广东省中山市2018-2019学年高二下学期期末统一考试数学(理)试题Word版含解析
2018-2019学年高二数学下学期期末考试试题理(含解析)_19
2018-2019学年高二数学下学期期末考试试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名、班级、考场、座位号填写清楚。
2.选择题的每小题选出答案后,把答案代码填在答题纸前面的选择题答题表内,不能答在试卷上。
3.填空题和解答题应在指定的地方作答,否则答案无效。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡指定区域内作答.1.为了了解全校1740名学生的身高情况,从中抽取140名学生进行测量,下列说法正确的是A. 总体是1740B. 个体是每一个学生C. 样本是140名学生D. 样本容量是140【答案】D【解析】【分析】在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象是全校学生的身高,从而找出总体、个体,接着根据被收录数据的这一部分对象找出样本,最后根据样本确定样本容量。
【详解】解:本题考查的对象是1740名学生的身高情况,故总体是1740名学生的身高情况;个体是每个学生的身高情况;样本是140名学生的身高情况;故样本容量是140.所以选D。
【点睛】本题主要考查了总体、个体、样本与样本容量四个比较容易混淆的概念。
2.已知一组数据的频率分布直方图如图所示,则众数、中位数、平均数是A. 63、64、66B. 65、65、67C. 65、64、66D. 64、65、64【答案】B【解析】【分析】①在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;②中位数是所有小长方形的面积和相等的分界线;③平均数是各小长方形底边中点的横坐标与对应频率的积的和。
【详解】解:由频率直方图可知,众数=;由,所以面积相等的分界线为65,即中位数为65;平均数=。
故选B。
【点睛】本题主要考查频率直方图的众数、中位数、平均数,需理解并牢记公式。
3.7人并排站成一行,如果甲、乙两人不相邻,那么不同的排法总数是A. 1440B. 3600C. 4320D. 4800【答案】B【解析】【分析】第一步,除甲、乙以外的5人全排列;第二步,从6个空中选2个排甲乙;最后,把两步的结果相乘可得答案。
2018-2019学年高二数学下学期期末考试试题理(含解析)_2
2018-2019学年高二数学下学期期末考试试题理(含解析)一、填空题1.集合,若,则实数的值为__________.【答案】【解析】【分析】根据并集运算法则计算得到答案.【详解】集合,若则故答案为:【点睛】本题考查了集合的并集运算,属于简单题.2.复数的虚部是.【答案】【解析】试题分析:因为,,所以,复数的虚部是。
考点:复数的代数运算,复数的概念。
点评:简单题,复数的除法,要注意分子分母同乘分母的共轭复数,实现分母实数化。
3.命题“若,则”的否命题为.【答案】若,则【解析】【详解】试题分析:否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.4.若幂函数的图像经过点,则__________.【答案】【解析】【分析】设出幂函数,代入点计算函数表达式,将代入得到答案.【详解】设:,图像经过点,即故答案为:【点睛】本题考查了幂函数的计算,属于简单题.5.直三棱柱中,若,则__________.【答案】【解析】【分析】将向量用基向量表示出来得到答案.【详解】直三棱柱中,若故答案为:【点睛】本题考查了空间基向量的知识,意在考查学生的空间想象能力.6.为定义在上的奇函数,且,则_____.【答案】【解析】【分析】根据已知将x=x+2代入等式可得,可知为周期T=4的周期函数,化简,再由奇函数的性质可得其值。
【详解】由题得,则有,因为为定义在R上的奇函数,那么,则,故.【点睛】本题考查奇函数的性质和周期函数,属于常见考题。
7.方程的解为__________.【答案】或【解析】【分析】方程相等分为两种情况:相等或者相加等于14,计算得到答案.【详解】或解得:或故答案为:或【点睛】本题考查了组合数的计算,漏解是容易发生的错误.8.“”是“”的____条件(在“充分不必要”、“必要不充分”、“既不充分又不必要条件”、“充要”中选择填空).【答案】充分不必要【解析】【分析】据题意“”解得,由此可判断它与“”的关系。
2018-2019学年高二数学下学期期末考试试题理(含解析)_22
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(本题包括12小题,每小题5分,共60分.每小题只有一个选项符合题意.请把正确答案填在答题卷的答题栏内.)1.集合,则等于()A. B. C. D.【答案】B【解析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2.已知复数满足(其中为虚数单位),则的共轭复数()A. B. C. D.【答案】A【解析】【分析】利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【详解】,则.故选A【点睛】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.3.是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.4.函数的图象大致为()A. B. C.D.【答案】C【解析】【分析】将分别代入函数解析式,判断出正负即可得出结果.【详解】当时,;当时,,根据选项,可得C选项符合.故选C【点睛】本题主要考查函数图像的识别,只需用特殊值法验证即可,属于常考题型.5.为了得到函数的图象,可以将函数的图象()A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】B【解析】试题分析:∵,∴将函数的图象向右平移个单位长度.故选B.考点:函数的图象变换.6.已知随机变量和,其中,且,若的分布列如下表,则的值为()mA. B. C. D.【答案】A【解析】【分析】根据随机变量和的关系得到,概率和为1,联立方程组解得答案.【详解】且,则即解得故答案选A【点睛】本题考查了随机变量的数学期望和概率,根据随机变量和的关系得到是解题的关键.7.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.【答案】B【解析】分析】在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.8.的外接圆的圆心为,,,则等于()A. B. C. D.【答案】C【解析】【详解】,选C9.某同学同时掷两颗骰子,得到点数分别为,则椭圆的离心率的概率是( )A. B. C. D.【答案】C【解析】共6种情况10.设,若,则的值为()A. B. C. D.【答案】D【解析】【分析】分别取代入式子,相加计算得到答案.【详解】取得:取得:两式相加得到故答案选D【点睛】本题考查了二项式定理,取特殊值是解题的关键.11.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.【答案】D【解析】首先判断函数单调性为增. ,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.【点睛】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.12.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.【答案】D【解析】取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【点睛】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.二、填空题(本题4小题,每小题5分,共20分.请把正确答案写在答卷上.)13.已知向量满足,,的夹角为,则__________.【答案】【解析】14.已知某程序框图如图所示,则执行该程序后输出的结果是_____【答案】-1【解析】【分析】计算的值,找出周期,根据余数得到答案.【详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.15.如果不等式的解集为,且,那么实数的取值范围是 ____【答案】【解析】【分析】将不等式两边分别画出图形,根据图像得到答案.【详解】不等式的解集为,且画出图像知:故答案为:【点睛】本题考查了不等式的解法,将不等式关系转化为图像是解题的关键.16.已知是椭圆的左、右焦点,过左焦点的直线与椭圆交于两点,且,,则椭圆的离心率为________【答案】【解析】【分析】连接,设,利用椭圆性质,得到长度,分别在△和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【详解】设,则,,由,得,,在△中,,又在中,,得故离心率【点睛】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.三、解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤,把解题过程和步骤写在答题卷上.第17-21题为必考题,第22、23题为选考题.)17.已知数列是公差不为的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列前项和.【答案】(1);(2)【解析】【分析】(1)根据等差数列的定义和,,成等比数列代入公式得到方程,解出答案.(2)据(1)把通项公式写出,根据裂项求和方法求得.【详解】解:(1) ,,成等比数列,则或(舍去)所以(2)【点睛】本题考查了公式法求数列通项式,裂项求和方法求,属于基础题.18.在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.19.某公园设有自行车租车点,租车的收费标准是每小时元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为,一小时以上且不超过两小时还车的概率分别为,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.【答案】(1);(2)见解析【解析】【分析】(1)两人所付租车费用相同的情况有2,4,6三种,分别算出对应概率,相加得到答案.(2)的可能取值为,分别计算概率,写出分布列计算数学期望.【详解】解:(1)甲、乙两人所付租车费用相同即为元.都付元的概率为,都付元的概率为;都付元的概率为,故所付费用相同的概率为(2)依题意知,的可能取值为,;;,故的分布列为所求数学期望【点睛】本题考查了概率的计算,分布列和数学期望,意在考查学生的计算能力.20.已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值【答案】(1);(2)最大值为【解析】【分析】(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【详解】解:(1)的定义域为在上恒成立,即即实数的取值集合是(2)时,,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【点睛】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.21.已知抛物线焦点为抛物线上的两动点,且,过两点分别作抛物线的切线,设其交点为.(1)证明:为定值;(2)设的面积为,写出的表达式,并求的最小值.【答案】(Ⅰ)定值为0;(2)S=,S取得最小值4.【解析】分析:(1)设A(x1,y1),B(x2,y2),M(xo,yo),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得和,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△AB M面积.最后根据均值不等式求得S的范围,得到最小值.详解:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0,x1+x2=4k,x1x2=﹣4.于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo==2k,yo==﹣1,即M (,﹣1),从而=(,﹣2),(x2﹣x1,y2﹣y1)=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.(Ⅱ)由(Ⅰ)知△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|=因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=.于是S=|AB||FM|=,由≥2知S≥4,且当λ=1时,S取得最小值4.点睛:本题求S的最值,运用了函数的方法,这种技巧在高中数学里是一种常用的技巧.所以本题先求出S=,再求函数的定义域,再利用基本不等式求函数的最值.22.在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.【答案】(1),;(2)或.【解析】【分析】(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t 的几何意义解答.【详解】C1的参数方程为消参得普通方程为x-y-a +1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.所以曲线C2的直角坐标方程为y2=4x.(2)曲线C1的参数方程可转化为(t为参数,a∈R),代入曲线C2:y2=4x,得+1-4a=0,由Δ=,得a>0,设A,B对应的参数分别为t1,t2,由|PA|=2|PB|得|t1|=2|t2|,即t1=2t2或t1=-2t2,当t1=2t2时,解得a=;当t1=-2t2时,解得a=,综上,或.【点睛】本题主要考查参数方程、极坐标方程和直角坐标方程的互化,考查直线参数方程t的几何意义解题,意在考查学生对这些知识的理解掌握水平和分析推理能力.23.已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值范围.【答案】(1) .(2) .【解析】【分析】(1)利用分类讨论法解绝对值不等式;(2)等价转化为对任意的,恒成立,即对任意的,恒成立,再解不等式得解.【详解】(1)当时,.①当时,原不等式可化为,化简得,解得,∴;②当时,原不等式可化为,化简得,解得,∴;③当时,原不等式可化为,化简得,解得,∴;综上所述,不等式的解集是;(2)由题意知,对任意的,恒成立,即对任意的,恒成立,∵当时,,∴对任意的,恒成立,∵,,∴,∴,即实数的取值范围为.【点睛】本题主要考查分类讨论法解绝对值不等式,考查绝对值三角不等式的应用和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(本题包括12小题,每小题5分,共60分.每小题只有一个选项符合题意.请把正确答案填在答题卷的答题栏内.)1.集合,则等于()A. B. C. D.【答案】B【解析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2.已知复数满足(其中为虚数单位),则的共轭复数()A. B. C. D.【答案】A【解析】【分析】利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【详解】,则.故选A【点睛】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.3.是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.4.函数的图象大致为()A. B. C.D.【答案】C【解析】【分析】将分别代入函数解析式,判断出正负即可得出结果.【详解】当时,;当时,,根据选项,可得C选项符合.故选C【点睛】本题主要考查函数图像的识别,只需用特殊值法验证即可,属于常考题型.5.为了得到函数的图象,可以将函数的图象()A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度【答案】B【解析】试题分析:∵,∴将函数的图象向右平移个单位长度.故选B.考点:函数的图象变换.6.已知随机变量和,其中,且,若的分布列如下表,则的值为()mA. B. C. D.【答案】A【解析】【分析】根据随机变量和的关系得到,概率和为1,联立方程组解得答案.【详解】且,则即解得故答案选A【点睛】本题考查了随机变量的数学期望和概率,根据随机变量和的关系得到是解题的关键.7.过双曲线的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率是()A. B. C. D.【答案】B【解析】分析】在中,为线段的中点,又,得到等腰三角形,利用边的关系得到离心率.【详解】在中,为线段的中点,又,则为等腰直角三角形.故答案选B【点睛】本题考查了双曲线的离心率,属于常考题型.8.的外接圆的圆心为,,,则等于()A. B. C. D.【答案】C【解析】【详解】,选C9.某同学同时掷两颗骰子,得到点数分别为,则椭圆的离心率的概率是( )A. B. C. D.【答案】C【解析】共6种情况10.设,若,则的值为()A. B. C. D.【答案】D【解析】【分析】分别取代入式子,相加计算得到答案.【详解】取得:取得:两式相加得到故答案选D【点睛】本题考查了二项式定理,取特殊值是解题的关键.11.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】首先判断函数单调性为增. ,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.【点睛】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.12.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.【答案】D【解析】【分析】取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【点睛】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.二、填空题(本题4小题,每小题5分,共20分.请把正确答案写在答卷上.)13.已知向量满足,,的夹角为,则__________.【答案】【解析】14.已知某程序框图如图所示,则执行该程序后输出的结果是_____【答案】-1【解析】【分析】计算的值,找出周期,根据余数得到答案.【详解】依次计算得:….周期为32019除以3余数为0,故答案为-1【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.15.如果不等式的解集为,且,那么实数的取值范围是 ____【答案】【解析】【分析】将不等式两边分别画出图形,根据图像得到答案.【详解】不等式的解集为,且画出图像知:故答案为:【点睛】本题考查了不等式的解法,将不等式关系转化为图像是解题的关键.16.已知是椭圆的左、右焦点,过左焦点的直线与椭圆交于两点,且,,则椭圆的离心率为________【答案】【解析】【分析】连接,设,利用椭圆性质,得到长度,分别在△和中利用余弦定理,得到c的长度,根据离心率的定义计算得到答案.【详解】设,则,,由,得,,在△中,,又在中,,得故离心率【点睛】本题考察了离心率的计算,涉及到椭圆的性质,正余弦定理,综合性强,属于难题.三、解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤,把解题过程和步骤写在答题卷上.第17-21题为必考题,第22、23题为选考题.)17.已知数列是公差不为的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设,求数列前项和.【答案】(1);(2)【解析】【分析】(1)根据等差数列的定义和,,成等比数列代入公式得到方程,解出答案. (2)据(1)把通项公式写出,根据裂项求和方法求得.【详解】解:(1) ,,成等比数列,则或(舍去)所以(2)【点睛】本题考查了公式法求数列通项式,裂项求和方法求,属于基础题.18.在四棱锥中,,是的中点,面面(1)证明:面;(2)若,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.∵EF是△PBC的中位线,∴EF∥BC,且EF=.又AD=BC,且AD=,∴AD∥EF且AD=EF,则四边形ADEF是平行四边形.∴DE∥AF,又DE⊄面ABP,AF⊂面ABP,∴ED∥面PAB(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.过D作DG⊥AC于G,∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴DG⊥平面PAC,则DG⊥PC.过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,∴∠GHD是二面角A﹣PC﹣D的平面角.在△ADC中,,连接AE,.在Rt△GDH中,,∴,即二面角A﹣PC﹣D的余弦值法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.∴四边形ADCM是平行四边形,∴AM=MC=MB,则A在以BC为直径的圆上,∴AB⊥AC.∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.可得,.设P(x,0,z),(z>0),依题意有,,解得.则,,.设面PDC的一个法向量为,由,取x0=1,得.为面PAC的一个法向量,且,设二面角A﹣PC﹣D的大小为θ,则有,即二面角A﹣PC﹣D的余弦值.19.某公园设有自行车租车点,租车的收费标准是每小时元(不足一小时的部分按一小时计算).甲、乙两人各租一辆自行车,若甲、乙不超过一小时还车的概率分别为,一小时以上且不超过两小时还车的概率分别为,两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望.【答案】(1);(2)见解析【解析】【分析】(1)两人所付租车费用相同的情况有2,4,6三种,分别算出对应概率,相加得到答案.(2)的可能取值为,分别计算概率,写出分布列计算数学期望.【详解】解:(1)甲、乙两人所付租车费用相同即为元.都付元的概率为,都付元的概率为;都付元的概率为,故所付费用相同的概率为(2)依题意知,的可能取值为,;;,故的分布列为所求数学期望【点睛】本题考查了概率的计算,分布列和数学期望,意在考查学生的计算能力.20.已知函数(1)若在其定义域上是单调增函数,求实数的取值集合;(2)当时,函数在有零点,求的最大值【答案】(1);(2)最大值为【解析】【分析】(1)确定函数定义域,求导,导函数大于等于0恒成立,利用参数分离得到答案.(2)当时,代入函数求导得到函数的单调区间,依次判断每个区间的零点情况,综合得到答案.【详解】解:(1)的定义域为在上恒成立,即即实数的取值集合是(2)时,,即在区间和单调增,在区间上单调减.在最小值为且在上没有零点.要想函数在上有零点,并考虑到在区间上单调且上单减,只须且,易检验当时,且时均有,即函数在上有上有零点.的最大值为【点睛】本题考查了函数单调性,恒成立问题,参数分离法,零点问题,综合性强难度大,需要灵活运用导数各个知识点.21.已知抛物线焦点为抛物线上的两动点,且,过两点分别作抛物线的切线,设其交点为.(1)证明:为定值;(2)设的面积为,写出的表达式,并求的最小值.【答案】(Ⅰ)定值为0;(2)S=,S取得最小值4.【解析】分析:(1)设A(x1,y1),B(x2,y2),M(xo,yo),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得和,根据曲线4y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得的结果为0,进而判断出AB⊥FM.(2)利用(1)的结论,根据的关系式求得k和λ的关系式,进而求得弦长AB,可表示出△ABM面积.最后根据均值不等式求得S的范围,得到最小值.详解:(1)设A(x1,y1),B(x2,y2),M(xo,yo),焦点F(0,1),准线方程为y=﹣1,显然AB斜率存在且过F(0,1)设其直线方程为y=kx+1,联立4y=x2消去y得:x2﹣4kx﹣4=0,判别式△=16(k2+1)>0,x1+x2=4k,x1x2=﹣4.于是曲线4y=x2上任意一点斜率为y′=,则易得切线AM,BM方程分别为y=()x1(x﹣x1)+y1,y=()x2(x﹣x2)+y2,其中4y1=x12,4y2=x22,联立方程易解得交点M坐标,xo==2k,yo==﹣1,即M(,﹣1),从而=(,﹣2),(x2﹣x1,y2﹣y1)=(x1+x2)(x2﹣x1)﹣2(y2﹣y1)=(x22﹣x12)﹣2[(x22﹣x12)]=0,(定值)命题得证.(Ⅱ)由(Ⅰ)知△ABM中,FM⊥AB,因而S=|AB||FM|.∵,∴(﹣x1,1﹣y1)=λ(x2,y2﹣1),即,而4y1=x12,4y2=x22,则x22=,x12=4λ,|FM|=因为|AF|、|BF|分别等于A、B到抛物线准线y=﹣1的距离,所以|AB|=|AF|+|BF|=y1+y2+2=+2=λ++2=.于是S=|AB||FM|=,由≥2知S≥4,且当λ=1时,S取得最小值4.点睛:本题求S的最值,运用了函数的方法,这种技巧在高中数学里是一种常用的技巧.所以本题先求出S=,再求函数的定义域,再利用基本不等式求函数的最值.22.在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.【答案】(1),;(2)或.【解析】【分析】(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t的几何意义解答.【详解】C1的参数方程为消参得普通方程为x-y-a+1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.。
2018-2019学年高二数学下学期期末考试试题理(含解析)
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足(为虚数单位),则复数在复平面内所对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】利用复数的四则运算法则,可求出,从而可求出在复平面内所对应的点的坐标,从而可得到答案.【详解】由题意,,则复数在复平面内所对应的点为,在第四象限.【点睛】本题考查了复数的四则运算,考查了学生对复数知识的理解和掌握,属于基础题.2.已知抛物线的焦点和双曲线的右焦点重合,则的值为()A. B. C. D.【答案】A【解析】【分析】先求出抛物线的焦点坐标,进而可得到双曲线的右焦点坐标,然后利用,可得到答案.【详解】由题意,抛物线的焦点坐标为,则双曲线的右焦点为,则,故选A.【点睛】本题考查了抛物线、双曲线的焦点坐标的求法,考查了学生的计算能力,属于基础题.3.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为10,14,则输出的()A. 6B. 4C. 2D. 0【答案】C【解析】【分析】由程序框图,先判断,后执行,直到求出符合题意的.【详解】由题意,可知,,满足,不满足,则,满足,满足,则,满足,满足,则,满足,不满足,则,不满足,输出.故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.4.已知函数在上可导,且,则函数的解析式为()A. B.C. D.【答案】A【解析】【分析】先对函数求导,然后将代入导函数中,可求出,从而得到的解析式.【详解】由题意,,则,解得,故.故答案为A.【点睛】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.5.若圆锥的高为,底面半径为,则此圆锥的表面积为()A. B. C. D.【答案】B【解析】【分析】先求出母线,然后分别求出圆锥的底面面积和侧面面积.【详解】圆锥的母线,则圆锥的表面积.【点睛】本题考查了圆锥的表面积,考查了学生的空间想象能力与计算求解能力,属于基础题.6.函数在上不单调,则实数的取值范围是()A. B. C. D.【答案】D【解析】【分析】函数在上不单调,即在内有极值点,由,结合二次函数的性质,即可求出实数的取值范围.【详解】,函数在上不单调,即在内有极值点,因为,且,所以有,即,解得.故答案为D.【点睛】本题考查了函数的单调性,考查了二次函数的性质,考查了学生分析问题与解决问题的能力,属于中档题.7.下列叙述正确的是()A. 若命题“”为假命题,则命题“”是真命题B. 命题“若,则”的否命题为“若,则”C. 命题“,”的否定是“,”D. “”是“”的充分不必要条件【答案】B【分析】结合命题知识对四个选项逐个分析,即可选出正确答案.【详解】对于选项A,“”为假命题,则,两个命题至少一个为假命题,若,两个命题都是假命题,则命题“”是假命题,故选项A错误;对于选项B,“若,则”的否命题为“若,则”,符合否命题的定义,为正确选项;对于选项C,命题“,”的否定是“,”,故选项C错误;对于选项D,若,则,故“”不是“”的充分不必要条件.【点睛】本题考查了命题的真假的判断,考查了学生对基础知识的掌握情况.8.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【解析】【分析】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.【详解】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为,三棱柱和三棱锥的高为1,则三棱柱的体积,三棱锥的体积为,故该几何体的体积为.故选A.【点睛】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.9.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A. 若,,则B. 若,,,则C. 若,,则D. 若,,则【答案】C【解析】【分析】结合空间中点线面的位置关系,对选项逐个分析即可选出答案.【详解】对于选项A,当,,有可能平行,也有可能相交,故A错误;对于选项B,当,,,有可能平行,也可能相交或者异面,故B错误;对于选项C,当,,根据线面垂直的判定定理可以得到,故C正确;对于选项D,当,,则或者,故D错误;故答案为选项C.【点睛】本题考查了空间中直线与平面的位置关系,考查了学生的空间想象能力,属于基础题.10.函数与它的导函数的大致图象如图所示,设,当时,单调递减的概率为()A. B. C. D.【答案】B【解析】分析】结合图象可得到成立的x的取值范围,从而可得到的单调递减区间,即可选出答案.【详解】由图象可知,轴左侧上方图象为的图象,下方图象为的图象,对求导,可得,结合图象可知和时,,即在和上单调递减,故时,单调递减的概率为,故答案为B.【点睛】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.11.在三棱锥中,平面,,,则三棱锥的外接球的表面积为()A. B. C. D.【答案】C【解析】【分析】先求出的外接圆的半径,然后取的外接圆的圆心,过作,且,由于平面,故点为三棱锥的外接球的球心,为外接球半径,求解即可.【详解】在中,,,可得,则的外接圆的半径,取的外接圆的圆心,过作,且,因为平面,所以点为三棱锥的外接球的球心,则,即外接球半径,则三棱锥的外接球的表面积为.故选C.【点睛】本题考查了三棱锥的外接球表面积的求法,考查了学生的空间想象能力,属于中档题.12.已知函数有三个不同的零点(其中),则的值为( )A. B. C. D.【答案】A【解析】【分析】令,构造,要使函数有三个不同的零点(其中),则方程需要有两个不同的根,则,解得或,结合的图象,并分,两个情况分类讨论,可求出的值.【详解】令,构造,求导得,当时,;当时,,故在上单调递增,在上单调递减,且时,,时,,,可画出函数的图象(见下图),要使函数有三个不同的零点(其中),则方程需要有两个不同的根(其中),则,解得或,且,若,即,则,则,且,故,若,即,由于,故,故不符合题意,舍去.故选A.【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.三、填空题13.若“,使成立”为真命题,则实数的取值范围是_________.【答案】m≤1【解析】,使为真命题则解得则实数的取值范围为14.观察下面几个算式:;;;1+2+3+4+5+4+3+2+1=25.利用上面算式的规律,计算______【答案】10000【解析】观察归纳中间数为2,结果为4=22;中间数为3,结果为9=32;中间数为4,结果为16=42;于是中间数为100,结果应为1002=10 000.故答案为:10 000点睛:这个题目考查的是合情推理中的数学式子的推理;一般对于这种题目,是通过数学表达式寻找规律,进而得到猜想。
2018-2019学年高二数学下学期期末考试试题理(含解析)_18
2018-2019学年高二数学下学期期末考试试题理(含解析)第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. (0,3) C. D.【答案】B【解析】【分析】先分别化简集合A,B,再利用集合补集交集运算求解即可【详解】== ,则故选:B【点睛】本题考查集合的运算,解绝对值不等式,准确计算是关键,是基础题2.设i为虚数单位,复数等于( )A. B. 2i C. D. 0【答案】B【解析】【分析】利用复数除法和加法运算求解即可详解】故选:B【点睛】本题考查复数的运算,准确计算是关键,是基础题3.已知,若.则实数的值为( )A. -2B. 2C. 0D. 1【答案】C【解析】【分析】由函数,将x=1,代入,构造关于a的方程,解得答案.【详解】∵函数,∴f(﹣1)=,∴f[f(﹣1)]1,解得:a=0,故选:C.【点睛】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.4.的值为( )A. 2B. 0C. -2D. 1【答案】A【解析】【分析】根据的定积分的计算法则计算即可.【详解】=(cosx)故选:A.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.5.若方程在区间(-1,1)和区间(1,2)上各有一根,则实数的取值范围是( )A. B. C. D. 或【答案】B【解析】【分析】函数f(x)=在区间(﹣1,1)和区间(1,2)上分别存在一个零点,则,解得即可.【详解】∵函数f(x)=ax2﹣2x+1在区间(﹣1,1)和区间(1,2)上分别存在一个零点,∴,即,解得a<1,故选:B.【点睛】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.6.若,则( )A. B. C. D.【答案】D【分析】由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【详解】∵∴0<n<1,0<m<1且即lg0.5()>0⇔lg0.5()>0∵lg0.5<0,lgm<0,lgn<0∴lgn﹣lgm<0即lgn<lgm⇔n<m∴1>m>n>0故选:D.【点睛】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法7.已知过点且与曲线相切的直线的条数有().A. 0B. 1C. 2D. 3【答案】C【分析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选:C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.8.的展开式中的第7项是常数,则正整数n的值为( )A. 16B. 18C. 20D. 22【答案】B【解析】利用通项公式即可得出.【详解】的展开式的第7项﹣9,令=0,解得n=18.故选:B.【点睛】本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.9.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是和,在这个问题已被正确解答的条件下,甲、乙两位同学都能正确回答该问题的概率为( )A. B. C. D.【答案】A【解析】【分析】设事件A表示“甲能回答该问题”,事件B表示“乙能回答该问题”,事件C表示“这个问题被解答”,则P(A)=0.4,P (B)=0.5,求出P(C)=P(A)+P()+P(AB)=0.7,由此利用条件概率计算公式能求出在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率.【详解】设事件A表示“甲能回答该问题”,事件B表示“乙能回答该问题”,事件C表示“这个问题被解答”,则P(A)=0.4,P(B)=0.5,P(C)=P(A)+P()+P(AB)=0.2+0.3+0.2=0.7,∴在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率:P(AB|C).故选:A【点睛】本题考查条件概率的求法,是基础题,解题时要认真审题,注意等可能事件概率公式的合理运用.10.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( )A. 甲B. 乙C. 丙D. 丁【答案】C【解析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.【详解】由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.故跑第三棒的是丙.故选:C.【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.11.函数的大致图象是( )A. B. C.D.【解析】【分析】利用函数的奇偶性,排除选项B,D,再利用特殊点的函数值判断即可.【详解】函数为非奇非偶函数,排除选项B,D;当 ,f(x)<0,排除选项C,故选:A.【点睛】本题考查函数的图象的判断,函数的奇偶性以及函数的图象的变化趋势是判断函数的图象的常用方法.12.对于函教,以下选项正确的是( )A. 1是极大值点B. 有1个极小值C. 1是极小值点D. 有2个极大值【答案】A【解析】【分析】求出函数的导数,解关于导函数的不等式,求出函数的极值点,再逐项判断即可.【详解】当当,故1是极大值点,且函数有两个极小值点故选:A【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.幂函数在区间上是增函数,则________.【答案】2【解析】【分析】根据幂函数的定义求出m的值,判断即可.【详解】若幂函数在区间(0,+∞)上是增函数,则由m2﹣3m+3=1解得:m=2或m=1,m=2时,f(x)=x,是增函数,m=1时,f(x)=1,是常函数(不合题意,舍去),故答案为:2.【点睛】本题考查了幂函数的定义,考查函数的单调性问题,是一道基础题.14.若对甲、乙、丙3组不同的数据作线性相关性检验,得到这3组数据的线性相关系数依次为0.83,0.72,-0.90,则线性相关程度最强的一组是_______.(填甲、乙、丙中的一个)【答案】丙【解析】【分析】根据两个变量y与x的回归模型中,相关系数|r|的绝对值越接近于1,其相关程度越强即可求解.【详解】两个变量y与x的回归模型中,它们的相关系数|r|越接近于1,这个模型的两个变量线性相关程度就越强,在甲、乙、丙中,所给的数值中﹣0.90的绝对值最接近1,所以丙的线性相关程度最强.故答案为:丙.【点睛】本题考查了利用相关系数判断两个变量相关性强弱的应用问题,是基础题.15.将1,2,3,4,5,这五个数字放在构成“”型线段的5个端点位置,要求下面的两个数字分别比和它相邻的上面两个数字大,这样的安排方法种数为_______.【答案】16【解析】【分析】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5时,有2(1+1)=4种情况;(2)下面是4和5时,有212种情况,继而得出结果.【详解】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5时,有2(1+1)=4种情况;(2)下面是4和5时,有212种情况,所以一共有4+12=16种方法种数.故答案为:16.【点睛】本题考查的是分步计数原理,考查分类讨论的思想,是基础题16.已知函数的图象上存在点,函数的图象上存在点,且点和点关于原点对称,则实数的取值范围是________.【答案】【解析】【分析】由题可以转化为函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,利用导数法求出函数的值域,可得答案.【详解】函数y=﹣x2﹣2的图象与函数y=x2+2的图象关于原点对称,若函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,则f′(x),当x∈[,1)时,f′(x)<0,当x∈(1,e]时,f′(x)>0,故当x=1时,f(x)取最小值3,由f()4,f(e)=e2,故当x=e时,f(x)取最大值e2,故a∈[3,e2],故答案为【点睛】本题考查的知识点是函数图象的对称性,函数的值域,难度中档.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数.(1)求函数的定义域并判断奇偶性;(2)若,求实数m的取值范围.【答案】(1)见解析;(2)或.【解析】【分析】(1)由,求得x的范围,可得函数y=f(x)定义域,由函数y=f(x)的定义域关于原点对称,且满足 f(﹣x)=f (x),可得函数y=f(x)为偶函数;(2)化简函数f(x)的解析式为所,结合函数的单调性可得,不等式等价于,由此求得m的范围.【详解】(1)由得,所以的定义域为,又因为,所以偶函数.(2)因为所以是[0,3)上减函数,又是偶函数.故解得或.【点睛】本题主要考查求函数的定义域,函数的奇偶性的判断,复合函数的单调性,属于中档题.18.袋中装有10个除颜色外完全一样的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.【答案】(1)5个;(2)见解析.【解析】【分析】(1)设白球的个数为x,则黑球的个数为10﹣x,记“从袋中任意摸出2个球,至少得到1个白球”为事件A,则两个都是黑球与事件A为对立事件,由此能求出白球的个数;(2)随机变量X的取值可能为:0,1,2,3,分别求出相应的概率,由此能求出X的分布列.【详解】(1)设白球的个数为x,则黑球的个数为10﹣x,记“从袋中任意摸出2个球,至少得到1个白球”为事件A,则,解得.故白球有5个.(2)X服从以10,5,3为参数的超几何分布,.于是可得其分布列为:【点睛】本题主要考查离散型随机变量的分布列,超几何分布,求出离散型随机变量取每个值的概率,是解题的关键,属于中档题.19.设数列的前n项和为且对任意的正整数n都有:.(1)求;(2)猜想的表达式并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)分别代入计算即可求解;(2)猜想:,利用数学归纳法证明即可详解】当当当(2)猜想:.证明:①当时,显然成立;②假设当且时,成立.则当时,由,得,整理得.即时,猜想也成立.综合①②得.【点睛】本题考查递推数列求值,数学归纳法证明,考查推理计算能力,是基础题20.芯片堪称“国之重器”其制作流程异常繁琐,制作芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程()这一工艺技术进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片合格,没有使用该工艺的20片单晶的晶圆中有12片合格.(1)请填写22列联表并判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程()这一工艺技术有关?(2)在得到单晶的晶圆后,接下来的生产制作还前对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程,如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为,第四个环节生产正常的概率为,且每个环节是否生产正常是相互独立的.前三个环节每个环节出错需要修复的费用均为20元,第四环节出错需要修复的费用为10元.问:一次实验生产出来的多晶的晶圆要成为合格品平均还需要消耗多少元费用?(假设质检与检测过程不产生费用)参考公式:参考数据:0.152.072【答案】(1)见解析;(2)22.5元.【解析】【分析】(1)先列出列联表,再根据列表求出K27.879,从而有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关.(2)设Ai表示检测到第i个环节有问题,(i=1,2,3,4),X表示成为一个合格的多晶圆需消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70,分别求出相应的概率,由此能求出X的分布列和数学期望.【详解】(1)故有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程这一工艺技术有关.(2)设X表示成为一个合格的多晶的晶圆还需要消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70.所以X分布列为:故,故平均还需要耗费22.5元.【点睛】本题考查独立检验的应用,考查离散型随机变量的分布列和数学期望的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,考查函数与方程思想,21.已知函数.(1)求最大值;(2)若恒成立,求的值;(3)在(2)的条件下,设在上的最小值为求证:.【答案】(1);(2)2;(3)证明见解析.【解析】【分析】(1),判断函数的单调性即可求解最大值;(2)要使成立必须,,判断单调性求解即可得解(3),得,令判断其单调性进而求得,得,再求的范围进而得证【详解】(1),由得;得;所以在上单调递即;(2)要使成立必须.因为,所以当时,;当时,.所以在上单调递减,在上单调递增.又,所以满足条件的只有2,即.(3)由(2)知,所以.令,则,是上的增函数;又,所以存在满足,即,且当时,;当,所以在上单调递减;在上单调递增.所以,即.所以,即.【点睛】本题考查了利用导数研究函数的单调性及最值,考查了零点存在定理和数学转化思想,在(3)的证明过程中,利用零点存在定理转化是难点属中档题.请考生从第22、23题中任选一题作答.选修4-4:坐标系与参数方程半轴重合,直线的参数方程为:(为参数,),曲线的极坐标方程为:.(1)写出曲线的直角坐标方程;(2)设直线与曲线相交于两点,直线过定点,若,求直线的斜率.【答案】(1);(2).【解析】【分析】(1)由,得,由此能求出曲线C的直角坐标方程;(2)把代入,整理得,由,得,能求出直线l的斜率.【详解】(1)曲线C的极坐标方程为,所以.即,即.(2)把直线的参数方程带入得设此方程两根为,易知,而定点M在圆C外,所以,,,,可得,∴,所以直线的斜率为-1.【点睛】本题考查曲线的直角坐标方程的求法,考查直线的斜率的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.选修4-5:不等式选讲23.已知,.(1)若且的最小值为1,求的值;(2)不等式解集为,不等式的解集为,,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)利用绝对值三角不等式可得,解出方程即可;(2)易得,即,即且,再根据列出不等式即可得结果.试题解析:(1)(当时,等号成立)∵的最小值为 1,∴,∴或,又,∴.(2)由得,,∵,∴,即且2018-2019学年高二数学下学期期末考试试题理(含解析)第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. (0,3) C. D.【答案】B【解析】【分析】先分别化简集合A,B,再利用集合补集交集运算求解即可【详解】== ,则故选:B【点睛】本题考查集合的运算,解绝对值不等式,准确计算是关键,是基础题2.设i为虚数单位,复数等于( )A. B. 2i C. D. 0【答案】B【解析】【分析】利用复数除法和加法运算求解即可详解】故选:B【点睛】本题考查复数的运算,准确计算是关键,是基础题3.已知,若.则实数的值为( )A. -2B. 2C. 0D. 1【答案】C【解析】【分析】由函数,将x=1,代入,构造关于a的方程,解得答案.【详解】∵函数,∴f(﹣1)=,∴f[f(﹣1)]1,解得:a=0,故选:C.【点睛】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.4.的值为( )A. 2B. 0C. -2D. 1【答案】A【解析】根据的定积分的计算法则计算即可.【详解】=(cosx)故选:A.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题.5.若方程在区间(-1,1)和区间(1,2)上各有一根,则实数的取值范围是( )A. B. C. D. 或【答案】B【解析】【分析】函数f(x)=在区间(﹣1,1)和区间(1,2)上分别存在一个零点,则,解得即可.【详解】∵函数f(x)=ax2﹣2x+1在区间(﹣1,1)和区间(1,2)上分别存在一个零点,∴,即,解得a<1,故选:B.【点睛】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.6.若,则( )A. B. C. D.【答案】D【分析】由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【详解】∵∴0<n<1,0<m<1且即lg0.5()>0⇔lg0.5()>0∵lg0.5<0,lgm<0,lgn<0∴lgn﹣lgm<0即lgn<lgm⇔n<m∴1>m>n>0故选:D.【点睛】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法7.已知过点且与曲线相切的直线的条数有().A. 0B. 1C. 2D. 3【答案】C【解析】【分析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选:C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.8.的展开式中的第7项是常数,则正整数n的值为( )A. 16B. 18C. 20D. 22【答案】B【解析】【分析】利用通项公式即可得出.【详解】的展开式的第7项﹣9,令=0,解得n=18.故选:B.【点睛】本题考查了二项式定理的应用、方程思想,考查了推理能力与计算能力,属于中档题.9.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是和,在这个问题已被正确解答的条件下,甲、乙两位同学都能正确回答该问题的概率为( )A. B. C. D.【答案】A【解析】【分析】设事件A表示“甲能回答该问题”,事件B表示“乙能回答该问题”,事件C表示“这个问题被解答”,则P(A)=0.4,P(B)=0.5,求出P(C)=P(A)+P()+P(AB)=0.7,由此利用条件概率计算公式能求出在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率.【详解】设事件A表示“甲能回答该问题”,事件B表示“乙能回答该问题”,事件C表示“这个问题被解答”,则P(A)=0.4,P(B)=0.5,P(C)=P(A)+P()+P(AB)=0.2+0.3+0.2=0.7,∴在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率:P(AB|C).故选:A【点睛】本题考查条件概率的求法,是基础题,解题时要认真审题,注意等可能事件概率公式的合理运用.10.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( )A. 甲B. 乙C. 丙D. 丁【答案】C【解析】【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.【详解】由题意得乙、丙均不跑第一棒和第四棒,∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意.故跑第三棒的是丙.故选:C.【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.11.函数的大致图象是( )A. B. C. D.【答案】A【解析】【分析】利用函数的奇偶性,排除选项B,D,再利用特殊点的函数值判断即可.【详解】函数为非奇非偶函数,排除选项B,D;当 ,f(x)<0,排除选项C,故选:A.【点睛】本题考查函数的图象的判断,函数的奇偶性以及函数的图象的变化趋势是判断函数的图象的常用方法.12.对于函教,以下选项正确的是( )A. 1是极大值点B. 有1个极小值C. 1是极小值点D. 有2个极大值【答案】A【解析】【分析】求出函数的导数,解关于导函数的不等式,求出函数的极值点,再逐项判断即可.【详解】当当,故1是极大值点,且函数有两个极小值点故选:A【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.幂函数在区间上是增函数,则________.【答案】2【解析】【分析】根据幂函数的定义求出m的值,判断即可.【详解】若幂函数在区间(0,+∞)上是增函数,则由m2﹣3m+3=1解得:m=2或m=1,m=2时,f(x)=x,是增函数,m=1时,f(x)=1,是常函数(不合题意,舍去),故答案为:2.【点睛】本题考查了幂函数的定义,考查函数的单调性问题,是一道基础题.14.若对甲、乙、丙3组不同的数据作线性相关性检验,得到这3组数据的线性相关系数依次为0.83,0.72,-0.90,则线性相关程度最强的一组是_______.(填甲、乙、丙中的一个)【答案】丙【解析】【分析】根据两个变量y与x的回归模型中,相关系数|r|的绝对值越接近于1,其相关程度越强即可求解.【详解】两个变量y与x的回归模型中,它们的相关系数|r|越接近于1,这个模型的两个变量线性相关程度就越强,在甲、乙、丙中,所给的数值中﹣0.90的绝对值最接近1,所以丙的线性相关程度最强.故答案为:丙.【点睛】本题考查了利用相关系数判断两个变量相关性强弱的应用问题,是基础题.15.将1,2,3,4,5,这五个数字放在构成“”型线段的5个端点位置,要求下面的两个数字分别比和它相邻的上面两个数字大,这样的安排方法种数为_______.【答案】16【解析】【分析】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5时,有2(1+1)=4种情况;(2)下面是4和5时,有212种情况,继而得出结果.【详解】由已知1和2必须在上面,5必须在下面,分两大类来计算:(1)下面是3和5时,有2(1+1)=4种情况;(2)下面是4和5时,有212种情况,所以一共有4+12=16种方法种数.故答案为:16.【点睛】本题考查的是分步计数原理,考查分类讨论的思想,是基础题16.已知函数的图象上存在点,函数的图象上存在点,且点和点关于原点对称,则实数的取值范围是________.【答案】【解析】【分析】由题可以转化为函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,利用导数法求出函数的值域,可得答案.【详解】函数y=﹣x2﹣2的图象与函数y=x2+2的图象关于原点对称,若函数y=a+2lnx(x∈[,e])的图象上存在点P,函数y=﹣x2﹣2的图象上存在点Q,且P,Q关于原点对称,则函数y=a+2lnx(x∈[,e])的图象与函数y=x2+2的图象有交点,即方程a+2lnx=x2+2(x∈[,e])有解,即a=x2+2﹣2lnx(x∈[,e])有解,令f(x)=x2+2﹣2lnx,则f′(x),当x∈[,1)时,f′(x)<0,当x∈(1,e]时,f′(x)>0,故当x=1时,f(x)取最小值3,由f()4,f(e)=e2,故当x=e时,f(x)取最大值e2,故a∈[3,e2],故答案为【点睛】本题考查的知识点是函数图象的对称性,函数的值域,难度中档.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知函数.(1)求函数的定义域并判断奇偶性;(2)若,求实数m的取值范围.【答案】(1)见解析;(2)或.【解析】【分析】(1)由,求得x的范围,可得函数y=f(x)定义域,由函数y=f(x)的定义域关。
【高二数学试题精选】2018年中山市高二数学下期末统一考试题(理有答案)
2018年中山市高二数学下期末统一考试题(理有答案)
5 c 中市高二级1,故答案为
考点导数的几何意义
点评本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
14 __________
【答案】
【解析】表示以(1,0)为圆心,1为半径的圆的个圆的面积,所以π×12= ;
故答案为
15 已知 ,则的值等于________
【答案】
【解析】∵ ,
∴令x=1,有a0+a1+…+a5=0…①
再令x= 1,有a0 a1+… a5=25…②
联立①②得 =24=16, = 24= 16;
∴ = 256
故答案为 256
16 已知函数,如果存在,使得对任意的,都有成立,则实数a的取值范围是__________
【答案】
【解析】求导函数,可得g′(x)= ﹣2= ,x∈[ ,2],g′(x)<0,
∴g(x)in=g(2)=ln2﹣4,
∵f(x)=x2+2x+a=(x+1)2+a﹣1,
∴f(x)在[ ,2]上单调递增,
∴f(x)in=f()= +a,。
2018-2019学年高二数学下学期期末考试试题理(含解析)_26
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(单项选择,每小题5分,共60分)1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】利用一元二次不等式的解法化简集合,再根据集合的基本运算进行求解即可.【详解】因为,,所以,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.2.复数z满足,则复数的虚部是()A. 1B. -1C.D.【答案】C【解析】【分析】由已知条件计算出复数的表达式,得到虚部【详解】由题意可得则则复数的虚部是故选C【点睛】本题考查了复数的概念及复数的四则运算,按照除法法则求出复数的表达式即可得到结果,较为简单3.一个三位数的百位,十位,个位上的数字依次是,当且仅当时称为“凹数”,若,从这些三位数中任取一个,则它为“凹数”的概率是A. B. C. D.【答案】C【解析】【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解.【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有种方法,所以共有凹数8+6=14个,由古典概型的概率公式得P=.故答案为:C【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.4.展开式中,常数项为( )A. -15B. 16C. 15D. -16【答案】B【解析】【分析】把按照二项式定理展开,可得的展开式中的常数项.【详解】∵()•(1),故它的展开式中的常数项是1+15=16故选:B【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,项的系数的性质,熟记公式是关键,属于基础题.5.设等差数列的前项和为,且,,则的公差为()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据题意,设等差数列的公差为,由条件得,由此可得的值,即可得答案.【详解】根据题意,设等差数列的公差为,由题意得,即,解得.故选B.【点睛】本题考查等差数列的前项和,关键是掌握等差数列的前项和公式的形式特点,属于基础题.6.已知函数,若曲线在点处的切线方程为,则实数的取值为()A. -2B. -1C. 1D. 2【解析】【分析】求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f (x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.7.函数的导函数的图象如图所示,则函数的图象可能是( )A.B.C.D.【解析】【分析】根据导数与函数单调性的关系,当时,函数单调递减,当时,函数单调递增,根据图像即可判断函数的单调性,然后结合图像判断出函数的极值点位置,从而求出答案。
2018-2019学年高二数学下学期期末考试试题理(含解析)_28
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已如集合,,则()A. B. C. D.【答案】A【解析】【分析】求出集合A,B,然后进行交集的运算即可.【详解】由题意,集合,∴集合.故选:A.【点睛】本题主要考查了描述法、区间表示集合的定义,绝对值不等式的解法,以及交集的运算,着重考查了推理与运算能力,属于基础题.2.()A. B. C. D.【答案】C【解析】【分析】直接利用复数代数形式的乘除运算化简,即可得到答案.【详解】由,故选C.【点睛】本题主要考查了复数代数形式的乘除运算,着重考查了运算与求解能力,属于基础题.3.设,满足约束条件则的最大值为()A. B. C. D.【答案】C【解析】【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由得到,平移直线,当过A时直线截距最小,最大,由得到,所以的最大值为,故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.4.某公司在年的收入与支出情况如下表所示:收入(亿元)支出y(亿根据表中数据可得回归直线方程为,依此名计,如果年该公司的收入为亿元时,它的支出为()A. 亿元B. 亿元C. 亿元D. 亿元【答案】B【解析】,,代入回归直线方程,,解得:,所以回归直线方程为:,当时,支出为亿元,故选B.5.在长方形中,为的中点,为的中点,设则()A. B. C. D.【答案】A【解析】【分析】由平面向量线性运算及平面向量基本定理,即可化简,得到答案.【详解】如图所示,由平面向量线性运算及平面向量基本定理.【点睛】本题主要考查了平面向量的线性运算,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则和平面向量的基本定理是解答的关键,着重考查了推理与运算能力,属于基础题.6.若函数是奇函数,则使得成立的的取值范围是()A. B.C. D.【答案】C【解析】的定义域为,它应该关于原点对称,所以,又时,,,为奇函数.又原不等式可以化为,所以,所以,点睛:如果一个函数为奇函数或偶函数,那么它的定义域必须关于原点对称,我们可以利用这个性质去求奇函数或偶函数中的参数的值.7.如图,网格纸上小正方形的边长为,粗线条画出的是一个三棱锥的三视图,则该三棱锥的体积是()A. B. C. D.【答案】B【解析】【分析】由三视图得到该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1.再由棱锥体积公式求解.【详解】由三视图还原原几何体,如图所示,该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1.∴该三棱锥的体积.故选:B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.8.命题:,成立的一个充分但不必要条件为()A. B.C. D.【答案】A【解析】【分析】命题p的充分不必要条件是命题p所成立的集合的真子集,利用二次函数的性质先求出p成立所对应的集合,即可求解.【详解】由题意,令是一个开口向上的二次函数,所以对x恒成立,只需要,解得,其中只有选项A是的真子集.故选:A.【点睛】本题主要考查了充分不必要条件的应用,以及二次函数的性质的应用,其中解答中根据二次函数的性质,求得实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.9.已知圆与双曲线的渐近线相切,则的离心率为()A. B. C. D.【答案】B【解析】【分析】由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).10.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为()A. B. C. D.【答案】C【解析】【分析】正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积.【详解】由题意可知,正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为,设正三棱柱的高为,由,得,∴外接球的半径为,∴外接球的表面积为:.故选:C.【点睛】本题主要考查了正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力与计算能力,是中档题.11.已知函数在区间上恰有一个最大值点和一个最小值点,则实数的取值范围是()A. B. C. D.【答案】B【解析】【分析】首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】由题意,函数,令,所以,在区间上恰有一个最大值点和最小值点,则函数恰有一个最大值点和一个最小值点在区间,则,解答,即,故选:B.【点睛】本题主要考查了三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.已知函数存在零点,且,则实数的取值范围是()A. B.C. D.【答案】D【解析】【分析】令,可得,设,求得导数,构造,求得导数,判断单调性,即可得到的单调性,可得的范围,即可得到所求的范围.【详解】由题意,函数,令,可得,设,则,由的导数为,当时,,则函数递增,且,则递增,可得,则,故选:D.【点睛】本题主要考查了函数的零点问题解法,注意运用转化思想和参数分离,考查构造函数法,以及运用函数的单调性,考查运算能力,属于中档题.二、填空题。
2018-2019学年高二数学下学期期末考试试题理(含解析)_3
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.复数(为虚数单位)的共轭复数是()A. B. C. D.【答案】B【解析】【分析】根据复数除法运算,化简复数,再根据共轭复数概念得结果【详解】,故共轭复数.故选B.【点睛】本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题.2.已知线性回归方程相应于点的残差为,则的值为()A. 1B. 2C.D.【答案】B【解析】【分析】根据线性回归方程估计y,再根据残差定义列方程,解得结果【详解】因为相对于点的残差为,所以,所以,解得,故选B【点睛】本题考查利用线性回归方程估值以及残差概念,考查基本分析求解能力,属基础题.3.由命题“周长为定值的长方形中,正方形的面积取得最大”可猜想:在表面积为定值的长方体中()A. 正方体的体积取得最大B. 正方体的体积取得最小C. 正方体的各棱长之和取得最大D. 正方体的各棱长之和取得最小【答案】A【解析】【分析】根据类比规律进行判定选择【详解】根据平面几何与立体几何对应类比关系:周长类比表面积,长方形类比长方体,正方形类比正方体,面积类比体积,因此命题“周长为定值的长方形中,正方形的面积取得最大”,类比猜想得:在表面积为定值的长方体中,正方体的体积取得最大,故选A.【点睛】本题考查平面几何与立体几何对应类比,考查基本分析判断能力,属基础题.4.在一次调查中,根据所得数据绘制成如图所示的等高条形图,则()A. 两个分类变量关系较强B. 两个分类变量关系较弱C. 两个分类变量无关系 ^D. 两个分类变量关系难以判断【答案】A【解析】分析:利用等高条形图中两个分类变量所占比重进行推理即可.详解:从等高条形图中可以看出2,在中的比重明显大于中的比重,所以两个分类变量的关系较强.故选:A点睛:等高条形图,可以粗略的判断两个分类变量是否有关系,但是这种判断无法精确的给出所得结论的可靠程度,考查识图用图的能力.5.独立性检验显示:在犯错误的概率不超过0. 1的前提下认为性别与是否喜爱喝酒有关,那么下列说法中正确的是()A. 在100个男性中约有90人喜爱喝酒B. 若某人喜爱喝酒,那么此人为女性的可能性为10%C. 认为性别与是否喜爱喝酒有关判断出错的可能性至少为10%D. 认为性別与是否喜爱喝酒有关判断正确的可能性至少为90%【答案】D【解析】【分析】根据独立性检验的含义只能得到出错的可能率或正确的可靠率【详解】独立性检验是对两个分类变量有关系的可信程度的判断,而不是因果关系,故A,B错误.由已知得,认为性别与是否喜爱喝酒有关判断出错概率的可能性至多为10%,故C错误,D正确.选D.【点睛】本题考查独立性检验的含义,考查基本分析判断能力,属基础题.6.将6位女生和2位男生平分为两组,参加不同两个兴趣小组,则2位男生在同一组的不同的选法数为()A. 70B. 40C. 30D. 20【答案】C【解析】【分析】先确定与2位男生同组的女生,再进行分组排列,即得结果【详解】2位男生在同一组的不同的选法数为,选C.【点睛】本题考查分组排列问题,考查基本分析求解能力,属基础题.7.函数的图象如图所示,下列数值排序正确的是()A. B.C. D.【答案】B【解析】【分析】根据导数几何意义,结合图象确定选择【详解】、是分别为1、2时对应图像上点的切线斜率,,为图像上为2和1对应两点连线的斜率,由图可知,,故选B.【点睛】本题考查导数几何意义,考查基本分析判断能力,属基础题.8.已知,则()A. B. C. D.【答案】C【解析】【分析】根据二项分布求对应概率【详解】,所以选C.【点睛】本题考查二项分布,考查基本分析求解能力,属基础题.9.若,且,则()A. B. C. D.【答案】D【解析】【分析】先利用特殊值排除A,B,C,再根据组合数公式以及二项式定理论证D成立.【详解】令得,,在选择项中,令排除A,C;在选择项中,令,排除B,,故选D【点睛】本题考查组合数公式以及二项式定理应用,考查基本分析化简能力,属中档题.10.某人射击一次命中目标的概率为,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为()A. B. C. D.【答案】B【解析】【分析】由于射击一次命中目标的概率为,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有种情况,所以所求概率为.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.11.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。
中山市高二下期末统一考试数学试题(理)有答案
中山市高二级第二学期期末统一考试高二数学试卷(理科)本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1、答卷前,考生务必用2B铅笔在答题卡“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己姓名、考生号、试室号、座位号填写在答题卡上.2、选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上.如需改动,先划掉原来的答案,然后再写上新的答案.不准使用铅笔和涂改液.不按以上要求作答的答案无效.4、考生必须保持答题卡的整洁.考试结束,将答题卡交回,试卷不用上交.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.)1. 若复数满足,则A. B. C. D.【答案】C【解析】,故选C.2. 设随机变量X~B(8,p),且D(X)=1.28,则概率p的值是A. 0.2B. 0.8C. 0.2或0.8D. 0.16【答案】C【解析】∵随机变量X~B(8,p),且D(X)=1.28,∴8P(1-p)=1.28,∴p=0.2或0.8故选:C3. 某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:使用智能手机不使用智能手机总计学习成绩优秀 4 8 12学习成绩不优秀16 2 18总计20 10 30 附表:P(K2≥k0)0.150.10.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828经计算的观测值为10,,则下列选项正确的是( )A. 有99.5%的把握认为使用智能手机对学习有影响B. 有99.5%的把握认为使用智能手机对学习无影响C. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习有影响D. 在犯错误的概率不超过0.001的前提下认为使用智能手机对学习无影响【答案】A【解析】因为7.879<K2=10<10.828,对照数表知,有99.5%的把握认为使用智能手机对学习有影响.故选:A.4. 用反证法证明:若整系数一元二次方程有有理数根,那么中至少有一个是偶数.下列假设正确的是A. 假设都是偶数;B. 假设都不是偶数C. 假设至多有一个偶数D. 假设至多有两个偶数【答案】B【解析】试题分析:“中至少有一个是偶数”包括一个、两个或三个偶数三种情况,其否定应为不存在偶数,即“假设都不是偶数”,故选B...............................考点:命题的否定.5. 函数的单调递减区间是A. B.C. ,D.【答案】A【解析】函数y=x2﹣lnx的定义域为(0,+∞).令y′=2x﹣= ,解得,∴函数y=x2﹣lnx的单调递减区间是.故选:A .点睛:求函数的单调区间的“两个”方法方法一(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.方法二(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;(3)把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性6. 已知X的分布列为X -1 0 1P设Y=2X+3,则E(Y)的值为A. B. 4 C. -1 D. 1【答案】A【解析】由条件中所给的随机变量的分布列可知EX=﹣1×+0×+1×=﹣,∵E(2X+3)=2E(X)+3,∴E(2X+3)=2×(﹣)+3=.故答案为:A.7. 从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)等于( )A. B. C. D.【答案】B【解析】事件A=“取到的2个数之和为偶数”所包含的基本事件有:(1,3)、(1,5)、(3,5)、(2,4),∴p(A)=,事件B=“取到的2个数均为偶数”所包含的基本事件有(2,4),∴P(AB)=∴ .本题选择B选项.8. 在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的部分密度曲线)的点的个数的估计值为附:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X<μ+2σ)=0.954 4.A. 1 193B. 1 359C. 2 718D. 3 413【答案】B【解析】正态分布的图象如下图:正态分布N(﹣1,1)则在(0,1)的概率如上图阴影部分,其概率为×[P(μ﹣2σ<X≤μ+2σ)﹣P(μ﹣σ<X≤μ+σ)]= ×(0.9544﹣0.6826)=0.1359;即阴影部分的面积为0.1359;所以点落入图中阴影部分的概率为p= =0.1359;投入10000个点,落入阴影部分的个数期望为10000×0.1359=1359.故选B.点睛:正态曲线的性质:(1)曲线在轴的上方,与轴不相交 .(2)曲线是单峰的,它关于直线=μ对称(由得)(3)曲线在=μ处达到峰值(4)曲线与轴之间的面积为19. 下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,则下列结论错误的是( )x 3 4 5 6y 2.5 t 4 4.5A. 产品的生产能耗与产量呈正相关B. t的值是3.15C. 回归直线一定过(4.5,3.5)D. A产品每多生产1吨,则相应的生产能耗约增加0.7吨【答案】B【解析】由题意,故选:B.10. 将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A. 150B. 210C. 240D. 300【答案】A【解析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33=60种分法,分成2、2、1时,根据分组公式90种分法,所以共有60+90=150种分法,故选A.点睛:一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。
2018-2019学年高二数学下学期期末考试试题理(含解析)_10
2018-2019学年高二数学下学期期末考试试题理(含解析)第Ⅰ卷选择题部分一、选择题(每小题只有一个选项正确,每小题5分, 共60分。
)1.复数(为虚数单位)的虚部是().A. B. C. D.【答案】A【解析】【分析】利用复数的除法法则将复数表示为一般形式,可得出复数的虚部。
【详解】,因此,该复数的虚部为,故选:A。
【点睛】本题考查复数的除法,考查复数的虚部,对于复数问题的求解,一般利用复数的四则运算法则将复数表示为一般形式,明确复数的实部与虚部进行求解,考查计算能力,属于基础题。
2.已知~,则 ( ).A. B. C. 3 D.【答案】B【解析】【分析】利用二项分布的数学期望,计算出,再利用期望的性质求出的值。
【详解】,,因此,,故选:B。
【点睛】本题考查二项分布的数学期望与期望的性质,解题的关键就是利用二项分布的期望公式以及期望的性质,考查计算能力,属于基础题。
3.函数在区间上的最大值为().A. 17B. 12C. 32D. 24【答案】D【解析】【分析】对函数求导,求出函数的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数的最大值。
【详解】,则,令,列表如下:极大值极小值所以,函数的极大值为,极小值为,又,,因此,函数在区间上的最大值为,故选:D。
【点睛】本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题。
4.已知,则函数单调递减区间为( ).A. B. C. D.【答案】B【解析】【分析】求出函数的定义域,并对该函数求导,解不等式,将解集与定义域取交集得出函数的单调递减区间。
【详解】函数的定义域为,,令,得,因此,函数的单调递减区间为,故选:B。
【点睛】本题考查利用导数求函数的单调区间,除了解导数不等式之外,还要注意将解集与定义域取交集,考查计算能力,属于中等题。
5.设,则的值为()A. B. C. D.【答案】A【解析】解析:当时,;当时,,故,应选答案A。
2018-2019学年高二数学下学期期末考试试题理(含解析)_12
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的)1.若集合,,若,则的值为()A. B. C. 或 D. 或【答案】A【解析】【分析】先解出集合,由,得出,于此可得知实数的值.【详解】解方程,即,得,由于,,则,,,,故选:A.【点睛】本题考查集合间的包含关系,利用包含关系求参数的值,解本题的关键就是将集合表示出来,考查计算能力,属于基础题。
2.若则有()A. B.C. D.【答案】D【解析】①,∵,∴,故.②,,∴,故.综上.选D.3.若实数满足则的最小值是()A. B. C. D.【答案】C【解析】试题分析:若则,当且仅当时取等号.故选B.考点:1、基本不等式;2、指数函数.4.已知函数是定义在上的奇函数,当时,,则()A. 12B. 20C. 28D.【答案】A【解析】【分析】先计算出的值,然后利用奇函数的性质得出可得出的值。
【详解】当时,,则,由于函数是定义在上的奇函数,所以,,故选:A.【点睛】本题考查利用函数奇偶性求值,求函数值时要注意根据自变量的范围选择合适的解析式,合理利用奇偶性是解本题的关键,考查运算求解能力,属于基础题。
5.如图,阴影部分的面积是()A. B. C. D.【答案】C【解析】由定积分的定义可得,阴影部分的面积为.本题选择C选项.点睛:利用定积分求曲线围成图形的面积的步骤:(1)画出图形;(2)确定被积函数;(3)确定积分的上、下限,并求出交点坐标;(4)运用微积分基本定理计算定积分,求出平面图形的面积.求解时,注意要把定积分与利用定积分计算的曲线围成图形的面积区别开:定积分是一个数值(极限值),可为正,可为负,也可为零,而平面图形的面积在一般意义上总为正.6.已知,则的解析式为()A. B.C. D.【答案】C【解析】【分析】将等式变形为,可得出函数的解析式,再计算出即可。
2018-2019学年高二数学下学期期末考试试题理(含解析)_11
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列中,,则()A. 20B. 30C. 40D. 50【答案】A【解析】等差数列中,,,.故选:A.2.已知中,,则满足此条件的三角形的个数是 ( )A. 0B. 1C. 2D. 无数个【答案】C【解析】由正弦定理得即即,所以符合条件的A有两个,故三角形有2个故选C点睛:此题考查学生灵活运用正弦定理化简求值,掌握正弦函数的图象与性质,会根据三角函数值求对应的角.3.函数,如果,且,则()A. B. C. D. 1【答案】C【解析】根据图象可知,,所以,所以,所以,因为图象经过,所以代入解析式可得,解得,所以。
因为,所以这个区间内函数的对称轴为,又,所以,所以。
故本题正确答案为C。
点睛:本题主要考查的正弦型三角函数的图像和性质,根据三角函数的“五个关键点”可以从图像中得到,,求得函数的解析式,由,可知即得结果.4.数列中,,(),那么()A. 1B. -2C. 3D. -3【答案】A【解析】∵,∴,即,∴,∴,∴是以6为周期的周期数列.∵2019=336×6+3,∴.故选B.5.将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则()A. ,的最小值为B. ,的最小值为C. ,的最小值为D. ,的最小值为【答案】A【解析】由题意得由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.6.在边长为1的正中,,是边的两个三等分点(靠近于点),等于()A. B. C. D.【答案】C【解析】试题分析:如图,,是边的两个三等分点,故选C.考点:平面向量数量积的运算7.若等差数列的前项和满足,,则()A. B. 0 C. 1 D. 3【答案】B【解析】根据等差数列的性质仍成等差数列,则,则,,选B.8.如图,一货轮航行到处,测得灯塔在货轮的北偏东,与灯塔相距,随后货轮按北偏西的方向航行后,又测得灯塔在货轮的东北方向,则货轮的速度为()A. B.C. D.【答案】B【解析】由题意可知:,与正东方向的夹角为,与正东方向的夹角为,,中利用正弦定理可得货轮的速度故选9.若均为单位向量,且,则的最小值为()A. B. 1 C. D.【答案】A【解析】则当与同向时最大,最小,此时=,所以=-1,所以的最小值为,故选A点睛:本题考查平面向量数量积的性质及其运算律,考查向量模的求解,考查学生分析问题解决问题的能力,求出,表示出,由表达式可判断当与同向时,最小.10.已知向量,满足,,则向量在向量方向上的投影为()A. 0B. 1C. 2D.【答案】D【解析】试题分析:在方向上的投影为,故选D.考点:向量的投影.11.如图,在中,.是的外心,于,于,于,则等于()A. B.C. D.【答案】D【解析】由正弦定理有 ,三角形外接圆半径,所以,在中, ,同理,所以 ,选D.12.若函数在上单调递增,则实数的取值范围为()A. B. C. D.【答案】D【解析】因为,由题设可得在上恒成立,令,则,又,且,故,所以问题转化为不等式在上恒成立,即不等式在上恒成立。
2018-2019学年高二数学下学期期末考试试题理(含解析)_17
2018-2019学年高二数学下学期期末考试试题理(含解析)一、选择题:共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求.1.复数,则=()A. 0B.C.D.【答案】C【解析】【分析】根据复数的除法运算,先化简复数,再由复数模的计算公式,即可求出结果.【详解】因为,所以.故选C【点睛】本题主要考查复数的除法,以及复数的模,熟记公式即可,属于基础题型.2.已知命题,则命题的否定为()A. B.C. D.【答案】A【解析】【分析】根据全称命题的否定为特称命题,即可直接得出结果.【详解】因为命题,所以命题的否定为:故选A【点睛】本题主要考查含有一个量词的命题的否定,只需改写量词与结论即可,属于常考题型.3.空间直角坐标系中,点关于点的对称点的坐标是A. (-10,2,8)B. (-10,2,-8)C. (5,2,-8)D. (-10,3,-8)【答案】B【解析】【分析】直接利用中点坐标公式求解即可.【详解】设点关于点的对称点的坐标是,根据中点坐标公式可得,解得,所以点关于点的对称点的坐标是(-10,2,-8),故选B.【点睛】本题主要考查中点坐标公式应用,意在考查对基本公式的掌握与应用,属于基础题.4.函数在点处的切线方程为()A. B. C. D.【答案】B【解析】【分析】求函数的导数,利用导数的几何意义求出切线斜率,进行求解即可.【详解】函数的导数,则函数在点处的切线斜率,因为,所以切点坐标为为,则切线方程为,故选B.【点睛】该题考查的是有关函数图象在某点处的切线方程的求解问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.5. △ABC的两个顶点为A(-4,0),B(4,0),△ABC周长为18,则C点轨迹为()A. (y≠0)B. (y≠0)C. (y≠0)D. (y≠0)【答案】A【解析】试题分析:由坐标可知,由周长可知,由椭圆的定义可知,点在焦点为,半长轴为的椭圆上运动,由焦点以及半长轴可求得半短轴,则椭圆方程为,当点在横轴上时,点共线,不能构成三角形,所以,所以点的轨迹方程为(),故正确选项为A.考点:椭圆的概念.【易错点睛】本题主要考察椭圆的概念:到两定点距离之和等于定值的动点的轨迹.有已知条件可得到椭圆的半长轴以及焦点坐标,但是,要注意一点,题中要求三点构成三角形,也就是说这三点是不能共线的,即点不能在横轴上,所以在轨迹方程中要去掉纵坐标为的点.6.计算:()A. ﹣1B. 1C. ﹣8D. 8【答案】D【解析】【分析】根据微积分基本定理,可直接求出结果.【详解】.故选D【点睛】本题主要考查定积分,熟记微积分基本定理即可,属于常考题型.7.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=( )A. 192B. 202C. 212D. 222【答案】C【解析】∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;右边的底数依次分别为3,6,10,(注意:这里,),∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,右边的底数为,又左边为立方和,右边为平方的形式,故有,故选C.点睛:本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.8.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为()A. 3B. 2C. 4D.【答案】A【解析】【分析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.9.若函数在处取得极小值,则的最小值为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】先对函数求导,根据题意,得到,再用导数的方法研究函数单调性,进而可求出结果.【详解】因为,所以,又函数在处取得极小值,所以,所以,因此,由得;由得,所以函数在上单调递减,在上单调递增;所以;故选B【点睛】本题主要考查导数的应用,根据导数的方法研究函数的单调性,最值等,属于常考题型.10.在三棱锥中,,,面,,,分别为,,的中点,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】B【解析】【分析】由题意可知,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,利用空间向量坐标法求角即可.【详解】∵∴,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,∴,设,则,∵,∴,解得∴∴,∴异面直线与所成角的余弦值为故选:B【点睛】本题考查了异面直线所成角的余弦值求法问题,也考查了推理论证能力和运算求解能力,是中档题.11.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是()A. B. C. D.【答案】B【解析】【分析】先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.12.已知函数,,其中为自然对数底数,若存在实数使得,则实数的值为()A. B. C. D.【答案】C【解析】【分析】先对函数求导,用导数的方法求最小值,再由基本不等式求出的最小值,结合题中条件,列出方程,即可求出结果.【详解】由得,由得;由得;因此,函数在上单调递减;在上单调递增;所以;又,当且仅当,即时,等号成立,故(当且仅当与同时取最小值时,等号成立)因为存在实数使得,所以,解得.故选C【点睛】本题主要考查导数的应用,以及由基本不等式求最小值,熟记利用导数求函数最值的方法,以及熟记基本不等式即可,属于常考题型.二、填空题:本大题共4小题,共20分。
中山2018-2019学度高二下年末统一考试数学试题(理)含解析.doc.doc
中山2018-2019学度高二下年末统一考试数学试题(理)含解析高二数学试卷〔理科〕本试卷共4页,22小题,总分值150分、考试用时120分钟、本卷须知1、答卷前,考生务必用2B铅笔在答题卡“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己姓名、考生号、试室号、座位号填写在答题卡上、2、选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上、3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上、如需改动,先划掉原来的答案,然后再写上新的答案、不准使用铅笔和涂改液、不按以上要求作答的答案无效、4、考生必须保持答题卡的整洁、考试结束,将答题卡交回,试卷不用上交、【一】选择题〔本大题共12小题,每题5分,共60分、在每题给出的四个备选项中,只有一项为哪一项符合题目要求的、〕1、假设复数满足,那么A、 B、 C、 D、【答案】C【解析】,应选C、2、设随机变量X~B〔8,p〕,且D〔X〕=1、28,那么概率p的值是A、 0、2B、 0、8C、 0、2或0、8D、 0、16【答案】C【解析】∵随机变量X~B〔8,p〕,且D〔X〕=1、28,∴8P〔1-p〕=1、28,∴p=0、2或0、8应选:C3、某研究型学习小组调查研究学生使用智能手机对学习的影响、部分统计数据如下表:经计算的观测值为10,,那么以下选项正确的选项是〔〕A、有99、5%的把握认为使用智能手机对学习有影响B、有99、5%的把握认为使用智能手机对学习无影响C、在犯错误的概率不超过0、001的前提下认为使用智能手机对学习有影响D、在犯错误的概率不超过0、001的前提下认为使用智能手机对学习无影响【答案】A【解析】因为7、879<K2=10<10、828,对照数表知,有99、5%的把握认为使用智能手机对学习有影响、应选:A、4、用反证法证明:假设整系数一元二次方程有有理数根,那么中至少有一个是偶数、以下假设正确的选项是A、假设都是偶数;B、假设都不是偶数C、假设至多有一个偶数D、假设至多有两个偶数【答案】B【解析】试题分析:“中至少有一个是偶数”包括一个、两个或三个偶数三种情况,其否定应为不存在偶数,即“假设都不是偶数”,应选B、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、5、函数的单调递减区间是A、 B、C、,D、【答案】A【解析】函数y=x2﹣lnx的定义域为〔0,+∞〕、令y′=2x﹣= ,解得,∴函数y=x2﹣lnx的单调递减区间是、应选:A 、点睛:求函数的单调区间的“两个”方法方法一〔1〕确定函数y=f〔x〕的定义域;〔2〕求导数y′=f′〔x〕;〔3〕解不等式f′〔x〕>0,解集在定义域内的部分为单调递增区间;〔4〕解不等式f′〔x〕<0,解集在定义域内的部分为单调递减区间、方法二〔1〕确定函数y=f〔x〕的定义域;〔2〕求导数y′=f′〔x〕,令f′〔x〕=0,解此方程,求出在定义区间内的一切实根;〔3〕把函数f〔x〕的间断点〔即f〔x〕的无定义点〕的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f〔x〕的定义区间分成假设干个小区间;〔4〕确定f′〔x〕在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性6、X的分布列为设=2+3,那么〔〕的值为A、 B、 4 C、-1 D、 1【答案】A【解析】由条件中所给的随机变量的分布列可知EX=﹣1×+0×+1×=﹣,∵E〔2X+3〕=2E〔X〕+3,∴E〔2X+3〕=2×〔﹣〕+3=、故答案为:A、7、从1,2,3,4,5中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,那么P〔B|A〕等于〔〕A、 B、 C、 D、【答案】B〔1,5〕、【解析】事件A=“取到的2个数之和为偶数”所包含的基本事件有:〔1,3〕、〔3,5〕、〔2,4〕,∴p〔A〕=,事件B=“取到的2个数均为偶数”所包含的基本事件有〔2,4〕,∴P〔AB〕=∴、此题选择B选项、8、在如下图的正方形中随机投掷10 000个点,那么落入阴影部分〔曲线C为正态分布N〔-1,1〕的部分密度曲线〕的点的个数的估计值为附:假设X~N〔μ,σ2〕,那么P〔μ-σ<X<μ+σ〕=0、682 6,P〔μ-2σ<X<μ+2σ〕=0、954 4、A、 1 193B、 1 359C、 2 718D、 3 413【答案】B【解析】正态分布的图象如下图:正态分布N〔﹣1,1〕那么在〔0,1〕的概率如上图阴影部分,其概率为×[P〔μ﹣2σ<X≤μ+2σ〕﹣P〔μ﹣σ<X≤μ+σ〕]= ×〔0、9544﹣0、6826〕=0、1359;即阴影部分的面积为0、1359;所以点落入图中阴影部分的概率为p= =0、1359;投入10000个点,落入阴影部分的个数期望为10000×0、1359=1359、应选B、点睛:正态曲线的性质:〔1〕曲线在轴的上方,与轴不相交、〔2〕曲线是单峰的,它关于直线=μ对称〔由得〕〔3〕曲线在=μ处达到峰值〔4〕曲线与轴之间的面积为19、下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x〔吨〕与相应的生产能耗y〔吨〕的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0、7x+0、35,那么以下结论错误的选项是〔〕A、产品的生产能耗与产量呈正相关B、t的值是3、15C、回归直线一定过〔4、5,3、5〕D、A产品每多生产1吨,那么相应的生产能耗约增加0、7吨【答案】B【解析】由题意,应选:B、10、将5件不同的奖品全部奖给3个学生,每人至少一件奖品,那么不同的获奖情况种数是A、 150B、 210C、 240D、 300【答案】A【解析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33=60种分法,分成2、2、1时,根据分组公式90种分法,所以共有60+90=150种分法,应选A、点睛:一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数。
广东中山18-19高二年末统一考试--数学(理)
广东中山18-19高二年末统一考试--数学(理)数学〔理〕本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分,共150分、考试用时120分钟、 本卷须知1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不能够使用计算器.4、考试结束,将答题卡交回,试卷不用上交.第一卷〔选择题共40分〕【一】选择题〔本大题共8小题,每题5分,共40分. 在每题给出的四个备选项中,只有一项为哪一项符合题目要求的.〕 1、在△ABC 中,60A =︒,75B =︒,c =20,那么边a 的长为〔 〕 A、 B、 C、 D、2、不等式(50)(60)0x x -->的解集是〔 〕 A 、(,50)-∞ B 、(60,)+∞ C 、(50,60) D 、(,50)(60,)-∞+∞3、十三世纪初,意大利数学家斐波那契〔Fibonacci ,1170~1250〕从兔子繁殖的问题,提出了世界闻名数学问题“斐波那契数列”,该数列可用递推公式121,1,2;, 3.n n n n F F F n --=⎧=⎨+≥⎩ 由此可计算出8F = 〔 〕 A 、8 B 、13 C 、21 D 、344、函数()ln f x x x =的单调递减区间是〔 〕 A 、(0,)e B 、(,)e +∞ C 、1(0,)eD 、1(,)e+∞ 5、等差数列{}n a 的前n 项和12...n n S a a a =+++,假设1031S =,20122S =,那么30S =〔 〕A 、153B 、182C 、242D 、273 6、关于双曲线22916144y x -=,以下说法错误的选项是〔 〕 A 、实轴长为8,虚轴长为6 B 、离心率为54C 、渐近线方程为43y x=± D 、焦点坐标为(5,0)±A 、x ∀∈N ,32x x >B 、0x ∃∈R ,200220x x ++≤C 、“3x >”是“29x >”的必要条件D 、函数2()f x ax bx c =++为偶函数的充要条件是0b =8、函数32()f x x ax bx c =+++,x ∈[-2,2]表示的曲线过原点,且在x =±1处的切线斜率均为-1,有以下命题: ①f 〔x 〕的解析式为:3()4f x x x =-,x ∈[-2,2]; ②f 〔x 〕的极值点有且仅有一个; ③f 〔x 〕的最大值与最小值之和等于零. 那么以下选项正确的选项是〔〕.A 、①②B 、①③C 、②③D 、①②③第二卷〔非选择题共110分〕【二】填空题〔本大题共6小题,每题5分,共30分,把答案填在答题卡相应横线上〕9、一个等比数列的第3项和第4项分别是12和18,那么它的第2项为. 10、与椭圆221259x y +=焦点相同的等轴双曲线的标准方程为.11、小明用TI-Nspire ™CAS 中文图形计算器作出函数1()(2)(3),[4,4]8f x x x x x =+-∈-的图像如右图所示,那么不等式()0f x ≥的解集是.〔用区间表示〕12、(2,1,3)a =,(4,2,)b x =-,且a b ⊥,那么||a b -=.13、在周长为定值P 的扇形中,当半径为时,扇形的面积最大,最大面积为.14、抛物线2()2f x x x =-上一点(3,(3))P f 及附近一点'(3,(3))P x f x +∆+∆,那么割线'PP 的斜率为'(3)(3)PP f x f k x+∆-==∆,当x ∆趋近于0时,割线趋近于点P 处的切线,由此可得到点P 处切线的一般方程为.【三】解答题〔本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.〕15、〔13分〕函数()(2)(3)f x x x x =+-. 〔1〕求导数()f x '; 〔2〕求()f x 的单调区间.16、〔13分〕设数列{}n a 的前n 项和为n S ,点(,)()n S n n N n*∈均在直线12y x =+上. 〔1〕求数列{}n a 的通项公式; 〔2〕设123n a n b +=,n T 是数列{}n b 的前n 项和,试求n T .17、〔13分〕在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c . 〔1〕假设边BC 上的中线AD 记为a m ,试用余弦定理证明:a m .〔2〕假设三角形的面积S =2221()4a b c +-,求∠C 的度数.18、〔13分〕某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示. 但国家每天分配给该厂的煤、电有限,每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值大?最大日产值为多少?19、〔14分〕如图,在长方体1AC中,12,AB BC AA ==E 、F 分别是面11A C 、面1BC 的中心、以D 为坐标原点,DA 、DC 、D D 1所为直线为x ,y ,z 轴建立空间直角坐标系,试用向量方法解决以下问题: 〔1〕求异面直线AF 和BE 所成的角; 〔2〕求直线AF 和平面BEC 所成角的正弦值、20.〔14分〕椭圆的一个顶点为(0,1)A -,焦点在x 轴上,右焦点到直线AA 1BC DB 1C 1D 1EF0x y -+=的距离为3、〔1〕求椭圆的标准方程;〔2〕设椭圆与直线(0)y kx m k =+≠相交于不同的两点M 、N ,当AM AN=时,求实数m 的取值范围.参考答案【一】选择题1.A2.C3.C4.C5.D6.D7.D8.B 【二】填空题9.810.22188x y -=11.[2,0][3,4]-12.13.4P,216P 14.112x+∆,11180x y --=.〔前空3分,后空2分〕【三】解答题15、解:〔1〕由原式得32()6f x x x x =--, ……………〔3分〕∴2()326f x x x '=--.……〔6分〕 〔2〕令()0f x '<x <<, ……………〔9分〕令()0f x '>,解得x <x >, ……………〔11分〕因此()f x 的单调递减区间为, ……………〔12分〕单调递增区间为(-∞,)+∞. ……………〔13分〕16.解:〔1〕依题意得,1,2n S n n =+即212n S n n =+.……………〔2分〕 当n ≥2时,221111()(1)(1)2222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦; ………〔5分〕 当n=1时,2111311121222a S ==+⨯==⨯-.……………〔6分〕 因此*12()2n a n n N =-∈. ……………〔7分〕〔2〕由〔1〕得12233n a nn b +==, ……………〔8分〕 由2(1)2123393n n n n b b ++===,可知{}n b 为等比数列. ……………〔10分〕由21139b ⨯==, ……………〔11分〕 故19(19)99198n n n T +--==-.……〔13分〕17、解:〔1〕在ABD ∆中,222()2cos 22a ac m B a c+-=;……………〔2分〕 在ABC ∆中,222cos 2c a b B c a+-=. ……………〔4分〕 ∴222222()2222a ac m c a b a c a c +-+-=, ………………〔5分〕化简为:2222222222()424a a c ab bc a m c +-+-=+-=,∴a m =. ………………〔7分〕 〔2〕由S =2221()4a b c +-,得12ab sin C =12cos 4ab C. ………………〔10分〕∴tan C =1,得C =45︒. ………………〔13分〕18.解:设该厂每天安排生产甲产品x 吨,乙产品y 吨,那么日产值812z x y =+…〔1分〕线性约束条件为735620504500,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩. …………〔3分〕作出可行域. …………〔6分〕 把812z x y =+变形为一组平行直线系8:1212z l y x =-+,由图可知,当直线通过可行域上的点M 时,截距12z 最大,即z 取最大值.解方程组73562050450x y x y +=⎧⎨+=⎩,得交点(5,7)M ,……………〔10分〕max85127124z =⨯+⨯=……………〔12分〕因此,该厂每天安排生产甲产品5吨,乙产品7吨,那么该厂日产值最大,最大日产值为124万元………………〔13分〕 19.解:〔1〕A 〔2,0,0〕,F 〔1,2〕,B 〔2,2,0〕,E 〔1,1〕,C 〔0,2,0〕.∴2(1,2,),(1,AF BE =-=--, ……〔4分〕∴1210AF BE →→∙=-+=. ……〔6分〕因此AF 和BE 所成的角为90︒. ……〔7分〕〔2〕设平面BEC 的一个法向量为(,,),nx y z = 又(2,0,0),BC =-(1,BE =--那么:20n BC x ∙=-=,0n BE x y ∙=--+=.∴0x =,令1z =,那么:y ,∴n →=.…………〔10分〕∴,22AF n COS AF n AF n∙<>===∙. ……………〔12分〕设直线AF 和平面BEC 所成角为θ,那么:Sin θ=即直线AF 和平面BEC ……………〔14分〕20.解:〔1〕依题意可设椭圆方程为2221(1)x y a a +=>……………〔1分〕那么右焦点F .……〔2分〕AA 1BC DB 1CD 1EF3,解得:23a =. ……………〔4分〕故所求椭圆的标准方程为:2213x y +=. ……………〔5分〕〔2〕设P 为弦MN 的中点,联立2213y kx m x y =+⎧⎪⎨+=⎪⎩………………〔6分〕消y 得:222(31)63(1)0k x mkx m +++-=………………〔7分〕由于直线与椭圆有两个交点,0,∴∆>即2231m k <+①…………〔8分〕23231M N p x x mk x k +∴==-+,从而231p p m y kx m k =+=+, 21313p Ap py m k k x mk+++∴==-. 又,AM AN AP MN=∴⊥,那么:23113m k mk k++-=-,即:2231m k =+②, ……………〔12分〕把②代入①得:22m m >,解得:02m <<; 由②得:22103m k -=>,解得:12m >. 因此,122m <<………………〔14分〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省中山市2018-2019学年下学期期末统一考试高二数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 用反证法证明:若整系数一元二次方程有有理数根,那么,,中至少有一个是偶数,用反证法证明时,下列假设正确的是()A. 假设,,都是偶数B. 假设,,都不是偶数C. 假设,,至多有一个偶数D. 假设,,至多有两个偶数【答案】B【解析】根据反证法证明的步骤,假设是对原命题结论的否定,因为“至少有一个”的否定是“都不是”,所以假设正确的是:假设都不是偶数,故选A.2. 的值为()A. B. C. D.【答案】C【解析】分析:直接利用微积分基本定理求解即可.详解:,故选C.点睛:本题主要考查微积分基本定理的应用,特殊角的三角函数,意在考查对基础知识的掌握情况,考查计算能力,属于简单题.3. 已知为虚数单位,则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,从而可得结果.详解::由于复数,,在复平面的对应点坐标为,在第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4. 通过随机询问名性别不同的小学生是否爱吃零食,得到如下的列联表:由算得参照附表,得到的正确结论()A. 我们有以上的把握,认为“是否爱吃零食与性别有关”B. 我们有以上的把握,认为“是否爱吃零食与性别无关”C. 在犯错误的概率不超过的前提下,认为“是否爱吃零食与性别有关”D. 在犯错误的概率不超过的前提下,认为“是否爱吃零食与性别无关”【答案】A【解析】分析:对照临界值表,由,从而可得结果.详解:根据所给的数据,,而,有以上的把握,认为“是否爱吃零食与性别有关”,故选A.点睛:本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.5. 已知随机变量满足,,则下列说法正确的是()A. ,B. ,C. ,D. ,【答案】D【解析】分析:利用期望与方差的性质与公式求解即可.详解:随机变量满足,所以,解得,故选D.点睛:已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.6. 某居民小区有两个相互独立的安全防范系统和,系统和系统在任意时刻发生故障的概率分别为和,若在任意时刻恰有一个系统不发生故障的概率为,则()A. B. C. D.【答案】B【解析】试题分析:记“系统发生故障、系统发生故障”分别为事件、,“任意时刻恰有一个系统不发生故障”为事件,则,解得,故选B.考点:对立事件与独立事件的概率.7. 已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为,两个路口连续遇到红灯的概率为,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为()A. B. C. D.【答案】C【解析】分析:由题意可知,利用条件概率公式可求得的值.详解:设第一个路口遇到红灯的事件为,第二个路口遇到红灯的事件为,则,则,故选C.点睛:本题考查条件概率公式,属于基础题.计算条件概率时一定要注意区分条件概率与独立事件同时发生的概率的区别与联系.8. 以模型去拟合一组数据时,为了求出回归方程,设,其变换后得到线性回归方程,则()A. 0.3B.C. 4D.【答案】D【解析】分析:两边取对数,可化为,结合线性回归方程,即可得出结论.详解:由两边取对数,可得,令,可得,,,故选D.点睛:本题主要考查的知识点是线性回归方程,其中理解回归方程的求解过程与熟练掌握对数的运算性质,是解答此类问题的关键.9. 已知随机变量的概率分布如下表,则()A. B. C. D.【答案】C【解析】由分布列的性质可得:,故选C.10. 若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围()A. B. C. D.【答案】B【解析】分析:先确定函数的定义域然后求出导函数,在函数的定义域内解方程,使方程的解在定义域内的一个子区间内,建立不等关系,从而可得结果.详解:定义域为,又,又,得,当时,;当时,,因为函数在其定义域内的一个子区间内不是单调函数,所以,解得,实数的取值范围是,故选B.点睛:本题主要考查对数函数的导数,以及利用导数研究函数的单调性等基础知识,意在考查考查计算能力、转化与划归思想的应用,属于基础题.11. 若,则()A. B. C. D.【答案】C【解析】分析:由题意根据二项式展开式的通项公式可得,再分别求得的值,从而可得结果.详解:由常数项为零,根据二项式展开式的通项公式可得,且,,,故选C.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.12. 为自然对数的底数,已知函数,则函数有唯一零点的充要条件是()A. 或或B. 或C. 或D. 或【答案】A【解析】作出函数的图像如图所示,其中,则,设直线与曲线相切,则,即,设,则,当时,,分析可知,当时,函数有极大值也是最大值,,所以当时,有唯一解,此时直线与曲线相切.分析图形可知,当或或时,函数的图像与函数的图像只有一个交点,即函数有唯一零点.故选.【点睛】本小题主要考查分段函数的图象与性质,考查函数零点问题的处理方法,考查利用导数求相切时斜率的方法,考查数形结合的数学思想方法.首先画出函数的图象,分段函数的图象注意分界点的位置是实心的函数空心的.然后将函数的零点问题转化为两个函数图象的交点来解决.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 给出下列演绎推理:“自然数是整数,,所以是整数”,如果这是推理是正确的,则其中横线部分应填写___________.【答案】是自然数.【解析】分析:直接利用演绎推理的三段论写出小前提即可.详解:由演绎推理的三段论可知:“自然数是整数,是自然数,是整数”,故答案为是自然数.点睛:本题考查演绎推理的三段论的应用,考查对基本知识的掌握情况.14. ,,,,……则根据以上四个等式,猜想第个等式是__________.【答案】.【解析】分析:根据已知的四个等式知;等式左边自然对数的指数都是从开始,连续个正整数的和,右边都是.详解:,,,,……由上边的式子,我们可以发现:等式左边自然对数的指数都是从开始,连续个正整数的和,右边都是,可猜想,.故答案为.点睛:本题通过观察几组等式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.15. 已知曲线在点处的切线为,则点的坐标为__________.【答案】.【解析】分析:设切点坐标为,求得,利用且可得结果.详解:设切点坐标为,由得,,,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点(不是切点) 求切点, 设出切点利用求解.16. 江湖传说,蜀中唐门配置的天下第一奇毒“含笑半步癫”是由种藏红花,种南海毒蛇和种西域毒草顺次添加炼制而成,其中藏红花添加顺序不能相邻,同时南海毒蛇的添加顺序也不能相邻,现要研究所有不同添加顺序对药效的影响,则总共要进行__________此实验.【答案】.【解析】分析:先不考虑蛇共有种排法,再减去蛇相邻的情况,即可得出结论.详解:先不考虑蛇,先排蛇与毒草有种,再排藏红花有种,共有种,其中蛇相邻的排法共有种,,故答案为.点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 以下是某地搜集到的新房源的销售价格(万元)和房屋的面积的数据:房屋面积销售价格(1)由散点图看出,可用线性回归模型拟合与的关系,求关于的线性回归方程;(2)请根据(1)中的线性回归方程,预测该地当房屋面积为时的销售价格。
,,其中,【答案】(1) .(2) 该地房屋面积为时的销售价格为万元.【解析】分析:(1)先求出和的平均数,将数据代入,计算出的值,最后根据,求出的值,即可得到线性回归方程;(2)将代入所求的线性回归方程可估计当房屋面积为时的销售价格.详解:(1)设所求线性回归方程为,则∴∴所求线性回归方程为(2)当时,销售价格的估计值为(万元)所以该地房屋面积为时的销售价格为万元点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.18. 已知二项式的展开式的第项为常数项(1)求的值;(2)求的值【答案】(1) .(2)0.【解析】分析:(1)利用二项式展开式的通项公式求出展开式的通项,令的指数为零,即可求出的值;(2)结合(1)化为.详解:(1)二项式通式因为第项为常数项,所以,解得(2)因为,所以当时,所以原式点睛:本题主要考查二项展开式定理的通项与系数以及二项式的应用,属于中档题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.19. 设为虚数单位,为正整数,(1)证明:;(2),利用(1)的结论计算。