实际问题与一元一次不等式(提高)知识讲解

合集下载

“一元一次不等式知识点

“一元一次不等式知识点

“一元一次不等式知识点王竞进小颖准备用21元钱买笔和笔记本.已知每支笔3元,每本笔记本2元,她买了4本笔记本,那么她最多还可以买几支笔?怎么解答这类问题呢?在这个问题中,隐含着买笔和笔记本所花的钱与准备的钱之间具有不相等的数量关系.与方程类似,不等式是刻画现实世界中量与量之间不等关系的有效模型.一元一次不等式是表示不等关系的最基本的工具,是学习其他相关数学知识的工具.学习时,应关注以下几个方面:一、正确理解基本概念1.不等式解与不等式解集的概念能使不等式成立的未知数的值叫做不等式的解.如:x=3.5、5、6、10.2等大于3的实数都是不等式x-3>0的解;x=-1、0、2、3、3.5、-5、-6等小于4的实数都是x-4<0的解.一个含有未知数的不等式的解的全体叫做不等式的解集.因此,不等式的解集包含了不等式的所有解,解集中的任何一个数都是不等式的一个解.例1下列说法中正确的是().A.x=2是不等式x+2>3的解B.x=2是不等式x+2>3的唯一解C.x=2不是不等式x+2>3的解D.x=2是不等式x+2>3的解集【解答】A.【点评】弄清不等式的解及解集的区别,是解本题的关键.不等式的解可以有无数个,一般是某个范围内的所有数.不等式中的未知数取解集中的任何一个值时,不等式都成立;不等式中的未知数取解集外的任何一个值时,不等式都不成立.2.一元一次不等式的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式,叫做一元一次不等式.这个不等式必须同时满足3个条件:(1)只含有一个未知数;(2)含未知数的式子是整式;(3)未知数的次数是1.这3个条件缺一不可.如:2x-(4x+1)>3、5y+2≤3(y-1),都是不等式,而x2-3x+2<0、y+■<2都不同时满足上述的3个条件.反过来,如果(a-1)x+3>0是关于x的一元一次不等式,则a必须具备的条件是a-1≠0,即a≠1.3.一元一次不等式组的概念小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于500cm2,试确定这个长方形宽的长度范围.在这个问题中具有两个不等关系:长方形的相片框架的长总大于宽,其面积不小于500,因而可以得到两个不等式:x<25、25x≥500,再联立这两个不等式,记作x<25,25x≥500,从而组成一个关于x的不等式组.像这样,由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组.根据概念,可以知道组成一个不等式组的条件有(1)含有同一个未知数,(2)几个不等式是一次不等式.如:2x-4<6,5(x-2)+3>-3x+1,2x+1<3(3-x),■(x-1)-1>x+■都是一元一次不等式组,而x2-4x<5,4(x-1)-3>-2x+1,■-13(x-1)都不是一元一次不等式组.4.不等式组的解集概念我们知道一个含有未知数的不等式的解的全体叫做这个不等式的解的集合,简称为这个不等式的解集,那么一元一次不等式组中各个不等式的解集的公共部分,就称为这个一元一次不等式组的解集.如x<3,x<1中两个不等式解集的公共部分为x<1,则其解集为x<1;x>3,x>1中两个不等式解集的公共部分为x>3,则其解集为x>3;x<3,x>1中两个不等式解集的公共部分为1x>3,x<1中两个不等式解集的公共部分不存在,则其解集为无解.我们可以用一句口诀来概括其中的规律:同大取大,同小取小;大小小大取中间,大大小小便无解.二、了解不等式解集的表示方法1.用不等式表示一般地,一个含有未知数的不等式有无数个解,它的解为某个范围,这个范围可以用一个具体的、简单的不等式来表示.如:不等式x+3>-1的解集为x>-4;不等式2x+1<3的解集为x<1.2.用数轴来表示用数轴可以直观地表示出一个不等式的解集.表示时,必须注意不等式的类型.小于a则在数轴上表示a的点的左边,大于a则在数轴上表示a的点的右边,且表示a的点处是一个空心;如果是“小于或等于a”或“大于或等于a”时,则表示a的点处应该是一个实心.例3在数轴上表示下列不等式的解集:(1)x<3;(2)x≥3.【解答】(1)在数轴上表示x<3为:;(2)在数轴上表示x≥3为:.【点评】在数轴上表示不等式时,首先在数轴上找到表示不等号右边数的点,再根据“小于向左画、大于向右画、无等号画空心、有等号画实心”用相应的线在数轴上表示出不等式的解集.三、理解不等式的性质,掌握一元一次不等式的解法不等式的性质有两个.不等式的性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变.其中特别要注意的是:在不等式的两边都乘(或除以)同一个负数时,不等号的方向必须改变.和一元一次方程的解法类似,解一元一次不等式的基本步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.逐步将不等式转化为x>a(x≥a)或xx>四、掌握解一元一次不等式组的一般步骤解一元一次不等式组的一般步骤大致为:先分别求得不等式组中各个不等式的解集,再求出这几个不等式解集的公共部分,从而确定不等式组的解集.如:解不等式2x-4<6,5(x-2)+3>-3x+1,先分别求得不等式2x-4<6的解集为x<5,不等式5(x-2)+3>-3x+1的解集为x>1,再把它们在如图所示的数轴上表示出来,因此,这个不等式组的解集为1五、正确理解题意,找出不等关系,列出一元一次不等式,解决实际问题和列一元一次方程解决实际问题类似,在解答具有不等关系的实际问题时,往往先列出不等关系,再用含有未知数的代数式分别表示相关数量,再根据不等关系列出一元一次不等式,进而解出不等式,写出答案.例4某单位共有36位工作人员,为改善办公设备,提高工作效率.单位准备为每位工作人员配备一台手提电脑.现有A、B两种型号的手提电脑供选择.根据预算,共需资金145000元.购买一台A型电脑和两台B型电脑共需资金11840元;购买两台A型电脑和一台B型电脑共需资金12040元.(1)购买一台A型电脑和一台B型电脑所需的资金分别是多少元?(2)问该单位最多能购买A型电脑多少台?【分析】本题中第(2)题,隐含着一个不等量关系:购买A、B两种型号的手提电脑的费用和≤总资金.因此,可以建立关于所购买商品的价格为未知数的不等式解决问题.【解答】(1)设A型电脑x台,B型电脑y台,根据题意,列方程组,得:x+2y=11840,2x+y=12040.解得:x=4080,y=3880.答:购买一台A型电脑和一台B型电脑所需的资金分别是4080元和3880元.(2)设该单位能购买A型电脑a台,根据题意,得:4080x+3880(36-a)≤145000,解得a≤26.6.所以该单位最多能购买A型电脑26台.【点评】本题能够融二元一次方程组与一元一次不等式的应用于一体,考查同学们分析问题、解决问题的能力.解答这类问题的关键是理解题意,找到题目的等量关系和不等量关系分别列出方程组和不等式组求解.对于问题中出现的“至少”、“至多”、“不少于”等等,往往隐含着不等关系,需要建立不等式进行解答.。

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解

一元一次不等式组的知识点及其经典习题讲解知识点一:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。

如:,。

要点诠释:在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。

知识点二:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。

(2)用数轴表示由两个一元一次不等式组成的不等式组的解集,一般可分为以下四种情况:知识点三:一元一次不等式组的解法求不等式组的解集的过程,叫做解不等式组。

解一元一次不等式组的一般步骤为:(1)分别解不等式组中的每一个不等式;(2)将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;(3)根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).要点诠释:用数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈。

知识点四:利用不等式或不等式组解决实际问题列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式或不等式组;(5)解:解出所列的不等式或不等式组的解集;(6)答:检验是否符合题意,写出答案。

要点诠释:在以上步骤中,审题是基础,是根据不等关系列出不等式的关键,而根据题意找出不等关系又是解题的难点,特别要注意结合实际意义对一元一次不等式或不等式组的解进行合理取舍,这是初学者易错的地方。

第6讲 一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲  一元一次不等式的应用八年级数学下册同步讲义(北师大版)

第6讲一元一次不等式的应用目标导航2.能够利用观察一次函数图象直接求出不等式的解.3.有关一元一次不等式与一次函数的实际应用方案问题,必须熟练掌握.知识精讲知识点01 由实际问题抽象出一元一次不等式用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【知识拓展1】(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<80【即学即练1】(2021春•高新区期末)一次环保知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对x道题,可列出的不等式为()A.5x﹣(20﹣x)>88B.5x﹣(20﹣x)<88C.5x﹣x≥88D.5x﹣(20﹣x)≥88【即学即练2】(2021春•宜州区期末)在“建党百年”知识抢答赛中,共有20道题,对于每一题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于95分?设答对x题,则可列不等式为()A.10x﹣5(20﹣x)≥95B.10x+5(20﹣x)≥95C.10x﹣5(20﹣x)>95D.10x+5(20﹣x)>95【即学即练3】(2021•桂林模拟)某次数学竞赛共有16道题,评分办法是:每答对一道题得6分,每答错一道题扣2分,不答的题不扣分也不得分.已知某同学参加了这次竞赛,成绩超过了60分,且只有一道题未作答.设该同学答对了x道题,根据题意,下面列出的不等式正确的是()A.6x﹣2(16﹣1﹣x)≥60B.6x﹣2(16﹣1﹣x)>60C.6x﹣2(16﹣x)≥60D.6x﹣2(16﹣x)>60知识点02 一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【知识拓展1】(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户【即学即练1】(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有()A.6种B.7种C.8种D.9种【即学即练2】(2021秋•虎林市期末)某次知识竞赛共有20道题,答对一题得10分,答错或不答均扣5分,小玉得分超过95分,他至少要答对()道题.A.12B.13C.14D.15【即学即练3】(2021秋•永定区期末)某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件【知识拓展2】(2021秋•盐田区校级期末)超市要到厂家采购甲、乙两种工艺品共100个,付款总额不超(1)最多可采购甲种工艺品多少个?(2)若把100个工艺品全部以零售价售出,为使利润不低于2580元,则最少采购甲种工艺品多少个?【即学即练1】(2021秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?【即学即练2】(2021秋•澧县期末)2021年冬季即将来临,德强学校准备组织七年级学生参观冰雪大世界.参观门票学生票价为160元,冰雪大世界经营方为学校推出两种优惠方案,方案一:“所有学生门票一律九折”;方案二:“如果学生人数超过100人,则超出的部分打八折”.(1)求参观学生为多少人时,两种方案费用一样.(2)学校准备租车送学生去冰雪大世界,如果单独租用45座的客车若干辆,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,求我校七年级共有多少学生参观冰雪大世界?(司机不占用客车座位数)(3)在(2)的条件下,学校采用哪种优惠方案购买门票更省钱?【知识拓展3】(2021秋•上城区校级期中)我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题,抢答规定,抢答对1题得3分,抢答错1题扣1分,不抢答得0分,小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,那么小军至少要答对()道题?A.17B.18C.19D.20【即学即练1】(2021秋•滨江区校级期中)某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打()折.A.9B.8C.7D.6【即学即练2】(2021•嵊州市模拟)随看科技的进步,我们可以通过手机APP实时查看公交车到站情况.小明想乘公交车,可又不想静静地等在A站.他从A站往B站走了一段路,拿出手机查看了公交车到站情况,发现他与公交车的距离为720m(如图),此时有两种选择:(1)与公交车相向而行,到A公交站去乘车;(2)与公交车同向而行,到B公交站去乘车.假设小明的速度是公交车速度的,若要保证小明不会错过这辆公交车,则A,B两公交站之间的距离最大为()A.240m B.300m C.320m D.360m知识点03 一次函数与一元一次不等式(1)一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.(2)用画函数图象的方法解不等式kx+b>0(或<0)对应一次函数y=kx+b,它与x轴交点为(﹣,0).当k>0时,不等式kx+b>0的解为:x>,不等式kx+b<0的解为:x<;当k<0,不等式kx+b>0的解为:x<,不等式kx+b<0的解为:x>.【知识拓展1】(2021秋•瑶海区期末)如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【即学即练1】(2021秋•蜀山区期末)一次函数y=kx+b(k,b为常数且k≠0)的图象如图所示,且经过点(﹣2,0),则关于x的不等式kx+b>0的解集为.【即学即练2】(2021秋•槐荫区期末)如图,一次函数y=2x+8的图象经过点A(﹣2,4),则不等式2x+8>4的解集是()A.x<﹣2B.x>﹣2C.x<0D.x>0【即学即练3】(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx ﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3【即学即练4】直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则关于x的不等式kx+b<0的解集是.【知识拓展2】(2021•滨江区校级三模)一次函数y1=ax﹣a+1(a为常数,且a≠0).(1)若点(﹣1,3)在一次函数y1=ax﹣a+1的图象上,求a的值;(2)若a>0,当﹣1≤x≤2时,函数有最大值5,求出此时一次函数y1的表达式;(3)对于一次函数y2=kx+2k﹣4(k≠0),若对任意实数x,y1>y2都成立,求k的取值范围.【即学即练1】(2021•龙岩模拟)对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,4),B(4,1),C(2,4),求解下列问题:(1)在P1(2,4),P2(4,4),P3(5,5)中,是△ABC的覆盖特征点的有P2,P3;(2)若在一次函数y=mx+6(m≠0)的图象上存在△ABC的覆盖的特征点,求m的取值范围.【即学即练2】(2020秋•丰都县期末)问题:探究函数y=|x+1|﹣2的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)下表是y与x的几组对应值,请将表格补充完整:x…﹣5﹣4﹣3﹣2﹣10123…y…21m n﹣2﹣1012…表格中m的值为,n的值为.(2)如图,在平面直角坐标系中描点并画出此函数的图象;(提示:先用铅笔画图,确定后用签字笔画图)(3)进一步探究:观察函数的图象,可以得出此函数的如下结论:①当自变量时,函数y随x的增大而增大;②当自变量x的值为时,y=3;③解不等式|x+1|﹣2<0的结果为.能力拓展例1.(2020·黑龙江哈尔滨市·九年级一模)2020年初武汉爆发新冠肺炎疫情,使得口罩成为人们生活的必需品.爱民药店库存一批N95和普通医用两种类型口罩,N95口罩进价是普通医用口罩进价的5倍,药店把N95口罩和普通医用口罩在进价基础上分别加价40%、50%做为零售价.某人在爱民药店用84元购买一种口罩,发现买普通医用口罩的数量恰好比买N95口罩的数量4倍还多4个.(1)求两种口罩的进价分别是多少元?(2)随着疫情的进一步恶化,爱民药店的口罩很快被抢购一空.该药店再去厂家进货时发现,由于原材料上涨,N95口罩进价上涨20%,普通医用口罩进价上涨了30%.爱民药店购进这两种口罩共1500个,在零售时,N95口罩保持原售价不变,而普通医用口罩在原售价基础上上调20%,该药店要想在这批口罩全部售出后的利润不少于2000元(不考虑其它因素),则这次至少购进N95口罩多少个?例2.(2020·黑龙江哈尔滨市·九年级三模)某加工厂甲、乙二人制造同一种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙作60个所用的时间相等.(1)求甲、乙每小时各做多少个机械零件.(2)该加工厂急需甲、乙二人制造该种机械零件228个,由于乙另有其它任务,所以先由甲工作若干小时后再由甲、乙共同完成剩余的任务,工厂要求必须不超过10小时完成任务,请你求出乙至少工作多少小时?【变式1】(2020·长沙市雅礼实验中学八年级月考)“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙.某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读.已知购进《孟子》和《论语》,已知一本《孟子》的进价与一本《论语》的进价的和为40元,用90元购进《孟子》的本数与用150元购进《论语》的本数相同.(1)求每本《孟子》、每本《论语》的进价分别是多少元?(2)今年《孟子》和《论语》的单价和去年相比保持不变,该学校计划购进《孟子》和《论语》共100本,但花费总额不超过1800元,求最少购进《孟子》多少本?【变式2】(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.【变式3】(2020·和平县实验初级中学七年级月考)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?【变式4】(2020·浙江省杭州市萧山区高桥初级中学八年级期中)某商场计划经销A、B两种新型节能台灯共50盏,这两种台灯的进价、售价如表所示:(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少购进B 种台灯多少盏?【变式5】(2020·舟山市第一初级中学八年级期中)在抗击新冠肺炎疫情期间,我校购买酒精和消毒液两种消毒物资,供师生使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于恰逢商城打折,酒精和消毒液每瓶价格分别打7折和8折,此次只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?【变式6】(2019·山西八年级期末)山西民间的雕刻艺术源远流长,主要以古代传统吉祥纹样为素材,以石雕、木雕砖雕等形式,来体现主人的高尚情操和文化修养以及人们的美好愿望.某木雕经销商购进“木象”和“木马”两种雕刻艺术品,购“木象”艺术品共用了2000元,“木马”艺术品共用了2400元已知“木马”每件的进价比“木象”每件的进价贵8元,且购进“木象”“木马”的数量相同.()1求每件“木象”、“木马”艺术品的进价;()2该经销商将购进的两种艺术品进行销售,“木象”的销售单价为60元,“木马”的销售单价为88元,销售过程中发现“木象”的销量不好,经销商决定:“木象”销售一定数量后,将剩余的“木象”按原销售单价的七折销售;“木马”的销售单价保持不变要使两种艺术品全部售完后共获利不少于2460元,问“木象”按原销售单价应至少销售多少件?题组A 基础过关练1.如图,一次函数y =kx+b (k ,b 为常数,且k ≠0)的图象过点A (0,﹣1),B (1,1),则不等式kx+b >1的解集为( )A .x >0B .x <0C .x >1D .x <12.如图,直线y =kx+b 与直线y =3x ﹣2相交于点(12,﹣12),则不等式3x ﹣2<kx+b 的解为( )A .x >12B .x <12C .x >﹣12D .x <﹣123.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <分层提分4.如图,射线1l反映了某棉业有限公司的加工销售收入与销售量的之间的函数关系,射线2l反映了该公司的加工成本与销售量之间的关系,当该公司盈利时,销售量应为()A.大于3t B.等于4t C.小于6t D.大于6t5.(2021秋•澧县期末)目前新冠变异毒株“奥密克戎”肆虐全球,疫情防控形势严峻.体温T超过37.3℃的必须如实报告,并主动到发热门诊就诊.体温“超过37.3℃”用不等式表示为()A.T>37.3℃B.T<37.3℃C.T≤37.3℃D.T≤﹣37.3℃6.(2020秋•海曙区期末)海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x,根据题意得()A.5x﹣2(20﹣x)≥80B.5x﹣2(20﹣x)≤80C.5x﹣2(20﹣x)>80D.5x﹣2(20﹣x)<807.(2021春•龙华区期末)某校拟用不超过2600元的资金在新华书店购买党史和改革开放史书籍共40套来供学生借阅,其中党史每套72元,改革开放史每套60元,那么学校最多可以购买党史书籍多少套?设学校可以购买党史书籍x套,根据题意得()A.72x+60(40﹣x)≤2600B.72x+60(40﹣x)<2600C.72x+60(40﹣x)≥2600D.72x+60(40﹣x)=26008.(2021秋•西湖区校级期中)为鼓励居民使用天然气,某市天然气公司采用一种收费办法.若整个小区每户都安装,收整体初装费10000元,再对每户收费500元,某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户9.(2021•梁园区校级一模)某学校为响应政府号召,需要购买一批分类垃圾桶,分为蓝色(可回收),绿色(易腐),红色(有害垃圾)和黑色(其他)四类,学校打算买其中蓝色和黑色共100个(两种都得有),黑色的50元/个,蓝色的60元/个,总费用不超过5060元,则不同的购买方式有( )A .6种B .7种C .8种D .9种.10.(2021•集美区模拟)小军到水果店买水果,他身上带的钱恰好可以购买15个苹果或21个橙子,若小军先买了9个苹果,则他身上剩下的钱最多可买橙子( )A .7个B .8个C .9个D .10个11.(2021春•无棣县期末)某种商品的进价为40元,出售时标价为60元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )折.A .7B .6C .8D .512.已知一次函数y kx b =+的图像如图所示,则关于x 的不等式320kx b ->的解集为_____.13.(2021秋•温州期中)全国文明城市创建期间,某校组织开展“垃圾分类”知识竞赛,共有25道题.答对一题记4分,答错(或不答)一题记﹣2分.小明参加本次竞赛得分要超过60分,他至少要答对 道题.14.(2021春•老河口市期末)某种商品的进价为1000元,出售时标价为1500元,由于该商品积压,商店决定打折出售,但要保证利润率不低于20%,则至多可打 折.15.(2021春•平罗县期末)在某次篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场扣1分,某队预计在2019﹣2020赛季全部32场比赛中最少得到48分,才有希望进入季后赛,则这个队至少胜 场才有希望进入季后赛.16.(2021春•榆阳区期末)为加快“智慧校园”建设,某市准备为试点学校采购A 、B 两种型号的一体机共1100套,已知去年每套A 型一体机1.2万元每套、B 型一体机1.8万元,经过调查发现,今年每套A 型一体机的价格比去年上涨25%,每套B 型一体机的价格不变,若购买B 型一体机的总费用不低于购买A 型一体机的总费用,则该市最多可以购买 套A 型一体机.17.某工厂计划生产A,B两种产品共10件,其生产成本和利润如表.(1)若工厂计划获利14万元,则A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且生产A产品x件,请列出不等式.18.(2021•福建模拟)疫情期间为了满足测温的需求,某学校决定购进一批额温枪.经了解市场,购买A 种品牌的额温枪每支300元,B种品牌的额温枪每支350元.经与商家协商,A种品牌的额温枪降价15%,B种品牌的额温枪打八折销售.若购买两种品牌的额温枪共50支且总费用不超过13000元,则至少要购买A种品牌的额温枪多少支?19.(2021春•淮阳区校级期末)某市要创建“全国文明城市”.其小区为了响应号召,计划购进A,B两种树苗共23棵.已知A种树苗每棵100元,B种树苗每棵80元.(1)若购进A,B两种树苗共花费了2100元,问购进A,B两种树苗各多少棵?(2)若购进A种树苗的数量不少于B种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.题组B 能力提升练1.如图,一次函数y =kx +b(k ≠0)的图象经过点A(-2,4),则不等式kx +b >4的解集是( )A .x <-2B .x >-2C .x <0D .x >02.如图,若一次函数y =-2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式-2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <33.若一次函数y =kx +b(k ,b 为常数,且k ≠0)的图象经过点A(0,-1),B(1,1),则不等式kx +b >1的解集为( )A .x <0B .x >0C .x <1D .x >14.如图,直线y =kx +b(k ≠0)经过点(-1,3),则不等式kx +b ≥3的解集为( )A .x >-1B .x <-1C .x ≥3D .x ≥-15.如图,直线y=kx-b与横轴、纵轴的交点分别是(m,0),(0,n),则关于x的不等式kx-b≥0的解集为( )A.x≥m B.x≤mC.x≥n D.x≤n6.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b<2的解集为___.7.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解集为____.8.一次函数y=ax+b与正比例函数y=kx在同一平面直角坐标系的图象如图所示,则关于x的不等式ax +b≥kx的解集为___.9.已知一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③b<0;④关于x的方程kx+b=x+a的解为x=3;⑤x>3时,y1<y2.其中正确的结论是____.(只填序号)10.在坐标系中作出函数y =2x +6的图象,利用图象解答下列问题:(1)求方程2x +6=0的解;(2)求不等式2x +6>-2的解集;(3)若2≤y ≤6,求x 的取值范围.11.如图,一次函数1: 22l y x =-的图像与x 轴交于点D ;一次函数2: l y kx b =+的图像与x 轴交于点A ,且经过点()3,1B ,两函数图像交于点(),2C m .(1)求m ,k ,b 的值;(2)根据图象,直接写出122kx b x <+<-的解集.12.某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2 000的设计费;乙公司提出:每份材料收费35,不收设计费.(1)请用含x 代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.13.为响应市政府“创建国家森林城市”的号召,某小区计划购进A ,B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A ,B 两种树苗刚好用去1 220元,问购进A ,B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.14.如图,一次函数y kx b =+的图象经过点()1,5A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1(1)求AB 的函数表达式;(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标; (3)若3kx b x +<,请直接写出x 的取值范围.题组C 培优拔尖练一.填空题(共6小题)1.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x 应满足的不等式为 . 2.(2021秋•江北区校级期中)据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为 元.3.(2021春•许昌期末)为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少 个窗口.4.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品件.5.(2019•沙坪坝区校级二模)临近端午,某超市准备购进某品牌的白粽、豆沙粽、蛋黄粽,三种品种的粽子共1000袋(每袋均为同一品种的粽子),其中白粽每袋12个,豆沙粽每袋8个,蛋黄粽每袋6个.为了推广,超市还计划将三个品种的粽子各取出来,拆开后重新组合包装,制成A、B两种套装进行特价销售:A套装为每袋白粽4个,豆沙粽4个;B套装为每袋白粽4个,蛋黄粽2个,取出的袋数和套装的袋数均为正整数.若蛋黄粽的进货袋数不低于总进货袋数的,则豆沙粽最多购进袋.6.(2020秋•东阳市期末)已知直线y=x+2与函数y=图象交于A,B两点(点A在点B 的左边).(1)点A的坐标是;(2)已知O是坐标原点,现把两个函数图象水平向右平移m个单位,点A,B平移后的对应点分别为A′,B′,连接OA′,OB′.当m=时,|OA'﹣OB'|取最大值.二.解答题(共7小题)7.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或不答倒扣1分,在这次竞赛中,小明获得80分以上,则小明至少答对多少道题?设小明答对x道题,用不等式表示题目中的不等关系.8.若一件商品的进价为500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,问售货员最低打几折出售此商品设打x折,用不等式表示题目中的不等关系.。

人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解

人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解

实际问题与一元一次不等式(提高)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【高清课堂:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式. 【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系. 【答案与解析】 解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵. 【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树; 最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵, 这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组. 【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

一元一次不等式组(提高) 知识讲

一元一次不等式组(提高) 知识讲

一元一次不等式组(提高)知识讲解责编:杜少波【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1.一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解不等式组就是求它的解集,解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.【典型例题】类型一、解一元一次不等式组1.解不等式组3(2)4 121.3x xxx--≤-⎧⎪+⎨>-⎪⎩【思路点拨】按照解不等式组的基本步骤进行求解就可以了.【答案与解析】解:解不等式①,得x≥1解不等式②,得x<4所以,不等式组的解集是1≤x<4.【总结升华】求出不等式①、②的解集后,应取其公共部分作为不等式组的解集.举一反三:【变式】解不等式组3(2)423x xa xx--<⎧⎪+⎨≥⎪⎩无解.则a的取值范围是 ( )A.a<1 B.a≤l C.a>1 D.a≥1【答案】B2. 不等式组3(2)5(4) 2 (1)562(2)1, (2)32211 (3)23x xxxx x⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.【思路点拨】解这类问题的第一步是分别求出各个不等式的解集;第二步借助数轴以确定不等式组的公共解集;最后看公共解集中是否存在整数解.【答案与解析】解:解不等式(1),得:x<2;解不等式(2),得:x≥-3;解不等式(3),得:x≥-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x<2.∴原不等式组的整数解为:-2、-1、0、1.【总结升华】求不等式组的解集就是求不等式组中所有不等式解集的公共部分.对于三个以上的不等式有时不容易得到公共解集,于是常常借助数轴的直观性,这样较容易确定其解集.在数轴上表示点的位置,要注意空心圈与实心圆点的不同用法.举一反三:【变式】(2015•北京)解不等式组,并写出它的所有非负整数解.【答案】解:,由①得:x≥﹣2;由②得:x <,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.3.试确定实数a的取值范围.使不等式组123544(1)33x xax x a+⎧+>⎪⎪⎨+⎪+>++⎪⎩恰好有两个整数解.【思路点拨】先确定其解集,再判断出整数解,最后利用数轴确定a的范围.【答案与解析】解:由不等式123x x++>,去分母得3x+2(x+1)>0,去括号,合并同类项,系数化为1后得x>25 -.由不等式544(1)33ax x a++>++去分母得3x+5a+4>4x+4+3a,可解得x<2a.所以原不等式组的解集为225x a-<<,因为该不等式组恰有两个整数解:0和l,故有:1<2a≤2,所以:12a<≤1.【总结升华】此题考查的是一元一次不等式组的解法,得出x的整数解,再根据x的取值范围求出a的值即可.【高清课堂:第二讲一元一次不等式组的解法370096 例6】举一反三:【变式】已知a是自然数,关于x的不等式组≥⎧⎨⎩3x-4a,x-2>0的解集是x>2,求a的值.【答案】解:解第一个不等式,得解集43ax+≥,解第二个不等式,得解集2x>,∵不等式组的解集为x>2,∴423a+≤,即2a≤,又a为自然数,∴0a=或1或2.类型二、解特殊的一元一次不等式组4.(2015•黔西南州)求不等式(2x﹣1)(x+3)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣3.∴不等式的解集为x>或x<﹣3.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣3)(x+1)<0的解集.(2)求不等式≥0的解集.【答案与解析】解:(1)根据“异号两数相乘,积为负”可得①或②,解①得不等式组无解;解②得,﹣1<x<;(2)根据“同号两数相乘,积为正”可得①,②,解①得,x≥3,解②得,x<﹣2,故不等式组的解集为:x≥3或x<﹣2.【总结升华】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.类型三、一元一次不等式组的应用5.某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】本题的关键语句是:“若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人”.理解这句话,有两层不等关系.(1)租用36座客车x辆的座位数小于租用42座客车(x-1)辆的座位数.(2)租用36座客车x辆的座位数大于租用42座客车(x-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车x辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79 xx>⎧⎨<⎩.由题意x应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.【总结升华】本例不等关系相对隐蔽,需要在审题过程中加以挖掘.举一反三:【变式1】“向阳”中学某班计划用勤工俭学收入的66元,同时购买单价分别为3元、2元、1元的甲乙丙三种纪念品,奖励参加校“艺术节”活动的同学.已知购买的乙种纪念品比购买的甲种纪念品多2件,而购买的甲种纪念品不少于10件,且购买甲种纪念品费用不超过总费用的一半,若购买的甲、乙、丙三种纪念品恰好用了66元钱,问可有几种购买方案,每种方案中购买甲乙丙三种纪念品各多少件?【答案】解:设购买的甲、乙、丙三种纪念品件数分别为x 、y 、z ,由题意得:⎩⎨⎧+==++26623x y z y x 且⎪⎩⎪⎨⎧≤≥266310x x 由方程组得:⎩⎨⎧-=+=xz x y 5622解不等式组得:10≤x≤11∵x 为整数,∴x=10或x =11当x =10时,y =12,z =12当x =11时,y =13,z =7∴可有两种方案购买.【高清课堂:实际问题与一元一次不等式组409416练习】【变式2】5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作. 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x 辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.【答案】∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆.(2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元).∴方案1花费最低,所以选择方案1.。

一元一次不等式 教案

一元一次不等式 教案

一元一次不等式教案第一章:一元一次不等式的概念与性质1.1 引入不等式的概念通过实际例子,让学生了解不等式的含义和作用。

引导学生理解不等号(>、<、≥、≤)的含义。

1.2 认识一元一次不等式解释一元一次不等式的定义,即形如ax + b > 0 或ax + b ≤0 的不等式。

强调未知数x 的系数a 和常数项b 的重要性。

1.3 探索一元一次不等式的性质引导学生通过举例或图形来分析一元一次不等式的性质。

讨论不等式的解集,即满足不等式的x 的取值范围。

第二章:一元一次不等式的解法2.1 解基本的一元一次不等式演示如何解形如ax > b 或ax ≤b 的一元一次不等式。

强调解不等式时要注意符号的变化。

2.2 解含括号的一元一次不等式解释如何处理含括号的一元一次不等式。

引导学生先解决括号内的运算,再进行不等式的解法。

2.3 解含有绝对值的一元一次不等式解释绝对值的概念,并引导学生如何处理含有绝对值的一元一次不等式。

强调绝对值不等式的解集可能包含两个部分。

第三章:一元一次不等式的应用3.1 应用一元一次不等式解决实际问题提供实际问题,让学生应用一元一次不等式进行解答。

强调将实际问题转化为不等式问题的过程。

3.2 一元一次不等式的线性组合解释如何将多个一元一次不等式进行线性组合。

引导学生理解线性组合后的不等式的解集。

3.3 一元一次不等式组解释什么是一元一次不等式组,即多个一元一次不等式的集合。

引导学生如何解决一元一次不等式组,并讨论解集的交集。

第四章:一元一次不等式的拓展4.1 不等式的符号性质引导学生深入理解不等式的符号性质,如传递性、互补性等。

通过举例或练习题来巩固学生对不等式符号性质的理解。

4.2 不等式的变形解释如何对一元一次不等式进行变形,如两边加减乘除等。

强调变形时保持不等号方向不变的重要性。

4.3 一元一次不等式与函数的关系引导学生理解一元一次不等式与函数之间的关系。

六年级春季班第12讲:一元一次不等式(组)的应用与提高-教师版

六年级春季班第12讲:一元一次不等式(组)的应用与提高-教师版

本讲在上一讲学习了一元一次不等式(组)的基础上,讲解一元一次不等式(组)的相关应用,以及含字母系数的不等式(组)和含绝对值的不等式.重点是灵活运用不等式的思想解决相关的实际问题,难点是掌握分类讨论的数学思想,用以解决含字母系数的不等式(组)和含绝对值的不等式的问题.1、 一元一次不等式及其解法只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式. 解一元一次不等式的一般步骤: (1)去分母; (2)去括号; (3)移项;(4)化成ax b >(或ax b <等)的形式(其中0a ≠);(5)两边同时除以未知数的系数,得到不等式的解集.一元一次不等式(组)的应用与提高内容分析知识结构模块一:一元一次不等式的解法及应用知识精讲【例1】()5134y y--≥-的最大整数解是__________.【难度】★【答案】4.【解析】原不等式化为:28y≤,即:4y≤,所以最大整数解是4.【总结】考查不等式的解法,注意题目中求的是最大整数解.【例2】解下列不等式.(1)7341112536x x x x-++--≥-+;(2)()()112335123x x⎡⎤----≥⎢⎥⎣⎦.【难度】★★【答案】(1)3617x≤;(2)23x≤-.【解析】(1)去分母得:15(7)6(34)3010(1)5(1)x x x x--+≥-++-去括号得:10515182430101055x x x x---≥--+-合并同类项得:3472x≤解得:3617x≤;(2)化简得:5(23)23x x---+≥,4(23x--≥,423x-≤-即原不等式的解为:23x≤-.【总结】考查不等式的解法,注意去分母时每一项都要乘以最简公分母.【例3】当a为何值时,不等式31324x a x-->的解集是x > 2.【难度】★★【答案】16.【解析】去分母得:2(31)3x a x->-,去括号化简得:92x a>+所以原不等式的解为:29ax+>,即229a+=,解得:16a=.【总结】本题主要考查对不等式的解集的理解及运用.例题解析【例4】m为何正整数时,关于x的方程5315424x m m-=-的解是非正数?【难度】★★【答案】m为1或2或3.【解析】去分母得:53215x m m-=-,化简得:3x m=-.因为方程的解是非正数,所以30m-≤,解得:3m≤,所以正整数m的值为1、2、3.【总结】考查解一元一次方程与解不等式的综合运用,注意对非正数的理解.【例5】有一个两位数,个位数字与十位数字的和是9,且这个两位数不大于63,求这个两位数.【难度】★★【答案】63或54或45或36或27或18.【解析】设这个两位数的十位数字为x,则个位数字为(9)x-,则有:10963x x+-≤,解得:6x≤,所以这个两位数可能为:63、54、45、36、27、18.【总结】考查不等式的简单应用.【例6】10名菜农,每人可种甲种蔬菜3亩或种乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜可收入0.8万元,要使总收入不低于15.6万元,则最多能安排几个人种甲种蔬菜?【难度】★★【答案】4人.【解析】设安排x人种甲种蔬菜,则种乙种蔬菜的人数为(10x-)人,则0.530.82(10)15.6x x⨯+⨯-≥,解得:4x≤,故最多安排4人种甲种蔬菜.【总结】考查不等式在实际生活中的简单应用.【例7】 用含药率15%与40%的同种农药混合成含药率不小于30%的农药100千克,那么含药率40%的农药应不少于多少千克? 【难度】★★【答案】不少于60千克.【解析】设需含药率15%的农药x 千克,则需含药率40%的农药(100x -)千克, 可列方程:15%40%(100)30x x +-=,解得:40x =,故10060x -=千克. 【总结】考查不等式在实际生活中的简单应用.【例8】 某单位组织旅游,定了若干条游船(不超过10条),如每条游船坐4人,则还余19人没安排;如每条游船坐6人,则有一条船人没坐满.问:该单位定了多少条游船? 【难度】★★ 【答案】10条.【解析】设该单位定了x 条游船(010)x x <≤,为整数,则0(419)6(1)6x x <+--<,解得:9.510x <≤, 所以10x =,即该单位定了10条游船. 【总结】考查不等式的简单应用.【例9】 某班班主任组织优秀班干部去旅游,甲旅行社说:“如果班主任买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括班主任在内全部按全票价的6折优惠.”全票价为24元/张,就学生数讨论哪家旅行社更优惠. 【难度】★★★ 【答案】见解析.【解析】设旅行社收的费用为y 元,学生数有x 人,根据题意得:24024050%120240(1)24060%144144y x x y x x =+⨯⨯=+=+⨯⨯=+甲乙,当y y =甲乙时,解得4x =,即当学生数为4时,两家旅行社收费一样多; 所以可得:当4x >时,y y <甲乙;当4x <时,y y >甲乙.因此学生数多于4人时,选甲旅行社;当学生数少于4人时,选乙旅行社. 【总结】考查不等式的应用,注意对两种方案的选择.【例10】 已知A 市和B 市库存某种机器12台和6台,现决定支援C 市10台,D 市8台,已知从A 市调运一台机器到C 市、D 市的运费分别为400元和800元;从B 市调运一台机器到C 市、D 市运费分别300元和500元,要求运费不超过9000元,问共有几种调运方案. 【难度】★★★ 【答案】见解析.【解析】设B 市到C 市运x 台,则B 市到D 市运(6x -)台,A 市到C 市运(10x -)台, A 市到D 市运(12(10)x --)台,总运费为ω元,则 300500(6)400(10)800[12(10)]x x x x xω=+-+-+--=+,令9000ω≤,即20086009000+≤,解得:2x ≤. 所以共有三种调运方案:①B 市往C 市运0台,B 市往D 市运6台,A 市往C 市运10台,A 市往D 市运2台; ②B 市往C 市运1台,B 市往D 市运5台,A 市往C 市运9台,A 市往D 市运3台; ③B 市往C 市运2台,B 市往D 市运4台,A 市往C 市运8台,A 市往D 市运4台. 【总结】考查不等式的应用,注意对方案的选择.【例11】 解不等式:34312xx->-. 【难度】★★★【答案】102x <<.【解析】移项得:343012x x -->-,通分得:343(12)012x x x --->-,即2012xx>-. 1. 当0120x x >->,且时,解得:102x <<; 2.当0120x x <-<且时,不等式无解. 综上原不等式的解集为:102x <<. 【总结】本题综合性较强,注意分类讨论,切忌直接去分母.1、 解一元一次不等式组的一般步骤(1)求出不等式组中各个不等式的解集; (2)在数轴上表示各个不等式的解集;(3)确定各个不等式解集的公共部分,就得到这个不等式组的解集.【例12】 不等式3941x -<-<的解集是__________. 【难度】★ 【答案】23x <<.【解析】移项:39419x --<-<-,两边同时除以-4:1248x -<-<-,解得:23x <<. 【总结】考查不等式组的解法.【例13】 同时满足不等式23104x-+≥和()225x -≥-的整数解是______________. 【难度】★★ 【答案】0、1、2.【解析】由第一个不等式可得:2340x -+≥,解得:2x ≤,由第二个不等式可得:245x -≥-,解得:12x ≥-,所以:122x -≤≤,故满足不等式组的整数解是:0、1、2.【总结】考查不等式组的解法及应用,注意对整数解的确定.模块二:一元一次不等式组的解法与应用知识精讲例题解析【例14】 x 的2倍与5的和的一半大于3-且不大于7,列出不等式(组)为____________,x 的取值范围为__________________. 【难度】★★ 【答案】见解析. 【解析】根据题意得:25372x +-<≤,解得:11922x -<≤. 【总结】考查不等式组的应用及解法.【例15】 不等式组()12143x ax x +<⎧⎪⎨->-⎪⎩的解集为一切负数,求a 的值.【难度】★★ 【答案】1.【解析】由①得:1x a <-,由②得:112x <,因为不等式组的解集为一切负数, 所以1x a <-,且101a a -==,解得:. 【总结】考查对不等式组的解集的理解及简单应用.【例16】 解下列不等式组: (1)1032752532x x x x x --⎧+-<-⎪⎪⎨⎪+>+⎪⎩;(2)()()22132237223x x x x x x ⎧+≤+⎪->+⎨⎪-≥+⎩.【难度】★★. 【答案】见解析【解析】(1)由①得:10(2)2(10)705(3)x x x +--<--,化简得:1345x <,解得:4513x <,由②得:4x >-, 所以原不等式组的解集为:45413x -<<; (2)由①得:1x ≥,由②得:5x >,由③得:4x ≥,所以原不等式组的解为:5x >.【总结】考查不等式组的解法:同大取大,同小取小,小大大小取中间,大大小小是空集.【例17】 一件商品售价为120元,若按售价九折出售,获利不超过20%;若按售价七折出售,则出现亏本.求商品成本价的范围.【难度】★★ 【答案】见解析.【解析】设商品成本价为x 元,由题意可得:12090%120%12070%x x ⨯≤+⎧⎨⨯<⎩,解得:9084x x ≥⎧⎨>⎩, 所以原不等式组的解集为:90x ≥.【总结】考查不等式组在实际问题中的简单应用.【例18】 一种灭虫药粉40千克,含药率是15%,现在要用含药率较高的同样的灭虫药粉50千克与它混合,使混合后的含药率在25%与30%之间(不包括25%和30%),求所用药粉的含药率的范围. 【难度】★★ 【答案】见解析.【解析】设所用药粉的含药率为x ,由题意可得:4015%5025%30%4050x ⨯+<<+,解得:33%42%x <<, 即所用药粉的含药率在33%到42%之间.【总结】考查不等式组的简单应用,注意对含药率的准确理解.【例19】 某初三毕业班若干名同学合影留念,需交照相费40元(含两张照片),若另外加洗一张照片收费5元,预定平均每人交钱大于6元而少于8元,问:至少有多少学生参加照相,才能保证一人一张照片? 【难度】★★ 【答案】11.【解析】设有x 名学生参加照相,由题意可得:6405(2)8x x x <+-<,解得:1030x <<,因为学生数为整数,所以至少有11名同学.【总结】考查不等式组在实际问题中的简单应用,注意学生数只能取整数.【例20】 某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件,已知生产一件A 种产品需要甲种原料9千克,乙种原料3千克,出售后可获利700元;生产一件B 种产品需要甲种原料4千克,乙种原料10千克,出售后可获利1200元.按要求安排A 、B 两种产品的生产件数,有哪几种方案?哪种方案获利最大?最大利润是多少? 【难度】★★★ 【答案】见解析.【解析】设生产A 种产品x 件,则有:94(50)360310(50)290x x x x +-≤⎧⎨+-≤⎩,解得:3032x ≤≤,所以有三种方案:①生产A 种产品30件,B 种产品20件;此时获利:7003012002045000⨯+⨯=元; ②生产A 种产品31件,B 种产品19件;此时获利:7003112001944500⨯+⨯=元; ③生产A 种产品32件,B 种产品18件;此时获利:7003212001844000⨯+⨯=元, 所以采用方案①所获利润最大,为45000元.【总结】本题综合性较强,主要考查不等式组在实际问题中的应用.【例21】 某厂2016年12月在制定2017年某种化肥的生产计划时,收集到了如下信息: 生产该化肥的工人数不能超过200人;每个工人全年工时数不得多于2100个;预计2017 年该化肥至少可销售80000袋;每生产一袋该化肥需要4个工时;每袋该化肥需要原料 20千克;现库存原料800吨,本月还需要200吨,2017年可补充1200吨. 请你根据以上数据确定2017年该种化肥的生产袋数的范围. 【难度】★★★【答案】8000090000x ≤≤.【解析】设2017年该种化肥的生产袋数为x ,则根据题意,可得:4210020020(8002001200)10008000x x x ≤⨯⎧⎪≤-+⨯⎨⎪≥⎩由①得:105000x ≤, 由②得:90000x ≤所以8000090000x ≤≤,即2017年生产袋数范围是8000090000x ≤≤. 【总结】本题综合性较强,主要考查不等式组在实际问题中的应用.【例22】甲、乙两人到某折扣店买商品,商店的商品只剩两种,单价为32元和36,已知两人购买商品的件数相同,且两人购买商品一共花费了688元,求两人共购买两种商品各多少件?【难度】★★★【答案】8、12.【解析】设单价为32元的购买x件,36元的y件,则3236688x y+=,化简得:8()172x y y++=,因为x、y均为整数,所以解得812xy=⎧⎨=⎩,即两人共购买甲商品8件,乙商品12件.【总结】本题综合性较强,主要考查不等式组在实际问题中的应用.【例23】已知a、b、c为三个非负数,且满足325a b c++=,231a b c+-=,若39S a b c=+-,则S的最大值与最小值为多少?【难度】★★★【答案】见解析.【解析】由325231a b ca b c++=⎧⎨+-=⎩①②,得73711a cb c=-⎧⎨=-⎩③④,所以393(73)71192 s a b c c c c c=+-=-+--=-.因为a、b、c为三个非负数,故由③得:730a c=-≥,37c≥,由④得:7110b c=-≥,711c≤,所以37711c≤≤,则当711c=时,s值最大,为1511-;当37c=时,s值最小,为137-.【总结】本题较复杂,主要考查不等式组的应用,注意用一个未知量去表示另一个未知量.1、 含字母系数的不等式根据不等式的性质3可知:对于不等式1ax >,若0a >,则1x a >;若0a <,则1x a<.【例24】 解关于x 的不等式()120a x a --+>(其中a > 1). 【难度】★ 【答案】21a x a ->-. 【解析】由题意可得:(1)2a x a ->-,因为a > 1,所以10a ->,所以21a x a ->-. 【总结】考查不等式的解法,注意对字母系数的正负的判定.【例25】 讨论关于x 的不等式ax < b (0a ≠)的解的情况. 【难度】★★ 【答案】见解析. 【解析】当0a >时,b x a <; 当0a <时,bx a>. 【总结】考查解含字母系数的不等式,注意分类讨论.【例26】 设a < 1,解不等式1ax a x +-<. 【难度】★★ 【答案】1x >-.【解析】由题意可得:(1)1a x a -<-,因为a < 1,所以10a -<, 所以原不等式的解为1x >-.【总结】考查不等式的解法,注意对字母系数的正负的判定.模块三:含字母系数的不等式(组)知识精讲例题解析【例27】 解关于x 的不等式2m x n x ->+. 【难度】★★ 【答案】21nx m <-+. 【解析】由题意可得:2m x x n -->,即2(1)m x n -+>, 因为2(1)0m x -+<,所以原不等式的解为21nx m <-+. 【总结】考查不等式的解法,注意对字母系数的正负的判定.【例28】 已知关于x 的不等式()3223a x a -<-的解集是1x >-,求a 的取值范围. 【难度】★★★【答案】23a <.【解析】由题意可得:320a -<,解得:23a <. 【总结】考查对不等式的解集的理解及应用.【例29】 设不等式()()230a b x a b ++-<的解集是13x <-,解关于x 的不等式()32a b x a b ->-.【难度】★★★ 【答案】3x <-.【解析】由题意可得:不等式的解集为:32b ax a b-<+, 3213b a a b -∴=-+,解得2a b =,代入()32a b x a b ->-,得:3bx b ->. 0320200a b b a a b a b +>-<=∴>>,且,,,()323x a b x a b x ∴->-<-的解集的式为:关于不等.【总结】本题综合性较强,要先根据第一个不等式的解集,求出a 、b 之间的关系,从而再求出第二个不等式的解集,注意要根据已知条件判断系数的符号.1、 ax b c +>(0c >)的解法是:先化为不等式组ax b c +>或ax b c +<-,再由不等式的性质求出原不等式的解集. 2、 ax b c +<(0c >)的解法是:先化为不等式c ax b c -<+<,再由不等式的性质求出原不等式的解集.【例30】 下列不等式中,解集为一切实数的是( )A .21x +>B .211x ++>C .()2781x ->-D .()27810x -->【难度】★ 【答案】C【解析】A 、B 选项当x 取-2时不成立; C 选项()2780x -≥所以不论取何值时都是成立的; D 选项当x 取78时不成立. 【总结】考查绝对值的非负性的运用.【例31】 解绝对值不等式. (1)23x -≤;(2)23x ->.【难度】★★【答案】(1)15x -≤≤;(2)51x x ><-或. 【解析】(1)323x -≤-≤,解得:15x -≤≤; (2)23x ->或23x -<-,解得:51x x ><-或. 【总结】考查含绝对值符号的不等式的解法.模块四:含绝对值符号的不等式知识精讲例题解析【例32】 解不等式125x -<. 【难度】★★ 【答案】23x -<<.【解析】由题意得:5125x -<-<,即:624x -<-<,解得:23x -<<. 【总结】考查含绝对值符号的不等式的解法.【例33】 不等式组1122210x x ⎧-≥⎪⎨⎪-<⎩的解集为____________.【难度】★★ 【答案】82x -<≤-.【解析】由题意:由①得:2x ≤-;由②得:812x -<<,所以不等式组的解集为:82x -<≤-. 【总结】考查含绝对值符号的不等式的解法.【例34】 解不等式组:431013x ≤-<. 【难度】★★★ 【答案】见解析.【解析】由题意可得:1331013x -<-<、31043104x x -≥-≤-或,解得:2313x -<<;1423x x ≤≥或,所以原不等式组的解为:14231233x x -<≤≤<或. 【总结】考查含绝对值符号的不等式的解法,注意解集取公共部分.【例35】 解不等式:211x x +>+. 【难度】★★★【答案】23x <-或0x >.【解析】①若210x +≥,即12x ≥-时,有211x x +>+,解得:0x >,②若210x +<,即12x <-时,有211x x -->+,解得:23x <-,综上,不等式的解集为:23x <-或0x >.【总结】考查含绝对值符号的不等式的解法,注意分类讨论.【例36】 解不等式:211x x -+>. 【难度】★★★ 【答案】203x x ><-或. 【解析】由题意,不等式可化为:211211x x x x -+>-+<-或, 整理得:211211x x x x +<-+>+或,由①可得:210210211211x x x x x x +>+<⎧⎧⎨⎨+<---<+⎩⎩或,此时无解,由②得:210210211211x x x x x x +>+<⎧⎧⎨⎨+>+-->+⎩⎩或,解得:203x x ><-或,综上原不等式的解集为:203x x ><-或. 【总结】考查含绝对值符号的不等式的解法,注意分类讨论.【习题1】 解下列不等式.(1)14153328x x ++≥--; (2)0.30.20.050.010.70.120.40.020.3x x x ++--≤-. 【难度】★★ 【答案】(1)394x ≥-;(2)4x ≤. 【解析】(1)由题意,去分母得:120884123x x -≥--,整理得:439x ≥-,解得:394x ≥-; (2)由题意化简得:3251712423x x x ++--≤-, 去分母得:9630624-284x x x +--≤+,整理得:728x ≤, 解得:4x ≤.【总结】考查不等式的解法,注意去分母时每一项都要乘以最简公分母.随堂检测【习题2】 解不等式组:(1)()()11373113365221038127x x x xx x x ⎧----<-⎪⎪⎨--⎪-<-⎪⎩;(2)342534127232310.54x xx x x x x x +<+⎧⎪-<-⎪⎪+⎨+<--⎪⎪-->⎪⎩.【难度】★★ 【答案】(1)613x >;(2)11x -<<. 【解析】(1)由①得:7055(3)18615(13)x x x x --<---, 整理得:18366x >,解得:613x >; 由②得:147(38)4(10)14x x x --<--,整理得:756264x x -+<-,解得:10x >, 所以原不等式组的解集是:613x >; (2)由①得:1x >-;由②得:2x <;由③得:1x <;由④得:2x >-, 所以原不等式组的解集是:11x -<<. 【总结】考查解不等式组的简单应用.【习题3】 若代数式32353x x -+-的值是非负数,则x 的取值范围是_______. 【难度】★★【答案】214x ≥.【解析】由题意可得:323053x x -+-≥,化简得:965150x x ---≥,解得:214x ≥. 【总结】考查不等式的简单应用,注意对非负数的准确理解.【习题4】 三个连续的正偶数的和不超过30,求这三个数. 【难度】★★. 【答案】见解析.【解析】由题意得:2222230n n n -+++≤,即6305n n ≤≤,,所以2345n =、、、, 所以这三个数为2、4、6或4、6、8或6、8、10或8、10、12. 【总结】考查不等式在实际问题中的简单应用.【习题5】公园门票,普通票每位10元,如买20人以上(含20人)的团体票则可8折优惠.现有18位游客买了20人的团体票,问比买普通票省了多少钱?如果不足20人,至少多少人买20人的团体票比买普通票省钱?【难度】★★【答案】省了20元;至少17人.【解析】(1)18位游客买20人的团体票所需费用为:20×10×80%=160元,这18为游客若买普通票则需要费用为18×10=180元,所以便宜180-160=20元;(2)设至少有x人,则:20 1020100.8xx<⎧⎨>⨯⨯⎩解得:1620x<<,所以至少17人.【总结】考查不等式的简单应用,解题时注意认真分析题意.【习题6】在爆破时,如果导火线燃烧的速度是0.8厘米/秒,人跑开的速度是5米每秒,那么点燃导火线的人要在爆破时能跑到100米以外的安全区域,导火线的长度应不小于多少米?【难度】★★【答案】0.16米.【解析】设导火线应该是x厘米.由题意得:0.81005x÷≥÷,解得:16x≥经检验符合题意,所以导火线的长度至少16厘米,即0.16米.【总结】考查不等式的简单应用,注意单位的统一.【习题7】某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?【难度】★★【答案】见解析.【解析】设购买甲种机器x 台(0x ≥),则购买乙种机器(6)x -台,由题意得:75(6)34x x +-≤,解得:2x ≤,即可以取0、1、2三个值.所以有以下方案:方案①:不买甲,买乙6台,需资金6×5=30万元,日生产能力为6×60-360个, 方案②:买甲1台,买乙5台,需资金1×7+5×5=32万元, 生产能力为100+5×60=400个,方案③:买甲2台,买乙4台,需资金2×7+4×5=34万元,生产能力为2×100+4×60=440, 因此,选择方案②,既能达到生产能力又比方案③节约. 【总结】考查不等式的简单应用,注意对最优方案的选择.【习题8】 今有浓度5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?【难度】★★★【答案】甲种盐水最多取49克,最少取35克.【解析】设甲乙丙盐水分别各取x 克、y 克、z 克,配成浓度为7%的盐水100克, 则有1005897%100x y z x y z ++=⎧⎨++=⨯⎩①②,其中060060047x y z ≤≤⎧⎪≤≤⎨⎪≤≤⎩③④⑤由①②得:20043100y x z x =-=-,,于是由④有:0200460x ≤-≤,解得:3550x ≤≤, 由⑤得:0310047x ≤-≤,解得:100493x ≤≤, 综上:3549x ≤≤,所以甲种盐水最多取49克,最少取35克. 【总结】考查不等式在实际问题中的应用,综合性较强,注意进行分析.【习题9】 解不等式:3315x -≥. 【难度】★★【答案】64x x ≥≤-或.【解析】由题意得:33153315x x -≥-≤-或,解得:64x x ≥≤-或. 【总结】考查含绝对值的不等式的解法.【习题10】 解关于x 的不等式ax b cx d +>+. 【难度】★★★ 【答案】见解析.【解析】由题意得:()a c x d b ->-,分类讨论如下:①当0a c ->时,原不等式的解为:d bx a c ->-; ②当0a c -<时,原不等式的解为:d bx a c-<-; ③当0a c -=,0d b -<时,原不等式有无数解; ④当0a c -=,0d b -≥时,原不等式无解.【总结】考查含字母系数的不等式的解法,注意分类讨论.【习题11】 如果不等式()312x a --≤的正整数解是1、2,求a 的取值范围. 【难度】★★★ 【答案】14a ≤<.【解析】由题意整理得:31x a ≤-,解得:13ax -≤, 因为原不等式的正整数解是1、2,则1233a-≤<,解得:14a ≤<. 【总结】考查不等式的应用,注意对解得取值范围的准确判定.【习题12】 已知关于x 的不等式()432a b x b a ->-的解集是49x <,求ax b >的解集. 【难度】★★★【答案】56x <.【解析】由题意得:430a b -<,24439b a x a b -<=-,得56b a =,即56ab =, 代入430a b -<,得0a <, 所以不等式ax b >的解集为:b x a<,即56x <.【总结】考查不等式的简单应用,注意对字母的正负进行判定.【作业1】 解下列不等式(组).(1)31362232x x xx +--+≤-; (2)()()3116.5 5.52184y y y +--<-++; (3)427336452335x x x x x x +≥+⎧⎪+>+⎨⎪-≤-⎩.【难度】★★ 【答案】见解析.【解析】(1)化简得:31226(2x x x x ++-≤--,整理得31452x x x +-≤+, 解得原不等式的解集为:2513x ≥; (2)去分母得:523(1)442(1)16(1)y y y -+<--++,整理得:1713y >-, 解得原不等式的解集为:1317y >-; (3)由①得:15x ≤;由②得:592x >-;由③得:2x ≥, 可画图发现原不等式组无解. 【总结】考查解不等式的简单应用.【作业2】 下面四个结论中,正确的个数有( )(1)ax b =,当0a ≠时,解为b x a =; (2)ax b <,当0a ≠时,解集为bx a<;(3)ax b ->,当0a <,解集为b x a >-; (4)()21a x b +>-的解集为21bx a <-+.A .1个B .2个C .3个D .4个【难度】★★ 【答案】B【解析】(1)正确;(2)错误,本题需分类讨论;(3)正确;(4)错误,21bx a >-+,综上可得只有(1)、(3)正确,故选B .【总结】考查不等式的解法,注意对字母系数的正负进行判定.课后作业【作业3】 已知不等式组212x a x a >+⎧⎨<-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a ≥-D .3a >-【难度】★★【答案】C 【解析】由题意可得212a a +≥-,即3a ≥-,故选C .【总结】考查不等式组的解法:大大小小是空集.【作业4】 a 的3倍与5的和不大于16与a 的差,求正整数a .【难度】★★【答案】1或2.【解析】根据题意可得:3516a a +≤-,解得:114a ≤,所以正整数a 可能是1或2. 【总结】考查不等式的应用及解法.【作业5】 求使代数式23375x x ---的值不大于1的最大整数x . 【难度】★★【答案】9.【解析】由题意可得:233175x x ---≤,去分母得5(23)7(3)35x x ---≤, 化简得:329x ≤,解得:293x ≤,所以x 的最大整数解为9. 【总结】考查不等式的简单应用.【作业6】 如果方程组42533x y k y x +=-⎧⎨-=⎩的解同号,求k 的取值范围. 【难度】★★【答案】732k k <->或. 【解析】由题意可得方程组的解为:618132713k x k y -⎧=⎪⎪⎨+⎪=⎪⎩,因为方程组的解同号, 得:6182701313k k -+⋅>,即(3)(27)0k k -+>,解得732k k <->或 【总结】本题主要考查不等式组与方程组的综合应用,注意“同号得正”的运用.【作业7】 把一箱苹果分给若干个小孩,如果每人分2个,还剩37个;如果每人分6个,那么最后一个小孩少于6个,求共有多少个小孩?【难度】★★【答案】10个.【解析】设有x 个小孩,由题意可得:662376x x x -<+<,解得:374344x <<,因为人数为整数,所以有10个小孩. 【总结】考查不等式在实际生活中的的简单应用.【作业8】 工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前2天超额完成,问后几天每天平均至少完成多少土方?【难度】★★【答案】80.【解析】设后几天平均每天完成x 土方.具根据题意有:60(612)30x +--≥,解得:80x ≥,即后几天平均每天至少完成80土方.【总结】考查不等式在实际生活中的的简单应用.【作业9】 某童装加工企业今年五月份,工人每人平均加工童装300套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资900元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于1260元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于2000元,问小张在六月份应至少加工多少套童装?【难度】★★★【答案】(1)2元;(2)220套.【解析】(1)设企业每套奖励x 元,则90060%3001260x +⋅≥,解得:2x ≥;(2)设小张在六月份加工y 套,则90052000y +≥,解得:220y ≥,故工人每加工1套童装企业至少应奖励2元;小张在六月份应至少加工220套童装.【总结】考查不等式在实际问题中的简单应用,注意认真分析题目中的条件.【作业10】 解关于x 的不等式()()11ax x a a >++-.【难度】★★★【答案】见解析.【解析】由题意可得:(1)(1)(1)a x a a ->+-当10a ->时,解得:1x a >+;当10a -<时,解得:1x a <+.【总结】考查解含字母系数的不等式,注意分类讨论.【作业11】 解不等式组:2539x ≤-<. 【难度】★★★【答案】413x -<≤或71433x ≤<. 【解析】由题意:539532x x ⎧-<⎪⎨-≥⎪⎩①②,由①得:9539x -<-<,解得:41433x -<<; 由②得:532532x x -≥-≤-或,解得:713x x ≤≥或; 综上,原不等式组的解为413x -<≤或71433x ≤<. 【总结】本题综合性较强,主要考查含绝对值的不等式组的解法,最后注意引导学生用画图的方法帮助确定不等式组的取值范围.。

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册
是每台10万元.经预算,该企业购买设备的资金不高于105万元.
(1)请问该企业有几种购买方案?
解:设购买污水处理设备A型x台,则B型为(10-x)台.
根据题意,得12x+10(10 – x)≤105.
解这个不等式,得x≤2.5.
又因为x取非负整数,所以x取0,1,2.
所以有3种购买方案:A型0台,B型10台;A型1台,B型9台;
购物都不享受优惠,且两商场以同样价格出售同
样的商品,因此到两商场购物花费一样.
新课讲解
典型例题
购物款
甲商场收费
乙商场收费
0<x≤50
x
x
50<x≤100
x
50+0.95(x–50)
乙商场少
x>100
100+0.9(x–100)
50+0.95(x–50)
继续分类讨论
收费相等
若在甲商场花费少,则100+0.9(x–100)<50+0.95(x–90)
社说:“所有人按全票价的 6 折优惠.”已知全票价 240 元.设学
生有 x 名,就学生人数讨论哪家旅行社更优惠.
解:①若 240+120x=144x+144,解得 x=4,
此时两家旅行社收费一样;
②若 240+120x>144x+144,解得 x<4,
此时乙旅行社更优惠;
③若 240+120x<144x+144,解得 x>4,
2.一般步骤:
(1)审题;
(2)找等量关系;
(3)设未知数;
(4)列方程;
(5)解方程;
(6)检验;
(7)答。

第11章 一元一次不等式 七年级数学下册单元复习(苏科版)

第11章 一元一次不等式 七年级数学下册单元复习(苏科版)
【分析】直接验证 4 个选项即可得到答案;
【详解】解:选项中只有 5 是不等式 x 3 的解,
故选 D.
【变式训练】
3
10
1.在﹣2、3、﹣4、0、1、 、﹣ 中能使不等式 x﹣2>2x 成立的有(
3
2
A.4 个
B.3 个
C.2 个
D.1 个
【答案】C
【分析】直接解不等式,进而得出符合题意的个数.
某文具店在次促销活动中规定:消费者消费满 200 元或者超过 200
元就可受打折优惠.期中考试后,小韦同学在该店为班级买奖品,
准备买 6 支钢笔和若干本笔记本.已知每支钢笔 15 元,每本笔记
②移项时不要忘记变号;
③去括号时,若括号前面是负号,括号里的每一项都要变号;
④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
不等式的解集在数轴上表示:
在用数轴表示不等式的解集时,要确定边界和方向:
●边界:有等号的是实心圆点,无等号的是空心圆圈;
●方向:大向右,小向左。
【典型例题】
下列各式中是一元一次不等式的是( D )
化为:(或)的形式,解一元一次不等式的一般步骤为:
(1)去分母;
(2)去括号;
(3)移项;
(4)化为(或)的形式(其中);
(5)两边同除以未知数的系数,得到不等式的解集。
知识点二 一元一次不等式的解法
在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵
活运用。
解不等式应注意:
①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;
【详解】解:x﹣2>2x,
解得:x<﹣2,
10
故符合题意的有:﹣4,﹣ 3 共 2 个.

一元一次不等式知识要点及典型题目讲解-

一元一次不等式知识要点及典型题目讲解-

一元一次不等式知识要点及典型题目讲解一、全章教学内容及要求1、理解不等式的概念和基本性质2、会解一元一次不等式,并能在数轴上表示不等式的解集3、会解一元一次不等式组,并能在数轴上表示不等式组的解集二、技能要求1、会在数轴上表示不等式的解集。

2、会运用不等式的基本性质(或不等式的同解原理)解一元一次不等式。

3、掌握一元一次不等式组的解法,会运用数轴确定不等式组的解集。

三、重要的数学思想:1、通过一元一次不等式解法的学习,领会转化的数学思想。

2、通过在数轴上表示一元一次不等式的解集与运用数轴确定一元一次不等式组的解集,进一步领会数形结合的思想。

四、主要数学能力1、通过运用不等式基本性质对不等式进行变形训练,培养逻辑思维能力。

2、通过一元一次不等式解法的归纳及一元一次方程解法的类比,培养思维能力。

3、在一元一次不等式,一元一次不等式组解法的技能训练基础上,通过观察、分析、灵活运用不等式的基本性质,寻求合理、简捷的解法,培养运算能力。

五、类比思想:把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

这种数学思想通常称为“类比”,它体现了“不同事物之间存在内部联系”的唯物辩证观点,是发现数学真理和解题方法的重要手段之一,在数学中有着广泛的运用。

在本章中,类比思想的突出运用有:1、不等式与等式的性质类比。

对于等式(例如a=b)的性质,我们比较熟悉。

不等式(例如a>b或a<b)与等式虽然是不同的式子,表达的也是不同的数量关系,但它们在形式上显然有某些相同或类似的地方,于是可推断在性质上两者也可能有某些相同或类似之处。

这就是“类比”思想的运用之一,它也是我们探索不等式性质的基本途径。

等式有两个基本性质:1、等式两边都加上(或减去)同一个数或同一个整式,等号不变。

(即两边仍然相等)。

2、等式两边都乘以(或除以)同一个不等于0的数,符号不变(即两边仍然相等)。

一元一次不等式教案(精选9篇)

一元一次不等式教案(精选9篇)

作者为你精心整理了9篇《一元一次不等式教案》的内容,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的内容。

篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

知识重点寻找实际问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。

探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x 去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。

一元一次不等式解

一元一次不等式解

一元一次不等式解
一、教学目标
1. 掌握一元一次不等式的解法。

2. 通过实例了解不等式与方程的联系,感受不等式的基本性质。

3. 培养学生分析和解决实际问题的能力。

二、教学内容与步骤
1. 引入新课:通过生活中的实例,如购物时找零、速度与时间的关系等,引出一元一次不等式的基本概念和性质。

2. 讲解知识点:介绍一元一次不等式的解法,包括移项、合并同类项、系数化为1等步骤。

同时,通过例题演示解题过程。

3. 练习与讨论:给出几个一元一次不等式的问题,让学生自己尝试求解。

同时,分组讨论,总结解一元一次不等式时需要注意的问题。

4. 拓展知识:通过一些具体的实例,介绍一元一次不等式在实际生活中的应用,如旅游预算、时间安排等。

5. 课堂小结:总结本节课的主要内容,强调一元一次不等式的解法及其在实际问题中的应用。

三、教学重点与难点
重点:一元一次不等式的解法。

难点:如何将实际问题转化为数学模型,即如何根据问题建立一元一次不等式。

四、作业与要求
1. 完成相关练习题,巩固所学知识。

2. 尝试解决一些生活中的实际问题,如购物时找零、时间安排等,并写出解题过程。

3. 分组讨论,总结解一元一次不等式时需要注意的问题。

浙教版数学八年级上册3.3《一元一次不等式》教案(3)

浙教版数学八年级上册3.3《一元一次不等式》教案(3)

浙教版数学八年级上册3.3《一元一次不等式》教案(3)一. 教材分析《一元一次不等式》是初中数学八年级上册的重要内容,主要让学生掌握一元一次不等式的概念、性质和解法。

通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用一元一次不等式解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了有理数、方程等基础知识,对数学运算和逻辑思维有一定的掌握。

但部分学生对不等式的概念和性质可能理解不深,解不等式的能力有待提高。

因此,在教学过程中,要注重引导学生理解不等式的概念,培养学生解不等式的能力。

三. 教学目标1.知识与技能目标:理解一元一次不等式的概念,掌握一元一次不等式的解法,能运用一元一次不等式解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:一元一次不等式的概念、性质和解法。

2.难点:一元一次不等式的应用和解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一元一次不等式,让学生感受数学与生活的联系。

2.启发式教学法:引导学生主动探究、发现不等式的性质和解法。

3.合作学习法:鼓励学生分组讨论、交流,培养学生的团队协作能力。

六. 教学准备1.课件:制作课件,展示一元一次不等式的概念、性质和解法。

2.练习题:准备适量的一元一次不等式练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如气温、身高等,引入一元一次不等式,让学生感受数学与生活的联系。

提问:不等式与方程有什么区别和联系?2.呈现(10分钟)展示一元一次不等式的概念、性质和解法。

通过讲解和示例,让学生理解一元一次不等式的定义,掌握一元一次不等式的解法。

3.操练(10分钟)让学生分组讨论,互相练习解一元一次不等式。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一组一元一次不等式,让学生独立解答。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。

例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。

三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。

X=2 是不等式 x+3<2 的解。

X=2 是不等式 3x<7 的解。

不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。

解是 x<2。

X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。

-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。

例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。

②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

一元一次不等式的实际问题

一元一次不等式的实际问题

一元一次不等式的实际问题一元一次不等式是数学中常见的一种形式,可以用来描述现实生活中的很多实际问题。

在本文中,我们将探讨一元一次不等式的应用,介绍一些实际问题,并给出相应的解决方法。

1. 简单的一元一次不等式问题首先,我们来看一个简单的一元一次不等式问题。

假设某人的年收入为x万元,他的生活开销为y万元。

已知他的年收入在5万至10万元之间,生活开销不能超过年收入的30%。

我们可以用以下不等式来描述这个问题:5 ≤ x ≤ 10y ≤ 0.3x其中,第一个不等式表示年收入的范围,第二个不等式表示生活开销不能超过年收入的30%。

解决这个问题的方法是找到满足这两个不等式的解集。

根据第一个不等式,x的取值范围是[5, 10],根据第二个不等式,y的取值范围是[0, 0.3x]。

因此,满足两个不等式的解集可以表示为:5 ≤ x ≤ 100 ≤ y ≤ 0.3x这个解集表示了满足条件的年收入和生活开销的取值范围。

2. 一元一次不等式在实际问题中的应用一元一次不等式可以应用于很多实际问题中,例如经济学、物理学、工程学等领域。

下面我们来看一些具体的例子。

例子1:生产成本与产量的关系假设某个工厂的生产成本和产量之间存在如下关系:生产成本每增加一单位,产量将减少2单位。

已知当生产成本为1000万元时,产量为5000单位。

我们可以用以下不等式来描述这个问题:x ≥ 1000y ≤ 5000 - 2(x - 1000)其中,x表示生产成本(单位:万元),y表示产量(单位:单位)。

解决这个问题的方法是找到满足不等式的生产成本和产量的取值范围。

根据第一个不等式,生产成本的取值范围是[x ≥ 1000],根据第二个不等式,产量的取值范围是[y ≤ 5000 - 2(x - 1000)]。

因此,满足两个不等式的解集可以表示为:x ≥ 1000y ≤ 5000 - 2(x - 1000)这个解集表示了满足条件的生产成本和产量的取值范围。

最新华东师大初中数学中考总复习:一元一次不等式(组)--知识讲解

最新华东师大初中数学中考总复习:一元一次不等式(组)--知识讲解

中考总复习:一元一次不等式(组)—知识讲解【考纲要求】1.会解一元一次不等式(组),理解一元一次不等式(组)的解集的含义,进一步体会数形结合的思想;2.会用不等式(组)进行解题,能利用不等式(组)解决生产、生活中的实际问题.【知识网络】【考点梳理】考点一、不等式的相关概念 1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左. 3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式. 要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质概念 基本性质不等式的定义 不等式的解法 一元一次不等式 的解法一元一次不等式组 的解法 不等式 实际应用 不等式的解集性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a >b ,那么a ±c >b ±c . 性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或a c >bc). 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c <b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号.(2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示. 要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集. 5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b>⎧⎨<⎩ ba无解 (空集) (大大、小小 找不到)“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要. 要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【典型例题】类型一、解不等式(组)1.(2014春•巴中期中)解不等式(组),并把它们的解集在数轴上表示出来 (1)2x ﹣1<3x+2; (2).【思路点拨】(1)先移项,再合并同类项、系数化为1即可; (2)先求两个不等式的解集,再求公共部分即可. 【答案与解析】解:(1)移项得,2x ﹣3x <2+1, 合并同类项得,﹣x <3,系数化为1得,x >﹣3在数轴上表示出来:.(2),解①得,x <1, 解②得,x≥﹣4.5 在数轴上表示出来:不等式组的解集为﹣4.5≤x<1.【总结升华】解不等式(组)是中考中易考查的考点,必须熟练掌握. 举一反三:【变式】131321≤---x x 解不等式:.【答案】解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)2.解不等式组352,1212x x x x -<⎧⎪⎨-≤+⎪⎩并将其解集在数轴上表示出来.【思路点拨】分别解出两个不等式的解集,再求出公共的解集即可.【答案与解析】解:由(1)式得x <5, 由(2)式得x ≥-1, ∴ -1≤x <5数轴上表示如图:【总结升华】注意解不等式组的解题步骤. 举一反三:【变式1】解不等式组312(1)2(1)4x x x x +≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.【答案】不等式组的解集为-3≤x <1,数轴上表示如图:【高清课程名称:不等式(组)及应用 高清ID 号: 370028关联的位置名称(播放点名称):经典例题2】【变式2】解不等式组24x ≤⎧⎪⎨+⎪⎩(x-1)+33x x-2>3,并写出不等式组的整数解;【答案】不等式组的解集为1≤x <5,故其整数解为:1,2,3,4. 类型二、一元一次不等式(组)的特解问题3.(2014•青羊区校级自主招生)若不等式组的正整数解有3个,那么a 必须满足( )A .5<a <6B .5≤a<6C .5<a≤6D .5≤a≤6【思路点拨】首先解得不等式组的解集,然后根据不等式组只有三个正整数解即可确定a 的范围. 【答案】C ;【解析】解不等式5≤2x﹣1≤11得:3≤x≤6.若不等式组有3个正整数解则不等式组的解集是:3≤x<a . 则正整数解是:3,4,5. ∴5<a≤6.故选C . 【总结升华】本题主要考查学生是否会利用逆向思维法解决含有待定字母的一元一次不等式组的特解问题. 举一反三:【高清课程名称:不等式(组)及应用高清ID 号:370028 关联的位置名称(播放点名称):经典例题3-4】 【变式1】关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a 的取值范围. 【答案】718a >. 【变式2】若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是_______. 【答案】∵-3x+n >0,∴x <3n ,∴3n =2 即n=6代入-3x+n <0得:-3x+6<0,∴x >2.类型三、一元一次不等式(组)的应用4.仔细观察下图,认真阅读对话:根据对话内容,试求出一盒饼干和一袋牛奶的标价各是多少元.【思路点拨】根据对话找到下列关系:①饼干的标价+牛奶的标价>10元;②饼干的标价<10;③饼干标价的90%+牛奶的标价=10元-0.8元,然后设未知数列不等式组.【答案与解析】解:设饼干的标价为每盒x元,牛奶的标价为每袋y元.则10(1) 0.9100.8(2)10(3) x yx yx+>⎧⎪+=-⎨⎪<⎩由(2)得 y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.由(3)综合得 8<x<10.又∵x是整数,∴x=9.把x=9代入(4)得:y=9.2-0.9×9=1.1(元)答:一盒饼干标价9元,一袋牛奶标价1.1元.【总结升华】不等式、方程与实际生活相联系的问题,主要是审好题,计算准确.举一反三:【变式】某牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?产品每件产品的产值甲 4.5万元乙7.5万元【答案】解:设该公司安排生产新增甲产品x 件,那么生产新增乙产品(20-x )件,由题意得:110<4.5x+7.5(20-x )<120 ∴10<x <403,依题意,得x=11,12,13 当x=11时,20-11=9;当x=12时,20-12=8;当x=13时,20-13=7.所以该公司明年可安排生产新增甲产品11件,乙产品9件;或生产新增甲产品12件,乙产品8件;或生产新增甲产品13件,乙产品7件.类型四、一元一次不等式(组)与方程的综合应用5.某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.【思路点拨】题目中包含的相等关系有:①所有硬币的总价值是3.50元;②共有硬币150枚.•不等关系有:①2分的硬币的枚数不少于20枚;②5分的硬币要多于2分的硬币.且硬币的枚数为整数,2分的硬币的数量是4的倍数. 【答案与解析】解:(法一)设兑换成1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意,得150,(1)25350,(2),(3)20,(4)x y z x y z z y y ++=⎧⎪++=⎪⎨>⎪⎪≥⎩由(1),(2)得 将y 代入(3),(4)得2004,200420,z z z >-⎧⎨-≥⎩解得40<z ≤45,∵z 为正整数,∴z 只能取41,42,43,44,45,由此得出x ,y 的对应值, 共有5种兑换方案.73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩(法二):设兑换成的1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意可得150,(1)25350,(2)(3)x y z x y z z y ++=⎧⎪++=⎨⎪>⎩∵y 是4的倍数,可设y=4k (k 为自然数), ∵y ≥20,∴4k ≥20,即k ≥5. 将y=4k 代入(1),(2)可解得z=50-k , ∵z >y ,∴50-k >4k ,即k <10.∴5≤k <10,又k 为自然数,∴k 取5,6,7,8,9.由此得出x ,y 的对应值,共有5种兑换方案:73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩【总结升华】这是一道方案设计题,•是涉及到方程和不等式的综合应用题.6.某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴ 如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵ 如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案【思路点拨】根据题意列出不等式组,解出未知数的取值范围,分类讨论各种方案. 【答案与解析】解:(1)设安排x 辆甲型汽车,安排(20-x )辆乙型汽车.由题意得:⎩⎨⎧≥-+≥-+300)20(2010680)20(3040x x x x 解得108≤≤x ,∴整数x 可取8、9、10. ∴共有三种方案:①租用甲型汽车8辆、乙型汽车12辆; ②租用甲型汽车9辆、乙型汽车11辆; ③租用甲型汽车10辆、乙型汽车10辆.(2)设租车总费用为w 元,则)20(18002000x x w -+=36000200+=x w 随x 的增大而增大,∴当8=x 时,37600360008200=+⨯=最小w ,∴最省钱的租车方案是:租用甲型汽车8辆、乙型汽车12辆. 【总结升华】考查不等式与方程综合应用问题,体现了分类讨论的思想.。

七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)

七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)

并,系数化为1。
解:去分母,得 去括号,得 移项,得 合并,得
2(2x+1) ≤6+9(x-1)
4x+2 ≤6+9x49x-9x ≤6-9-2
-5x ≤-5
系数化为1,得 x ≥1
七年级数学第9章不等式与不等式组 将不等式的解集在轴上表示为:
01
x
归纳:
解一元一次不等式的一般步骤: 去分母
去括号 移项 合并
当Y1 > Y2 即100+0.9(X-100) > 50+0.95(X-50) 时,X < 150
议一
故宫博议物院门票是每位10元,20人以上(含20人)的
团体票8折优惠.现有18位同学结伴去博物院,当领队小 华准备好了零钱到售票处买18张票时,李明喊住了他: “买20张吧!”小华困惑了:18人买20张不是浪费吗? 你认为呢?为什么? 此外,不足20人时,多少人买20张的团体票比普通票便宜?
在甲店累计购买100元商品后,再购买的商品按原价的 90%收费;在乙 店累计购买50元商品后,再购买的商品按 原价的95%收费,顾客怎样选择商店购物能获得最大优惠。
(3) 如果累计购物超过100元,那么在甲店花费一定少吗?
解:设累计购物X元(X>100)
在甲店购物花费:Y1 = 100+0.9(X-100) 在乙店购物花费:Y2 = 50+0.95(X-50)
购物花费小;累计购物150元时,在两店购物花费一样; 累计购物超过150元时,在甲店购物花费小.
甲、乙两商店以同样的价格出售同样的商品,并且 又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费; 在乙 店累计购买50元商品后,再购买的商品按原价的95%收费, 顾客怎样选择商店购物能获得最大优惠。

初二数学一元一次不等式知识点及经典例题

初二数学一元一次不等式知识点及经典例题

一元一次不等式重点:不等式的性质和一元一次不等式的解法。

难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。

知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

符号语言表示为:如果,那么。

基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。

符号语言表示为:如果,并且,那么(或)。

基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。

符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。

初一数学一元一次不等式知识点

初一数学一元一次不等式知识点

初一数学一元一次不等式知识点初一数学一元一次不等式知识点一.一元一次不等式的解法:一元一次不等式的解法与一元一次方程的解法类似,其步骤为:1.去分母;2.去括号;3.移项;4.合并同类项;5.系数化为1。

二.不等式的基本性质:1.不等式的两边都加上(或减去)同一个整式,不等号的方向不变;2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

三.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

四.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

五.解不等式的依据不等式的基本性质:性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,常见考法(1)考查一元一次不等式的解法;(2)考查不等式的性质。

误区提醒忽略不等号变向问题。

【典型例题】(2010年铁岭加速度辅导学校)在四川抗震救灾中,某抢险地段需实行爆破。

操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒。

为了保证操作人员的安全,导火线的长度要超过( )A.66厘米B.76厘米C.86厘米D.96厘米初中数学重点知识点归纳有理数乘法的运算律1、乘法的交换律:ab=ba;2、乘法的结合律:(ab)c=a(bc);3、乘法的分配律:a(b+c)=ab+ac单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的。

多项式1、几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与一元一次不等式(提高)知识讲解
撰稿:孙景艳 责编:吴婷婷
【学习目标】
1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;
2. 熟悉常见一些应用题中的数量关系.
【要点梳理】
要点一、常见的一些等量关系
1.行程问题:路程=速度×时间
2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量
3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价
4.和差倍分问题:增长量=原有量×增长率
5.银行存贷款问题:本息和=本金+利息,利息=本金×利率
6.数字问题:多位数的表示方法:例如:32
101010abcd a b c d =⨯+⨯+⨯+.
【高清课堂:实际问题与一元一次不等式409415 小结:】
要点二、列不等式解决实际问题
列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:
(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;
(2)设:设出适当的未知数;
(3)列:根据题中的不等关系,列出不等式;
(4)解:解所列的不等式;
(5)答:写出答案,并检验是否符合题意.
要点诠释:
(1)列不等式的关键在于确定不等关系;
(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;
(3)构建不等关系解应用题的流程如图所示.
(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意.
【典型例题】
类型一、简单应用题
1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?
【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.
【答案与解析】
【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.
举一反三:
【变式】某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?
【答案】
解:设原来每天能生产x辆汽车,则
15(x+6)>20x
解得:x<18
依题意:x=17
答:原来每天最多能生产17辆汽车.
阅读理解型
2.
根据“至少含有4200单位的维生素C”这一不等关系列不等式.
【答案】A
【解析】
解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.
根据题意,得600x+100(10-x)≥4200.
【总结升华】能够读懂表格,会把文字语言转换为数学语言.
【高清课堂:实际问题与一元一次不等式409415例2】
【变式2】某公司为了扩大经营,决定购进6台机器用于生产某种活塞,现有甲、乙两种机器供选择,其中每种机器的价格和每台机器的日生产活塞的数量如下表所示,经过预算,本次购买机器耗资不能超过34万元.
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种方案?
【答案】
解:设购买x台甲种机器,则依据题意得:
(1)7x+5(6-x)≤34
解得x≤2
∵x取非负整数,∴x取0,1或2;
∴有三种购买方案,即购买甲、乙两种机器分别0台、6台或1台、5台或2台、4台.
(2)100x+60(6-x)≥380,
解得:x≥0.5.由(1)知,1≤x≤2且x为整数,所以x=1或2,当x=1时,所需资金为:7×1+5×5=32(万元);
当x=2时,所需资金为:7×2+5×4=34(万元).
∵ 32<34,
∴应选择(1)中的第二种方案.
类型三、方案选择型
3. 某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配x(x≥3)个乒乓球,已知A,B 两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:
(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?
(2)当x=12时,请设计最省钱的购买方案.
【思路点拨】先列式表示出在A超市购买所需球拍和乒乓球的费用y1元,在B超市购买相同物品所需的费用y2元,再比较y1与y2的大小?
【答案与解析】
解:(1)设在A超市购买需花费y1元,在B超市购买需花费y2元,
根据题意,得
1
9 (102010)
10
y x
=⨯+⨯,即y1=180+9x;y2=10×20+(10x-30)×1,即y2=170+10x.
令y1>y2,得180+9x>170+10x,解得x<10;
令y1=y2,得180+9x=170+10x,解得x=10;
令y1<y2,得180+9x<170+10x,解得x>10.
即当每副球拍配10个以上球时,A超市优惠,少于10个球时B超市优惠,每副球拍配10个球时,两超市价格相等.
(2)购买方案:在B超市购买10副乒乓球拍,获赠30个乒乓球,再在A超市购买(10x-30)=90(个)乒乓球,最省钱.
【总结升华】在表示y1与y2时,x表示每幅球拍所配的球数,通过比较y1与y2之间的关系,得出结论,注意本例中分类讨论思想的应用.
举一反三:
【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆? 【答案】
解析:根据“总费用不超过5000元”可以建立不等关系求解.
解:设四座车租x辆,则十一座车租704
11
x
-
型辆.
依题意70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得20x≤100,不等式两边除以20得x≤5,
又∵704
11
x
-
是整数,∴1
x=,
704
6
11
x
-
=.
答:公司租用四座车l辆,十一座车6辆.
4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.
【答案与解析】
解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,
根据题意得1200×2x+1600x+(80-3x)×2000≤132000
解这个不等式得x≥14
∴至少购进乙种电冰箱14台;
(2)根据题意得2x≤80-3x
解这个不等式得x≤16
由(1)知x≥14
∴14≤x≤16
又∵x为正整数
∴x=14,15,16.
所以,有三种购买方案
方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.
方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.
方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.
【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.。

相关文档
最新文档