概率习题
九年级数学概率统计练习题及答案
![九年级数学概率统计练习题及答案](https://img.taocdn.com/s3/m/247afc2bcbaedd3383c4bb4cf7ec4afe05a1b117.png)
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
概率习题(附答案)
![概率习题(附答案)](https://img.taocdn.com/s3/m/146d51b169dc5022aaea009d.png)
随机事件的概率一、选择题(每题4分)1、黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门,下列叙述正确的是( ) A.能开门的可能性大于不能开门的可能性; B.不能开门的可能性大于能开门的可能性 C.能开门的可能性与不能开门的可能性相等 D.无法确定2、有5个人站成一排,则甲站在正中间的概率与甲站在两端的概率的比值为( )A.21 B.2 C.21或2 D.无法确定3、如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是 ( )A 、 21B 、 83C 、 41D 、 314、某商店举办有奖储蓄活动,购货满100元者发对奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个。
若某人购物满100元,那么他中一等奖的概率是 ( ) A 、 1001 B 、10001 C 、100001 D 、100001115、连掷两次骰子,它们的点数都是4的概率是( ) A 、61 B 、41 C 、161 D 、361 6、啤酒厂做促销活动,在一箱啤酒(每箱24瓶)中有4瓶的盖内印有“奖”字. 小明的爸爸买了一箱这种品牌的啤酒,但是连续打开4瓶均未中奖. 小明这时在剩下的啤酒中任意拿出一瓶,那么他拿出的这瓶中奖的概率( ). (A)424 (B)16 (C)520 (D)15二、填空题(每题3分)7、可能事件的概率p 的取值范围是__________。
必然事件发生的概率是_____,不可能事件发生的概率是_____。
8、投掷一个均匀的正六面体骰子,每个面上依次标有1、2、3、4、5、6,则掷得“5”的概率P=________,这个数表示的意思是__________________. 9、王刚的身高将来会长到4米,这个事件得概率为_____。
10、任意掷一枚均匀硬币两次,两次都是同一面朝上的概率是___11、小明与父母从广州乘火车回梅州参观叶帅纪念馆,他们买到的火车票是同一排相邻的三个座位,那么小明恰好坐在父母中间的概率是 .12、右图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为_______13、一盒子内放有3个红球、6个白球和5个黑球,它们除颜色外都相同,搅匀后任意摸出1个球是白球的概率为 .14、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率为______,小明未被选中的概率为______15、袋中装有3个白球和2个黄球,从中随机地摸出二个球,都为白球的概率为_______,为一个白球与一个黄球的概率是_______.16、用1,2,3组成三位数(不重复使用),其中排出偶数的概率是_________.17、一个口袋中有24个红球和若干个绿球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中搅匀,重复上述过程,试验200次,其中有125次摸到绿球,估计口袋中有绿球___个。
数学概率复习题
![数学概率复习题](https://img.taocdn.com/s3/m/39e5093003768e9951e79b89680203d8cf2f6a7a.png)
数学概率复习题一、选择题1. 设事件A、B独立,且P(A)=0.6,P(B)=0.4,则P(A交B)等于()。
A. 0.24B. 0.36C. 0.16D. 0.482. 一袋中有5个红球,3个蓝球,从袋中取出2个球,不放回,则两球颜色相同的概率是()。
A. 2/3B. 7/48C. 5/24D. 4/213. 已知事件A、B互不相容,且P(A)=0.3,P(B)=0.5,则P(A并B)等于()。
A. 0.15B. 0.35C. 0.8D. 0.7二、填空题1. 设事件A、B独立,且P(A)=0.4,P(B)=0.3,则P(A交B)等于_________。
2. 一副卡牌中,黑桃、红桃、梅花、方块各有13张,从中随机取出2张,则两张牌颜色不同的概率是_________。
3. 一次抛掷两枚骰子,两枚骰子点数和为奇数的概率是_________。
三、计算题1. 某班级有40人,其中有20人喜欢打篮球,30人喜欢踢足球,其中10人既喜欢打篮球又喜欢踢足球。
从这些学生中随机选择一个人,问他喜欢打篮球或踢足球的概率是多少?2. 某工厂生产的合格产品占总产量的80%,次品率为3%,现从产品中随机抽取一件,问它不合格的概率是多少?3. 一批电视机有100台,其中有5台有质量问题。
现从中随机挑选5台进行检验,问其中恰好有2台有质量问题的概率是多少?四、解答题1. 从26个字母中任意选取5个字母,问其中至少有一个元音字母的概率是多少?2. 设A、B为两个事件,且P(A)=0.3,P(B)=0.7,已知P(A并B)=0.2,求P(A交B的补集)。
3. 一枪手在射击时,命中靶的概率为0.8。
如果进行5次射击,问他至少命中一次的概率是多少?以上为数学概率复习题,请根据题目要求进行计算和填空。
相信通过这些练习,你能更好地掌握概率知识,提高解题能力。
祝你成功!。
概率的练习题
![概率的练习题](https://img.taocdn.com/s3/m/1903a54953ea551810a6f524ccbff121dd36c534.png)
概率的练习题概率是数学中一个重要的概念,它可以帮助我们计算事件发生的可能性。
在现实生活中,我们经常需要面对各种各样的概率问题。
为了更好地理解和应用概率理论,下面将介绍一些概率的练习题,希望对读者有所帮助。
1. 抛硬币问题假设我们有一枚均匀的硬币,抛掷一次,求出正面朝上的概率。
解答:由于硬币是均匀的,正反两面的概率是相等的。
所以正面朝上的概率为1/2。
2. 从一副扑克牌中随机抽取一张红心牌的概率是多少?解答:一副扑克牌中有52张牌,其中有13张红心牌。
所以从一副扑克牌中随机抽取一张红心牌的概率为13/52,即1/4。
3. 对于一个有6个面的骰子,抛掷一次,出现奇数的概率是多少?解答:一个有6个面的骰子中,奇数的面有三个,分别是1、3、5。
所以出现奇数的概率为3/6,即1/2。
4. 从字母A、B、C、D、E中随机抽取两个字母,使其不重复,求出第一个字母是A的概率。
解答:从字母A、B、C、D、E中随机抽取两个字母,可以得到10种可能的结果,其中有两种结果是第一个字母是A的,分别是(A,B)和(A,C)。
所以第一个字母是A的概率为2/10,即1/5。
5. 一副有54张的扑克牌中,有2张王牌。
从中连续抽取两张牌,求出两张牌都是王牌的概率。
解答:一副有54张的扑克牌中,有2张王牌。
从中连续抽取两张牌,我们可以根据排列组合的知识计算出共有C(54, 2) = 1431 种抽取的可能性。
其中,两张牌都是王牌的结果只有1种,即两张牌都是王牌。
所以两张牌都是王牌的概率为1/1431。
通过以上的练习题,我们可以看到概率的计算是基于事件的可能性来进行的。
通过对事件的分析和计算,我们可以得出事件发生的概率。
概率理论在实际生活中有着广泛的应用,如在赌博、投资、统计、科学研究等领域都能够发挥巨大的作用。
希望通过这些练习题的介绍,读者能够对概率有更加深入的理解,并且能够熟练运用概率计算的方法解决实际问题。
概率练习题含答案
![概率练习题含答案](https://img.taocdn.com/s3/m/e3a53fd4aaea998fcd220e6a.png)
第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B ) (2)事件的对立与互不相容是等价的。
(B ) (3)若()0,P A = 则A =∅。
(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。
(B ) (7)若P(A)P(B)≤,则⊂A B 。
(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论习题全部
![概率论习题全部](https://img.taocdn.com/s3/m/6f63c869a36925c52cc58bd63186bceb19e8eda1.png)
概率论习题全部概率论习题全部1习题⼀习题⼀1. ⽤集合的形式写出下列随机试验的样本空间与随机事件A:(1)掷两枚均匀骰⼦,观察朝上⾯的点数,事件A表⽰“点数之和为7”;(2)记录某电话总机⼀分钟内接到的呼唤次数,事件A表⽰“⼀分钟内呼唤次数不超过3次”;(3)从⼀批灯泡中随机抽取⼀只,测试它的寿命,事件A表⽰“寿命在2 000到2 500⼩时之间”.2. 投掷三枚⼤⼩相同的均匀硬币,观察它们出现的⾯.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A={⾄少出现⼀个正⾯},B={出现⼀正、⼆反},C={出现不多于⼀个正⾯};(3)如记A={第i枚硬币出现正⾯}(i=1,2,i3),试⽤123A A A表⽰事件A,B,C.,,3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码⼩习题⼀ 2 于5},问下列运算表⽰什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 4. 在区间上任取⼀数,记112A x x ??=<≤,1342B x x ??=≤≤,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. ⽤事件A ,B ,C 的运算关系式表⽰下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中⾄少有⼀个出现;(5)三个事件都不出现;(6)不多于⼀个事件出现;(7)不多于⼆个事件出现;(8)三个事件中⾄少有⼆个出现.6. ⼀批产品中有合格品和废品,从中有放回地抽取三个产品,设表⽰事件“第次抽到废品”,试⽤的运算表⽰下列各个事件:(1)第⼀次、第⼆次中⾄少有⼀次抽到废品;(2)只有第⼀次抽到废品;(3)三次都抽到废品;]2,0[i A i iA习题⼀3 (4)⾄少有⼀次抽到合格品;(5)只有两次抽到废品.7. 接连进⾏三次射击,设={第i 次射击命中}(i =1,2,3),试⽤表⽰下述事件:(1)A ={前两次⾄少有⼀次击中⽬标};(2)B ={三次射击恰好命中两次};(3)C ={三次射击⾄少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个⽩球b 个⿊球,从中有放回地抽取r 次(每次抽⼀个,记录其颜⾊,然后放回盒中,再进⾏下⼀次抽取).记={第i 次抽到⽩球}(i =1,2,…,r ),试⽤{}表⽰下述事件:(1)A ={⾸个⽩球出现在第k 次};(2)B ={抽到的r 个球同⾊},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成⽴:(1)ABC =A ;(2)A B C A =.iA 321,,A A A iA iA习题⼆ 3习题⼆1. 从⼀批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. ⼀⼝袋中有5个红球及2个⽩球.从这袋中任取⼀球,看过它的颜⾊后放回袋中,然后,再从这袋中任取⼀球.设每次取球时⼝袋中各个球被取到的可能性相同.求:(1)第⼀次、第⼆次都取到红球的概率;(2)第⼀次取到红球、第⼆次取到⽩球的概率;(3)两次取得的球为红、⽩各⼀的概率;(4)第⼆次取到红球的概率.3. ⼀个⼝袋中装有6只球,分别编上号码1~6,随机地从这个⼝袋中取2只球,试求:(1)最⼩号码是3的概率;(2)最⼤号码是3的概率.4. ⼀个盒⼦中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,⼀只是不合格品;(3)⾄少有1只是合格品.4习题⼆5. 从某⼀装配线上⽣产的产品中选择10件产品来检查.假定选到有缺陷的和⽆缺陷的产品是等可能发⽣的,求⾄少观测到⼀件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某⼈去银⾏取钱,可是他忘记密码的最后⼀位是哪个数字,他尝试从0~9这10个数字中随机地选⼀个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰⼦,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、⼄、丙三名学⽣随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8⼈,试求这三名学⽣住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A={其中恰有⼀位精通英语};(2)事件B={其中恰有两位精通英语};(3)事件C={其中有⼈精通英语}.10. 甲袋中有3只⽩球,7只红球,15只⿊球,⼄袋中有10只⽩球,6只红球,9只⿊球,习题⼆ 5 现从两个袋中各取⼀球,求两球颜⾊相同的概率.11. 有⼀轮盘游戏,是在⼀个划分为10等份弧长的圆轮上旋转⼀个球,这些弧上依次标着0~9⼗个数字.球停⽌在那段弧对应的数字就是⼀轮游戏的结果.数字按下⾯的⽅式涂⾊:0看作⾮奇⾮偶涂为绿⾊,奇数涂为红⾊,偶数涂为⿊⾊.事件A ={结果为奇数},事件B ={结果为涂⿊⾊的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设⼀质点⼀定落在xOy 平⾯内由x 轴,y 轴及直线x +y =1所围成的三⾓形内,⽽落在这三⾓形内各点处的可能性相等,即落在这三⾓形内任何区域上的可能性与这区域的⾯积成正⽐,计算这质点落在直线x =的左边的概率. 13. 甲、⼄两艘轮船都要在某个泊位停靠6h ,假定它们在⼀昼夜的时间段中随机地到达,试求这两艘船中⾄少有⼀艘在停靠泊位时必须等待的概率.14. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .316习题⼆15. 设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,()P A B=0.8,试求:P(A-B)与P (B-A).*16. 盒中装有标号为1~r的r个球,今随机地抽取n个,记录其标号后放回盒中;然后再进⾏第⼆次抽取,但此时抽取m个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. ⼀批零件共100个,次品率为10%,每次从中任取⼀个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某⼈有⼀笔资⾦,他投⼊基⾦的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投⼊基⾦,再购买股票的概率是多少?(2)已知他已购买股票,再投⼊基⾦的概率是多少?4. 罐中有m 个⽩球,n 个⿊球,从中随机抽取⼀个,若不是⽩球则放回盒中,再随机抽取下⼀个;若是⽩球,则不放回,直接进⾏第⼆次抽取,求第⼆次取得⿊球的概率.5. ⼀个⾷品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:习题三6如果收到⼀个消费者的投诉,已知投诉发⽣在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下⾯四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只⽩球,⼄袋中装有8只红球,6只⽩球.求下列事件的概率:(1)随机地取⼀只袋,再从该袋中随机地取⼀只球,该球是红球;(2)合并两只⼝袋,从中随机地取1只球,该球是红球.8. 设某⼀⼯⼚有A ,B ,C 三间车间,它们⽣产同⼀种螺钉,每个车间的产量,分别占该⼚⽣产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分⽐分别为5%、4%、2%.如果从全⼚总产品中抽取⼀件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C ⽣产的概率.9. 某次⼤型体育运动会有1 000名运动员参加,其中有100⼈服⽤了违禁药品.在使⽤者中,假定有90⼈的药物检查呈阳性,⽽在未使⽤者中也有5⼈检验结果显⽰阳性.如果⼀个运习题三 7 动员的药物检查结果是阳性,求这名运动员确实使⽤违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到⼲扰,当发出信号“*”时,收报台未必收到信号“*”,⽽是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个⽩球6个⿊球,⼄袋中有4个⽩球2个⿊球.先从甲袋中任取2球投⼊⼄袋,然后再从⼄袋中任取2球,求从⼄袋中取到的2个都是⿊球的概率.12. 设事件B A ,相互独⽴.证明:B A ,相互独⽴,B A ,相互独⽴. 13. 设事件A 与B 相互独⽴,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独⽴,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P .15. 三个⼈独⽴破译⼀密码,他们能独⽴译出的概率分别为0.25,0.35,0.4,求此密码被译习题三8 出的概率.16. 设六个相同的元件,如下图所⽰那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独⽴的.*17. (配对问题)房间中有n 个编号为1~n的座位.今有n 个⼈(每⼈持有编号为1~n 的票)随机⼊座,求⾄少有⼀⼈持有的票的编号与座位号⼀致的概率.(提⽰:使⽤概率的性质5的推⼴,即对任意n 个事件12,,,n A A A ,有1121111111()()(1)()(1)().)k k n n k k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤??=-+ +-++-∑∑∑ *18. (波利亚(Pólya )罐⼦模型)罐中有a 个⽩球,b 个⿊球,每次从罐中随机抽取⼀球,观察其颜⾊后,连同附加的c 个同⾊球⼀起放回罐中,再进⾏下⼀次抽取.试⽤数学归纳法证明:第k 次取得⽩球的概率为a a b+(1k ≥为整数).(提习题三 9 ⽰:记{}k A k 第次取得⽩球,使⽤全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲⼄两⼈各⾃独⽴地投掷⼀枚均匀硬币n 次,试求:两⼈掷出的正⾯次数相等的概率.20. 假设⼀部机器在⼀天内发⽣故障的概率为0.2,机器发⽣故障时全天停⽌⼯作.若⼀周五个⼯作⽇⾥每天是否发⽣故障相互独⽴,试求⼀周五个⼯作⽇⾥发⽣3次故障的概率.21. 灯泡耐⽤时间在1 000 h 以上的概率为0.2,求:三个灯泡在使⽤1 000 h 以后最多只有⼀个坏了的概率.22. 某宾馆⼤楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运⾏的概率均为0.75,求:(1)在此时刻所有电梯都在运⾏的概率;(2)在此时刻恰好有⼀半电梯在运⾏的概率;(3)在此时刻⾄少有1台电梯在运⾏的概率.23. 设在三次独⽴试验中,事件A 在每次试验中出现的概率相同.若已知A ⾄少出现⼀次的概率等于2719,求事件A 在每次试验中出现的概率)(A P .10习题三*24. 设双胞胎中为两个男孩或两个⼥孩的概率分别为a及b.今已知双胞胎中⼀个是男孩,求另⼀个也是男孩的概率.25. 两射⼿轮流打靶,谁先进⾏第⼀次射击是等可能的.假设他们第⼀次的命中率分别为0.4及0.5,⽽以后每次射击的命中率相应递增0.05,如在第3次射击⾸次中靶,求是第⼀名射⼿⾸先进⾏第⼀次射击的概率.26. 袋中有2n-1个⽩球和2n个⿊球,今随机(不放回)抽取n个,发现它们是同⾊的,求同为⿊⾊的概率.*27. 3个外形相同但可辨别的球随机落⼊编号1~4的四个盒⼦,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒⼦的最⼩编号为2的概率.习题四 8习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15ii p =(0,1,2,3,4,5)i =;(2)6)5(2i p i -=(0,1,2,3)i =;(3)251+=i p i (1,2,3,4,5)i =.2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ??<<;(3)(3)F (其中F (·)为X 的分布函数).3. ⼀⼝袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这⼝袋中任取⼀球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. ⼀袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表⽰取出的3个球中最⼤号码,写出X 的分布律和分布函数.5. 在相同条件下独⽴地进⾏5次射击,每次射击时击中⽬标的概率为0.6,求击中⽬标的9习题四次数X的分布律.6. 从⼀批含有10件正品及3件次品的产品中⼀件⼀件地抽取产品.设每次抽取时,所⾯对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为⽌所需次数X的分布律:(1)每次取出的产品⽴即放回这批产品中再取下⼀件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出⼀件产品后总以⼀件正品放回这批产品中.7. 设随机变量X),6(==XP,XP(=)1B,已知)5~p(求p与)2P的值.(=X8. ⼀张试卷印有⼗道题⽬,每个题⽬都为四个选项的选择题,四个选项中只有⼀项是正确的.假设某位学⽣在做每道题时都是随机地选择,求该位学⽣未能答对⼀道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中⼼在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,⽽与时间间隔的起点⽆关(时间以⼩时计算):习题四10 求:(1)某天中午12点⾄下午3点没有收到紧急呼救的概率;(2)某天中午12点⾄下午5点⾄少收到1次紧急呼救的概率.10.某商店出售某种物品,根据以往的经验,每⽉销售量X服从参数4=λ的泊松分布.问在⽉初进货时,要进多少才能以99%的概率充分满⾜顾客的需要?11. 有⼀汽车站有⼤量汽车通过,每辆汽车在⼀天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y为观察到的鸡蛋数,即Y的分布与给定>0X的条件下X的分布相同,今求Y 的分布律.(提⽰:()(0),1,2,.对于)P Y k P X k X k===>=13. 袋中有n把钥匙,其中只有⼀把能把门打开,每次抽取⼀把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求⾸次打开门时试⽤钥匙次数的分布律.习题四11 14. 袋中有a 个⽩球、b 个⿊球,有放回地随机抽取,每次取1个,直到取到⽩球停⽌抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某⾼校在2010年上海世博会上的学⽣志愿者有6 000名,其中⼥⽣3 500名.现从中随机抽取100名学⽣前往各世博地铁站作引导员,求这些学⽣中⼥⽣数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ?=??0,x A <<其他,试求:(1)常数A ;(2))5.00(<17.设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<(3)X 的分布函数. 18.证明:函数22e ,0,()0,0,xc x x f x c x -??≥=??可作为⼀个密度函数.19. 经常往来于某两地的⽕车晚点的时间X(单位:min )是⼀个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ?--<X 为负值表⽰⽕车早到了.求⽕车⾄少晚点2min 的概率.习题四 1220. 设随机变量X 的分布函数为0()1(1)e x F x x -?=?-+?,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求⽅程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银⾏的窗⼝等待服务的时间X (单位:min )是⼀随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -??=,0,,x >其它.某顾客在窗⼝等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银⾏,求他未等到服务就离开的概率;(2)设某顾客⼀个⽉要去银⾏五次,求他五次中⾄多有⼀次未等到服务⽽离开的概率.24. 以X 表⽰某商店从早晨开始营业起直到第⼀个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -?->=??其他.求:(1)X 的密度函数;(2)P (⾄多等待。
概率的练习题
![概率的练习题](https://img.taocdn.com/s3/m/61d2725b2379168884868762caaedd3383c4b51c.png)
概率的练习题概率的练习题概率是数学中的一个重要分支,它研究的是事件发生的可能性。
在现实生活中,我们经常会遇到各种各样的概率问题,比如抛硬币、掷骰子、抽卡等等。
解决这些问题需要一定的数学知识和技巧,下面我们来看几个概率的练习题。
练习题一:抛硬币假设有一枚公平的硬币,抛掷一次,求出正面朝上的概率。
解答:由于硬币是公平的,正反面朝上的概率是相等的,所以正面朝上的概率为1/2。
练习题二:掷骰子现有一个六面骰子,掷一次,求出点数为偶数的概率。
解答:骰子有六个面,分别是1、2、3、4、5、6。
其中2、4、6为偶数,所以点数为偶数的概率为3/6,即1/2。
练习题三:抽卡某款手机游戏中,有一张稀有卡牌,抽取一次,求出抽到稀有卡牌的概率。
解答:假设游戏中共有100张卡牌,其中只有1张是稀有卡牌。
所以抽到稀有卡牌的概率为1/100。
练习题四:概率的加法定理现有一个装有5个红球和3个蓝球的袋子,从中随机抽取一个球,求出抽到红球或蓝球的概率。
解答:袋子中共有8个球,其中5个红球和3个蓝球。
抽到红球或蓝球的概率可以通过概率的加法定理计算,即红球的概率加上蓝球的概率。
红球的概率为5/8,蓝球的概率为3/8,所以抽到红球或蓝球的概率为5/8 + 3/8 = 8/8 = 1。
练习题五:概率的乘法定理某次考试有选择题和填空题两部分,选择题有5道,填空题有3道。
小明随机回答这些题目,求出他全部回答正确的概率。
解答:选择题每道题有4个选项,小明全部回答正确的概率为(1/4)^5,填空题每道题有10个选项,小明全部回答正确的概率为(1/10)^3。
根据概率的乘法定理,小明全部回答正确的概率为(1/4)^5 * (1/10)^3。
以上是几个概率的练习题,通过解答这些题目可以加深对概率的理解。
在实际生活中,概率问题无处不在,掌握概率的计算方法对我们做出正确的决策和判断非常重要。
希望通过这些练习题的学习,大家能够更好地理解和运用概率知识。
概率计算练习题
![概率计算练习题](https://img.taocdn.com/s3/m/13c33406f6ec4afe04a1b0717fd5360cba1a8d03.png)
概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。
现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。
2. 有一批产品,其中20%是次品。
从中随机抽取3个产品,求恰好有一个是次品的概率。
3. 一批产品中有30%的次品。
从中随机抽取5个产品,求至少有一个是次品的概率。
4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。
甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。
现从该批产品中随机选择一件,求其出现故障的概率。
5. 一批产品中有20%的次品。
从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。
二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。
已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。
现从该班级中随机选择一名学生,求该学生学习吉他的概率。
2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。
从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。
3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。
已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。
现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。
4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。
从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。
5. 某城市每天发生车辆事故的概率为0.03。
概率经典练习题精心整理
![概率经典练习题精心整理](https://img.taocdn.com/s3/m/5c936bcfa1116c175f0e7cd184254b35eefd1add.png)
概率经典练习题精心整理1. 事件概率的计算- 问题:有一个装有6个红球和4个蓝球的盒子,从盒子中随机抽取一个球,求抽出的球是红色的概率。
- 解答:红球的个数为6,总球数为10,所以红色概率为6/10,即3/5。
2. 条件概率的计算- 问题:某地的天气预报表明,如果今天是晴天,明天下雨的概率为0.2;如果今天是雨天,明天下雨的概率为0.6。
已知今天是晴天的情况下,明天下雨的概率是多少?- 解答:根据条件概率公式P(A|B) = P(A∩B) / P(B),今天是晴天(A),明天下雨(B),则 P(下雨|晴天) = P(下雨∩晴天) / P(晴天)。
已知 P(下雨∩晴天) = P(晴天) * P(下雨|晴天) = (1/2) * 0.2 =1/10,P(晴天) = 1/2,所以 P(下雨|晴天) = (1/10) / (1/2) = 1/5。
3. 互斥事件的概率计算- 问题:某班级有50个学生,其中30个喜欢音乐,20个喜欢运动,有10个既喜欢音乐又喜欢运动。
随机选取一个学生,求该学生既不喜欢音乐也不喜欢运动的概率。
- 解答:根据互斥事件的概率计算公式P(A∪B) = P(A) + P(B),既不喜欢音乐也不喜欢运动的事件为学生总数减去喜欢音乐和喜欢运动的学生数,即 50 - 30 - 20 + 10 = 10。
所以该学生既不喜欢音乐也不喜欢运动的概率为 10/50 = 1/5。
4. 独立事件的概率计算- 问题:一副扑克牌中,从中抽取2张牌,求第一张是红心的概率并放回,然后再抽取1张牌,求第三张是红心的概率。
- 解答:第一张是红心的概率为 26/52 = 1/2,因为放回了,所以每次抽取红心的概率都是 26/52 = 1/2。
第三张也是红心的概率为26/52 = 1/2,因为前后两次抽取是独立事件。
以上是我为您整理的一些概率经典练习题,希望对您有帮助!。
概率统计习题集(含答案)
![概率统计习题集(含答案)](https://img.taocdn.com/s3/m/3d7883e0bb0d4a7302768e9951e79b89680268fe.png)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
(完整版)概率练习题(含答案)
![(完整版)概率练习题(含答案)](https://img.taocdn.com/s3/m/4a5547372cc58bd63086bd2a.png)
概率练习题(含答案)1解答题有两颗正四周体的玩具,其四个面上分别标有数字1, 2, 3 , 4 ,下边做扔掷这两颗正四面体玩具的试验:用(x, y)表示结果,此中x 表示第 1 颗正四周体玩具出现的点数,y 表示第 2 颗正四周体玩具出现的点数.试写出:(1)试验的基本领件;(2)事件“出现点数之和大于3 ”;(3)事件“出现点数相等” .答案(1)这个试验的基本领件为:(1,1),( 1 ,2),( 1 ,3 ),( 1,4 ),(2,1),( 2 ,2),( 2 ,3 ),( 2,4 ),(3,1),( 3 ,2),( 3 ,3 ),( 3,4 ),(4,1),( 4 ,2),( 4 ,3 ),( 4,4 )(2)事件“出现点数之和大于 3”包括以下 13 个基本领件:(1,3),( 1 ,4),( 2 ,2 ),( 2,3 ),( 2, 4 ),( 3, 1 ),( 3, 2),( 3,3 ),(3,4),( 4 ,1),( 4 ,2 ),( 4,3 ),( 4, 4 )(3)事件“出现点数相等”包括以下 4 个基本领件:(1,1),( 2 ,2),( 3 ,3 ),( 4,4 )2单项选择题“概率”的英文单词是“Probability”,假如在构成该单词的所有字母中随意拿出一个字母,则取到字母“ b ”的概率是1. A.2. B.3. C.4. D.1答案C分析剖析:先数出单词的所有字母数,再让字母“ b ”的个数除以所有字母的总个数即为所求的概率.解答:“ Probability”中共11个字母,此中共 2 个“ b”,随意拿出一个字母,有11 种状况可能出现,取到字母“ b ”的可能性有两种,故其概率是;应选 C.评论:本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件 A 出现m 种结果,那么事件 A 的概率 P(A ) =.3解答题一只口袋内装有大小同样的 5 只球,此中 3 只白球, 2 只黑球 .现从口袋中每次任取一球,每次拿出不放回,连续取两次 .问:(1)拿出的两只球都是白球的概率是多少?(2)拿出的两只球起码有一个白球的概率是多少?答案(1 )拿出的两只球都是白球的概率为3/10 ;(2 )以拿出的两只球中起码有一个白球的概率为9/10 。
小学概率的练习题
![小学概率的练习题](https://img.taocdn.com/s3/m/c85bba2326d3240c844769eae009581b6bd9bd24.png)
小学概率的练习题小学概率是数学中的一个重要内容,它能够培养学生的逻辑思维能力和解决问题的能力。
以下是一些小学概率的练习题,希望能够帮助学生更好地理解和应用概率知识。
1.班级中有30名学生,其中有15名男生和15名女生。
如果从班级中随机选取一名学生,男生和女生被选中的概率各是多少?解答:男生被选中的概率是15/30=1/2,女生被选中的概率也是15/30=1/2。
2.在一副扑克牌中,红桃有13张牌,黑桃有13张牌,方块有13张牌,梅花有13张牌。
如果从扑克牌中随机抽取一张牌,抽到红桃的概率是多少?解答:红桃有13张牌,总共有52张牌,所以抽到红桃的概率是13/52=1/4。
3.一个骰子有六个面,分别标有1、2、3、4、5、6这六个数字。
如果投掷这个骰子,投掷到一个奇数的概率是多少?解答:投掷到一个奇数的面有1、3、5,一共3个面。
所以投掷到一个奇数的概率是3/6=1/2。
4.在一个玩具柜里有8个球,其中3个是红色的,5个是蓝色的。
如果从玩具柜中随机抽取两个球,其中一个是红色球的概率是多少?解答:首先计算从8个球中选择2个球的组合数,即C(8,2)=28种组合。
然后计算其中一个是红色球的组合数,即C(3,1) * C(5,1)=15种组合。
所以其中一个是红色球的概率是15/28。
5.在一个篮子里有6个苹果和4个橘子。
如果从篮子中随机抽取两个水果,其中一个是苹果的概率是多少?解答:首先计算从10个水果中选择2个水果的组合数,即C(10,2)=45种组合。
然后计算其中一个是苹果的组合数,即C(6,1) * C(4,1)=24种组合。
所以其中一个是苹果的概率是24/45。
6.在一个抽奖活动中,有10个奖品,其中有3个一等奖,2个二等奖,5个三等奖。
如果一个人可以抽取一个奖品,抽到一等奖的概率是多少?解答:抽到一等奖的概率是3/10。
以上是一些小学概率的练习题,希望能够帮助学生巩固和应用概率知识。
通过解答这些题目,学生可以更好地理解概率的概念和计算方法,培养他们的逻辑思维能力和解决问题的能力。
小学数学概率练习题
![小学数学概率练习题](https://img.taocdn.com/s3/m/e414b467dc36a32d7375a417866fb84ae45cc3a0.png)
小学数学概率练习题
一、选择题
1. 下列事件中,属于互斥事件的是:
A. 两个骰子同时掷出的点数之和为奇数
B. 从扑克牌中抽到红桃
C. 抛一枚硬币,正面向上
D. 掷一个骰子,掷出的点数为2
2. 某班级有30人,其中有15人喜欢篮球,12人喜欢足球,3人既喜欢篮球又喜欢足球,那么既不喜欢篮球也不喜欢足球的人数是:
A. 0
B. 3
C. 9
D. 15
二、填空题
1. 设事件A发生的概率为1/3,事件B发生的概率为1/4,且事件A 和事件B的联合事件发生的概率为1/6,那么事件A和事件B的交叉事件发生的概率为______。
2. 一袋中有红、蓝、黄三种颜色的球,红球4个,蓝球3个,黄球2个。
从中任取两个球,不放回去,求两球的颜色都相同的概率为
______。
三、解答题
1. 假设甲、乙、丙三个人依次从1、2、3号球中任取一个,求他们依次取到的号码之和为偶数的概率。
2. 一筐中有6个红球,4个蓝球,3个黄球。
从中逐次取球,不放回。
若先取到红球,再取到蓝球,问概率是多少?
题目答案:
一、选择题
1. A
2. C
二、填空题
1. 1/12
2. 2/9
三、解答题
1. 概率为1/2
2. 概率为2/39
注意:以上只是示例题目和解答,实际题目和答案可能有所不同,仅供参考。
概率的练习题
![概率的练习题](https://img.taocdn.com/s3/m/02eadf9e59f5f61fb7360b4c2e3f5727a5e92408.png)
概率的练习题一、选择题1. 某事件的概率P(A)为0.4,那么P(A的补集)等于多少?A. 0.6B. 0.5C. 0.4D. 12. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 0.75C. 0.25D. 13. 一个袋子里有5个红球和3个蓝球,随机取出一个球,是红球的概率是多少?A. 0.6B. 0.5C. 0.4D. 0.34. 如果事件A和事件B是互斥的,并且P(A)=0.3,P(B)=0.2,那么P(A或B)等于多少?A. 0.5B. 0.4C. 0.3D. 0.25. 某次考试,一个学生通过的概率是0.7,不通过的概率是多少?A. 0.3B. 0.7C. 0.6D. 0.5二、填空题6. 如果一个事件的概率是0.8,那么它的对立事件的概率是________。
7. 某次抽奖活动中,共有1000张奖券,其中10张是一等奖,那么抽到一等奖的概率是________。
8. 一个骰子有6个面,每个面出现的概率是________。
9. 如果事件A和事件B是相互独立的,P(A)=0.4,P(B)=0.6,那么P(A和B同时发生)等于________。
10. 某次实验中,事件A发生的概率是0.2,事件B发生的概率是0.3,且P(A和B同时发生)=0.1,那么P(A或B)等于________。
三、计算题11. 一个盒子里有3个白球和2个黑球,从中随机取出2个球。
求以下概率:(1) 取出的2个球都是白球的概率。
(2) 取出的2个球中至少有一个是黑球的概率。
12. 某工厂生产的产品中有5%是次品。
如果随机抽取10件产品,求以下概率:(1) 没有次品的概率。
(2) 恰好有1件次品的概率。
13. 假设有3个独立事件A、B、C,它们发生的概率分别是P(A)=0.3,P(B)=0.5,P(C)=0.7。
求以下概率:(1) 事件A和事件B同时发生的概率。
(2) 事件A发生,而事件B和事件C不发生的概率。
概率的练习题
![概率的练习题](https://img.taocdn.com/s3/m/2a180ca0e109581b6bd97f19227916888486b9fb.png)
概率的练习题概率是数学中的一个分支,用于研究事件发生的可能性。
在现实生活中,我们经常遇到需要计算概率的情况,这些情况往往涉及到随机事件的发生。
本文将通过一些练习题来帮助读者加深对概率的理解和应用。
练习题一:抛硬币假设有一枚均匀的硬币,抛掷结果只有两种可能:正面或反面。
现在,我们进行一系列的抛硬币实验,请回答以下问题:1. 抛掷一次硬币,正反面出现的概率各是多少?2. 抛掷两次硬币,正正面出现的概率是多少?3. 抛掷三次硬币,至少出现一次正面的概率是多少?4. 抛掷四次硬币,正面出现次数等于反面出现次数的概率是多少?练习题二:扑克牌扑克牌是一种常见的玩具牌类游戏,在游戏中常常需要计算牌的概率。
请回答以下问题:1. 从一副标准的扑克牌(52张牌,不包括大小王)中,抽一张牌,这张牌是黑桃的概率是多少?2. 从一副标准的扑克牌中,抽取两张牌,其中至少一张是红心的概率是多少?3. 从一副标准的扑克牌中,连续抽取三张牌,三张牌的花色全部相同的概率是多少?4. 从一副标准的扑克牌中,连续抽取五张牌,其中四张牌的点数相同,剩下一张点数不同的概率是多少?练习题三:篮球比赛在一场篮球比赛中,队伍A和队伍B进行对抗。
现在,根据两队的历史表现和球场状态,我们假设队伍A和队伍B获胜的概率分别为0.6和0.4。
请回答以下问题:1. 队伍A连胜两场的概率是多少?2. 队伍A和队伍B轮流获胜,直到其中一队获得三次胜利的概率是多少?3. 如果比赛进行到平局,需要额外进行两场比赛来分胜负。
在这种情况下,队伍A获胜的概率是多少?4. 比赛进行到第四场时,队伍A已经连续获胜三场。
在这种情况下,队伍A连续获胜四场的概率是多少?以上是关于概率的一些练习题,通过解答这些问题,读者可以巩固对概率的理解,并将其应用于实际问题中。
概率的计算可以帮助我们预测事件的发生可能性,对决策和分析具有重要意义。
希望读者通过这些练习题,能够更加熟练地运用概率的概念和方法。
概率习题
![概率习题](https://img.taocdn.com/s3/m/0b36d618964bcf84b9d57b7e.png)
概率习题选一、选择题1.下列事件中,随机事件是().A.物体在重力的作用下自由下落B.为实数,C.在某一天内电话收到呼叫次数为0D.今天下雨或不下雨2.下列事件中,必然事件是().A.掷一枚硬币出现正面B.掷一枚硬币出现反面C.掷一枚硬币,或者出现正面,或者出现反面D.掷一枚硬币,出现正面和反面3.向区间(0,2)内投点,点落入区间(0,1)内属于().A.必然事件 B.不可能事件 C.随机事件 D.无法确定4.从1,2,…,9共九个数字中任取一个数字,取出数字为偶数的概率为().A.0 B.1 C. D.5.一个口袋中装有15个大小相同且质量密度也相同的球,其中10个白球,5个黑球,从中摸出2个球,则1个是白球,1个是黑球的概率是().A. B. C. D.6.排一张有5个独唱和3个合唱的节目表,如果合唱不排头,且任两个合唱都不相邻,则这种安排发生的概率是().A. B.1 C. D.7.接连三次抛掷一枚硬币,则正反面轮番出现的概率是().A. B. C. D.8.袋中有白球5只,黑球6只,连续摸出3只球,则顺序为“黑白黑”的概率为().A. B. C. D.9.某小组有成员3人.每人在一个星期中参加一天劳动如果劳动日期可随机安排,则3人在不同的3天参加劳动的概率为().A. B. C. D.10.从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率是().A. B. C. D.11.十个人站成一排,其中甲、乙、丙三人恰巧站在一起的概率为().A. B. C. D.12.从长度分别为1、3、5、7、9个单位的5条线段中任取3条作边,能组成三角形的概率为().A. B. C. D.13.下列事件是随机事件的个数是().(1)在常温下,焊锡熔化;(2)明天天晴;(3)自由下落的物体作匀加速直线运动;(4)函数(且)在定义域上是增函数.A.0个 B.1个 C.2个 D.3个14.停车场可把12辆车停放在一排上,现有8辆车停放,而恰有4个空位连在一起,这样的事件发生的概率是().A. B. C. D.15.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将五个球放入这五个盒子内,要求每个盒子放一个球,则恰有两个球的编号与盒子编号相同的概率是().A. B. C. D.16.有10件产品,其中有2件是次品,任取5件产品,则恰有一件是次品的概率为().A. B. C. D.17.有五条长度不等的线段,其长度分别为1,3,5,7,9个单位,从中任取三条作边,能组成三角形的概率等于().A.0.4 B.0.2 C.0.3 D.0.718.奥运会足球预选赛亚洲区决赛(九强赛),中国队和韩国队都是九强赛中的队,现要将九支队随机分成三组进行决赛,则中国队与韩国队分在同一组的概率是().A. B. C. D.19.一个小组有8名学生,这8名学生的生日(月、日)都不相同的概率是(一年按365天计)().A. B. C. D.20.某乒乓球队有9名队员,其中2名种子选手,现在要选5名队员参赛,则2名种子选手必须在内的概率是().A. B. C. D.二、填空题1.求一个事件概率的基本方法是通过大量的________实验,用这个事件发生的_______近似地作为它的概率.2.袋中有3个红球,3个白球,袋中有4个红球,6个白球,若从每一袋中各随机摸一球,则它们颜色相同的概率是_________.3.从数字1,2,3,4,5中任取两个不同的数,构成一个两位数,则这个数大于40的概率是________.4.从集合中任取3个元素(不重复),分别作为抛物线方程中的,,,则所得抛物线恰好过原点的概率是_________.5.有6个不同的球,每个球都等可能地落入10个不同的盒子,假设盒子的容量无限,则某指定盒子恰有2个球的概率是________.6.将4个球随机地放入4个盒中,则恰有一个盒子空着的概率为________.7.圆周上有十个等分圆周的点,以这十个点中,任取三点为顶作一个三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率初步
知识点一:事件的认识(必然事件,不可能事件,随机事件)
练习1.指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件?(1).通常加热到100°C时,水沸腾;
(2).姚明在罚球线上投篮一次,命中;
(3).掷一次骰子,向上的一面是6点;
(4).度量三角形的内角和,结果是360°;
(5). 经过城市中某一有交通信号灯的路口,遇到红灯;
(6).某射击运动员射击一次,命中靶心;
(7).太阳东升西落;
(8). 如果a>b,那么a-b>0;;
(9). a2+b2=-1(其中a,b都是实数);
(10). 一元二次方程x2+2x+3=0无实数解.
知识点二:古典概型(摸球问题、掷骰子问题、掷硬币问题、转盘问题、配套问题),主要有三种类型(一步试验、二步试验、三步试验),解题方法是列举法——树状图法与列表法. 题型2.概率的意义:一般地对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为机事件A发生的概率,记作P(A)。
当一次试验有两个共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.则用下面的列举法求概率.
用列举法求概率的一般步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件
A发生的结果(m个);(3)运用公式求事件A的概率:()m
P A
n
.
一步试验典例:
练习2. 一个袋子里装有5红球3个绿球,这些球除颜色外都相同。
从袋子中随机地摸出一个球,它是红色与是绿色的可能性相等吗?两者的概率分别是多少?
练习3. 10件外观相同的产品中有1件不合格。
现从中任意抽取1件进行检测,抽到不合格产品的概率为多少?
两步试验典例:
练习4. 袋子中装有红、绿各一个小球,除颜色外无其他差别,随机摸出1个小球后放回,再随机摸出一个。
求下列事件的概率:
(2)两次都摸到相同颜色的小球;
(3)两次摸到的球中有一个绿球和一个红球.
练习5.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球,然后放回,再随机地摸出一个小球,求下列事件的概率:
(1)两次取得小球的标号相同;
(2)两次取得小球的标号的和等于4.
练习6.从1名男生和2名女生中随机抽取参加“我爱我家乡”演讲赛的学生,求下列事件的概率:
(1)抽取1名,恰好是男生;
(2)抽取2名,恰好是1名女生和1名男生.
练习7.小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.
三步试验典例:
练习8. 经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:
(1)三辆车全部继续直行;
(2)两辆车右转,一辆车左转;
(3)至少有两辆车左转。
练习9.三个同学约好一起去打乒乓球,可每次只能两个人先玩。
于是他们决定用“手心手背”的游戏方式来确定哪两个人先玩,并说出了如下规则:三人同时伸出一只手,三只手中,恰好有两只手心向上或者手背向上的两人先打乒乓球.如果三只手的手心方向一致,再次进行,直到确定二人为止.
试求出一次游戏就确定出两人先玩的概率(画树状图)
知识点三:几何概型
1.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E 、F 分别是矩形ABCD 的两边AD .BD 上的点,EF ∥AB ,点M 、N 是EF 上任意两点,则投掷一次,飞镖落在阴影部分的概率是( )
A .13
B .
23
C .
12
D .
34
2.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是( ) A. 12 B. 13 C. 14
D. 1
6
3.如图,把一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为_____________.
4.A 、B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同)。
每次选择2名同学分别拨动A 、B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次)。
作为游戏者,你会选择哪个装置呢?并请说明理由。
A
B
图
1
联欢晚会游戏转盘
1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()
A.6
B.10
C.18
D.20
2.在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量反复试验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()
(A)12 (B)9 (C)4 (D)3
3.为了调查今年有多少名学生参加中考,小华从全市所有家庭中随机抽查了200个家庭,发现其中有10个家庭有子女参加中考。
(1)本次抽查的200个家庭中,有子女参加中考的家庭的频率是多少?
(2)如果你随机调查一个家庭,估计该家庭有子女参加中考的概率是多少?
(3)已知全市约有1.3×106个家庭,假设有子女参加中考的每个家庭中只有一名考生,请你估计今年全市有多少名考生参加中考?
概率习题
一、选择题
1、甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为()
A.2
3
B.
1
2
C.
1
3
D.
1
6
2.下列说法正确的是()
A.在同一年出生的400人中至少有两人的生日相同
B.一个游戏的中奖率是1%,买100张奖券,一定会中奖
C.一副扑克牌中,随意提取一张是红桃K
D.一个袋中装有4个红球、5个白球,任意摸出一个球是红球的概率是
5
3
二、填填看
3.若100个产品中有95个正品,5个次品,从中随机抽取一个,恰好是次品的概率
是..
4.如图每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________.
三、解答题:
1. 小王制定一个玩飞行棋的游戏规则为:抛掷两枚均匀的正四面体骰子(四面依次标上数字1、2、3、4),掷得点数之和为5时才“可以起飞”,请你根据该规则计算“可以起飞”的概率(要求用树状图或列表法求解).
2. 在两个布袋里分别装有三张卡片,每个布袋的三张卡片中2张写着“月”,1张写着“日”,其它没有区别。
把两袋里的卡片都搅匀后,再闭上眼睛分别从两袋里各取出一张卡片,试求出两张卡片能组成“朋”
字的概率(要求用树状图或列表法求解).。