大值是x=﹣1时的函数值,则:n=﹣1﹣2a﹣1=﹣2a﹣2,故说法正确;B.当﹣1≤a≤1时,y的最大值是函数的顶点的纵坐标,则:n==a2﹣1,故说法正确;C.当a≥1时,y的最大值x=1时的函数值,则:n=﹣1+2a﹣1=2a﹣2,故说法正确;D.无法确定n的最小值,故说法错误;故选:D.二.填空题(共10小题)11.解:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.12.解:∵二次函数(m为常数)的图象有最高点,∴,解得:m=﹣2,故答案为:﹣2.13.解:∵二次函数y =(x ﹣2)2+1,∴当x =2时,二次函数求得最小值为1.故答案为:2.14.解:设AE =x ,PE =y ,则PF =8﹣x ,BF =6﹣y ,∵∠AEP =∠EPF =∠PFB =90°,∴PE ∥BF ,∴△PEA ∽△BFP ,∴=,∴4y =3x ,在Rt △FEP 中,FE 2=FP 2+EP 2,∴FE 2=y 2+(8﹣x )2,∴FE 2=(x )2+x 2﹣16x +64=x 2﹣16x +64=(x ﹣)2+,∵0<x <8,∴当x =时,FE 有最小, 当x =0时,EF 有最大值8,∴≤EF <8.故答案为≤EF <8. 15.解:①﹣x 2+2x +3≥|x |时,当x ≥0时,﹣x 2+2x +3≥x ,即:﹣x 2+x +3≥0,∴0≤x ≤,∴max {﹣x 2+2x +3,|x |}=﹣x 2+2x +3,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,在0≤x ≤的最小值是;当x <0时,﹣x 2+2x +3≥﹣x ,即﹣x 2+3x +3≥0,∴≤x <0; ∴max {﹣x 2+2x +3,|x |}=﹣x 2+2x +3,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,在≤x <0的最小值是;②﹣x2+2x+3<|x|时,当x≥0时,﹣x2+2x+3<x,即:﹣x2+x+3<0,∴x≥;∴max{﹣x2+2x+3,|x|}=|x|,∵y=x,在x≥的最小值是;当x<0时,﹣x2+2x+3<﹣x,即﹣x2+3x+3<0,∴x<;∴max{﹣x2+2x+3,|x|}=|x|,∵y=﹣x,在x<无最小值;∴max{﹣x2+2x+3,|x|}的最小值是;故答案为;16.解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.17.解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,∴y最小值=5.即MN的最小值为5;故答案为:5.18.解:原式可化为:y =(x ﹣4)2﹣16+m ,∵函数的最小值是1,∴﹣16+m =1,解得m =17.故答案为:17.19.解:在Rt △ABC 中,∠C =90°,BC =4,BA =5,∴AC ==3,设DC =x ,则AD =3﹣x ,∵DF ∥AB ,∴=,即=,∴CE =∴BE =4﹣, ∵矩形CDGE 和矩形HEBF ,∴AD ∥BF ,∴四边形ABFD 是平行四边形,∴BF =AD =3﹣x ,则S 阴=S 矩形CDGE +S 矩形HEBF =DC •CE +BE •BF =x •x +(3﹣x )(4﹣x )=x 2﹣8x +12,∵>0,∴当x =﹣=时,有最小值,∴DC =,有最小值,∴BE =4﹣×=2,BF =3﹣=,∴EF==,即矩形CDGE和矩形HEBF的面积和最小时,则EF的长度为故答案为.20.解:∵AP=CQ=t,∴CP=6﹣t,∴PQ===,∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2,故答案是:2.三.解答题(共10小题)21.解:(1)设BE=x,则BF=DG=DH=x.∵四边形ABCD为菱形,∴AD=AB=a,∴AH=AE=a﹣x∵∠A=60°,∴△AHE为等边三角形,∴HE=a﹣x;(2)∵∠A=60°,∴∠B=120°,∴EF=BE=x,=HE•EF=x(a﹣x)=∴S矩形EFGH当x==时,函数又最大值,S=.矩形EFGH22.解:设经过x秒,四边形APQC的面积最小由题意得,AP=2x,BQ=4x,则PB=12﹣2x,△PBQ的面积=×BQ×PB=×(12﹣2x)×4x=﹣4(x﹣3)2+36,当x=3s时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小.23.(1)解:连接BD,交AC于G,∵菱形ABCD中,AC和BD是对角线,∴BD⊥AC,AG=CG=AC,∵AB=6,∠ADC=120°,∴∠BAC=∠BCA=30°,在Rt△ABG中,AG=AB•cos∠BAC=6×=3,∴AC=2AG=6;(2)证明:∵在菱形ABCD中,AB=6,∠ADC=120°,∴∠BAD=∠BCD=60°,∠ABD=∠CBD=∠ADB=∠CDB=60°,∴△ABD是等边三角形,∴BD=AB=BC=6,∵PE∥AB,PF∥AD,∴∠CPF=∠CAD,四边形DEPF是平行四边形,∴ED=PF,∵AD=DC,∴∠CAD=∠ACD,∴∠CPF=∠ACD,∴PF=FC,∴ED=FC,在△BED和△BFC中∴△BED≌△BFC(SAS),∴BE=BF,∠EBD=∠FBC,∵∠FBC+∠FBD=∠CBD=60°,∴∠EBD+∠FBD=∠EBF=60°,∴△BEF是等边三角形;(3)解:作PH⊥CD于H,设FC=x,则PF=x,DF=6﹣x,∵∠ADC=120°,PF∥AD,∴∠PFD=60°,∴PH=PF•sin∠PFD=x,=DF•PH=x•(6﹣x)=﹣(x﹣3)2+,∴S∵﹣<0,∴四边形BEPF面积有最小值为,故答案为.24.解:(1)﹣2x2﹣4x+3=﹣2(x2+2x+1﹣1)+3=2(x+1)2+5≤5,∴﹣2x2﹣4x+3有最大值是5,故答案为:5;(2)解:由x2+3x+y﹣3=0得y=﹣x2﹣3x+3,把y代入x+y得:y﹣x=x2﹣3x+3﹣x=﹣x2﹣4x+3=﹣(x+2)2+3+4≤7,∴y﹣x的最大值为7.故答案为:7.(3)解:设利用墙的一边长为x,则x≤16,由题意知:S花圃=x•=﹣x2+14x=﹣(x﹣14)2+98当x=14时,花圃面积最大,最大面积为98m2.25.解:(1)∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CED,∠AFD=∠FDE=90°,∴∠C=∠CED,∴DC=DE.在Rt△ADF中,∵∠A=45°,∴∠ADF=45°=∠A,∴AF=DF=x,∴AD==x,∴DC=DE=1﹣x,∴y=(DE+FB)×DF=(1﹣x+1﹣x)x=﹣(+1)x2+x.∵点D保持在AC上,且D不与A重合,∴0<AD≤1,∴0<x≤1,∴0<x≤.故y=﹣(+1)x2+x,自变量x的取值范围是0<x≤;(2)∵y=﹣(+1)x2+x,∴当x=﹣=﹣1时,y有最大值.26.解:(1)y=ax﹣3的相关函数y=,将A(﹣5,8)代入y=﹣ax+3得:5a+3=8,解得a=1;(2)二次函数y=﹣x2+4x﹣的相关函数为y=,①当m<0时,将B(m,)代入y=x2﹣4x+得m2﹣4m+=,解得:m=2+(舍去),或m=2﹣,当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣;②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为,当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=,综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为,最小值为﹣.27.解:(1)利用表格得出函数关系是一次函数关系:=kx+b,设y1∴,解得:,=20x+540,∴y1利用图象得出函数关系是一次函数关系:=ax+c,设y2∴,解得:,∴y 2=10x +630.(2)去年1至9月时,销售该配件的利润w =p 1(1000﹣50﹣30﹣y 1), =(0.1x +1.1)(1000﹣50﹣30﹣20x ﹣540)=﹣2x 2+16x +418,=﹣2( x ﹣4)2+450,(1≤x ≤9,且x 取整数)∵﹣2<0,1≤x ≤9,∴当x =4时,w 最大=450(万元);去年10至12月时,销售该配件的利润w =p 2(1000﹣50﹣30﹣y 2)=(﹣0.1x +2.9)(1000﹣50﹣30﹣10x ﹣630),=( x ﹣29)2,(10≤x ≤12,且x 取整数),∵10≤x ≤12时,∴当x =10时,w 最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.28.解:(1)二次函数y =﹣x 2+6x 的相关函数为y =,故答案为:;(2)当m <0时,把B (m ,)代入y =x 2﹣6x ﹣得:m 2﹣6m ﹣=,解得:m =3+(舍去)或m =3﹣;当m ≥0时,把B (m ,)代入y =﹣x 2+6x +得:﹣m 2+6m +=,解得:m =3±2(m =3+2舍去),综合上述:m =3﹣或m =3﹣2;(3)当﹣3≤x <0时,y =x 2﹣6x ﹣=(x ﹣3)2﹣,∴抛物线的对称轴为直线x =3,在﹣3≤x <0上,y 随x 的增大而减小,∴当x=﹣3时,y取最大值,最大值为;当0≤x≤7时,y=﹣x2+6x+=﹣(x﹣3)2+,∴抛物线的对称轴为直线x=3,∴当x=3时,y取最大值,最大值为,当x=7时,y取最小值,最小值为﹣.综上所述:当﹣3≤x≤7时,所求函数的相关函数的最大值为,最小值为﹣.29.解:(1)由题意得,AM=t,ON=2t,则OM=OA﹣AM=18﹣t,四边形ABNM的面积S=△AOB的面积﹣△MON的面积=×18×30﹣×(18﹣t)×2t=t2﹣18t+270(0<t≤15);(2)S=t2﹣18t+270=t2﹣18t+81﹣81+270=(t﹣9)2+189,∵a=1>0,∴S有最小值,这个值是189.30.解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.。

人教版九年级上册数学同步作业含答案详细解析 22.2 实际问题与二次函数(2018中考模拟及真题演

人教版九年级上册数学同步作业含答案详细解析 22.2  实际问题与二次函数(2018中考模拟及真题演

人教版九年级上册数学同步作业含答案解析22.3 二次函数与实际应用 (2018模拟及中考真题演练)1.(2018乐亭县二模)运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线t=92 ;③足球被踢出9.5s 时落地:④足球被踢出7.5s 时,距离地面的高度是11.25m ,其中不正确结论的个数是( ) A .1B .2C .3D .4答案:B解析:B .解:设该抛物线的解析式为h=at 2+bt +c ,⎪⎩⎪⎨⎧=++=++=142480c b a c b a c ,解得⎪⎩⎪⎨⎧==-=091c b a , ∴h=﹣t 2+9t=﹣(t ﹣92 )2 + 814, ∴当t=92 时,h 取得最大值,此时h=814 ,故①错误, 该抛物线的对称轴是直线t=814 ,故②正确,当h=0时,得t=0或t=9,故③错误, 当t=7.5时,h=11.25,故④正确, 由上可得,不正确的是①③,2.(2018胶州一模)将进货价格为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨2元,其销售量就减少10个.设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A.y=(x﹣35)(400﹣5x)B.y=(x﹣35)(600﹣10x)C.y=(x+5)(200﹣5x)D.y=(x+5)(200﹣10x)答案:A解析:A.解:设这种商品的售价为x元时,获得的利润为y元,根据题意可得:y=(x﹣35)(400﹣5x),3.(2018扬州一模)一种包装盒的设计方法如图所示,ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D 四点重合于图中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=xcm,要使包装盒的侧面积最大,则x应取()A.30cm B.25cm C.20cm D.15cm答案:C解析:C.解:如图,设BE=CF=x,则EF=80﹣2x,∵△EFM和△CFN都是等腰直角三角形,∴MF=22EF=40﹣ 2 x,FN= 2 FC= 2 x,∴包装盒的侧面积=4MF•FN=4• 2 x(40﹣ 2 x)=﹣8(x﹣20)2+3200,当x=20时,包装盒的侧面积最大.4.(2018繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=﹣4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元答案:C解析:C.解:设销售该商品每月所获总利润为w,则w=(x﹣50)(﹣4x+440)=﹣4x2+640x﹣22000=﹣4(x﹣80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,5.(2018连云港)已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是()A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m答案:D解析:D.解:A、当t=9时,h=136;当t=13时,h=144;所以点火后9s和点火后13s的升空高度不相同,此选项错误;B、当t=24时h=1≠0,所以点火后24s火箭离地面的高度为1m,此选项错误;C、当t=10时h=141m,此选项错误;D、由h=﹣t2+24t+1=﹣(t﹣12)2+145知火箭升空的最大高度为145m,此选项正确;6.(2018沂水县一模)如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a (x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定答案:C解析:C.解:(1)∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a (x ﹣6)2+2.6过点(0,2), ∴2=a (0﹣6)2+2.6, 解得:a=﹣160, 故y 与x 的关系式为:y=﹣160(x ﹣6)2+2.6, 当x=9时,y=﹣160(x ﹣6)2+2.6=2.45>2.43, 所以球能过球网;当y=0时,﹣160(x ﹣6)2+2.6=0, 解得:x 1=6+239 >18,x 2=6﹣239 (舍去) 故会出界.7.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y=ax 2+bx +c (a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A .10mB .15mC .20mD .22.5m答案:B解析:B .解:根据题意知,抛物线y=ax 2+bx +c (a ≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则⎪⎩⎪⎨⎧=++=++=9.57204002.464016000.54c b a c b a c解得⎪⎩⎪⎨⎧==-=0.54585.00195.0c b a ,所以x=﹣b 2a =-0.5852×(-0.0195)=15(m ). 8.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2(a <0)的图象上,则a 的值为( )A .-23B .-23C .﹣2D .-12答案:B解析:B .解:如图,连接OB ,过B 作BD ⊥x 轴于D ; 则∠BOC=45°,∠BOD=30°; 已知正方形的边长为1,则OB= 2 ; Rt △OBD 中,OB= 2 ,∠BOD=30°,则: BD=12 OB=22 ,OD=32 OB=62 ; 故B (62 ,﹣22), 代入抛物线的解析式中,得: (62 )2a=﹣22, 解得a=﹣23;9.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=﹣x2+70x﹣800,要想获得最大利润,则销售单价为()A.30元B.35元C.40元D.45元答案:B解析:B.解:∵y=﹣x2+70x﹣800=﹣(x﹣35)2+425,∴当x=35时,y取得最大值,最大值为425,即销售单价为35元时,销售利润最大,10.2016年7月3日,位于中国贵州省内的射电望远镜(FAST)顺利安装最后一块反射面单元,标志着FAST主体工程完工,进入测试调试阶段.建成后的FAST是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是()A.y=1625x2-100 B.y=-1625x2-100C.y=1625x2D.y=-1625x2答案:A解析:A.解:观察图象可知,抛物线的顶点坐标为(0,﹣100),开口向上,a>0,只有选项A满足条件,11.某种新型礼炮的升空高度h (m )与飞行时间t (s )的关系式h=﹣52 t 2+20t +1,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为( ) A .3sB .4sC .5sD .6s答案:B解析:B . 解:h=﹣52 t 2+20t +1 =﹣52 (t ﹣4)2+41, ∵﹣52<0 ∴这个二次函数图象开口向下. ∴当t=4时,升到最高点.12.竖直上抛的小球离地面的高度 h (米)与时间 t (秒)的函数关系式为 h=﹣2t 2+mt +258,若小球经过 74秒落地,则小球在上抛的过程中,第 秒时离地面最高. 答案:.解析:37. 解:∵竖直上抛的小球离地面的高度 h (米)与时间 t (秒)的函数关系式为 h=﹣2t 2+mt +258 ,小球经过 74 秒落地, ∴t=74时,h=0, 则0=﹣2×(74 )2+74 +258 , 解得:m=127, 当t=﹣b 2a =﹣1272×(-2) =37时,h 最大, 13.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.答案:{解析}解:(1)设AB=xm ,则BC=(900﹣3x ),由题意可得,S=AB×BC=x×(900﹣3x )=﹣(x2﹣300x )=﹣(x ﹣150)2+33750 ∴当x=150时,S 取得最大值,解析:{解析}解:(1)设AB=xm ,则BC=12(900﹣3x ),由题意可得,S=AB ×BC=x ×12 (900﹣3x )=﹣32 (x 2﹣300x )=﹣32 (x ﹣150)2+33750 ∴当x=150时,S 取得最大值,此时,S=33750, ∴AB=150m ,14.某司机驾车行驶在公路上,突然发现正前方有一行人,他迅速采取紧急刹车制动.已知,汽车刹车后行驶距离S (m )与行驶时间t (s )之间的函数关系式为S=﹣5t 2+20t ,则这个行人至少在 米以外,司机刹车后才不会撞到行人.解析:{解析}解:函数关系式为S=﹣5t 2+20t ,变形得,s=﹣5(t ﹣2)2+20,所以当t=2时,汽车滑行距离最远为:s=20m ;故这个物体至少在20米以外,司机刹车后才不会撞到物体.15.两幢大楼的部分截面及相关数据如图,小明在甲楼A 处透过窗户E 发现乙楼F 处出现火灾,此时A ,E ,F 在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m 高的D 处喷出,水流正好经过E ,F .若点B 和点E 、点C 和F 的离地高度分别相同,现消防员将水流抛物线向上平移0.4m ,再向左后退了 m ,恰好把水喷到F 处进行灭火.解析:110 ﹣10.解:由图形可知,点A (0,21.2)、D (0,1.2)、E (20,9.2)、点F 的纵坐标为6.2设AE 所在直线解析式为y=mx +n , 则⎩⎨⎧=+=2.9202.21n m n ,解得:⎩⎨⎧=-=2.216.0n m ,∴直线AE 解析式为y=﹣0.6x +21.2, 当y=6.2时,﹣0.6x +21.2=6.2, 解得:x=25,∴点F 坐标为(25,6.2), 设抛物线的解析式为y=ax 2+bx +c ,将点D (0,1.2)、E (20,9.2)、F (25,6.2)代入,得:⎪⎩⎪⎨⎧=++=++=2.6256252.9204002.1c b a c b a c , 解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=5656251c b a ,∴抛物线的解析式为y=﹣125 x 2+65 x +65 =﹣125 (x ﹣15)2+515 , 设消防员向左移动的距离为p (p >0),则移动后抛物线的解析式为y=﹣125 (x +p ﹣15)2+515 +25 , 根据题意知,平移后抛物线过点F (25,6.2),代入得: ﹣125 (25+p ﹣15)2+515 +25=6.2, 解得:p=﹣110 ﹣10(舍)或p=110 ﹣10,即消防员将水流抛物线向上平移0.4m ,再向左后退了(110 ﹣10)m ,恰好把水喷到F 处进行灭火,16.从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为h=30t ﹣5t 2,那么小球从抛出至回落到地面所需要的时间是 s .答案:{解析}解:由小球高度h 与运动时间t 的关系式h=30t ﹣5t2. 令h=0,﹣5t2+30t=0解得:t1=0,t2=6小球从抛出至回落到地面所需要的时间是6秒.解析:{解析}解:由小球高度h与运动时间t的关系式h=30t﹣5t2.令h=0,﹣5t2+30t=0解得:t1=0,t2=6小球从抛出至回落到地面所需要的时间是6秒.17.如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,过AA1的中点O建立如图所示的直角坐标系.则该抛物线的函数表达式为答案:y=x2+8.解析:y=-112x2+8.解:由题意可得,点C的坐标为(0,8),点B的坐标为(﹣6,5),设此抛物线的解析式为y=ax2+8,5=a×(﹣6)2+8,解得,a=-112,∴此抛物线的解析式为y=-112x2+8,18.小迪同学以二次函数y=2x2+8的图象为灵感设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为.解析:{解析}解:由题意可得:D点坐标为:(0,8),∵AB=4,∴B 点,横坐标为:2, 故x=2时,y=2×4+8=16, 即B (2,16), 则DC=16﹣8=8, 故CE=DC +DE=3+8=11.19.(2018天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF 、折线ABCD 分别表示该有机产品每千克的销售价y 1(元)、生产成本y 2(元)与产量x (kg )之间的函数关系.(1)求该产品销售价y 1(元)与产量x (kg )之间的函数关系式; (2)直接写出生产成本y 2(元)与产量x (kg )之间的函数关系式; (3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?解析:解:(1)设y 1与x 之间的函数关系式为y 1=kx +b , ∵经过点(0,168)与(180,60),∴⎩⎨⎧=+=60180168b k b ,解得:⎪⎩⎪⎨⎧=-=16853b k , ∴产品销售价y 1(元)与产量x (kg )之间的函数关系式为y 1=﹣35 x +168(0≤x ≤180); (2)由题意,可得当0≤x ≤50时,y 2=70; 当130≤x ≤180时,y 2=54;当50<x <130时,设y 2与x 之间的函数关系式为y 2=mx +n , ∵直线y 2=mx +n 经过点(50,70)与(130,54),∴⎩⎨⎧=+=+541307050n m n m ,解得⎪⎩⎪⎨⎧-==5180m n ,∴当50<x <130时,y 2=﹣15x +80. 综上所述,生产成本y 2(元)与产量x (kg )之间的函数关系式为⎪⎪⎩⎪⎪⎨⎧≤≤<<+-≤≤=)180130(54)13050(8051)500(702x x x x y y 2=;(3)设产量为xkg 时,获得的利润为W 元,①当0≤x ≤50时,W=x (﹣35 x +168﹣70)=﹣35 (x ﹣245 3)2+12005 3, ∴当x=50时,W 的值最大,最大值为3400;②当50<x <130时,W=x [(﹣35 x +168)﹣(﹣15 错误!未找到引用源。

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题(含参考答案)

中考数学二次函数专题训练50题含答案一、单选题1.二次函数y =﹣2x 2﹣1图象的顶点坐标为( ) A .(0,0)B .(0,﹣1)C .(﹣2,﹣1)D .(﹣2,1)2.下列函数图象不属于中心对称图形的是( ) A .20222023yxB .220222023yx x C .2023y =- D .2022xy =-3.下列关系式中,属于二次函数的是( )A .22y x =-B .y =C .31y x =-D .1y x=4.若抛物线2(2)(2)=-≠y a x a 开口向上,则a 的取值范围是( ) A .2a <B .2a >C .a<0D .0a >5.已知点1(4)y -,、2(1)y -,、353y ⎛⎫⎪⎝⎭,都在函数245y x x =--+的图象上,则123y y y 、、的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .312y y y >> 6.在平面直角坐标系中,将抛物线221y x x =+-,绕原点旋转180°,所得到的抛物线的函数关系式是( ) A .221y x x =-+ B .221y x x =--- C .221y x x =-+-D .221y x x =-++7.已知二次函数2y ax bx c =++的图象经过原点和第一、二、三象限,则( ) A .0,0,0a b c >>> B .0,0,0a b c <<= C .0,0,0a b c <D .0,0,0a b c >>=8.二次函数241y mx x =-+有最小值3-,则m 等于( ) A .1B .1-C .1±D .12±9.已知点 A (−1,a ),B (1,b ),C (2,c )是抛物线 y = -2x + 2x 上的三点,则 a ,b ,c 的大小关系为( ) A .a>c>bB .b>a>cC .b>c>aD .c>a>b10.如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5C.6D.25411.如图,已知直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,则①abc、①a﹣b+c、①a+b+c、①2a﹣b、①3a﹣b,其中是负数的有()A.1个B.2个C.3个D.4个12.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x+4)2+7C.y=(x﹣4)2﹣25D.y=(x+4)2﹣2513.若二次函数y=(x﹣k)2+m,当x≤2时,y随x的增大而减小,则k的取值范围是()A.k=2B.k>2C.k≥2D.k≤214.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如下表所示:则方程ax2+bx+3=0的根是()A.0或4B.1或3C.-1或1D.无实根15.二次函数图像如图所示,下列结论:①0abc >,①20a b +=,①,①方程20ax bx c ++=的解是-2和4,①不等式20ax bx c ++>的解集是24-<<x ,其中正确的结论有( )A .2个B .3个C .4个D .5个16.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,有下列5个结论:①abc <0,①3a ﹣b =0,①a +b +c =0,①9a ﹣3b +c <0,①b 2﹣4ac >0.其中正确的有( )A .①①①B .①①①C .①①①D .①①17.将抛物线y=2x2向右平移1个单位后,得到的抛物线的表达式是( ) A .y=2(x+1)2B .y=2(x ﹣1)2C .y=2x2﹣1D .y=2x2+118.如图为二次函数y=ax 2+bx+c 的图象,在下列说法中:①ac <0;①2a ﹣b=0;①当x >1时,y 随x 的增大而增大;①方程ax 2+bx+c=0的根是x 1=﹣1,x 2=3;①30a c +=;①对于任意实数m ,2am bm a b +≥+总是成立的.正确的说法有( )A .2B .3C .4D .519.如图是二次函数21y ax bx c =++,反比例函数2my x=在同一直角坐标系的图象,若y 1与y 2交于点A (4,yA ),则下列命题中,假命题是( )A .当x >4时,12y y >B .当1x <-时,12y y >C .当12y y <时,0<x <4D .当12y y >时,x <020.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12, 且经过点(2,0),下列结论正确的是( )A .abc >0B .2-4ac<0bC .a+b=1D .当x >2或x <-1时,y <0二、填空题21.写出一个函数的表达式,使它满足:①图象经过点(1,1);①在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 22.抛物线()269y x =-++的顶点坐标是______. 23.抛物线244y x x =+-的对称轴是直线______. 24.抛物线y =-(x -1)2-2的顶点坐标是________.25.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______. 26.将抛物线2yx 向左平移2个单位后,得到的抛物线的解析式是______;27.若抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4),则这条抛物线的对称轴是直线____________.28.抛物线 245y x x =-+,当34x -≤≤时,y 的取值范围是___________ 29.已知二次函数21y mx x =+-的图象与x 轴有两个交点,则m 的取值范围是______.30.如图,抛物线2=23y x x --与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点B ,C 作一条直线l . (1)ABC ∠的度数是______;(2)点P 在线段OB 上,且点P 的坐标为()2,0,过点P 作PM x ⊥轴,交直线l 于点N ,交抛物线于点M ,则线段MN 的长为______.31.如图,一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m =_____.32.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.33.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ①BC ,D 是BC 上一点,BD =14OA AB =3,①OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持①DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.34.已知某抛物线上部分点的横坐标x ,纵坐标y 的对应值如下表:那么该抛物线的顶点坐标是_____.35.已知点A(-3,m)在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点的坐标为________.36.若二次函数()22212y x m x m m =-+-+-的图象关于y 轴对称,则m 的值为:________.此函数图象的顶点和它与x 轴的两个交点所确定的三角形的面积为:________.37.二次函数y=ax 2+bx+c (a ,b ,c 为常数,且a≠0)中的x 与y 的部分对应值如表下列结论:①ac <0; ①当x >1时,y 的值随x 值的增大而减小; ①当2x =时,5y =; ①3是方程ax 2+(b ﹣1)x+c=0的一个根. 其中正确的结论是_________(填正确结论的序号).38.如图所示,已知二次函数()20y ax bx c a =++≠的部分图象,下列结论中:0abc >①; 40a c +>②;③若t 为任意实数,则有2a bt at b -≥+; ④若函数图象经过点()2,1,则311222a b c ++=;⑤当函数图象经过()2,1时,方程210ax bx c ++-=的两根为1x ,212()x x x <,则1228x x -=-.其中正确的结论有______.39.如图,正方形ABCD 的边长为4,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .则四边形EFGH 面积的最小值为___.40.如图,已知二次函数2y x 2x 3=-++的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB AP ⊥交x 轴于点B ,过A 作AC MN ⊥于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使QAC PBA ∠∠=,则点Q 的横坐标为______.三、解答题41.已知抛物线y =x 2+(b -2)x +c 经过点M (-1,-2b ). (1)求b +c 的值.(2)若b =4,求这条抛物线的顶点坐标.42.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x ≤14)之间的函数关系式,并求出第几天时销售利润最大?43.我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“D 函数”,其图象上关于原点对称的两点叫做一对“D 点”根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“D 函数”的,请在相应题目后面的括号中打“√”,不是“D 函数”的打“×”,my x=(0m ≠)(_______);31y x =-(_______);2y x =(_______).(2)若点A (1,m )与点B (n ,4-)是关于x 的“D 函数”2y ax bx c =++(0a ≠)的一对“D 点”,且该函数的对称轴始终位于直线1x =的右侧,求a ,b ,c 的值或取值范围;(3)若关于x 的“D 函数”223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=;①()()2230c b a c b a +-++<;求该“D 函数”截x 轴得到的线段长度的取值范围.44.(1)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度;(2)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =50m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,求居民楼AB 的高度.(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)(3)已知飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣32t2,求在飞机着陆滑行中最后4s滑行的距离.45.已知二次函数222y x x k=-+++与x轴的公共点有两个.求:()1求k的取值范围;()2当1k=时,求抛物线与x轴的公共点A和B的坐标及顶点C的坐标;()3观察图象,当x取何值时0y>?46.如图,抛物线245y x x=-++与x轴交于点A和点B,与y轴交于点C.(1)求出A、B、C三点的坐标;(2)将抛物线245y x x=-++图像x轴上方部分沿x轴向下翻折,保留抛物线与x轴的交点和x轴下方图像,得到的新图像记作M,图像M与直线y t=恒有四个交点,从左到右四个交点依次记为D,E,F,G.若以EF为直径作圆,该圆记作图像N.①在图像M上找一点P,使得PAB的面积为3,求出点P的坐标;①当图像N与x轴相离时,直接写出t的取值范围.47.如图,在△ABC 中,AB=4,D 是AB 上的一点(不与点A、B 重合),DE①BC,交AC 于点E.设△ABC 的面积为S,△DEC 的面积为S'.(1)当D是AB中点时,求SS'的值;(2)设AD=x,SS'=y,求y与x的函数表达式,并写出自变量x的取值范围;(3)根据y的范围,求S-4S′的最小值.48.如图1,在平面直角坐标系中,抛物线y=﹣38x2+34x+3与x轴交于点A和点B,A在B的左侧,与y轴交于点C,点P为直线BC上方抛物线上一动点.(1)求直线BC的解析式;(2)过P作PM①x轴,交BC于M,当PM﹣CM的值最大时,求P的坐标和PM﹣CM的最大值;(3)如图2,将该抛物线向右平移1个单位,得到新的抛物线y1,过点P作直线BC 的垂线,垂足为E,作y1对称轴的垂线,垂足为F,连接EF,请直接写出当PEF是以PF为腰的等腰三角形时,点P的横坐标.49.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B.求:(1)点A 、B 的坐标;(2)抛物线的函数表达式;(3)若点M 是该抛物线对称轴上的一点,求AM+BM 的最小值及点M 的坐标; (4)在抛物线对称轴上是否存在点P ,使得以A 、B 、P 为顶点的三角形为等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.50.如图所示,抛物线2y ax bx c =++的图象过(03)A ,,()10B -,,0(3)C ,三点,顶点为P .(1)求抛物线的解析式;(2)设点G 在y 轴上,且OGB OAB ACB ∠+∠=∠,求AG 的长;(3)若//AD x 轴且D 在抛物线上,过D 作DE BC ⊥于E ,M 在直线DE 上运动,点N 在x 轴上运动,是否存在这样的点M 、N 使以A 、M 、N 为顶点的三角形与APD △相似若存在,请求出点M 、N 的坐标.参考答案:1.B【分析】根据二次函数的解析式特点可知其图象关于y 轴对称,可得出其顶点坐标.【详解】解:①221y x =-- ,①其图象关于y 轴对称,①其顶点在y 轴上,当0x =时,1y =-,所以顶点坐标为(0,﹣1),故选择:B.【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数y=ax 2+c 的图象关于y 轴对称是解题的关键.2.B【分析】分别根据一次函数图象,二次函数图象,常数函数的图象的对称性分析判断即可得解.【详解】解:A .直线20222023y x 是轴对称图形,也是中心对称图形,故本选项不符合题意;B .抛物线220222023y x x 是轴对称图形,不是中心对称图形,故本选项符合题意;C .直线2023y =-是轴对称图形,也是中心对称图形,故本选项不符合题意;D .直线2022x y =-是轴对称图形,也是中心对称图形,故本选项不符合题意. 故选:B .【点睛】本题考查了二次函数图象,一次函数图象,常数函数的图象,熟记各图形以及其对称性是解题的关键.3.A【分析】根据二次函数的定义进行解答即可.【详解】22y x =-符合二次函数的定义,故A 符合题意;y B 不符合题意; 31y x =-是一次函数,故C 不符合题意;1y x=中含自变量的代数式不是整式,不符合二次函数的定义,故D 不符合题意;故选A【点睛】本题考查了二次函数的定义,掌握二次函数的一般形式()20y ax bx c a =++≠是解题的关键.4.B【分析】根据抛物线的开口向上,可得20a ->,进而即可求得a 的取值范围.【详解】解:①抛物线2(2)(2)=-≠y a x a 开口向上,①20a ->即2a >故选B【点睛】本题考查了二次函数2y ax =图象的性质,掌握0a >时,抛物线的开口向上是解题的关键.5.C【分析】根据函数解析式求出对称轴,在根据函数的性质求解即可;【详解】解:①245y x x =--+,①函数图像的对称轴是直线422x -=-=--,图象的开口向下, ①当<2x -时,y 随x 的增大而增大, 点353y ⎛⎫ ⎪⎝⎭,关于对称轴的对称点是⎛⎫- ⎪⎝⎭317,3y , ①17413-<-<-, ①213y y y >>;故选:C .【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象的性质是解题的关键.6.D【分析】先求出抛物线的顶点坐标,再根据旋转求出旋转后的抛物线顶点坐标,然后根据顶点式写出抛物线的解析式即可.【详解】解:①()222112y x x x =+-=+-,①抛物线的顶点坐标为()1,2--,①将抛物线221y x x =+-,绕原点旋转180︒后顶点坐标变为()1,2,1a =-,①旋转后的函数关系式为()221221y x x x =--+=-++.故选:D .【点睛】本题主要考查了求抛物线的解析式,关于原点对称的两个点的坐标特点,解题的关键是求出旋转后抛物线的顶点坐标和a 的值.7.D【详解】试题分析:由题意得,二次函数经过原点可知,,又只经过第一,二,三象限,画图可知抛物线开口向上,对称轴在轴的负半轴,综合可知,故选D.考点:二次函数的对称轴及开口方向综合问题.8.A【分析】根据二次函数的最值公式列式计算即可得解.【详解】①二次函数241y mx x =-+有最小值3-, ①41634m m-=-, 解得1m =.故选A .9.C【分析】根据二次函数的性质得到抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:①抛物线y =-x 2+2x =-(x -1)2+1,①抛物线y =-x 2+2x 的开口向下,对称轴为直线x =1,而A (-1,a )离直线x =1的距离最远,B (1,b )在直线x =1上,①b >c >a ,故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B【分析】易证△CFE ∽△BEA ,可得CF CE BE AB=,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【详解】若点E 在BC 上时,如图∵∠EFC +∠AEB =90°,∠FEC +∠EFC =90°,∴∠CFE =∠AEB ,∵在△CFE 和△BEA 中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CE BE AB=,BE =CE =x ﹣52,即525522x y x -=-, ∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72, ∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键.11.B【分析】根据抛物线的开口方向,对称轴,与y 轴的交点判定系数符号,及运用一些特殊点解答问题.【详解】由抛物线的开口向下可得:a <0,根据抛物线的对称轴在y 轴左边可得:a ,b 同号,所以b <0,根据抛物线与y轴的交点在正半轴可得:c > 0,直线x =-1是抛物线y = ax 2+bx +c (a ≠0)的对称轴,所以-b 2a=-1,可得b =2a ,由图知,当x =-3时y <0,即9a -3b +c < 0,所以9a -6a +c =3a +c <0,因此①abc >0;①a -b +c =a -2a +c =c -a > 0;①a +b +c = a +2a +c =3a +c < 0;①2a -b =2a - 2a = 0;①3a -b =3a - 2a = a <0所以①①小于0,故负数有2个,故答案选B.【点睛】本题主要考查了结合图形判断抛物线方程的系数,解本题的要点在于熟知抛物线的基本性质.12.C【分析】直接利用配方法进而将原式变形得出答案.【详解】y =x 2-8x -9=x 2-8x +16-25=(x -4)2-25.故选C .【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.13.C【详解】试题分析:根据二次函数的增减性可得:当x≤k 时,y 随x 的增大而减小,则k≥2.考点:二次函数的性质14.B【分析】将(0,2)(3,-1)(4,2)代入到二次函数y =ax 2+bx +c 中,分别求出a 、b 的值,即可求出方程的解.【详解】由题意得:29311642c a b c a b c =⎧⎪++=-⎨⎪++=⎩解得:142a b c =⎧⎪=-⎨⎪=⎩①方程230ax bx ++=为2430x x -+=(1)(3)0x x --=解得:121,3x x ==故选B【点睛】本题考查二次函数抛物线与坐标轴的交点以及待定系数法函数解析式和一元二次方程求解,熟练掌握相关知识点是解题关键.15.C【详解】试题分析: ①抛物线开口向上,①0a >,①抛物线对称轴为直线2b x a =-=1,①0b <,①抛物线与y 轴交点在x 轴下方,①0c <,①0abc >,所以①正确; ①2b x a=-=1,即2b a =-,①20a b +=,所以①正确; ①抛物线与x 轴的一个交点为(﹣2,0),而抛物线对称轴为直线x=1,①抛物线与x 轴的另一个交点为(4,0),①当3x =时,0y <,①,所以①错误. ①抛物线与x 轴的两个交点为(﹣2,0),(4,0),①方程20ax bx c ++=的解是-2和4,①①正确;由图像可知:不等式20ax bx c ++>的解集是24-<<x ,①①正确.①正确的答案为:①①①①.故选C .考点:二次函数图象与系数的关系.16.B【分析】根据二次函数的图像和性质逐一进行判断即可【详解】解:①抛物线开口朝下,①a <0,①对称轴x =3-22b a=- ①b =3a <0,①3a ﹣b =0,故①正确;①抛物线与y 轴的交点在x 轴的上方,①c >0,①abc >0,故①错误;①抛物线的对称轴x =3-2,与x 轴的一个交点为(-4,0), ①抛物线与x 轴的一个交点为(1,0),①a +b +c =0,故①正确;根据图象知道当x =-3时,y =9a -3b +c >0,故①错误;根据图象知道抛物线与x 轴有两个交点,①b 2-4ac >0,故①正确.①正确答案为:①①①.故选:B【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.17.B【分析】可根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=2x 2的图象向右平移1个单位,得:y=2(x-1)2,故选B .【点睛】本题考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18.D【分析】根据二次函数系数与图像性质,二次函数与方程,二次函数与不等式之间的关系判断每一个结论,从而得出答案.【详解】①由图像可知,抛物线的开口向上,①a >0,①抛物线与y 轴的交点为在y 轴的负半轴上,①c <0,①ac <0,故此选项正确;①由图像可知,对称轴为x=1, ①12b x a=-=, ①-b=2a ,①2a+b=0,故此选项错误;①当x >1时,y 随x 的增大而增大,故此选项正确;①由图像可知,方程ax 2+bx+c=0的根是x 1=﹣1,且对称轴为x=1, ①1212x x +=, ①2122(1)3x x =-=--=,故此选项正确;①由①可知,12133c x x a==-⨯=-, 3c a ∴=-,30a c ∴+=,故此选项正确;①由图像可知,抛物线的顶点坐标为(1,)a b c ++,∴当x=1时,二次函数y=ax 2+bx+c 有最小值a+b+c ,∴2ax bx c a b c ++≥++,当x=m 时,则有2am bm c a b c ++≥++,∴2am bm a b +≥+,故此选项正确;①正确的说法有①①①①①共5个.故选:D .【点睛】本题考查了二次函数的图像与性质、方程、不等式之间的知识点,要掌握如何利用图像上的信息确定字母系数的范围,并记住特殊值的特殊用法,如x=1,x=-1时对应的y 值是解题的关键.19.D【分析】结合图形、利用数形结合思想解答.【详解】由函数图象可知,当x >4时,y 1>y 2,A 是真命题;当x <-1时,y 1>y 2,C 是真命题;当y 1<y 2时,0<x <4,C 是真命题;y 1>y 2时,x <0或x >4,D 是假命题;故选D .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.20.D【分析】根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号;根据对称轴求出b=-a ;把x=2代入函数关系式,结合图象判断函数值与0的大小关. .【详解】:①二次函数的图象开口向下,①a<0,①二次函数的图象交y 轴的正半轴于一点,①c>0,①对称轴是直线x=12,①−2b a =12, ①b=−a>0,①abc<0.故A 错误;①抛物线与x 轴有两个交点,①b 2-4ac>0, 故B 错误①b=−a ,①a+b=0,故C 错误;故答案选D【点睛】本题考查的知识点是二次函数图像与系数的关系,解题的关键是熟练的掌握二次函数图像与系数的关系.21.1y x= 【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x =. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键.22.()6,9-【分析】直接根据顶点式解析式写出顶点坐标即可.【详解】解:()269y x =-++的顶点为()6,9-, 故答案为:()6,9-.【点睛】本题考查了抛物线顶点式解析式的顶点坐标,解题关键是理解抛物线()()20y a x h k a =-+≠的顶点坐标为()h k ,. 23.2x =-【分析】将题目的解析式化为顶点式,即可得到该抛物线的对称轴,本题得以解决.【详解】解:①抛物线2244(2)8y x x x =+-=+-,①该抛物线的对称轴是直线2x =-,故答案为:2x =-.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.24.(1,-2)【分析】对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,. 【详解】由y =-(x -1)2-2,根据顶点式的坐标特点可知,顶点坐标为()12-,故答案为:()12-,. 【点睛】本题考查了抛物线的顶点式及顶点坐标;对于二次函数的顶点式()2y a x h k =-+,顶点坐标为()h k ,,掌握顶点式是解题的关键.25.-1【详解】①二次函数y=ax2+bx−1(a≠0)的图象经过点(1,1),①a+b−1=1,①a+b=2,①1−a−b=1−(a+b)=1−2=−1.故答案为-1.26.()22y x =+或244y x x =++【分析】根据函数的平移规律:左加右减;上加下减即可求解.【详解】解:①抛物线2y x 向左平移2个单位,①平移后抛物线的解析式为()22y x =+故答案为:()22y x =+【点睛】本题考查了抛物线的平移变换,熟练掌握抛物线的平移规律是解题的关键. 27.x =3【分析】因为点(1,4),(5,4)的纵坐标都为4,所以可判定是一对对称点,把两点的横坐标代入公式x =122x x +求解即可.【详解】解:抛物线2y ax bx c =++与直线4y =的公共点的坐标是(1,4),(5,4), ①两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x =1532+=,即x =3. 故答案为:3.【点睛】本题考查抛物线与x 轴的平行线交点问题.掌握抛物线的性质,会利用关于对称轴对称的两点坐标求对称轴是解题关键.28.126y ≤≤【分析】先化为顶点式,然后根据二次函数的性质求解即可.【详解】解:①2245(2)1y x x x =-+=-+,①抛物线开口向上,对称轴为直线=2x ,函数有最小值1,当3x =-时,26y =,当=4x 时, 5.y =,①当34x -≤≤时,y 的取值范围是126y ≤≤;故答案为:126y ≤≤.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.29.14m >-且0m ≠ 【分析】根据题意可得0m ≠,且判别式0∆>,求解不等式即可.【详解】解:①二次函数21y mx x =+-的图象与x 轴有两个交点①0m ≠,且判别式240b ac ∆=->①14(1)0m ∆=-⨯⨯->,0m ≠ 解得14m >-且0m ≠ 故答案为:14m >-且0m ≠ 【点睛】此题考查了二次函数的定义以及二次函数与x 轴交点问题,掌握二次函数的定义以及性质是解题的关键.30. 45°; 2【分析】(1)分别求出A,B,C 的坐标,得到OB OC =,故可求解;(2)先求出直线l 的解析式,再得到M,N 的坐标即可求解.【详解】(1)当0y =时,2230x x --=,解得11x =-,23x =,①点A 在点B 的左侧, ①点A 坐标为()1,0-,点B 坐标为()3,0.当0x =时,=3y -,①点C 坐标为()0,3-,①OB OC =,①=45ABC ∠︒.(2)设直线l 的函数表达式为y kx b =+,根据题意得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, ①直线l 的函数表达式为3y x =-;当2x =时,31=-=-y x ,①点N 的坐标为2,1;当2x =时,22232433=--=--=-y x x ,①点M 的坐标为()2,3-;①()132=---=MN .故答案为:45°;2.【点睛】此题主要考查二次函数与一次函数综合,解题的关键是求出各点坐标. 31.m=2【分析】根据图像的旋转变化规律及二次函数的平移规律得出平移后的解析式,进而即可求值.【详解】①一段抛物线:y =﹣x (x ﹣3)(0≤x≤3),①点O (0,0),A 1(3,0)①将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;如此进行下去,直至得C 13.①C 13的解析式与x 轴的坐标为(36,0)、(39,0)①C 13的解析式为:y =﹣(x -36)(x -39)当x =37时,m=y =﹣1×(﹣2)=2故答案为:2【点睛】本题主要考查二次函数的平移规律,解题的关键是得出二次函数平移后的解析式.32.y =2(x+2)2﹣5【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移5个单位长度所得抛物线的解析式为:y =2(x+2)2﹣5,即y =2(x+2)2﹣5.故答案为:y =2(x+2)2﹣5.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.33.213y x x =【分析】首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA Rt①ABM 中,已知①OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证①ODE ①①AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ①x 轴于M .在Rt①ABM 中,①AB =3,①BAM =45°,①AM =BM =2, ①BD =14OA ,OA ∴=,①BC =OA﹣AM =,CD =BC ﹣BD ,①D ,3OD ∴== . 连接OD ,则点D 在①COA 的平分线上,所以①DOE =①COD =45°.又①在梯形DOAB 中,①BAO =45°,①由三角形外角定理得:①ODE =①DEA ﹣45°,又①AEF =①DEA ﹣45°,①①ODE=①AEF ,①①ODE ①①AEF ,OE OD AF AE∴= 即x y =①y 与x 的解析式为:213y x =-.故答案为:213y x =-.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.34.(1,﹣4)【分析】根据二次函数的对称性求得对称轴,进而根据表格的数据即可得到抛物线的顶点坐标.【详解】①抛物线过点(0,﹣3)和(2,﹣3),①抛物线的对称轴方程为直线x=022+=1,①当x=1时,y=﹣4,①抛物线的顶点坐标为(1,﹣4);故答案为(1,﹣4).【点睛】本题考查了二次函数的性质,掌握二次函数的对称性是解题的关键.35.(-1,7)【详解】先根据抛物线上点的特点求出点A的坐标,再利用抛物线的对称性即可得出答案.解:把点A(-3,m)代y=x2+4x+10得,m=(-3)2+4×(-3)+10=7,①点A(-3,7),①对称轴42 22ba-=-=-,①点A(-3,7)关于对称轴x=2的对称点坐标为(-1,7).故答案为(-1,7).36.11【分析】由图象关于y轴对称可知对称轴为x=0,由此可求解m的值;代入m值后,分别求解抛物线与x 轴的两个交点以及与y 轴的交点,利用三角形面积公式计算三角形面积.【详解】①图象关于y 轴对称,①对称轴为x=0, ①()211022m b m a --=-=-=- 解得m=1,代入原方程得:21y x =-+当y=0时,210x -+=,x=±1,当x=0时,y=1,则S △=2112⨯=. 【点睛】本题考查了二次函数对称轴及其与x 、y 轴的交点.37.①①①.【详解】试题解析:①x =-1时y =-1,x =0时,y =3,x =1时,y =5,①1{35a b c c a b c -+-++===,解得1{33a b c -===,①y =-x 2+3x +3,①ac =-1×3=-3<0,故①正确;对称轴为直线x =-33212=⨯-(), 所以,当x >32时,y 的值随x 值的增大而减小,故①错误; 当x =2时,y =-4+4+3=3;故①正确.方程为-x 2+2x +3=0,整理得,x 2-2x -3=0,解得x 1=-1,x 2=3,所以,3是方程ax 2+(b -1)x +c =0的一个根,正确,故①正确.综上所述,结论正确的是①①①.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.38.①①①【分析】根据二次函数的开口方向、对称轴、顶点坐标以及二次函数与一元二次方程的关系综合进行判断即可.【详解】解:由抛物线开口向上,因此0a >, 对称轴是直线12b x a=-=-,因此a 、b 同号,所以0b >, 抛物线与y 轴的交点在负半轴,因此0c <. ,所以0abc <,故①不正确; 由对称轴12b x a=-=-可得2b a =, 由图象可知,当1x =时,0y a b c =++>,即20a a c ++>,30a c ∴+>,又0a >,40a c ∴+>,因此①正确;当=1x -时,y a b c =-+最小值,∴当()1x t t =≠-时,2a b c at bt c -+<++,即2a bt at b -<+,x t ∴=(t 为任意实数)时,有2a bt at b -≤+,因此①不正确;函数图象经过点()2,1,即421a b c ++=,而2b a =,231a b c ∴++=,311222a b c ∴++=, 因此①正确;当函数图象经过()2,1时,方程21ax bx c ++=的两根为1x ,212()x x x <,而对称轴为=1x -, 14x ∴=-,22x =,122448x x ∴-=--=-,因此①正确;综上所述,正确的结论有:①①①,故答案为:①①①.【点睛】本查二次函数的图象和性质,掌握二次函数图象的开口方向、对称轴、顶点坐标与系数a 、b 、c 的关系以及二次函数与一元二次方程的根的关系是正确判断的前提. 39.8【分析】由已知可证明①AHE ①①BEF ①①CFG ①①DGH (SAS ),再证明四边形EFGH 是正方形,设AE =x ,则AH =DG =BE =CF =4﹣x ,在Rt①EAH 中,由勾股定理得EH 2=x 2+(4﹣x )2,所以S 四边形EFGH =EH 2=2(x ﹣2)2+8,可知当x =2时,S 四边形EFGH 有最小值8,【详解】解:设AE =x ,则AE =BF =CG =DH =x ,①正方形ABCD ,边长为4,①AH =DG =BE =CF =4﹣x ,①A =①B =①C =①D =90°①①AHE ①①BEF ①①CFG ①①DGH (SAS ),①①AEH +①BEF =90°,①EFB +①GFC =90°,①FGC +①HGD =90°,①①HEF =①EFG =①FGH =90°,①EF =EH =HG =FG ,①四边形EFGH 是正方形,在Rt ①EAH 中,EH 2=AE 2+AH 2,即EH 2=x 2+(4﹣x )2,①S 四边形EFGH =EH 2=2x 2﹣8x +16=2(x ﹣2)2+8,当x =2时,S 四边形EFGH 有最小值8,故答案为:8.【点睛】本题主要考查了全等三角形的性质与判定,正方形的性质和二次函数的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.40.53【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明AOB 与ACP 相似,得到ABP AOC ∠∠=,再证QDA 与CAO 相似,设出点Q 的坐标,通过相似比即可求出点Q 坐标.【详解】如图,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,。

中考数学复习 二次函数 第19讲 二次函数的应用(2)试题(含解析)

 中考数学复习 二次函数 第19讲 二次函数的应用(2)试题(含解析)

—————————— 教育资源共享 步入知识海洋 ————————第19讲 二次函数的应用(2)1. (2012,河北,导学号5892921)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1)(2)已知出厂一张边长为40 cm 的薄板,获得的利润是26元(利润=出厂价-成本价). ①求一张薄板的利润与边长之间满足的函数解析式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?【思路分析】 (1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .利用待定系数法求一次函数的解析式即可.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2,进而得出m 的值,求出函数解析式即可.②利用二次函数的最值公式求出二次函数的最值即可.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .由表格中的数据,得⎩⎪⎨⎪⎧50=20k +n ,70=30k +n .解得⎩⎪⎨⎪⎧k =2,n =10.所以一张薄板的出厂价与边长之间满足的函数解析式为y =2x +10.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2=2x +10-mx 2.将x =40,p =26代入p =2x +10-mx 2,得26=2×40+10-m ·402. 解得m =125.所以一张薄板的利润与边长之间满足的函数解析式为p =-125x 2+2x +10.②因为a =-125<0,所以当x =-b 2a=-22×⎝ ⎛⎭⎪⎫-125=25(在5~50之间)时,p 最大=4ac -b 24a =4×⎝ ⎛⎭⎪⎫-125×10-224×⎝ ⎛⎭⎪⎫-125=35.所以出厂一张边长为25 cm 的薄板,获得的利润最大,最大利润是35元.利润问题例 1 (2018,扬州节选,导学号5892921)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?例1题图【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)先由题意得出x 的取值范围,再根据总利润=销售量×单件的利润,将(1)中的函数关系式代入,得到总利润与销售单价之间的函数关系式,最后根据其性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧40k +b =300,55k +b =150.解得⎩⎪⎨⎪⎧k =-10,b =700.故y 与x 之间的函数关系式为y =-10x +700.(2)由题意,得-10x +700≥240. 解得x ≤46.设每天获取的利润为w 元, 则w =(x -30)·y=(x -30)(-10x +700)=-10x 2+1 000x -21 000=-10(x -50)2+4 000. ∵-10<0,∴当x <50时,w 随x 的增大而增大.∴当x =46时,w 最大,w 最大=-10×(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840元.针对训练1 (2018,深圳模拟)某商场试销一种成本为50元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于50%.经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数关系,试销数据如下表:(1)求y 与x 之间的函数关系式;(2)若该商场获得的利润为w 元,试写出利润w 与销售单价x 之间的函数关系式.当销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)根据利润=销售量×(销售单价-单件成本),将(1)中的函数关系式代入,得到利润w 与销售单价x 之间的函数关系式,再根据x 的取值范围和二次函数的性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧55k +b =75,60k +b =70.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y =-x +130.(2)w =(x -50)(130-x )=-x 2+180x -6 500=-(x -90)2+1 600.由题意,得x ≤50×(1+50%),即x ≤75. ∴50≤x ≤75.∵当x <90时,w 随x 的增大而增大, ∴当x =75时,w 取得最大值,为1 375.所以当销售单价定为75元时,商场可以获得最大利润,最大利润是1 375元.二次函数与几何图形的综合例2 (2018,保定模拟)如图,已知矩形ABCD 的边AB =2,BC =3,P 是AD 边上的一动点(点P 异于点A ,D ),Q 是BC 边上的任意一点,连接AQ ,DQ ,过点P 作PE ∥DQ 交AQ 于点E ,作PF ∥AQ 交DQ 于点F .(1)求证:△APE ∽△PDF ;(2)设AP =x ,求四边形EQDP 的面积S (用含x 的代数式表示出来);当四边形EQDP 的面积等于214时,说明PE 与DQ 的数量关系.例2题图【思路分析】 (1)根据PE ∥DQ ,PF ∥AQ 得出同位角相等即可证得两三角形相似.(2)由PE ∥DQ ,得到△APE ∽△ADQ .根据相似三角形的性质得到S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29.求出S △ADQ =12S 矩形ABCD =3,于是得到S =S △ADQ -S △APE =-13x 2+3.根据四边形EQDP 的面积等于214,列方程即可得到结论.(1)证明:∵PE ∥DQ , ∴∠APE =∠PDF . ∵PF ∥AQ ,∴∠DPF =∠PAE . ∴△APE ∽△PDF . (2)解:∵PE ∥DQ , ∴△APE ∽△ADQ .∴S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29,AP AD =PE DQ. ∵S △ADQ =12S 矩形ABCD =3,∴S △APE =13x 2.∴S =S △ADQ -S △APE =-13x 2+3.当四边形EQDP 的面积等于214时,214=-13x 2+3.解得x =32.∴AP =32=12AD .∴PE =12DQ .针对训练2(2018,揭阳一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,动点P 在AD 上,从点A 出发,沿A →D 方向运动.设AP =x ,△ABP 的面积为S 1,矩形PDFE 的面积为S 2,y =S 1+S 2,则y 与x 之间的关系式是 y =-x 2+3x .训练2题图【解析】 ∵在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°.∴BD =AD =2.∴PE =AP =x ,PD =AD -AP =2-x .∴y =S 1+S 2=x ·22+(2-x )·x =-x 2+3x .一、 选择题1. (2018,马鞍山二模)某农产品市场经销一种成本为每千克40元的农产品.据市场分析,若按每千克50元销售,一个月能售出500 kg ;销售单价每涨1元,月销售量就减少10 kg.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 之间的函数关系式为(C )A. y =(x -40)(500-10x )B. y =(x -40)(10x -500)C. y =(x -40)[500-10(x -50)]D. y =(x -40)[500-10(50-x )]【解析】 因为销售单价为每千克x 元,月销售利润为y 元,所以y 与x 之间的函数关系式为y =(x -40)[500-10(x -50)].2. (2018,芜湖繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y =-4x +440,要使销售该商品获得的月利润最大,该商品的售价应定为(C )A. 60元/件B. 70元/件C. 80元/件D. 90元/件【解析】 设销售该商品每月所获总利润为w 元,则w =(x -50)(-4x +440)=-4x 2+640x-22 000=-4(x -80)2+3 600.∴当x =80时,w 取得最大值,最大值为3 600.所以当售价为80元/件时,销售该商品所获月利润最大.3. 如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与点B ,C 不重合),连接AP ,作PE ⊥AP 交外角∠DCF 的平分线于点E .设BP =x ,△PCE 的面积为y ,则y 与x 之间的函数关系式是(C )第3题图A. y =2x +1B. y =12x -2x 2C. y =2x -12x 2D. y =2x【解析】 如答图,过点E 作EH ⊥BC 于点H .∵四边形ABCD 是正方形,∴∠DCH = 90°.∵CE 平分∠DCH ,∴∠ECH =12∠DCH =45°.∵∠CHE =90°,∴∠CEH =∠ECH =45°.∴EH =CH .∵四边形ABCD 是正方形,AP ⊥EP ,∴∠B =∠CHE =∠APE =90°.∴∠BAP +∠APB =90°,∠APB +∠EPH =90°.∴∠BAP =∠EPH .∴△BAP ∽△HPE .∴AB PH=BP EH .∴44-x +EH =x EH .∴EH =x .∴y =12·CP ·EH =12·(4-x )·x =2x -12x 2.第3题答图4. (2018,淄博模拟)如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果点P ,Q 分别从点A ,B 同时出发,那么四边形APQC 的面积最小时,经过(C )第4题图A. 1 sB. 2 sC. 3 sD. 4 s【解析】 设点P ,Q 同时出发t s 时,四边形APQC 的面积为S mm 2,则S =S △ABC -S △PBQ =12×12×24-12·4t ·(12-2t )=4t 2-24t +144=4(t -3)2+108.∵4>0,∴当t =3时,S 取得最小值.5. (2018,天津武清区模拟)某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800,要想获得日最大利润,则销售单价为(B )A. 30元B. 35元C. 40元D. 45元【解析】 ∵y =-x 2+70x -800=-(x -35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,日销售利润最大.6. (2018,广州南沙区模拟)如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm.点P 从点A 出发,沿AB 方向以2 cm/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ 的面积最大是(C )第6题图A. 10 cm 2B. 8 cm 2C. 16 cm 2D. 24 cm 2【解析】 设运动时间为t s .根据题意,得AP =2t ,AQ =t ,∴S △APQ =t 2.易知0<t ≤4,∴△APQ 的面积最大是16 cm 2.7. 如图,正方形ABCD 的边长为1,E ,F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管点E ,F 怎样运动,始终保持AE ⊥EF .设BE =x ,DF =y ,则y 关于x 的函数解析式是(C )第7题图A. y =x +1B. y =x -1C. y =x 2-x +1D. y =x 2-x -1【解析】 ∵四边形ABCD 为正方形,∴∠B =∠C =90°.∴∠BAE +∠AEB =90°.∵AE ⊥EF ,∴∠AEB +∠FEC =90°.∴∠BAE =∠FEC .∴△ABE ∽△ECF .∴AB ∶EC =BE ∶CF .∴AB ·CF=EC ·BE .∵AB =1,BE =x ,EC =1-x ,CF =1-y ,∴1·(1-y )=(1-x )·x .化简得y =x 2-x +1.二、 填空题8. (导学号5892921)如图,在矩形ABCD 中,AD =16,AB =12,E ,F 分别是边BC ,DC 上的点,且EC +CF =8.设BE 的长为x ,△AEF 的面积为y ,则y 关于x 的函数解析式是( y =12x 2-10x +96 ).第8题图【解析】 ∵BE =x ,∴CE =16-x .∵CE +CF =8,∴CF =x -8.∴DF =20-x .∴y =S 矩形ABCD-S △ABE -S △CEF -S △ADF =12x 2-10x +96.9. (2018,天津和平区一模)某旅行社组团去外地旅游,30人起组团,每人的费用是800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加1人,每人的费用就降低10元.当一个旅行团有 55 人时,这个旅行社可以获得最大的营业额.【解析】设一个旅行团有x人,营业额为y元.根据题意,得y=x[800-10(x-30)]=-10x2+1 100x=-10(x-55)2+30 250.故当一个旅行团有55人时,这个旅行社可以获得最大的营业额.三、解答题10. (2018,盘锦节选)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本为30元.设该款童装每件售价为x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(不求自变量的取值范围)(2)当每件童装售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)当每件童装售价定为多少元时,该店销售该款童装一星期可获得3 910元的利润?【思路分析】 (1)每星期的销售量等于100件加上因降价而多销售的销售量,由此得到函数关系式.(2)设每星期的销售利润为W元,构建二次函数,利用二次函数的性质解决问题.(3)根据题意列方程即可解决问题.解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元.根据题意,得W=(x-30)(-10x+700)=-10x2+1 000x-21 000=-10(x-50)2+4 000.∴当x=50时,W最大,W最大=4 000.所以当每件童装售价定为50元时,每星期的销售利润最大,最大利润是4 000元.(3)由题意,得-10(x-50)2+4 000=3 910.解得x=53或x=47.所以当每件童装售价定为53元或47元时,该店销售该款童装一星期可获得3 910元的利润.11. (2018,承德一模,导学号5892921)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y1与y2关于投资成本的函数解析式;(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利润W万元,求出W关于m的函数解析式,并求他至少获得多少利润,他能获取的最大利润是多少.【思路分析】 (1)根据题意设y1=kx,y2=px2,将表格中的数据分别代入求解可得.(2)由投入种植花卉金额m万元,则投入种植树木金额(8-m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可.解:(1)设y1=kx.由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2.解得k=2.故种植树木的利润y1关于投资成本x的函数解析式是y1=2x(x≥0).设y2=px2.由表格数据可知,函数y2=px2的图象过(2,2).∴2=p ·22. 解得p =12.故种植花卉的利润y 2关于投资成本x 的函数解析式是y 2=12x 2(x ≥0).(2)因为投入种植花卉金额m 万元,则投入种植树木金额(8-m )万元. 根据题意,得W =2(8-m )+12m 2=12m 2-2m +16 =12(m -2)2+14. ∵a =12>0,0≤m ≤8,∴当m =2时,W 取得最小值,为14. ∵a =12>0,∴当0≤m <2时,W 随m 的增大而减小;当2<m ≤8时,W 随m 的增大而增大. 在对称轴左侧,当m =0时,W 取得最大值,为16. 在对称轴右侧,当m =8时,W 取得最大值,为32. ∵16<32,∴当m =8时,W 取得最大值,为32.故他至少获得14万元的利润,他能获取的最大利润是32万元.12. 如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从点A ,B 同时出发,点P 在边AB 上沿AB 方向以2 cm/s 的速度匀速运动,点Q 在边BC 上沿BC 方向以1 cm/s 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.第12题图【思路分析】 (1)用x 分别表示出PB ,BQ 的长,然后根据三角形的面积公式列式整理即可得解.(2)把函数解析式整理成顶点式,然后结合实际求二次函数的最值即可.解:(1)∵S △PBQ =12PB ·BQ ,BQ =x ,PB =AB -AP =18-2x ,∴y =12(18-2x )x ,即y =-x 2+9x (0≤x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-⎝ ⎛⎭⎪⎫x -922+814.∵当x ≤92时,y 随x 的增大而增大,而0≤x ≤4,∴当x =4时,y 最大,y 最大=20.所以△PBQ 的面积的最大值是20 cm 2.1. 某旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则会相应地减少10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是(C )A. 140元B. 150元C. 160元D. 180元【解析】 设每张床位收费提高x 个20元,每天收入为y 元.根据题意,得y =(100+20x )(100-10x )=-200x 2+1 000x +10 000.当x =-b 2a =1 000200×2=2.5时,可使y 有最大值.又x 为整数,则x =2时,y =11 200;x =3时,y =11 200.所以为使租出的床位少且租金高,每张床位每天最合适的收费是100+3×20=160(元).2. (2017,湖州,导学号5892921)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20 000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值; (2)设这批淡水鱼放养t 天后的质量为m kg ,销售单价为y 元/kg.根据以往经验可知m 与t 的函数关系为m =⎩⎪⎨⎪⎧20 000(0≤t ≤50),100t +15 000(50<t ≤100),y 与t 之间的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 关于t 的函数解析式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大,并求出最大值.(利润=销售总额-总成本)第2题图【思路分析】 (1)由放养10天的总成本为30.4万元,放养20天的总成本为30.8万元可列出方程组进而求得答案.(2)①分0≤t ≤50,50<t ≤100两种情况,结合函数图象利用待定系数法求解可得.②就以上两种情况,根据“利润=销售总额-总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.解:(1)由题意,得⎩⎪⎨⎪⎧10a +b =30.4,20a +b =30.8.解得⎩⎪⎨⎪⎧a =0.04,b =30.(2)①当0≤t ≤50时,设y 关于t 的函数解析式为y =k 1t +n 1.将(0,15),(50,25)分别代入,得⎩⎪⎨⎪⎧n 1=15,50k 1+n 1=25.解得⎩⎪⎨⎪⎧k 1=15,n 1=15.∴此时y 关于t 的函数解析式为y =15t +15.当50<t ≤100时,设y 关于t 的函数解析式为y =k 2t +n 2.将(50,25),(100,20)分别代入,得⎩⎪⎨⎪⎧50k 2+n 2=25,100k 2+n 2=20.解得⎩⎪⎨⎪⎧k 2=-110,n 2=30.∴此时y 关于t 的函数解析式为y =-110t +30.②当0≤t ≤50时,W =20 000⎝ ⎛⎭⎪⎫15t +15-(400t +300 000)=3 600t .∵3 600>0,∴当t =50时,W 最大,W 最大=180 000. 当50<t ≤100时,W =(100t +15 000)⎝ ⎛⎭⎪⎫-110t +30-(400t +300 000)=-10t 2+1 100t +150 000 =-10(t -55)2+180 250. ∵-10<0,∴当t =55时,W 最大,W 最大=180 250.综上所述,当t =55时,W 最大,最大值为180 250.。

2018年湖南省邵阳市中考数学试卷有答案

2018年湖南省邵阳市中考数学试卷有答案

数学试卷 第1页(共16页)数学试卷 第2页(共16页)绝密★启用前湖南省邵阳市2018年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项是符合题目要求的) 1.用计算器依次按键,得到的结果最接近的是 ( ) A .1.5B .1.6C .1.7D .1.82.如图所示,直线AB ,CD 相交于点O ,已知160AOD ∠=︒,则BOC ∠的大小为( )A .20︒B .60︒C .70︒D .160︒ 3.将多项式3x x -因式分解正确的是( )A .21x x -()B .21x x -()C .()()11x x x +-D .()()11x x x +-4.下列图形中,是轴对称图形的是( )ABCD5.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到97 nm 1 nm 10m =﹣(),主流生产线的技术水平为1428 nm ~,中国大陆集成电路生产技术水平最高为28 nm .将28 nm 用科学记数法可表示为( )A .92810m ⨯﹣B .82.810m ⨯﹣C .92810m ⨯D .82.810m ⨯6.如图所示,四边形ABCD 为O 的内接四边形,120BCD ∠=︒,则BOD ∠的大小是 ( ) A .80︒B .120︒C .100︒D .90︒7.小明参加100 m 短跑训练,2018年1~4月的训练成绩如下表所示:月份 1 2 3 4 成绩(s )15.615.415.215体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100 m 短跑的成绩为(温馨提示;目前100 m 短跑世界记录为9秒58)( )A .14.8 sB .3.8 sC .3 sD .预测结果不可靠8.如图所示,在平面直角坐标系中,已知点()2,4A ,过点A 作AB x ⊥轴于点B .将AOB △以坐标原点O 为位似中心缩小为原图形的12,得到COD △,则CD 的长度是( ) A .2B .1C .4D .259.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐 ( ) A .李飞或刘亮B .李飞C .刘亮D .无法确定10.程大位是我国明朝商人,珠算发明家他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A .大和尚25人,小和尚75人 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人第Ⅱ卷(非选择题 共90分)二、填空题(本大题有8个小题,每小题3分,共24分) 11.点A 在数轴上的位置如图所示,则点A 表示的数的相反数是__________.12.如图所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形:__________.13.已知关于x 的方程230x x m +-=的一个解为3-,则它的另一个解是__________.. 14.如图所示,在四边形ABCD 中,AD AB ⊥,110C ∠=︒,它的一个外角60ADE ∠=︒,则B ∠的大小是__________.15.某市对九年级学生进行“综合素质”评价,评价结果分为A ,B ,C ,D ,E 五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80 000名九年级学生中“综合素质”评价结果为“A ”的学生约为__________人.16.如图所示,一次函数y ax b =+的图象与x 轴相交于点()2,0,与y 轴相交于点()0,4,结合图象可知,关于x 的方程0ax b +=的解是__________.17.如图所示,在等腰ABC △中,AB AC =,36A ∠=︒,将ABC△中的A ∠沿DE 向下翻折,使点A 落在点C 处.若3AE =,则BC 的长是__________.18.如图所示,点A 是反比例函数ky x=图象上一点,作AB x ⊥轴,垂足为点B ,若AOB △的面积为2,则k 的值是__________..三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。

中考数学专题复习卷 二次函数(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 二次函数(含解析)-人教版初中九年级全册数学试题

二次函数一、选择题1.若二次函数y=(a-1)x2+3x+a2-1的图象经过原点,则a的值必为()A. 1或-1 B. 1C. -1 D. 02.对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在()A. 第一象限B. 第二象限 C. 第三象限 D. 第四象限3.把抛物线y=- 向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. y=-(x-1)2-3B. y=-(x+1)2-3 C. y=-(x-1)2+3 D. y=-(x+1)2+34.已知抛物线(,,为常数,)经过点. ,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.,正确结论的个数为()A. 0B. 1C. 2D. 35.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A. -1B. 2C. 0或2 D. -1或26.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.7.已知二次函数( 为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )A. 3或6B. 1或6 C. 1或3 D. 4或68.已知抛物线y=x2+bx+c(其中b,c是常数)经过点A(2,6),且抛物线的对称轴与线段BC有交点,其中点B(1,0),点C(3,0),则c的值不可能是()A.4 B.6 C.8 D.10 9.有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A. 米B. 米C. 6米 D. 7米10.已知抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的X围内有解,则t的取值X围是()A. t>-5B. -5<t<3 C. 3<t≤4 D. -5<t≤411.如图,已知二次函数图象与x轴交于A,B两点,对称轴为直线x=2,下列结论:①abc>0;②4a+b=0;③若点A坐标为(−1,0),则线段AB=5;④若点M(x1, y1)、N(x2, y2)在该函数图象上,且满足0<x1<1,2<x2<3,则y1<y2其中正确结论的序号为()A. ①,②B. ②,③ C. ③,④ D. ②,④12.如图,在中,,,,动点从点开始沿向点以以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是()A. B. C.D.二、填空题13.抛物线y=2(x+2) +4的顶点坐标为________.14.将二次函数的图像向上平移3个单位长度,得到的图像所对应的函数表达式是________.15.已知二次函数,当时,函数值的最小值为,则的值是________.16.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若p、q(P是关于x的方程2-(x-a)(x-b)=0的两根且a则请用“<”来表示a、b、P、q的大小是________17.如图,抛物线与直线的两个交点坐标分别为,,则方程的解是________.18.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线于x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为________.19.小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为________cm.20.如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为________.三、解答题21.已知:二次函数y=ax 2+bx+c(a≠0)的图象如图所示.请你根据图象提供的信息,求出这条抛物线的表达式.22.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.(Ⅰ)求P与x的函数关系式;(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?23.如图,平面直角坐标系xOy中,抛物线y=a(x+1)(x-9)经过A,B两点,四边形OABC矩形,已知点A坐标为(0,6)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考数学提分训练: 二次函数一、选择题1.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线(a≠0)经过△ABC区域(包括边界),则a的取值范围是()A. a≤-1或a≥2B. -1≤a<0或0<a≤2 C. -1≤a<0或1<a≤D. ≤a≤22.下列命题:①若a+b+c=0,则b2-4ac≥0;②若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b2-4ac>0,则二次函数的图象与坐标轴的公共点的个数是2或3.其中正确的是()A. ①②B. ①③C. ②③D. ①②③3.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A. a≤﹣1或≤a<B. ≤a<C. a≤ 或a>D. a≤﹣1或a≥4.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A. 1 B . 9 C.16 D.245.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A. 2B. 3C. 4D. 56.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A. B.C.D.7.将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能够成等边三角形,那么平移的距离为()A. 1个单位B. 个单位 C. 个单位 D. 个单位8.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m +1)a+b>0D.若m<1,则(m +1)a+b<09.二次函数图象如图3所示.当y<0时,自变量x的取值范围是().A.x<-1B.-1<x<3C.x>3D.x<-1或x>310.对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A. m≥﹣2B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2二、填空题11.抛物线的顶点坐标为________.12.如果函数(为常数)是二次函数,那么取值范围是 ________.13.二次函数y=x2+2x-3的最小值为________14.抛物线向下平移个单位后所得的新抛物线的表达式是________.15.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是________.x …﹣1 0 1 2 …y …0 3 4 3 …16.若函数f(x)=ax2+bx+c的图象通过点(﹣1,1)、(α,0)与(β,0),则用α、β表示f(1)得f(1)=________17.如图,在坐标平面上,沿着两条坐标轴摆着三个相同的长方形,其长、宽分别为4、2,则通过A,B,C三点的拋物线对应的函数关系式是________.18.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题19.已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.20.已知抛物线的顶点坐标是(2,1),且该抛物线经过点A(3,3),求该抛物线解析式.21.将抛物线向左平移4个单位,求平移后抛物线的表达式、顶点坐标和对称轴.22.某公司准备投资开发A、B两种新产品,通过市场调研发现:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)之间满足正比例函数关系:y A=kx;如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间满足二次函数关系:y B=ax2+bx.根据公司信息部的报告,y A、y B(万元)与投资金额x(万元)的部分对应值(如下表)x 1 5y A0.6 3y B 2.8 10(1)求正比例函数和二次函数的解析式;(2)如果公司准备投资20万元同时开发A、B两种新产品,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?23.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.24.如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.25.如图,已知二次函数的图象抛物线与轴相交于不同的两点,,且,(1)若抛物线的对称轴为求的值;(2)若,求的取值范围;(3)若该抛物线与轴相交于点D,连接BD,且∠OBD=60°,抛物线的对称轴与轴相交点E,点F 是直线上的一点,点F的纵坐标为,连接AF,满足∠ADB=∠AFE,求该二次函数的解析式.答案解析一、选择题1.【答案】B【解析】如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:故答案为:B.【分析】分两种情况进行讨论:当 a > 0 时,抛物线 y = a x 2经过三角形最左端的点A,此时a的值2,抛物线的开口最小,根据抛物线中二次项的系数的绝对值越大开口越小,从而得出a 取得最大值2,即可得出a的取值范围;当 a <0 时,抛物线 y = a x2经过三角形最左端的点B,此时a的值-1,抛物线的开口最小,根据抛物线中二次项的系数的绝对值越大开口越小,从而得出a 取得最小值-1,即可得出a的取值范围;综上所述即可得出答案。

2.【答案】D【解析】①若a+b+c=0,则b=-a-c,∴b2-4ac=(a-c)2≥0,正确;②若b=2a+3c则△=b2-4ac=4a2+9c2+12ac-4ac=4a2+9c2+8ac=(2a+2c)2+5c2,∵a≠0∴△恒大于0,∴有两个不相等的实数根,正确;③若b2-4ac>0,则二次函数的图象,一定与x轴有2个交点,当与y轴交点是坐标原点时,与x轴的交点有两个,且一个交点时坐标原点,抛物线与坐标轴的交点个数是2.当与y轴有交点的时候(不是坐标原点),与坐标轴的公共点的个数是3,正确.故答案为:D.【分析】(1)因为a+b+c=0,所以变形得,b=-a-c,所以0; (2)因为b=2a+3c,所以由一元二次方程的根的判别式可得-4ac=-4ac=,因为a≠0,所以-4ac0;(3)根据二次函数和一元二次方程的关系可知当b2-4ac>0时,则二次函数的图象一定与x轴有2个交点,而二次函数的图象与y轴也一定有交点,当与y轴交点是坐标原点时,与x轴的交点有两个,且一个交点时坐标原点,抛物线与坐标轴的交点个数是2.当与y轴有交点的时候(不是坐标原点),与坐标轴的公共点的个数是3。

3.【答案】A【解析】:∵抛物线的解析式为y=ax2-x+2.观察图象可知当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥ ,∵直线MN的解析式为y=- x+ ,由,消去y得到,3ax2-2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故答案为:A.【分析】此图有两种情况,根据抛物线的特点及线段两个端点画出简易图像,观察图象可知①当a<0时,x=-1时,y≤2时,满足条件,即a+3≤2,即a≤-1;②当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,故a≥,用待定系数法求出直线MN的解析式,解联立MN的解析式与抛物线的解析式,根据它们有两个不同的交点得出△>0,从而得出不等式求出得出a<,故≤<,综上所述得出答案。

4.【答案】A【解析】:如图,由题意知:A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故答案为:A.【分析】由题意可知直线y=-2,而直线y=-2与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,所以点A、B、C、D的纵坐标都是-2,再将纵坐标-2代入函数y==3x2+a,y=﹣2x2+b可得a=﹣5,b=6,则a+b的值可求解。

5.【答案】B【解析:∵抛物线对称轴x=-1,经过(1,0),∴- =-1,a+b+c=0,∴b=2a,c=-3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2-4ac>0,故②正确,∵抛物线与x轴交于(-3,0),∴9a-3b+c=0,故③正确,∵点(-0.5,y1),(-2,y2)均在抛物线上,-0.5>-2,则y1<y2;故④错误,∵5a-2b+c=5a-4a-3a=-2a<0,故⑤正确,故答案为:B.【分析】根据抛物线的对称轴公式及抛物线上点的坐标特点得出, a+b+c=0,故b=2a,c=-3a,由抛物线的开口向上得出a>0,根据抛物线与y轴交点的位置,得出c<0,由抛物线的对称轴在y轴的左侧及a>0,得出b>0,根据抛物线的对称性可以得出抛物线与x轴有2个交点,且另一个交点的坐标为(-3,0),把(-3,0),代入抛物线的解析式即可得出9a-3b+c=0,又点点(-0.5,y1),(-2,y2)均在抛物线上,但一个位于抛物线的对称轴右侧,一个在对称轴的左侧,它们各自距对称轴的距离不一样,故距顶点的远近也不一样,点(-0.5,y1)离顶点近一些,根据抛物线的增减性即可得出答案;根据以上信息即可一一判断。

相关文档
最新文档