相似三角形与圆的综合题

合集下载

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、三角函数专题(含答案)

圆与相像三角形、解直角三角形及二次函数的综合种类一:圆与相像三角形的综合1.如图, BC 是⊙ A 的直径,△ DBE的各个极点均在⊙ A 上, BF⊥ DE于点 F.求证: BD·BE= BC·BF.2.如图,在 Rt△ ABC中,∠ ACB= 90°,以 AC为直径的⊙ O 与 AB 边交于点 D,过点 D 作⊙O 的切线,交 BC 于点 E.(1)求证:点 E 是边 BC的中点;求证:2=BD·BA;(2)BC(3)当以点 O, D, E,C 为极点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1) 连接 OD,∵ DE为切线,∴∠ EDC+∠ ODC=90° .∵∠ ACB=90°,∴∠ ECD+∠ OCD= 90° .又∵ OD= OC,∴∠ ODC=∠ OCD,∴∠ EDC=∠ ECD,∴ ED= EC.∵AC 为直径,∴∠ADC= 90°,∴∠ BDE+∠ EDC= 90°,∠ B+∠ECD= 90°,∴∠ B=∠ BDE,∴ ED= EB,∴ EB=EC,即点 E 为边 BC的中点(2)∵ AC为直径,∴∠ ADC=∠ ACB=90° .又∵∠ B=∠ B,∴△ ABC∽△ CBD,∴ABBC= BCBD,∴B C2= BDBA(3)当四边形 ODEC为正方形时,∠ OCD= 45° .∵AC 为直径,∴∠ ADC= 90°,∴∠ CAD=90°-∠ OCD= 90°- 45°= 45°,∴ Rt△ ABC 为等腰直角三角形种类二:圆与解直角三角形的综合3.如图,在△ ABC中,以 AC 为直径作⊙ O 交 BC 于点 D,交 AB 于点 G,且 D 是 BC 的中点,DE⊥ AB,垂足为点 E,交 AC 的延伸线于点 F.(1)求证:直线EF是⊙ O 的切线;(2)已知 CF= 5, cosA=25,求 BE 的长.解: (1)连接 OD.∵ CD=DB,CO= OA,∴ OD 是△ ABC的中位线,∴OD∥ AB, AB=2OD.∵ DE⊥ AB,∴ DE⊥OD,即 OD⊥ EF,∴直线 EF是⊙ O 的切线(2)∵ OD∥ AB,∴∠ COD=∠ A,∴ cos∠ COD= cosA= 25.在 Rt△ DOF中,∵∠ ODF= 90°,∴ cos∠ FOD= ODOF= 25.设⊙ O 的半径为 r,则 rr + 5= 25,解得 r= 103,∴ AB= 2OD= AC= 203.在 Rt△ AEF中,∵∠ AEF= 90°,∴ cosA= AEAF=AE5+ 203=25,∴ AE= 143,∴ BE=AB- AE=203- 143= 24.(2015 ·资阳 )如图,在△ ABC中, BC是以 AB 为直径的⊙ O 的切线,且⊙ O 与 AC 订交于点D, E 为 BC 的中点,连接 DE.(1)求证: DE 是⊙ O 的切线;(2)连接 AE,若∠ C= 45°,求 sin∠ CAE的值.解: (1)连接 OD,BD,∵ OD= OB,∴∠ ODB=∠ OBD.∵ AB 是直径,∴∠ ADB= 90°,∴∠ CDB= 90° .∵ E为 BC的中点,∴ DE=BE,∴∠ EDB=∠ EBD,∴∠ ODB+∠ EDB=∠ OBD+∠ EBD,即∠ EDO=∠ EBO.∵ BC 是以 AB 为直径的⊙ O 的切线,∴ AB⊥ BC,∴∠ EBO=90°,∴∠ ODE= 90°,∴ DE 是⊙ O 的切线(2)过点 E 作 EF⊥ CD于点 F,设 EF= x,∵∠ C=45°,∴△ CEF,△ABC 都是等腰直角三角形,∴CF= EF= x,∴ BE= CE= 2x,∴AB= BC= 22x.在 Rt△ ABE中, AE= AB2+ BE2= 10x,∴ sin∠ CAE= EFAE= 10105.如图,△ ABC 内接于⊙ O,直径 BD 交 AC 于点 E,过点 O 作 FG⊥ AB,交 AC 于点 F,交 AB 于点 H,交⊙ O 于点 G.(1)求证: OF·DE= OE·2OH;(2)若⊙ O 的半径为12,且 OE∶OF∶ OD= 2∶3∶ 6,求暗影部分的面积. (结果保存根号 )解: (1)∵ BD 是直径,∴∠ DAB= 90° .∵ FG⊥ AB,∴ DA∥ FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OFDE=OEAD.∵O 是BD 的中点, DA∥ OH,∴ AD= 2OH,∴ OFDE= OE2OH(2)∵⊙ O 的半径为12,且 OE∶ OF∶ OD=2∶ 3∶ 6,∴ OE= 4, ED=8,OF= 6,∴ OH= 6.在 Rt△OBH 中,OB= 2OH,∴∠ OBH= 30°,∴∠ BOH= 60°,∴ BH= BOsin60°= 12× 32= 63,∴ S 暗影= S 扇形 GOB-S△OHB=60×π× 122360- 12× 6×63= 24π- 183种类三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知 A(- 4,0), B(1,0),且以 AB 为直径的圆交 y 轴的正半轴于点 C(0,2),过点 C作圆的切线交 x 轴于点 D.(1)求过 A,B, C 三点的抛物线的分析式;(2)求点 D 的坐标;(3)设平行于 x 轴的直线交抛物线于E,F 两点,问:能否存在以线段EF为直径的圆,恰巧与x轴相切若存在,求出该圆的半径,若不存在,请说明原因.解: (1)y=- 12x2- 32x+2(2)以 AB 为直径的圆的圆心坐标为O′ (-32,0),∴O′ C= 52, O′ O= 32.∵ CD为圆 O′的切线,∴O′ C⊥ CD,∴∠ O′CO+∠ DCO= 90° .又∵∠CO′ O+∠ O′ CO=90°,∴∠ CO′ O=∠DCO,∴△ O′ CO∽△ CDO,∴ O′ OOC= OCOD,∴322= 2OD,∴ OD= 83,∴点 D 的坐标为 (83,0)(3)存在.抛物线的对称轴为直线x=- 32,设满足条件的圆的半径为|r| ,则点 E 的坐标为 (- 32+ r, r)或 F(- 32-r , r),而点 E 在抛物线y =- 12x2- 32x+2 上,∴ r=- 12(- 32+ |r|)2 - 32(- 32+ |r|) + 2,∴ r1=- 1+ 292, r2=-1- 292(舍去 ).故存在以线段EF 为直径的圆,恰巧与x 轴相切,该圆的半径为-1+ 2927.如图,抛物线y=ax2+ bx- 3 与 x 轴交于 A, B 两点,与y 轴交于点C,经过 A,B, C 三点的圆的圆心抛物线的极点为M(1 ,m)恰幸亏此抛物线的对称轴上,E.⊙ M的半径为.设⊙ M与y 轴交于点D,(1)求 m 的值及抛物线的分析式;(2)设∠ DBC=α,∠ CBE=β,求 sin( α-β)的值;(3)研究坐标轴上能否存在点 P,使得以 P, A, C 为极点的三角形与△ BCE相像若存在,请指出点 P 的地点,并直接写出点 P 的坐标;若不存在,请说明原因.解: (1)由题意,可知 C(0,- 3),- b2a=1,∴抛物线的分析式为 y= ax2- 2ax- 3(a> 0).过点 M 作 MN ⊥y 轴于点 N,连接 CM,则 MN = 1, CM= 5,∴ CN= 2,于是 m=- 1.同理,可求得 B(3,0),∴ a× 32- 2a× 3- 3=0,解得 a= 1. ∴抛物线的分析式为 y= x2- 2x-3(2)由 (1)得, A(-1 ,0), E(1,- 4), D(0, 1),∴△ BCE为直角三角形, BC=32, CE= 2,∴OBOD=31= 3, BCCE= 322=3,∴ OBOD= BCCE,即 OBBC= ODCE,∴ Rt△BOD∽ Rt△BCE,得∠ CBE=∠ OBD=β,所以 sin(α-β )=sin(∠ DBC-∠ OBD)= sin∠ OBC= COBC= 22(3)明显 Rt△ COA∽ Rt△ BCE,此时点 O(0, 0).过点 A 作 AP2⊥ AC 交 y 轴的正半轴于点 P2,由 Rt△ CAP2∽Rt△ BCE,得 P2(0,13).过点 C 作 CP3⊥ AC交 x 轴的正半轴于点 P3,由 Rt△P3CA∽ Rt△ BCE,得 P3(9,0).故在座标轴上存在三个点 P1(0, 0),P2(0, 13),P3(9, 0),使得以 P, A, C为极点的三角形与△ BCE相像。

【精编版】数学中考专题训练——相似三角形与圆的综合

【精编版】数学中考专题训练——相似三角形与圆的综合

中考专题训练——相似三角形与圆的综合1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.参考答案与试题解析1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.【分析】(1)由垂径定理得出OD⊥AC,进而得出∠F AO+∠AOF=90°,由圆周角定理结合已知条件得出∠AOF=∠CAE,得出∠F AO+∠CAE=90°,即∠OAE=90°,即可证明AE是⊙O的切线;(2)连接AD,利用解直角三角形得出tan B==,设AD=3x,则BD=4x,AB=5x,由⊙O的半径10,得出AB=5x=20,求出x=4,求出AD=12,BD=16,继而证明△ADH∽△BDA,利用相似三角形的性质即可求出DH的长.【解答】(1)证明:如图1,∵D是的中点,∴OD⊥AC,∴∠AFO=90°,∴∠F AO+∠AOF=90°,∵∠AOF=2∠C,∠CAE=2∠C,∴∠AOF=∠CAE,∴∠F AO+∠CAE=90°,即∠OAE=90°,∵OA是半径,∴AE是⊙O的切线;(2)解:如图2,连接AD,∵∠C=∠B,,tan B=,∵AB是直径,∴∠ADB=90°,∴tan B==,设AD=3x,则BD=4x,AB=5x,∵⊙O的半径10,∴AB=5x=20,∴x=4,∴AD=3×4=12,BD=4×4=16,∵D是的中点,∴AD=CD=12,∴∠DAC=∠C,∵∠B=∠C,∴∠DAC=∠B,∵∠ADH=∠BDA∴△ADH∽△BDA,∴,即,∴DH=9.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.【分析】(1)延长BO交⊙O于点E,连接AE,先证明△PBA∽△ABD,得出∠P AB=∠ADB,由圆周角定理得出∠P AB=∠E,由等腰三角形的性质得出∠OAE=∠E,进而得出∠P AB=∠OAE,由圆周角定理得出∠BAE=∠BAO+∠OAE=90°,进而得出∠BAO+∠P AB=∠P AO=90°,即可证明P A是⊙O的切线;(2)延长BO交⊙O于点E,连接AE,DE,利用勾股定理列方程求出⊙O的半径为3,进而得出OA=3,OP=5,BE=6,再证明△P AO∽△EDB,利用相似三角形的性质即可求出BD的长度.【解答】(1)证明:如图1,延长BO交⊙O于点E,连接AE,∵AB2=PB•BD,∴,∵∠ABP=∠ABD,∴△PBA∽△ABD,∴∠P AB=∠ADB,∵∠ADB=∠E,∴∠P AB=∠E,∵OA=OE,∴∠OAE=∠E,∴∠P AB=∠OAE,∵BE为直径,∴∠BAE=∠BAO+∠OAE=90°,∴∠BAO+∠P AB=∠P AO=90°,∵OA是半径,∴P A是⊙O的切线;(2)解:如图2,延长BO交⊙O于点E,连接AE,DE,∵P A=2PB=4,∴PB=2,设OA=OB=x,则OP=x+2,∵∠P AO=90°,∴P A2+AO2=OP2,即42+x2=(x+2)2,解得:x=3,∴OA=3,OP=2+3=5,BE=3+3=6,∵△PBA∽△ABD,∴∠P=∠BAD,∵∠BAD=∠BED,∴∠P=∠BED,∵BE为直径,∴∠BDE=90°,∴∠P AO=∠EDB=90°,∴△P AO∽△EDB,∴,即,∴BD=.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.【分析】(1)利用垂径定理的推论得到AB⊥CD,利用平行线的性质和圆的切线的判定定理解答即可;(2)过点F作FM⊥AB于点M,利用勾股定理和相似三角形的判定与性质求出线段OE,OM,MF的长,利用全等三角形的判定与性质求得线段BH的长,利用勾股定理和相似三角形的判定与性质得出比例式即可求得结论.【解答】(1)证明:∵点B是弧CD的中点,AB为⊙O的直径,∴AB⊥CD,∵AE∥CD,∴AE⊥OA.∵OA为⊙O的半径,∴AE是⊙O的切线;(2)解:过点F作FM⊥AB于点M,如图,∵AO=5,AE=,AE⊥OA,∴OE==.∵AE⊥AB,FM⊥AB,∴FM∥AE,∴△OMF∽△OAE,∴,∴,∴OM=3,MF=4.∴BM=OB+OM=5+3=8,∴BF==4.在△OFM和△ODH中,,∴△OFM≌△ODH(AAS),∴OM=OH=3,∴BH=OB﹣OH=2.∵FM⊥AB,AB⊥CD,∴CD∥FM,∴△BGH∽△BFM,∴,∴,∴BG=.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.【分析】(1)连接OD,证明DE是⊙O的切线,关键是证明OD⊥DE;(2)连接BD,根据(1)中OD∥AE得△OGD∽△AEG,从而求出AE的长,再根据△AED∽△ADB求出AD的长,再利用三角函数求出DF的长,利用S阴影=S△DOF﹣S扇形DOB求出阴影部分的面积.【解答】(1)证明:如图所示,连接OD,∵,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图所示,连接BD,∵OD//AE,∴△OGD∽△EGA,∴,∵,⊙O的半径为2,∴,∴AE=3.∵AB是⊙O的直径,DE⊥AE,∴∠AED=∠ADB=90°,∵∠CAD=∠DAB,∴△AED∽△ADB,∴,即,∴,在Rt△ADB中,,∴∠DAB=30°,∴∠EAF=60°,∠DOB=60°,∴∠F=30°,∵OD=2,∴,∴.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.【分析】(1)过点O作OH⊥AC于点H,由等腰三角形的性质得出AD=BD=6,OC=5,由勾股定理得出AC=10,证明△CHO∽△CDA,,由相似三角形的性质得出OH=3,继而得出AC是⊙O的切线,同理,BC是⊙O的切线,AB是⊙O的切线,即可得出⊙O是等腰△ABC的内切圆;(2)延长DC交FE于点M,由正方形的性质得出BE=AB=12,EF∥AB,由CA=CB,CD⊥AB,得出AD=BD=6,DM⊥EF,继而得出FM=ME=6,DM=BE=12,由三角形中位线的性质得出GE=8,进而得出BG=4,即可求出BG:GE的值.【解答】解:(1)小红的方法正确,理由如下:如图①,过点O作OH⊥AC于点H,∵等腰△ABC的底边AB为12,底边上的高CD为8,OD=3,∴AD=BD=6,OC=CD﹣OD=8﹣3=5,∴AC===10,∵∠CHO=∠CDA=90°,∠HCO=∠DCA,∴△CHO∽△CDA,∴,即,∴OH=3,∵OH⊥AC,∴AC是⊙O的切线,同理,BC是⊙O的切线,∵OD⊥AB,OD=3,∴AB是⊙O的切线,∴⊙O是等腰△ABC的内切圆;(2)如图②,延长DC交FE于点M,∵四边形ABEF是正方形,AB=12,∴BE=AB=12,EF∥AB,∵CA=CB,CD⊥AB,∴AD=BD=6,DM⊥EF,∴FM=ME=6,DM=BE=12,∴MC是△EFG的中位线,MC=DM﹣CD=12﹣8=4,∴GE=2CM=2×4=8,∴BG=BE﹣GE=12﹣8=4,∴,故答案为:.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.【分析】(1)利用圆内接四边形的性质求得∠ACD+∠ABD=180°,推出∠ABD=∠ACE,即可证明;(2)①由△ABD∽△ACE,推出AE=3CE,在Rt△ADE中,利用勾股定理求解即可;②证明△EAG∽△EDA,利用三角形的性质求解即可.【解答】(1)证明:∵AB是⊙O的直径,AE⊥CE,∴∠AEC=∠ADB=90°,∵四边形ABDC是圆内接四边形,∴∠ACD+∠ABD=180°,又∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD∽△ACE;(2)解:①在Rt△BDA中,AB=5,BD=5,∴AD==15,∵△ABD∽△ACE,∴,即,∴AE=3CE,在Rt△ADE中,AD2=AE2+DE2,∴152=(3CE)2+(9+CE)2,解得:CE=﹣(舍去)或CE=3;∴EC的长为3;②∵△ABD∽△ACE,∴∠BAD=∠CAE,∵∠CAG=∠F,∠EAG=∠CAE+∠CAG,∠EDA=∠BAD+∠F,∴∠EAG=∠EDA,∴△EAG∽△EDA,∴,∴AE2=GE•ED,即AE2=(EC+CG)•ED,∵CE=3,∴AE=3CE=9,∴92=(3+CG)×12,∴CG=.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.【分析】(1)连接OD,证明BF∥AE,BC∥EF,可得结论;(2)根据平行四边形的性质可得CE=BF=,如图,连接OD,过点C作CG⊥EF于G,证明四边形CODG是正方形,△ABC∽△GCE,列比例式可得AE的长.【解答】(1)证明:连接OD,∵BF⊥AB,∴∠ABF=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAC+∠ABF=180°,∴BF∥AE,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴BC⊥OD,∵EF切⊙O于D,∴EF⊥OD,∴BC∥EF,∴四边形BCEF为平行四边形;(2)解:由(1)知:四边形BCEF为平行四边形,∴CE=BF=,如图,连接OD,过点C作CG⊥EF于G,∴∠COD=∠ODG=∠CGD=90°,∵OC=OD,∴四边形CODG是正方形,∴CG=OC,∠BCG=90°,∴∠ACB+∠ECG=90°,∵∠ACB+∠ABC=90°,∴∠ECG=∠ABC,∵∠CGE=∠BAC=90°,∴△ABC∽△GCE,∴=,设⊙O的半径是r,则BC=2r,∴=,∴r=(负值舍),∴BC=2,∴AC===2,∴AE=AC+CE=2+=.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)由点D为的中点,可得∠CBD=∠ABD,根据AB为⊙O的直径,有∠AEF=∠BEC=90°﹣∠CBD,又AF是⊙O的切线,AB为⊙O的直径,有∠F=90°﹣∠ABD,即得∠AEF=∠F,AE=AF;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】(1)证明:∵点D为的中点,∴=,∴∠CBD=∠ABD,∵AB为⊙O的直径,∴∠ACB=90°,∴∠AEF=∠BEC=90°﹣∠CBD,∵AF是⊙O的切线,AB为⊙O的直径,∴∠BAF=90°,∴∠F=90°﹣∠ABD,∴∠AEF=∠F,∴AE=AF;(2)∵AF是⊙O的切线,∴∠F AB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠F AD=90°,∴∠ABD=∠F AD,∵∠ABD=∠CAD,∴∠F AD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,AB=4,BF=5,∴AF==3,∴AE=AF=3,∵S△ABF=AB•AF=BF•AD,∴AD===,∴DE===,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴=,∴BC==,∴sin∠BAC==,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴sin∠BDC=.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.【分析】(1)连接OF,证明△DAO≌△DFO(SAS),可得∠DAO=90°=∠DFO,即可得DF与半圆O相切;(2)连接AF,证明△AOD∽△FBA,可得=,DO=,在Rt△AOD中,AD==,即可得矩形ABCD的面积是.【解答】(1)证明:连接OF,如图:∵=,∴∠DOA=∠FOD,∵OA=OF,OD=OD,∴△DAO≌△DFO(SAS),∴∠DAO=∠DFO,∵四边形ABCD是矩形,∴∠DAO=90°=∠DFO,∴OF⊥DF,又OF是半圆O的半径,∴DF与半圆O相切;(2)解:连接AF,如图:∵AO=FO,∠DOA=∠DOF,∴DO⊥AF,∵AB为半圆直径,∴∠AFB=90°,∴BF⊥AF,∴DO∥BF,∴∠AOD=∠ABF,∵∠OAD=∠AFB=90°,∴△AOD∽△FBA,∴=,即=,∴DO=,在Rt△AOD中,AD===,∴矩形ABCD的面积为AD•AB=×10=,答:矩形ABCD的面积是.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.【分析】(1)连接OC,根据等腰三角形性质及圆周角定理可得∠PCO=90°,然后由切线的判定定理可得结论;(2)连接EC,FC,OC,证明Rt△ECD∽Rt△CFD,得出CD2=DE•DF,继而得出CD2=DE•OD+DE•OE,同理得出CD2=OD•DE+OD•PE,进而得出DE•OD+DE•OE=OD•DE+OD•PE,即可证明PE•OD=DE•OE.【解答】证明:(1)如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵∠PCA=∠ABC,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠PCO=90°,∵OC是圆O的半径,∴PC是圆O的切线;(2)如图2,连接EC,FC,OC,∵EF是直径,∴∠ECF=90°,∴∠CEF+∠CFE=90°,∵D是AC的中点,EF是直径,∴AC⊥EF,∴∠CEF+∠ECD=90°,∠EDC=∠CDF=90°,∴∠ECD=∠CFD,∴Rt△ECD∽Rt△CFD,∴,∴CD2=DE•DF,∴CD2=DE(OD+OF)=DE(OD+OE)=DE•OD+DE•OE,同理Rt△PCD∽Rt△COD,∴,∴CD2=OD•PD=OD(PE+DE)=OD•DE+OD•PE,∴DE•OD+DE•OE=OD•DE+OD•PE,∴PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.【分析】(1)因为BD是⊙O的切线,所以∠∠CBD=∠A,因为BC=EC,所以∠E=∠EBC,由同弧所对的圆周角相等可得,∠A=∠E,所以∠EBC=∠CBD,即BC平分∠DBE.(2)由(1)可知,tan E=tan A=tan∠EBC=,因为AB为⊙O的直径,所以∠ACB=90°,所以tan A==,即AC=2BC,由AB=2结合勾股定理可得,BC2+AC2=AB2,即BC2+4BC2=AB2,解得BC=2,AC=4,又因为tan∠EBC==,所以CF=1,AF=3,BF=,易证△ABF∽△ECF,所以AF:EF=BF:CF,即3:EF=:1,解之即可.【解答】(1)证明:∵BD是⊙O的切线,∴∠∠CBD=∠A,∵BC=EC,∴∠E=∠EBC,∵∠A=∠E,∴∠EBC=∠CBD,即BC平分∠DBE.(2)解:由(1)知,∠A=∠E=∠EBC,∴tan E=tan A=tan∠EBC=,∵AB为⊙O的直径,∴∠ACB=90°,∴tan A==,即AC=2BC,∵AB=2,∴BC2+AC2=AB2,即BC2+4BC2=AB2,∴BC=2,AC=4,∵tan∠EBC==,∴CF=1,AF=3,BF=,∵∠A=∠E,∠ABF=∠ECF,∴△ABF∽△ECF,∴AF:EF=BF:CF,即3:EF=:1,解得EF=.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.【分析】(1)作OH⊥F A,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD =CD,再通过导角得出AC是∠F AB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sin B=,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.【解答】(1)证明:如图,作OH⊥F A,垂足为H,连接OE,∵∠ACB=90°,D是AB的中点,∴CD=AD=,∴∠CAD=∠ACD,∵∠BDC=∠CAD+∠ACD=2∠CAD,又∵∠F AC=,∴∠F AC=∠CAB,即AC是∠F AB的平分线,∵点O在AC上,⊙O与AB相切于点E,∴OE⊥AB,且OE是⊙O的半径,∴OH=OE,OH是⊙O的半径,∴AF是⊙O的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sin B=,∴可设AC=4x,AB=5x,∴(5x)2﹣(4x)2=62,∴x=2,则AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,∵Rt△AOE∽Rt△ABC,∴,即,∴r=3,∴AE=4,又∵AD=5,∴DE=1,在Rt△ODE中,由勾股定理得:OD=.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.【分析】(1)由圆周角定理得出∠ACB=∠AEB=90°,进而得出∠F+∠FBE=90°,由∠F=∠ABE,得出∠ABE+∠FBE=90°,即∠ABF=90°,即可证明BF是⊙O的切线;(2)连接OE交BC于点G,由∠ACB=∠AEB=90°,AC=5,AB=13,得出BC=12,,由圆周角定理得出,进而得出OE垂直平分BC,即可求出,OG是△ABC的中位线,得出,求出EG=4,由∠CAE=∠CBE,得出tan∠CAD=tan∠EBG,得出,即可求出.【解答】(1)证明:如图1,∵AB是直径,∴∠ACB=∠AEB=90°,∴∠F+∠FBE=90°,∵∠F=∠ABE,∴∠ABE+∠FBE=90°,即∠ABF=90°,∴AB⊥BF,∵AB是⊙O的直径,∴BF是⊙O的切线;(2)解:如图2,连接OE交BC于点G,∵∠ACB=∠AEB=90°,AC=5,AB=13,∴BC===12,,∵AF平分∠BAC,∴∠CAE=∠BAE,∴,∴OE垂直平分BC,∴,OG是△ABC的中位线,∴,∴EG=OE﹣OG=﹣=4,∵∠CAE=∠CBE,∴tan∠CAD=tan∠EBG,∴,即,∴.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.【分析】(1)由切线的性质及圆周角定理得出∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,证明△F AD≌△BAD,得出∠ADF=∠ADB,即可证明∠FDE=∠CDE;(2)由解直角三角形得出BC=16,由勾股定理得出AC=20,由全等三角形的性质得出AF=AB=12,进而得出CF=8,由解直角三角形得出DF=6,进而得出BD=DF=6,由勾股定理得出AD=6,证明△EAD∽△DAB,由相似三角形的性质得出AE=15,再利用勾股定理即可求出DE=3.【解答】(1)证明:∵DE是⊙O的切线,AD为直径,∴AD⊥DE,∴∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,∵AD是直径,∴∠AFD=∠ABD=90°∵AD平分∠BAC,∴∠F AD=∠BAD,在△F AD和△BAD中,,∴△F AD≌△BAD(AAS),∴∠ADF=∠ADB,∴∠FDE=∠CDE;(2)解:在Rt△ABC中,AB=12,tan∠C=,∴BC===16,∴AC===20,∵△F AD≌△BAD,∴AF=AB=12,∴CF=AC﹣AF=20﹣12=8,在Rt△CDF中,DF=CF•tan∠C=8×=6,∴BD=DF=6,∴AD===6,∵∠ABD=∠ADE=90°,∠EAD=∠DAB,∴△EAD∽△DAB,∴,即,∴AE=15,∴DE===3.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.【分析】(1)连接AD,由AB为⊙O的直径可得出AD⊥BC,由点D为弧BE的中点利用圆周角定理可得出∠BAD=∠DAC,利用等角的余角相等可得出∠ABD=∠ACD,进而可证出△ABC为等腰三角形;(2)连接OD,则OD⊥GF,由OA=OD可得出∠ODA=∠BAD=∠DAC,利用“内错角相等,两直线平行”可得出OD∥AC,根据平行线的性质可得出=、∠GOD =∠BAC=45°,根据等腰直角三角形的性质可得出GO=DO=BO,进而可得出===.【解答】解:(1)△ABC是等腰三角形,理由如下:连接AD,如图1所示.∵AB为⊙O的直径,∴AD⊥BC.∵点D为弧BE的中点,∴=,∴∠BAD=∠DAC,∴∠ABD=∠ACD,∴△ABC为等腰三角形.(2)连接OD,如图2所示.∵直线l是⊙O的切线,点D是切点,∴OD⊥GF.∵OA=OD,∴∠ODA=∠BAD=∠DAC,∴OD∥AC,∴=,∠GOD=∠BAC=45°,∴△GOD为等腰直角三角形,∴GO=DO=BO,∴===.∴=.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.【分析】(1)连接OD,证DO∥AB,得出∠ODB=90°即可得出结论;(2)连接DE,证△CDE∽△CAD,根据线段比例关系即可得出结论.【解答】证明:(1)连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∵OD是⊙O的半径,∴BC是⊙O的切线;(2)连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.【分析】(1)连接OC,由垂径定理的推论得出OC⊥BD,由CE∥BD,得出OC⊥CE,即可证明CE是⊙O的切线;(2)连接OC,BC,由等腰三角形的性质得出∠CAB=∠E,由圆周角定理得出∠BOC =2∠E,由OC⊥CE,得出∠BOC+∠E=90°,求出∠E=30°,进而求出CH=3,EH =3,由等腰三角形的性质得出∠CAB=30°,AE=6,由圆周角定理得出∠ACB =90°,由解直角三角形求出AB=4,由CE∥BD,得出,代入计算即可求出BF=4,得出答案.【解答】(1)证明:如图1,连接OC,∵弧CD=弧CB,OC是半径,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∵OC是半径,∴CE是⊙O的切线;(2)解:如图2,连接OC,BC,∵CA=CE=6,∴∠CAB=∠E,∵∠BOC=2∠BAC,∴∠BOC=2∠E,∵OC⊥CE,∴∠BOC+∠E=90°,∴2∠E+∠E=90°,∴∠E=30°,∵CH⊥AE,∴CH=CE=×6=3,EH===3,∵CA=CE=6,CH⊥AE,∴∠CAB=∠E=30°,AE=2EH=6,∵AB为直径,∴∠ACB=90°,∴cos∠CAB=,∴AB====4,∵CE∥BD,∴,即,∴BF=4,∴CH的长为3,BF的长为4.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.【分析】(1)由圆周角定理得出∠ABC=90°,由∠A=40°,得出∠ACB=50°,由点D是的中点,即可求出∠DCB=∠ACB=25°;(2)由圆周角定理得出∠BCD+∠CEF=90°,由点D是的中点,得出∠DCB=∠DCA,由等腰三角形的性质得出∠FCE=∠FEC,进而得出∠ACF=90°,即可证明CF 是⊙O的切线;(3)由解直角三角形得出=,设BC=4x,则CF=5x,BF=5x﹣6,由勾股定理得出方程(4x)2+(5x﹣6)2=(5x)2,解方程求出x=3,得出BC=12,CF=15,BF=9,再证明△CFB∽△AFC,利用相似三角形的性质求出AC=20,即可求出⊙O的半径长为10.【解答】(1)解:∵AC是直径,∴∠ABC=90°,∵∠A=40°,∴∠ACB=90°﹣∠A=90°﹣40°=50°,∵点D是的中点,∴∠DCB=∠DCA=∠ACB=×50°=25°;(2)证明:∵AC是直径,∴∠ABC=90°,∴∠BCD+∠CEF=90°,∵点D是的中点,∴∠DCB=∠DCA,∵FC=FE,∴∠FCE=∠FEC,∴∠DCA+∠FCE=90°,即∠ACF=90°,∴AC⊥CF,∵AC是直径,∴CF是⊙O的切线;(3)解:在Rt△CBF中,sin∠F=,∵,BE=6,∴=,∴设BC=4x,则CF=5x,BF=5x﹣6,∵BC2+BF2=CF2,∴(4x)2+(5x﹣6)2=(5x)2,解得:x=3或(不符合题意,舍去),∴BC=12,CF=15,BF=9,∵∠CBF=∠ACF=90°,∠CFB=∠AFC,∴△CFB∽△AFC,∴,即,∴AC=20,∴OA=AC=×20=10,∴⊙O的半径长为10.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.【分析】(1)过点O作OE⊥AB于点E,OF⊥AC于点F,利用圆心角,弦,弧,弦心距之间的关系定理可得OE=OF,AE=CF=AB,利用等式的性质可得EM=FN,再利用全等三角形的判定与性质解答即可;(2)连接OB,利用相似三角形的判定与性质得到∠AOM=∠B,利用同圆的半径线段,等腰三角形的性质和角平分线性质定理的逆定理得到∠AOM=∠OAC,则得OM∥ON,利用等腰梯形的定义即可得出结论.【解答】证明:(1)过点O作OE⊥AB于点E,OF⊥AC于点F,如图,∵AB=AC,OE⊥AB,OF⊥AC,∴OE=OF,AE=CF=AB.∵AM=CN,∴AE﹣AM=FC﹣CN,即:EM=FN.在△OEM和△OFN中,,∴△OEM≌△OFN(SAS).∴OM=ON;(2)连接OB,如图,∵AO2=AM•AC,AC=AB,∴AO2=AM•AB,∴.∵∠MAO=∠OAB,∴△OAM∽△BAO,∴∠AOM=∠B.∵OA=OB,∴∠OAB=∠B,∴∠OAB=∠AOM,∴OM=AM.∵OM=ON,∴AM=ON.∵OE=OF,OE⊥AB,OF⊥AC,∴∠OAB=∠OAC,∴∠AOM=∠OAC,∴OM∥AN.∵AM<AN,∴OM<AN,∴四边形AMON为梯形,∵AM=ON,∴四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.【分析】(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.【解答】(1)证明:连接OE,如图,∵AC是⊙O的切线,∴OE⊥AC.∵AC⊥BC,∴OE∥BC,∴∠OED=∠F.∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠F,∴BD=BF;(2)解:连接BE,如图,∵∠BDE=∠F,∴tan∠BDE=tan∠F=2,∵CF=1,tan∠F=,∴CE=2.∵BD是⊙O直径,∴∠BED=90°,∴BE⊥EF.∵EC⊥BF,∴△ECF∽△BCE,∴,∴EC2=BC•CF.∴BC=4.∴BF=BC+CF=5.∴BD=BF=5,即⊙O的直径为5.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.【分析】(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(x)2+(5x)2=42,解方程求出x的值,即可求出EC的长度.【解答】(1)证明:如图1,∵∠CDE=∠BDA,∠A=∠E,∴△CED∽△BAD;(2)解:如图2,过点D作DF⊥EC于点F,∵△ABC是边长为6等边三角形,∴∠A=60°,AC=AB=6,∵DC=2AD,∴AD=2,DC=4,∵△CED∽△BAD,∴,∴EC=3DE,∵∠E=∠A=60°,DF⊥EC,∴∠EDF=90°﹣60°=30°,∴DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,∴FC=5x,在Rt△DFC中,DF2+FC2=DC2,∴(x)2+(5x)2=42,解得:x=或﹣(不符合题意,舍去),∴EC=6x=.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.【分析】(1)连接OE,根据直径所对的圆周角是直角可得∠AEB=90°,从而可得∠AEO+∠OEB=90°,再利用角平分线和等腰三角形的性质可得∠CAE=∠AEO,从而可得∠BEF=∠AEO,然后可得∠BEF+∠OEB=90°,从而求出∠OEF=90°,即可解答;(2)利用(1)的结论可得∠BEF=∠EAO,从而可证△FEB∽△F AE,然后利用相似三角形的性质可求出BE的长,再在Rt△ABE中利用勾股定理求出AB的长,从而求出EF 的长,即可解答.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠AEO+∠OEB=90°,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠CAB,∴∠EAO=∠CAE,∴∠CAE=∠AEO,∵∠BEF=∠CAE,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:∵∠BEF=∠AEO,∠EAO=∠AEO,∴∠BEF=∠EAO,∵∠F=∠F,∴△FEB∽△F AE,∴==,∴==,∴BE=6,∴AB===30,∴=,∴EF=20,∴⊙O的半径为15,EF的长为20.。

圆、相似三角形、二次函数经典综合题

圆、相似三角形、二次函数经典综合题

中考数学《圆》综合复习【1】已知:如图,△ABC 内接于⊙O ,∠BAC 的平分线交BC 于D ,交⊙O 于E ,EF ∥BC 且交AC 延长线于F ,连结CE.求证:(1)∠BAE=∠CEF ;(2)CE 2=BD ·EF.【2】如图,△ABC 内接于圆,D 为BA 延长线上一点,AE 平分∠BAC 的外角,交BC 延长线于E ,交圆于F.若AB=8,AC=5,EF=14.求AE 、AF 的长.【3】如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接 CO 并延长CO 交于⊙O 于点D ,连接AD . (1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.【4】如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GECD ,的交点为M ,且ME = :2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.B CF E A D O .A B D C EF 第9题图【5】如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。

(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 【6】【7】如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C. (1)求证:O 2C ⊥O 1O 2; (2)证明:AB ·BC=2O 2B ·BO 1;(3)如果AB ·BC=12,O 2C=4,求AO 1的长.O 1O 2A B【8】如图,在平面直角坐标系中,点A (10,0),以OA 为 直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连 结OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF (1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由.【9】 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根. (1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+第24题图图(3)l '【10】如图l0.在平面直角坐标系xoy中,AB在x轴上,AB=10.以AB为直径的⊙O’与y轴正半轴交于点C.连接BC,AC。

(完整版)相似三角形与圆综合题

(完整版)相似三角形与圆综合题

相似三角形与圆综合第一部分:例题分析第二部分:当堂练习1.如图,AB 是O O 直径,ED 丄AB 于D ,交O O 于G , EA 交O O 于C , CB 交ED 于F ,求证:DG 2= DE?DFAB 于点D,交AC 于点E ,求证:(1)AD=AE ;例3、AB 是O O 的直径,点C 在O O 上,/ BAC= 60°, P 是OB 上一点,过 P 作AB 的垂线与 AC 的延长线交于点 Q连结OC 过点C 作CDL OC 交PQ 于点D.(1)求证:△ CDQ1等腰三角形;(2) 如果△ CDQ^A COB 求BP : PO 的值.例4、A ABC 内接于圆O, / BAC 勺平分线交O O 于D 点,交O O 的切线BE 于F ,连结BD CD 求证:⑴BD 平分/O O 内两弦AB CD 的延长线相交于圆外一点 E ,由E 引AD 的平行线与直线 BC 交于F ,作切线FG G 为切点,求证: EF = FG例1已知:如图,BC 为半圆0的直径,ADL BC,垂足为D,过点B 作弦BF 交AD 于点E ,交半圆0于点F ,弦AC BE.2.如图,弦 EF 丄直径 MN 于H ,弦MC 延长线交 EF 的反向延长线于 A ,求证:MA7MC = MB1MDAC 于点F ,过点C 的切线交ED 的延长线于点 P .(1)若 PC=PF ,求证:AB 丄 ED ;⑵点D 在劣弧AC 的什么位置时,才能使 AD 2=DE DF ,为什么?中的/ ABC 变为钝角,其它条件不变,如图(2),则上述结论是否仍然成立?5.如图,AD 是厶ABC 的角平分线,延长 AD 交厶ABC 的外接圆0于点E ,过点3 .如图,AB 、AC 分别是O O 的直径和弦,点 D 为劣弧AC 上一点, 弦ED 分别交O O 于点 E ,交AB 于点H ,交4.如图(1), AD 是厶ABC 的高,AE 是厶ABC 的外接圆直径,则有结论:AB -AC=AE -AD 成立,请证明•如果把图(1)长线交于点F ,连结EF 、DF . (1)求证:△ AEF FED ;(2)若 AD=8, DE=4,求 EF 的长.6.如图,PC 与O 0交于B ,点A 在O 0上,且/ PCA=Z BAP .⑵△ ABF 和厶CAP 相似吗?为什么?0B 丄AD 于0E=1 , BE=8 ,C 、D 、E 三点的O 01与AC 的延A(1)求证:FA 是O 0的切线.(1) 求证:AB 是_O_0的切线;&如图,"ABC 内接于O 0,且BC 是O 0的直径,AD 丄BC 于D , AC = 8,求 CD , DE ,及 EF 的长.(2) 点F 是ACD 上的一点,当/ A0F=2/ B 时,求 AF 的长. F 是弧BC 中点,且 AF 交BC 于E , AB = 6,9.已知:如图,在 Rt △ ABC 中, ACB 90°, AC 4 , BC 4 3,以AC 为直径的eO 交AB 于点D ,点E 是BC 的中点,连结 OD , OB 、DE 交于点F .(1)求证:DE 是eO 的切线;(2)求EF : FD 的值.E , G 是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点 P .(1)求证:BF EF ;⑵求证:PA 是e O 的切线;⑶若FG BF ,且eO 的半径长为3.2,求BD 和FG 的长度.第三部分课后作业厘米(圆心 O O 在公共弦DE 的两侧),则两圆的圆心距 O O 的长为()AD1.已知O O 的半径为3 ,5厘米,O O 的半径为5厘米.O O 与O O 相交于点 D E.若两圆的公共弦DE 的长是6(A ) 2厘米 (B ) 10厘米(C ) 2厘米或(D ) 4厘米2.如图,两个等圆O O 和O O 的两条切线 OA OB AB 是切点,则/ AOB?于(A ) 30(B ) 453.如图,在△ ABC 中,/ BAC= 90BC 于 D,则图中阴影部分的面积为10•如图,A 是以BC 为直径的eO 上一点,(C ) 60(D ) 90(A) 1 ( B) 2 4•已知圆的内接正六边形的周长为(C) 1 +418,那么圆的面积为(D) 2 ------4( )(A) 18n(B) 9n(C) 6n(D) 3 n5、如图△ ABC是等边三角形,被一平行于BC的矩形所截AB被截成三等分则图中阴影部分的面积是△ ABC的面=5cm FG = 8cm 求梯形&如图,在Rt △ ABC 中,斜边BC 12, C 30° D 为BC 的中点,△ ABD 的外接圆O O 与AC 交于F 点, 过A 作O O 的切线AE 交DF 的延长线于E 点.(1)求证:AE 丄DE ; (2)计算:AC-AF 的值.9•如图,在直角梯形 ABCDK AB // CD , B 90°, ABAD, / BAD 的平分线交BC 于 E,连接DE(1)说明点D 在厶ABE 的外接圆上;发沿DE 方向运动,过点 P 作PQ BC 于Q ,过点Q 作QR // BA 交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x , QR y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围)积的()6•已知,如图,以△ ABC 勺边AB 作直径的O O 分别并 ACC.D.-¥BC 于点 D E,弦 FG// AB S A CDE S A ABC= 1 : 4, DECD 与△ ABE 外接圆的位置关系,并说明理由.E 分别是边 AB, AC 的中点,点 P 从点D 出AFGB 勺面积.C阴影部分的面积.CD 分别为两圆的半径,求(2)若/ AED /CED 试判断直线 C(3) 是否存在点P,使△ PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.。

圆与相似三角形相关的证明题

圆与相似三角形相关的证明题

圆与相似三角形相关的证明题1. 在图中,已知PC=PD,PD切圆O于D,PB交圆O于A,连结AC和BC。

要证明AC·PB=PC·BC。

证明:由于PD是圆O的切线,所以∠PDC=∠ACB。

又因为PC=PD,所以∠PCD=∠PDC。

因此,∠ACB=∠PCD。

又因为∠BCP=∠PBD,所以三角形PBD和PBC相似。

因此,PB·PC=PD2。

由于三角形ACD和BDC相似,所以AC·BD=CD2。

将BD替换为PD+PC,得到AC·(PD+PC)=CD2,即AC·PB=PC·BC。

因此,原命题成立。

2. 在图中,已知AB∥CD,DC延长线交EB延长线于F,EB与圆O相交于F,DF交圆O于G。

要证明AD·ED=BE·DF。

证明:由于AB∥CD,所以∠___∠EAD。

又因为EB是圆O的切线,所以∠___∠EDF。

因此,∠___∠EAD。

又因为AB是圆O的直径,所以∠EAB=90°。

因此,三角形EAB和EDF相似。

因此,AD·ED=BE·DF。

因此,原命题成立。

3. 在图中,___于P,PE⊥AB于E,AC⊥CD,BD⊥CD。

要证明①PE:AC=PB:PA,②PE2=AC·BD。

证明:①由于PE⊥AB,所以∠APE=90°。

又因为AC⊥CD,所以∠ACP=90°。

因此,∠APE=∠ACP。

又因为∠APB=90°,所以三角形APE和APB相似。

因此,PE:AC=PB:PA。

②由于PE⊥AB,所以∠APE=90°。

又因为BD⊥CD,所以∠___°。

因此,四边形AEPD和BEPC是直角四边形。

因此,PE2=AE2-AP2=AC·BD。

因此,原命题成立。

4. 在图中,ABC是内接于圆O的三角形,BD是圆O的直径,AF⊥BD于F,AF延长线与BC交于G。

2020春浙教版九年级中考数学复习测试:6.20圆与相似三角形的结合

2020春浙教版九年级中考数学复习测试:6.20圆与相似三角形的结合

第20讲圆与相似三角形的结合[学生用书P129]月球有多大?我们用三角函数可以测定月球的大小,当我们已知月球离地球的距离是三十八万四千千米,就可以用相似测定月球直径的大小.如图①,把一枚硬币(直径2.4 cm)放在离眼睛2.6 m的地方,大致能够把整个月面遮住.(试一试!)①②如图②,由△OAB∽△OCD,可得CDAB=OFOE(相似三角形对应高的比等于相似比).把AB=0.024 m,OF=384 000 000 m,OE=2.6 m代入,得CD=0.024×384 000 0002.6≈3 500 000(m).就是说,月球的直径约是3 500 km.类型之一圆的基本性质与相似三角形例1[2018·南京中考]如图,在正方形ABCD中,E是AB上一点,连结DE.过点A作AF⊥DE,垂足为F.⊙O经过点C,D,F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【思路生成】(1)欲证明△AFG∽△DFC,只要证明∠F AG=∠FDC,∠AGF =∠FCD;(2)首先证明CG是直径,再求CG长度即可解决问题;解:(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,又∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC;(2)如答图,连结CG.答图∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF.∴EAAF=DADF,即EADA=AFDF.∵△AFG∽△DFC,∴AGDC=AF DF.∴AGDC=EADA.在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA-AG=4-1=3. ∴CG=DG2+DC2=32+42=5.∵∠CDG=90°,∴CG是⊙O的直径.∴⊙O的半径为5 2.圆与相似三角形的综合运用主要体现在以下几个方面:(1)证明圆中的比例式或等积式;(2)运用相似的性质进行圆的有关计算;(3)运用相似证明圆的切线.判定圆中的相似三角形(1)圆中的角主要有圆心角和圆周角,特别是直径所对的圆周角都是直角,利用圆心角、圆周角等寻找或构造相似三角形是基本思路;(2)利用圆的切线的判定或性质,或切线长定理寻找或构造相似三角形也是重要的方法.1.[太原竞赛]如图,已知△ABC中,∠C=90°,AC=11,BC=5,以C为圆心,BC为半径作圆交BA的延长线于D,则AD的长为__73__.答图【解析】如答图,延长AC与圆相交于E,F,则AF=5-11,AE=5+11,又AB=6,由相交弦定理AD·AB=AE·AF得AD=AE·AFAB=(5-11)(5+11)6=73.2.[第19届江苏竞赛]如图,AB为圆的直径,若AB=AC=5,BD=4,则AE BE=__724__.【解析】如答图,连结AD,答图∵AB为圆的直径,∴∠E=90°,AD⊥BC,而AB=AC=5,BD=4,则AD=3,BD=DC,∴BC=2BD=8,∵∠ACD=∠BCE,∴Rt△CDA∽Rt△CEB,∴ADBE=CDCE=CABC,即3BE=4CE=58,所以BE=245,CE=325,则AE=CE-AC=325-5=75,所以AEBE=724.3.[苏州中考]如图,已知△ABC内接于⊙O,AB是直径,点D在⊙O上,OD∥BC,过点D作DE⊥AB,垂足为E ,连结CD 交OE 于点F .(1)求证:△DOE ∽△ABC ; (2)求证:∠ODF =∠BDE ;(3)连结OC ,设△DOE 的面积为S 1,四边形BCOD 的面积为S 2,若S 1S 2=27,求OEOD 的值.解:(1)证明:∵AB 是⊙O 的直径,∴∠ACB =90°. ∵DE ⊥AB ,∴∠DEO =90°.∴∠DEO =∠ACB . ∵OD ∥BC ,∴∠DOE =∠ABC ,∴△DOE ∽△ABC ;(2)证明:∵△DOE ∽△ABC ,∴∠ODE =∠A .∵∠A 和∠BDC 是BC ︵所对的圆周角,∴∠A =∠BDC ,∴∠ODE =∠BDC .∴∠ODF =∠BDE ;(3)∵△DOE ∽△ABC ,∴S △DOE S △ABC =⎝ ⎛⎭⎪⎫OD AB 2=14,即S △ABC =4S △DOE =4S 1, ∵OA =OB ,∴S △BOC =12S △ABC , 即S △BOC =2S 1.∵S 1S 2=27,S 2=S △BOC +S △DOE +S △DBE =2S 1+S 1+S △DBE ,∴S △DBE =12S 1,∴BE =12OE , 即OE =23OB =23OD ,∴OE OD =23.4.[2018·宁波中考]如图1,直线l :y =-34x +b 与x 轴交于点A (4,0),与y 轴交于点B ,点C 是线段OA 上一动点⎝ ⎛⎭⎪⎫0<AC <165,以点A 为圆心,AC 长为半径作⊙A 交x 轴于另一点D ,交线段AB 于点E .连结OE 并延长交⊙A 于点F .(1)求直线l 的函数表达式和tan ∠BAO 的值. (2)如图2,连结CE ,当CE =EF 时. ①求证:△OCE ∽△OEA ; ②求点E 的坐标.(3)当点C 在线段OA 上运动时,求OE ·EF 的最大值.解:(1)∵直线l :y =-34x +b 与x 轴交于点A (4,0), ∴-34×4+b =0,∴b =3,∴直线l 的函数表达式为y =-34x +3, ∴B (0,3),∴OA =4,OB =3,在Rt△AOB中,tan∠BAO=OBOA=3 4.(2)①证明:如答图①,连结DE,DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA;②如答图①,过点E作EM⊥OA于M,由①知,tan∠OAB=3 4,设EM=3m,则AM=4m,∴OM=4-4m,AE=5m,∴E(4-4m,3m),AC=5m,∴OC=4-5m,由①知,△COE∽△EOA,∴OCOE=OEOA,∴OE2=OA·OC=4(4-5m)=16-20m,∵E(4-4m,3m),∴(4-4m)2+9m2=16-20m,解得m =0(舍)或m =1225,∴4-4m =5225,3m =3625, ∴E ⎝ ⎛⎭⎪⎫5225,3625.(3)如答图②,设⊙A 的半径为r ,设射线EA 与⊙A 相交于H ,过点O 作OG ⊥AB 于G ,连结FH ,答图①答图②∵A (4,0),B (0,3),∴OA =4,OB =3, ∴AB =5,∴12AB ×OG =12OA ×OB ,∴OG =125, ∴AG =OG tan ∠OAB=125×43=165, ∴EG =AG -AE =165-r ,∵EH 是⊙A 直径, ∴EH =2r ,∠EFH =90°=∠EGO , ∵∠OEG =∠HEF ,∴△OEG ∽△HEF , ∴OE HE =EG EF ,∴OE ·EF =HE ·EG =2r ⎝ ⎛⎭⎪⎫165-r =-2⎝ ⎛⎭⎪⎫r -852+12825,∴r =85时,OE ·EF 取最大值为12825.类型之二 圆的切线与相似三角形例2 [2018·成都]如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连结OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.【思路生成】(1)连结OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连结DF ,由(1)得到BC 为⊙O 的切线,由弦切角等于夹弧所对的圆周角,进而得到△ABD 与△ADF 相似,由相似得比例,即可表示出AD ;(3)连结EF ,设圆的半径为r ,由sin B 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF =sin B ,进而求出DG 的长即可.解:(1)证明:如答图,连结OD ,答图∵AD为∠BAC的平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,又⊙O过点D,∴BC为⊙O的切线;(2)如答图,连结DF,由(1)知BC为⊙O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴ABAD=ADAF,即AD2=AB·AF=xy,则AD=xy;(3)如答图,连结EF,在Rt△BOD中,sin B=ODOB=513,设圆的半径为r,可得rr+8=513,解得r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF =∠B ,∴sin ∠AEF =AF AE =513,∴AF =AE ·sin ∠AEF =10×513=5013,∵AF ∥OD ,∴AG DG =AF OD =50135=1013,即DG =1323AD ,∴AD =AB ·AF =18×5013=301313,则DG =1323×301313=301323.5.[2018·淄博中考]如图,以AB 为直径的⊙O外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P .∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD (AE <BD )的长是一元二次方程x 2-5x +6=0的两个实数根.(1)求证:P A ·BD =PB ·AE ;(2)在线段BC 上是否存在一点M ,使得四边形ADME 是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.解:(1)证明:∵AP 为⊙O 的切线,AB 是直径,∴∠BAP =90°,即∠BAC +∠EAP =90°,∵AB 为直径,∴∠ACB =90°,即∠BAC +∠DBP =90°,∴∠EAP=∠DBP,又∵PD平分∠APB,∴∠APE=∠BPD,∴△APE∽△BPD,∴P AAE=PBBD,∴P A·BD=PB·AE;(2)存在.如答图,过点D作DM⊥BC于点M,连结EM,答图∵PD平分∠APB,又AD⊥P A,DM⊥PM,∴DM=DA,∵∠AED=∠EAP+∠APE,∠ADE=∠DBP+∠BPD,又由(1)知∠EAP=∠DBP,∠APE=∠BPD,∴∠AED=∠ADE,∴AD=AE,∴DM=AE,∵DM⊥BC,AC⊥BC,∴DM∥AC,∴四边形ADME为菱形,易得x2-5x+6=0的两个根为2,3,∵AE<BD,∴BD=3,AE=2,∵四边形ADME为菱形,∴DM=AE=AD=2,在Rt△BDM中,BD=3,DM=2,∴BM=32-22=5,∵DM∥AC,∴BDDA=BM MC,∴32=5MC,∴MC=253,∴S菱形ADME =AE·MC=2×235=453.6.[2018·遂宁中考]如图,过⊙O外一点P作⊙O的切线P A切⊙O于点A,连结PO并延长,与⊙O交于C,D两点,M是半圆CD的中点,连结AM交CD于点N,连结AC,CM.(1)求证:CM2=MN·MA;(2)若∠P=30°,PC=2,求CM的长.解:(1)证明:∵在⊙O中M点是半圆CD的中点,∴∠CAM=∠DCM,又∵∠M是公共角,∴△CMN∽△AMC,∴CMAM=MNMC,∴CM2=MN·MA;(2)如答图,连结OA,DM,答图∵P A是⊙O的切线,∴∠P AO=90°,又∵∠P=30°,∴OA=12PO=12(PC+CO),设⊙O的半径为r,∵PC=2,∴r=12(2+r),解得r=2,又∵CD是直径,∴∠CMD=90°,∵M点是半圆CD的中点,∴CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,∴2CM2=(2r)2=16,解得CM=2 2.类型之三证明圆中的比例式或乘积式例3[天津竞赛]如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC,BD交于点E.(1)求证:AC·BC=2BD·CD;(2)若AE=3,CD=25,求弦AB和直径BC的长.【思路生成】(1)连结OD交AC于点F,由于D是弧AC的中点,∠ACD=∠ABD=∠CBD,由垂径定理知,AF=CF=12AC.∠CFD=∠BDC=90°,则有△CDF∽△BCD;(2)延长BA,CD交于点G,易得Rt△CDE∽Rt△CAG,由比例线段解得CE =5,在Rt△ACG中,由勾股定理得AG=4,由割线定理知,GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理可求得BC的值.解:(1)证明:如答图,连结OD交AC于点F,答图∵D是弧AC的中点,∴∠ACD=∠ABD=∠CBD,且AF=CF=12AC.∵BC为直径,∴∠BDC=90°,又∵∠CFD=90°,∴△CDF∽△BCD.∴CFBD=CDBC,∴CF·BC=BD·CD.∴AC·BC=2BD·CD;(2)如答图,延长BA,CD交于点G,由(1)得∠ABD=∠CBD,∠BDC=90°,∴△BCG为等腰三角形,∴BD平分CG,∴CG=2CD=45,∴Rt△CDE∽Rt△CAG,∴CECG=CDCA,即CE45=25CE+3,解得CE=5或CE=-8(舍去).在Rt△ACG中,由勾股定理得AG=CG2-AC2=(45)2-(3+5)2=4,∵GA·GB=GD·GC,即4(AB+4)=25×45,解得AB=6.在Rt△ABC中,由勾股定理得BC=AB2+AC2=62+(3+5)2=10.7.如图,已知四边形ABCD为圆的内接四边形,求证:AB·CD+AD·BC=AC·BD.答图证明:如答图,在BD上取一点E,使∠BCE=∠ACD,即得△BEC∽△ADC,可得BE BC =AD AC ,即AD ·BC =BE ·AC ,①又∵∠ACB =∠DCE ,可得△ABC ∽△DEC ,即得AB AC =DE DC ,即AB ·CD =DE ·AC ,②由①+②,可得AB ·CD +AD ·BC =AC (BE +DE )=AC ·BD .8.[江苏竞赛]如图,AB ,AC ,AD 是圆中的三条弦,点E 在AD 上,且AB =AC =AE .请你说明以下各式成立的理由:(1)∠CAD =2∠DBE ;(2)AD 2-AB 2=BD ·DC .证明:(1)如答图,延长BE 交圆于点F ,连结AF ,则∠DBF =∠DAF ,答图∵AB =AE ,∴∠ABE =∠AEB =∠DAF +∠F ,∴AF ︵=AC ︵+CF ︵=AB ︵+DF ︵,∵AB =AC ,∴AB ︵=AC ︵,∴CF ︵=DF ︵,即点F 是CD ︵的中点,∴∠CAD =2∠DAF =2∠DBE ;(2)如答图,连结BC 交AD 于点G ,∵AB =AC ,∴∠ADB =∠ABC ,∠BAG =∠DAB ,∴△BAG ∽△DAB .∴AB AG =AD AB ,即AB 2=AG ·AD .∴AD 2-AB 2=AD 2-AG ·AD =AD (AD -AG )=AD ·DG ,∵∠BDA =∠ADC ,∠DBG =∠DAC ,∴△BDG ∽△ADC .∴BD AD =DG DC ,∴AD ·DG =BD ·DC .∴AD 2-AB 2=BD ·DC .相似三角形解决圆中计算问题作辅助线构造直角是证明圆中三角形相似的常见方法.圆中三角形的相似常见的基本图形如下图所示.类型之四 利用相似三角形解决圆中的计算问题例4 [2018·武汉中考]如图,P A 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连结PB ,PC ,PC交AB 于点E ,且P A =PB .(1)求证:PB 是⊙O 的切线;(2)若∠APC =3∠BPC ,求PE CE 的值.【思路生成】(1)连结OB ,OP ,△OAP 与△OBP 三边对应相等,这两个三角形全等,得∠OBP =∠OAP =90°,故PB 是⊙O 的切线;(2)连结BC ,AB 与OP 交于点H ,易证OP ⊥AB ,∠OPC =∠PCB =∠CPB ,由△OAH ∽△CAB 得OH CB =12;由△HPB ∽△BPO ,求得HP OH ;再由△HPE ∽△BCE ,可得PE CE 的值.解:(1)证明:如答图,连结OB ,OP ,在△OAP 和△OBP 中,⎩⎪⎨⎪⎧OA =OB ,OP =OP ,AP =BP ,∴△OAP ≌△OBP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,∴∠OBP =∠OAP =90°,∴PB 是⊙O 的切线;(2)如答图,连结BC ,AB 与OP 交于点H ,答图∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x , 由(1)知∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ,∵AC 是⊙O 的直径,∴∠ABC =90°,由P A =PB ,∠APH =∠BPH 可得OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC ,∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP ,易证△OAH∽△CAB,∴OHCB=OAAC=12,设OH=a,则CB=BP=2a,易证△HPB∽△BPO,∴HPBP=BPOP,设HP=ya,则ya2a=2aa+ya,解得y1=-1-172(舍)或y2=-1+172,∵OP∥CB,易证△HPE∽△BCE,∴PECE=HPCB=ya2a=-1+174.9.[2018·鄂州中考]如图,四边形ABCD内接于⊙O,BC为⊙O的直径,AC 与BD交于点E,P为CB延长线上一点,连结P A,且∠P AB=∠ADB.(1)求证:AP是⊙O的切线;(2)若AB=6,tan∠ADB=34,求PB的长;(3)在(2)的条件下,若AD=CD,求△CDE的面积.解:(1)证明:如答图,连结OA,∵OA=OC,∴∠OCA=∠OAC,又∵∠P AB=∠ADB,∠OCA=∠ADB,∴∠OAC=∠P AB,∵BC为⊙O的直径,∴∠CAB=90°,∴∠OAC+∠OAB=90°,∴∠P AB+∠OAB=90°,即OA⊥AP,∴AP是⊙O的切线;(2)如答图,过点B作BF⊥AP于点F,答图∵∠ACB=∠P AB=∠ADB,AB=6,tan∠ADB=3 4,∴BC=10,BFAF=34,设BF=3a,AF=4a,又∵AB=6,∴(3a)2+(4a)2=62,∴a=65,∴BF=3a=185,AF=4a=245,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴BFOA=BPOP,即1855=BPBP+5,解得PB=907;(3)如答图,连结OD交AC于点G,∵CD=AD,∴OD⊥AC,并且CG=AG=12AC=4,在Rt△COG中,由勾股定理可得OG=OC2-CG2=52-42=3,∴DG=OD-OG=5-3=2,S△CDG=12CG·DG=12×4×2=4.显然Rt△CDG∽Rt△CED,∴S△CDES△CDG=⎝⎛⎭⎪⎫CDCG2=⎝⎛⎭⎪⎫2542=54,∴S△CDE =54S△CDG=54×4=5.圆与相似三角形的综合运用(1)证明圆的切线的常用辅助线是作过切点的半径,证明直线与这条半径垂直;(2)运用切线的性质时,常连结切点和圆心.类型之五圆与相似三角形的综合运用例5 [2017·温州中考]如图,已知线段AB =2,MN ⊥AB 于点M ,且AM =BM ,P 是射线MN 上一动点,E ,D 分别是P A ,PB 的中点,过点A ,M ,D 的圆与BP 的另一交点为C (点C 在线段BD 上),连结AC ,DE .(1)当∠APB =28°时,求∠B 和CM ︵所对的圆心角的度数.(2)求证:AC =AB .(3)在点P 的运动过程中.①当MP =4时,取四边形ACDE 一边的两端点和线段MP 上一点Q ,若以这三点为顶点的三角形是直角三角形,且Q 为锐角顶点,求所有满足条件的MQ 的值;②记AP 与圆的另一个交点为F ,将点F 绕点D 旋转90°得点G ,当点G 恰好落在MN 上,连结AG ,CG ,DG ,EG ,直接写出△ACG 与△DEG 的面积比.【思路生成】(1)根据三角形ABP 是等腰三角形,可得∠B 的度数,再连结MD ,根据MD 为△P AB 的中位线,可得∠MDB =∠APB =28°;(2)由等角的补角相等,得∠ACB =∠B ,则AC =AB ;(3)①由垂直平分线的性质,分类讨论符合条件的点Q 的个数,利用相似和勾股定理分别求出MQ 的长度;②利用旋转的性质,平行四边形的性质,锐角三角比求出各边的长度,用面积公式求出比值.解:(1)∵MN ⊥AB ,AM =BM ,∴P A =PB ,∴∠P AB =∠B ,答图①∵∠APB =28°,∴∠B =76°,如答图①,连结MD ,∵MD 为△P AB 的中位线,∴MD ∥AP ,∴∠MDB =∠APB =28°,∴CM ︵所对的圆心角的度数为2∠MDB =56°.(2)证明:∵∠BAC =∠MDC =∠APB ,又∵∠BAP =180°-∠APB -∠B ,∠ACB =180°-∠BAC -∠B , ∴∠BAP =∠ACB ,∵∠BAP =∠B ,∴∠ACB =∠B ,∴AC =AB .(3)①记MP 与圆的另一个交点为R ,∵MD 是Rt △MBP 的中线,∴DM =DP ,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=138,∴MR=198,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=19 8;Ⅱ.如答图②,当∠QCD=90°时,在Rt△QCP中,由PR=CR可知PQ=2PR=134,∴MQ=34;答图②答图③Ⅲ.如答图③,当∠QDC=90°时,∵BM=1,MP=4,∴BP=17,∴DP=12BP=172,∵△PBM∽△PQD,∴MPPB=DPPQ,∴PQ=178,∴MQ=158;Ⅳ.如答图④,当∠AEQ=90°时,答图④由AE=PE,可得AQ=PQ,设MQ=x,则x2+1=(4-x)2,解得x=15 8,∴MQ=15 8;综上所述,MQ的值为198或34或158;②△ACG和△DEG的面积之比为6-233.理由:如答图⑤,过C作CH⊥AB于H,答图⑤∵DM∥AF,DE∥AB,∴四边形AMDE 是平行四边形,四边形AMDF 是等腰梯形,∴DF =AM =DE =1,又由对称性可得GE =GD ,并且DG =DF ,∴△DEG 是等边三角形, ∴∠EDF =90°-60°=30°,∴∠DEF =75°=∠MDE ,∴∠GDM =75°-60°=15°,∴∠GMD =∠PGD -∠GDM =15°, ∴∠GMD =∠GDM ,∴GM =GD =1,由∠B =∠BAP =∠DEF =75°,得∠BAC =30°,从而CH =12AC =12AB =1=MG ,AH =3,∴CG =MH =3-1,∴S △ACG =12CG ×CH =3-12,∵S △DEG =34,∴S △ACG ∶S △DEG =6-233.10.[2018·温州中考]如图,已知P 为锐角∠MAN内部一点,过点P 作PB ⊥AM 于点B ,PC ⊥AN 于点C ,以PB 为直径作⊙O ,交直线CP 于点D ,连结AP ,BD ,AP 交⊙O 于点E .(1)求证:∠BPD =∠BAC .(2)连结EB ,ED ,当tan ∠MAN =2,AB =25时,在点P 的整个运动过程中.①若∠BDE =45°,求PD 的长;②若△BED 为等腰三角形,求所有满足条件的BD 的长.(3)连结OC ,EC ,OC 交AP 于点F ,当tan ∠MAN =1,OC ∥BE 时,记△OFP的面积为S 1,△CFE 的面积为S 2,请写出S 1S 2的值. 解:(1)证明:∵PB ⊥AM ,PC ⊥AN ,∴∠ABP =∠ACP =90°,∴∠BAC +∠BPC =180°,又∠BPD +∠BPC =180°,∴∠BPD =∠BAC .(2)①如答图①,∵∠APB =∠BDE =45°,∠ABP =90°,∴BP =AB =25,∵∠BPD =∠BAC ,∴tan ∠BPD =tan ∠BAC ,∴BD DP =2,∴BP =5PD ,∴PD =2;②Ⅰ.当BD =BE 时,∠BED =∠BDE ,∴∠BPD =∠BED =∠BDE =∠BPE =∠BAC ,∴tan ∠BPE =2, ∵AB =25,∴BP =5,∴BD =2;Ⅱ.当BE =DE 时,∠EBD =∠EDB ,∵∠APB=∠BDE,∠DBE=∠APC,∴∠APB=∠APC,∴AC=AB=25,如答图①过点B作BG⊥AC于点G,则四边形BGCD是矩形,答图①∵AB=25,tan∠BAC=2,∴AG=2,∴BD=CG=25-2;Ⅲ.当BD=DE时,∠DEB=∠DBE=∠APC,∵∠DEB=∠DPB=∠BAC,∴∠APC=∠BAC,设PD=x,则BD=2x,∴ACPC=2,而AG=2,CD=BG=4,∴2x+24-x=2,∴x=32,∴BD=2x=3,综上所述,当BD=2,3或25-2时,△BDE为等腰三角形.(3)如答图②,过点O作OH⊥DC于点H,答图②∵tan∠BPD=tan∠MAN=1,∴BD=PD,设BD=PD=2a,PC=2b,则OH=a,CH=a+2b,AC=4a+2b,∵OC∥BE且∠BEP=90°,∴∠PFC=90°,∴∠P AC+∠APC=∠OCH+∠APC=90°,∴∠OCH=∠P AC,∴△ACP∽△CHO,∴OHCH=PCAC,即OH·AC=CH·PC,∴a(4a+2b)=2b(a+2b),∴a=b,即CP=2a,CH=3a,则OC=10a,∵△CPF∽△COH,∴CFCH=CPOC,即CF3a=2a10a,则CF=3105a,OF=OC-CF=2105a,∵BE∥OC且BO=PO,∴OF为△PBE的中位线,∴EF=PF,∴S1S2=OFCF=23.例6[全国数学联赛题]如图,已知四边形ABCD外接圆O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=23,求四边形ABCD的面积.【思路生成】先求△ABD的面积,再证△ABD与△BCD的面积相等即可.解:如答图,连结AO,交BD于H,连结OB,答图∵AE=EC,AB=2AE,∴AB2=2AE2=AE·AC,∴ABAC=AEAB,又∠EAB=∠BAC,∴△ABE∽△ACB,∴∠ABE=∠ACB=∠ADB,∴AB=AD.∵AB =AD ,∴AO ⊥BD ,∴BH =HD ,∵BO =2,BD =23,∴BH =HD = 3.∴OH =OB 2-BH 2=4-3=1,AH =OA -OH =2-1=1.∴S △ABD =12BD ·AH =12×23×1=3,∵E 是AC 的中点,∴S △ABE =S △BCE ,S △ADE =S △CDE ,∴S △ABD =S △BCD ,∴S 四边形ABCD =2S △ABD =2 3.[学生用书P67]【思维入门】1.[余姚自主招生]如图,AB 是半圆的直径,点C 是AB ︵的中点,点E 是AC ︵的中点,连结EB ,CA 交于点F ,则EF BF =( D )A.13B.14C.1-22 D.2-12【解析】 连结AE ,CE ,作AD ∥CE ,交BE 于点D ,答图∵点E 是AC ︵的中点,设AE =CE =x ,根据平行线的性质得∠ADE =∠CED =45°,∴△ADE 是等腰直角三角形,则AD =2x ,又∠DAF =∠ACE =∠CAE =∠CBE ,而∠CAB =∠CBA =45°,∴∠DAB =∠DBA ,∴BD =AD =2x ,∴BE =(2+1)x .∵∠EAC =∠ABE ,∠AEF =∠BEA ,∴△AEF ∽△BEA ,∴AE BE =EF EA ,∴EF =(2-1)x ,BF =2x .∴EF BF =2-12.2.[雨花区自主招生]如图,BC 是半圆O 的直径,EF ⊥BC 于点F ,BF FC =5,又AB =8,AE =2,则AD 的长为( B )A .1+ 3 B.1+32 C.32 D .1+ 2 【解析】 如答图,连结BE .答图∵BC是直径.∴∠AEB=∠BEC=90°,在Rt△ABE中,根据勾股定理可得BE2=AB2-AE2=82-22=60.∵BFFC=5,∴设FC=x,则BF=5x,BC=6x,又∵BE2=BF·BC,即30x2=60,解得x=2,∴EC2=FC·BC=6x2=12,∴EC=23,∴AC=AE+EC=2+23,∵AD·AB=AE·AC,∴AD=AE·ACAB=2(2+23)8=1+32.3.[天津中考]如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A,D的⊙O与边AB,AC,BC分别相交于点E,F,M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③EDEF=BABC;④2BM2=BE·BA;⑤四边形AEMF为矩形.其中正确结论的个数是(C)A.2个B.3个C.4个D.5个【解析】如答图,连结AM,根据等腰三角形的三线合一,得AD⊥BC,答图再根据90°的圆周角所对的弦是直径,得EF,AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连结FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=2BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.4.[麻城自主招生]如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=22,AC=32,BC=6,则⊙O的半径是(D)A.3 B.4C.4 3 D.2 3【解析】如答图,延长EC交⊙O于点F,连结DF.则根据90°的圆周角所对的弦是直径,得DF是直径,答图∵DE∥BC,∴△ADE∽△ABC.∴DEBC=AEAC.则DE=4.由Rt△ADE∽Rt△DFE,得EF=DE2AE=4 2.根据勾股定理,得DF=DE2+EF2=16+32=43,则圆的半径是2 3.5.[淮安自主招生]如图,△ABC中,∠C=90°,O为AB上一点,以O为圆心,OB为半径的圆与AB相交于点E,与AC相切于点D,已知AD=2,AE=1,那么BC=__125__.答图【解析】 如答图,连结OD ,∵AC 为⊙O 的切线,∴OD ⊥AC ,在Rt △ADO 中,设OD =R ,∵AD =2,AE =1,∴22+R 2=(R +1)2,解得R =32,∴AO =52,AB =4,又∵∠C =90°,∴OD ∥BC ,∴△AOD ∽△ABC ,∴OD BC =OA AB ,即BC =4×3252=125.6.[2018·柳州]如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,过点A 作⊙O 的切线交BC 的延长线于点D .(1)求证:△DAC ∽△DBA ;(2)过点C 作⊙O 的切线CE 交AD 于点E ,求证:CE =12AD ;(3)若点F 为直径AB 下方半圆的中点,连结CF 交AB于点G,且AD=6,AB=3,求CG的长.解:(1)证明:∵AB是⊙O直径,∴∠ACD=∠ACB=90°,答图∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)证明:∵EA,EC是⊙O的切线,∴AE=CE,∴∠DAC=∠ECA,∵∠ACD =90°,∴∠ACE +∠DCE =90°,∠DAC +∠D =90°,∴∠D =∠DCE ,∴DE =CE ,∴AD =AE +DE =CE +CE =2CE ,∴CE =12AD ;(3)如答图,过点G 作GH ⊥BD 于H ,在Rt △ABD 中,AD =6,AB =3,∴tan ∠ABD =AD AB =2,∴tan ∠ABD =GH BH =2,∴GH =2BH ,∵点F 是直径AB 下方半圆的中点,∴∠BCF =45°,∴∠CGH =90°-∠BCF =45°,∴CH =GH =2BH ,∴BC =BH +CH =3BH ,在Rt △ABC 中,tan ∠ABC =AC BC =2,∴AC =2BC ,根据勾股定理得,AC 2+BC 2=AB 2,∴4BC 2+BC 2=9,∴BC =355,∴3BH =355,∴BH =55,∴GH=2BH=25 5,在Rt△CHG中,∠BCF=45°,∴CG=2GH=2105.【思维拓展】7.[瓯海区自主招生]如图,已知:P A切⊙O于A,若AC为⊙O的直径,PBC为⊙O的割线,E为弦AB的中点,PE的延长线交AC于F,且∠FPB=45°,点F到PC的距离为5,则FC的长为(C)A.10 B.12 C.5 5 D.5 6【解析】设PB=x,∵P A切⊙O于A,∴AP⊥AC,∴∠P AC=90°,∵AC为⊙O的直径,∴∠ABC=90°,∵∠FPB=45°,∴BE=PB=x,AB=2x,PH=FH=5,∵∠C+∠BAC=90°,∠P AB+∠BAC=90°,∴∠C=∠P AB,∴△APB∽△CAB,∴AB BC =PB AB ,即2x BC =x 2x ,解得BC =4x ,∴CH =PC -PH =PB +BC -PH =5x -5,∵FH ∥AB ,∴△CFH ∽△CAB ,∴FH AB =CH CB ,即52x =5x -54x ,解得x =3,∴CH =5x -5=10,在Rt △CFH 中,CF =FH 2+CH 2=52+102=5 5.8.[成都自主招生]如图,过⊙O 直径AB 上的点C 作AB 的垂线交⊙O 于点D ,再过D 点作圆的切线l ,然后过C 点作l 的垂线交l 于点E ,若AC =a ,CB =b ,那么CE长为( A )A.2ab a +bB.abC.a +b 2D. a 2+b 22 【解析】 如答图,连结OD ,答图∵AB =AC +BC =a +b ,∴OD=12(a+b),∴OC=OA-AC=12(a+b)-a=12(b-a),∵CD⊥AB,∴∠DCO=90°,在Rt△DCO中,CD=OD2-OC2=ab,∵l与⊙O相切于点D,∴OD⊥l,∵CE⊥l,∴OD∥CE,∴∠ODC=∠ECD,∴Rt△ODC∽Rt△DCE,∴CDCE=ODCD,即abCE=12(a+b)ab,∴CE=2ab a+b.9.[第23届“希望杯”竞赛]如图,已知A,B,C三点在同一圆上,并且AB是⊙O的直径,若点C到AB的距离CD=5,则⊙O的直径最小值是__10__.【解析】AD·DB=CD2=25,AB2=(AD+BD)2=(AD -BD)2+4AD·BD≥4AD·BD=100,当AD=BD时,AB取得最小值10.10.[成都中考]如图,在半径为5的⊙O 中,弦AB=8,P 是弦AB 所对的优弧上的动点,连结AP ,过点A作AP 的垂线交射线PB 于点C ,当△P AB 是等腰三角形时,线段BC 的长为__8或5615或853__.【解析】 Ⅰ.当BA =BP 时,则AB =BP =BC =8,即线段BC 的长为8.Ⅱ.当AB =AP 时,如答图①,延长AO 交PB 于点D ,过点O 作OE ⊥AB 于点E ,则AD ⊥PB ,AE =12AB =4,∴BD =DP ,答图①在Rt △AEO 中,AE =4,AO =5,∴OE =3,∵∠OAE =∠BAD ,∠AEO =∠ADB =90°,∴△AOE ∽△ABD ,∴AO AB =OE BD ,∴BD =245,∴BD =PD =245,即PB =485,∵AB=AP=8,∴∠ABD=∠P,∵∠P AC=∠ADB=90°,∴△ABD∽△CP A,∴BDAB=P ACP,∴CP=403,∴BC=CP-BP=403-485=5615;Ⅲ.当P A=PB时,如答图②,连结PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连结OB,则PF⊥AB,答图②∴AF=FB=4,在Rt△OFB中,OB=5,FB=4,∴OF=3,∴FP=8,∵∠P AF=∠ABP=∠CBG,∠AFP=∠CGB=90°,∴△PFB∽△CGB,∴PFFB=CGBG=21,设BG=t,则CG=2t,∵∠CAG=∠APF,∠AFP=∠AGC=90°,∴△APF∽△CAG,∴AFPF=CGAG,∴2t8+t=12,解得t=83,在Rt△BCG中,BC=5t=85 3,综上所述,当△P AB是等腰三角形时,线段BC的长为8或5615或853.11.如图,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作DE⊥AB于E,交AC于点P,求证:点P平分线段DE.答图证明:如答图,连结OD,∵OC∥AD,∴∠COD=∠ADO,∠COB=∠DAO,∵OA=OD,∴∠ADO=∠DAO,∴∠COD=∠COB,∵OD=OB,OC=OC,∴△ODC≌△OBC,∴∠ODC=∠OBC.∵OB是⊙O的半径,BC是⊙O的切线,∴BC⊥OB.∴∠OBC=90°,∴∠ODC=90°,∴CD⊥OD,∴CD是⊙O的切线.过A作⊙O的切线AF,交CD的延长线于点F,则F A⊥AB. ∵DE⊥AB,CB⊥AB,∴F A∥DE∥CB,∴FDFC=AEAB.在△F AC中,∵DP∥F A,∴DPF A=DCFC,即DPDC=F AFC.∵F A,FD是⊙O的切线,∴F A=FD,。

圆与相似三角形综合问题

圆与相似三角形综合问题

1EANMEDCBAEDCBAEDCBAl 3l 2l1C/B /A /CB Al 3l 2l 1C/B /A /CB A知识框架相似三角形的性质是几何证明的重要工具,是证明线段和差问题、相等问题、比例问题、角相等问题的重要方法,尤其在圆中,相似三角形有着极其重要的作用.1、相似三角形的性质相似三角形的对应边成比例,对应角相等,对应边上的中线,角平分线,高线,周长之比等于相似比,面积之比等于相似比的平方.2、相似三角形的判定方法(1)三边对应成比例的两个三角形相似(2)两边对应成比例,夹角相等的两个三角形相似(3)两组角对应相等的两个三角形相似.3、相似三角形中几个的基本图形4、由相似三角形得到的几个常用定理定理1 平行于三角形一边的直线截得的三角形与原三角形形似.如图,若DE ∥BC ,则AD AE DE ABACBC==,或AD BD AECE=.定理2 平行切割定理如图,,D E 分别是ABC D 的边,AB AC 上的点,过点A 的直线交,DE BC 于,M N ,若DE ∥MN ,则DM BN MENC=定理 3 (平行线分线段成比例定理)两条直线被一组平行线截得的对应线段成比例.如图,若1l ∥2l ∥3l ,则AB BC ACA B B C A C==ⅱⅱⅱ, 定理4(角平分线性质定理)如图,,AD AE 分别是2HEDCBAABC D 的内角平分线与外角平分线,则DB EB AB DCECAC==.定理5 射影定理直角三角形斜边上的高分原三角形成两个直角三角形,这两个三角形与原三角形相似.定理6 相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD定理7 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径ABCD ,∴2CEAE BE定理8 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

相似三角形几何题(含答案)

相似三角形几何题(含答案)

相似三角形几何题(WORD 版,有答案)1、如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。

求证:AC AF AB AE ⋅=⋅;F O E DBA2为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、 丙位同学设计方案新颖,构思巧妙.(10分)(1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立 在对角线AC 上,问:甲生的设计方案是否可行?请说明理由.(2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处.(3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视 力表.如果大视力表中“E ”的长是3.5cm ,那么小视力表中相应“E ”的长是多少cm ?3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(12分)(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.HH(图1)(图2) (图3)3.5㎝ACF3mB5mDA B CD EF P ·4已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)作DE∥AB交AC于点E,请再写出另一个与△ABD相似的三角形,并直接写出DE的长.5.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB的长.6.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.7.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC 与△OAB相似(相似比不为1),并写出C点的坐标.8.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC 交AB 于E 点.(1)求∠D 的度数;(2)求证:AC 2=AD ·CE .9.已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.10.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.11.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.12.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.13.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?14.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?15、已知:如图,在平面直角坐标系中,ABC△是直角三角形,90ACB∠=,点A C,的坐标分别为(30)A-,,(10)C,,43=ACBC.(13分)(1)求过点A B,的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得ADB△与ABC△相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P Q,分别是AB和AD上的动点,连接PQ,设AP DQ m==,问是否存在这样的m使得APQ△与ADB△相似,如存在,请求出m的值;如不存在,请说明理由.16.如图,AB是斜靠在墙壁上的长梯,梯脚B距墙80cm,梯上点D距墙70cm,BD长55cm.求梯子的长.17.如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,求CO和DO.18.如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD与a、b之间满足怎样的关系式时,△ACB∽△CBD?A COBxy19.(本题10分)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点, 当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.20.(本题10分)如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E .(1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2ACAB=时,如图2,求OF OE 的值; (3)当O 为AC 边中点,ACn AB=时,请直接写出OF OE 的值.21(6分)一般的室外放映的电影胶片上每一个图片的规格为3.5cm ×3.5cm ,放映的银幕规格为2m ×2m ,若影机的光源距胶片20cm 时,问银幕应在离镜头多远的地方,放映的图像刚好布满整个银幕?DMA BCNBBA A C OE D DE C O F图1 图2 F22.(6分)如图13,四边形ABCD 、CDEF 、EFGH 都是正方形. (1)⊿ACF 与⊿ACG 相似吗?说说你的理由. (2)求∠1+∠2的度数.23.(6分)如图13,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 分别是OA 、OB 的中点. (1)试问:△ADE 与△BCF 全等吗?请说明理由;(2)若AD = 4cm ,AB = 8cm ,求CF 的长.24(6分)已知:如图14,在△ABC 中,AB=AC=a ,M 为底边BC 上任意一点,过点M 分别作AB 、AC 的平行线交AC 于P ,交AB 于Q. (1)求四边形AQMP 的周长;(2)写出图中的两对相似三角形(不需证明);BACPQ MBCDOFF E O CBAAA A BBBCCCD DDOE FGPMN⑴⑵⑶25(6分)如图15,已知△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,底边BC 、CE 、EG 在同一直线上,且AB=3,BC=1.连结BF ,分别交AC 、DC 、DE 于点P 、Q 、R.(1)求证:△BFG ∽△FEG ,并求出BF 的长; (2)观察图形,请你提出一个与点..P .相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).26(6分)(1)如图16(1),在正方形ABCD 中,对角线AC 、BD 相交于点O ,易知AC ⊥BD ,AC CO =21; (2)如图16(2),若点E 是正方形ABCD 的边CD 的中点,即21=DC DE ,过D 作DG ⊥AE ,分别交AC 、BC 于点F 、G.求证:31=AC CF ; (3)如图16(3),若点P 是正方形ABCD 的边CD 上的点,且nDC DP 1=(n 为正整数),过点D 作DN ⊥AP ,分别交AC 、BC 于点M 、N ,请你先猜想CM 与AC 的比值是多少?然后再证明你猜想的结论.27(8分)如图17,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方向以2cm /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A M N ,,为顶点的三角形与ACD △相似?若存在,求t 的值;若不存在,请说明理由.28.如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .(1)求证:△CEB ∽△CBD ;(2)若CE = 3,CB=5 ,求DE 的长.29.如图,把菱形ABCD 沿着BD 的方向平移到菱形A /B /C /D /′的位置, (1)求证:重叠部分的四边形B /EDF /是菱形(2)若重叠部分的四边形B /EDF /面积是把菱形ABCD 面积的一半,且BD=2,求则此菱形移动的距离.30.如图,在Rt ABC △中,90C =∠,12BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中,请回答下列问题:(1n1 2 3 n x(2)第n 个正方形的边长n = ;(3)若m n p q ,,,是正整数,且m n p q x x x x =,试判断m n p ,,,的关系.AB C DMF E /CB/A/DB BC A2x3x1x答案1.方法1:连接ED,DF,证⊿ADE∽⊿ABD,得AB AE AD •=2同理可证⊿ADF∽⊿ACD,得AC AF AF •=2故,AE·AB=AF·AC方法2:连接EF,ED证⊿AEF∽⊿ACB2.⑴在Rt ⊿ABC中,AC=22CD AD +=223.42.3+>5故,可行;⑵ 1.8;⑶利用⊿AED∽⊿ACB可求得FD=2.1m3.(1)证⊿DA F∽⊿ABC(2) )0(273〉+=x x y(3)当点P 运动到点E 的位置,即x =12.5时,△PBC 的周长最小,此时y 的值为64.54.(1)4943+=x y(2)过点B作AB 的垂线交x 轴于点D , D 点的坐标为(3.25,0) (3)存在,m =925或36125 5.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5.6..cm 133提示:连结AC .7.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 8.C (4,4)或C (5,2).9.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .A C OBxyD10.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2- .12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时,△ABD ≌△DCE .可得.12-=x当∠ADE 为底角时:⋅=21AE 11.(1)S '∶S =1∶4; (2)).40(41162<<+-=x x x y 12.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P13.(1)y =x 2-2x -3,A (-1,0),B (3,0); (2))49,43(-D 或D (1,-2).14.(1);643+-=x y (2)1130=t 或;1350 (3)t =2或3.15.(1)略; (2));30(8311832≤<+-=x x x S 16.梯子长为cm 440 17.cm DO cm CO 65.55,35.103==(提示:设xcm DO =,则()cm x CO -=159,因为AB BD AB AC ⊥⊥,,︒=∠=∠90B A ,BOD AOC ∠=∠,所以△AOC ∽△BDO ,所以DO CO BO AO =即x x -=1594278,所以65.55=x ) 18.b a BD 2=(提示:由△ACB ∽△CBD ,得BC a a b BD CB CD AC ==,,所以b a BD 2=) (3)当x =3时,S 最大值33=.19.解:(1)在正方形ABCD 中,490AB BC CD B C ===∠=∠=,°,AM MN ⊥,90AMN ∴∠=°,90CMN AMB ∴∠+∠=°,在Rt ABM △中,90MAB AMB ∠+∠=°,CMN MAB ∴∠=∠,Rt Rt ABM MCN ∴△∽△,(2)Rt Rt ABM MCN △∽△,44AB BM x MC CN x CN∴=∴=-,,244x x CN -+∴=, ()222141144282102422ABCN x x y S x x x ⎛⎫-+∴==+=-++=--+ ⎪⎝⎭梯形·,当2x =时,y 取最大值,最大值为10.(3)90B AMN ∠=∠=°,∴要使ABM AMN △∽△,必须有AM AB MN BM=,由(1)知AM AB MN MC=,BM MC ∴=, ∴当点M 运动到BC 的中点时,ABM AMN △∽△,此时2x =.20.解:(1)AD BC ⊥,90DAC C ∴∠+∠=°.90BAC BAF C ∠=∴∠=∠°,.90OE OB BOA COE ∴∠+∠=⊥,°,90BOA ABF ∠+∠=°,ABF COE ∴∠=∠.ABF COE ∴△∽△;(2)解法一:作OG AC ⊥,交AD 的延长线于G .2AC AB =,O 是AC 边的中点,AB OC OA ∴==.由(1)有ABF COE △∽△,ABF COE ∴△≌△,BF OE ∴=.90BAD DAC ∠+∠=°,90DAB ABD DAC ABD ∠+∠=∴∠=∠°,,又90BAC AOG ∠=∠=°,AB OA =.ABC OAG ∴△≌△,2OG AC AB ∴==.OG OA ⊥,AB OG ∴∥,ABF GOF ∴△∽△,OF OG BF AB ∴=,2OF OF OG OE BF AB ===. 解法二:902BAC AC AB AD BC ∠==°,,⊥于D , Rt Rt BAD BCA ∴△∽△.2AD AC BD AB ∴==. 设1AB =,则2AC BC BO ===,12AD BD AD ∴=== 90BDF BOE BDF BOE ∠=∠=∴°,△∽△,BD BO DF OE∴=. 由(1)知BF OE =,设OE BF x ==, BA D E C O FGB ADE C O F5DF x=,x ∴=.在DFB △中2211510x x =+,3x ∴=.OF OB BF ∴=-==322OF OE ∴==. (3)OF n OE=. 21807cm 22.相似,450 23.(1)全等,略;(2)CF ==cm 24.(1) 2a ;(2)△ABC ∽△QBM ∽△PMC ; 25.(1)BF=BG=3;(2)略 26.(1)略;(2)猜想11+=n AC CM ,证明略 27.(1)经过1秒或2秒后;(2)经过32秒或125秒时 28.(1)证明:∵弦CD 垂直于直径AB ∴BC=BD ∴∠C =∠D 又∵EC = EB∴∠C =∠CBE ∴∠D =∠CBE 又∵∠C =∠C ∴△CEB ∽△CBD(2)解:∵△CEB ∽△CBD ∴CE CB CB CD= ∴CD=2252533CB CE == ∴DE = CD -CE =253-3 =163 29.(1)有平移的特征知A ´B ´∥AB,又CD ∥AB ∴A ´B ´∥CD,同理B ´C ´∥AD ∴四边形BEDF 为平行四边形∵四边形ABCD 是菱形 ∴AB=AD ∴∠ABD=∠ADB 又∠A ´B ´D=∠ABD ∴∠A ´B ´D=∠ADB ∴FB ´=FD∴四边形B ´EDF 为菱形.(2)∵菱形B ´EDF 与菱形ABCD 有一个公共角 ∴此两个菱形对应角相等 又对应边成比例 ∴此两个菱形相似∴B D BD '=,∴12B D '== ∴平移的距离BB ´=BD –B ´1 30.(1)2483927,, (2)23n ⎛⎫ ⎪⎝⎭.(3)m n p q x x x x = 22223333m n p q⎛⎫⎛⎫⎛⎫⎛⎫∴= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2233m n p q ++⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭⎝⎭.m n p q ∴+=+。

数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

数学《圆与相似三角形、三角函数综合题》专题训练(含答案)

2020-2021学年中考数学培优训练讲义(七)《圆与相似三角形、三角函数综合题》专题训练班级姓名座号成绩1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接PF.若tan∠FBC=,DF=,则PF的长为.2.如图AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于F,AF交⊙O于点H,当OB=2时,则BH的长为.(第1题图)(第2题图)(第3题图)3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC、PB,若cos∠PAB=,BC=1,则PO的长.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如下左图,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(2)如下右图,在(1)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:KG2=KD•KE;②若cos C=,AK=,求BF的长.作业思考:1. 如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.参考答案:1.如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.【分析】(1)根据切线的性质得到OE⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OE∥CD,根据平行线的性质得到∠EFD=∠OEF,由等腰三角形的性质得到∠OEF=∠OFE,根据角平分线的定义即可得到结论;(2)连接PF,由BF是⊙O的直径,得到∠BPF=90°,推出四边形BCFP是矩形,根据tan∠FBC =,设CF=3x,BC=4x,于是得到3x+=4x,x=,求得AD=BC=4,推出DF∥OE ∥AB于是得到DE:AE=OF:OB=1:1即可得到结论.【解答】解:(1)连接OE,BF,PF,∵∠C=90°,∴BF是⊙O的直径,∵⊙O与AD相切于点E,∴OE⊥AD,∵四边形ABCD的正方形,∴CD⊥AD,∴OE∥CD,∴∠EFD=∠OEF,∵OE=OF,∴∠OEF=∠OFE,∴∠OFE=∠EFD,∴EF平分∠BFD;(2)连接PF,∵BF是⊙O的直径,∴∠BPF=90°,∴四边形BCFP是矩形,∴PF=BC,∵tan∠FBC=,设CF=3x,BC=4x,∴3x+=4x,x=,∴AD=BC=4,∵点E是切点,∴OE⊥AD∴DF∥OE∥AB∴DE:AE=OF:OB=1:1∴DE=AD=2,∴EF==10.【点评】本题考查了切线的性质,正方形的性质,圆周角定理,等腰三角形的性质,平行线的性质,切割线定理,正确的作出辅助线是解题的关键.2.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【解答】证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点评】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.3.如图,PA是⊙O的切线,切点为A,AC是⊙O的直径,连接OP交⊙O于E.过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)求证:E为△PAB的内心;(3)若cos∠PAB=,BC=1,求PO的长.【分析】(1)连接OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)连接AE,根据切线的性质定理得到∠PAE+∠OAE=90°,证明EA平分∠PAD,根据三角形的内心的概念证明即可;(3)根据余弦的定义求出OA,证明△PAO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】(1)证明:连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵PA为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)证明:连接AE,∵PA为⊙O的切线,∴∠PAE+∠OAE=90°,∵AD⊥ED,∴∠EAD+∠AED=90°,∵OE=OA,∴∠OAE=∠AED,∴∠PAE=∠DAE,即EA平分∠PAD,∵PA、PB为⊙O的切线,∴PD平分∠APB∴E为△PAB的内心;(3)解:∵∠PAB+∠BAC=90°,∠C+∠BAC=90°,∴∠PAB=∠C,∴cos∠C=cos∠PAB=,在Rt△ABC中,cos∠C===,∴AC=,AO=,∵△PAO∽△ABC,∴,∴PO===5.【点评】本题考查的是三角形的内切圆和内心、相似三角形的判定和性质、切线的判定,掌握切线的判定定理、相似三角形的判定定理和性质定理是解题的关键.4.已知:在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,交BC于点E.(1)如图1,求证:AD=CD;(2)如图2,过点D作弦DF⊥AB垂足为H,连接EF交AB于G,求证:EF∥AC;(3)如图3,在(2)的条件下,过点G作GN⊥BC垂足为N,若OG=3,EN=4,求线段DH的长.【分析】(1)如图1中,连接BD,利用等腰三角形的三线合一的性质证明即可.(2)如图2中,连接BD,想办法证明∠ADF=∠DFE即可.(3)连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,利用平行线分线段成比例定理,构建方程求出r,即可解决问题.【解答】(1)证明:如图1中,连接BD.∵AB是直径,∴∠ADB=90°,∴BD⊥AC,∵BA=BC,∴AD=CD.(2)证明:如图2中,连接BD.∵AB⊥DF,∴=,∴∠ADF=∠ABD,∵∠DFE=∠ABD,∴∠ADF=∠DFE,∴EF∥AC.(3)解:如图3中,连接AE.设OA=OB=r,则AB=BC=2r,BG=3+r,∵EG∥AC,∴=,∵BC=BA,∴BE=BG=3+r,∴BN=3+r﹣4=r﹣1,∵AB是直径,GN⊥BC∴∠AEB=∠GNB=90°,∴GN∥AE,∴=,∴=,解得r=9或﹣1(舍弃),∴BG=12,BN=8,∴NG===4,∴EG===2,∵GN∥AE,∴=,∴=,∴AE=6,∵∠C=∠DAH,∠AEC=∠AHD=90°,∴△AEC∽△DHA,∴==2,∴DH=3.【点评】本题属于圆综合题,考查了垂径定理,解直角三角形,平行线分线段成比例定理,等腰三角形的判定和性质等知识,教育的关键是学会添加常用辅助线,属于中考压轴题.5.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.【分析】(1)连接OG,由EG=EK知∠KGE=∠GKE=∠AKH,结合OA=OG知∠OGA=∠OAG,根据CD⊥AB得∠AKH+∠OAG=90°,从而得出∠KGE+∠OGA=90°,据此即可得证;(2)①由AC∥EF知∠E=∠C=∠AGD,结合∠DKG=∠CKE即可证得△KGD∽△KGE;②连接OG,由设CH=4k,AC=5k,可得AH=3k,CK=AC=5k,HK=CK﹣CH=k.利用AH2+HK2=AK2得k=1,即可知CH=4,AC=5,AH=3,再设⊙O半径为R,由OH2+CH2=OC2可求得,根据知,从而得出答案.【解答】解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.【点评】本题是圆的综合问题,解题的关键是掌握等腰三角形的性质、平行线的性质,圆周角定理、相似三角形的判定与性质及切线的判定等知识点.作业思考:1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG=,求线段AH长.【分析】(1)由垂直的定义,角平分线的定义,角的和差证明EF=EI,同角的余角相等得∠AEF=∠GEI,四边形的内角和,邻补角的性质得∠FAE=∠IGE,最后根据角角边证明△AEF≌△GEI,其性质得AE=GE;(2)由圆周角定理,等角的三角函数值相等求出⊙O的半径为,根据平行线的性质,勾股定理,角平分线的性质定理,三角形相似的判定与性质,一元二次方程求出t的值为,最后求线段AH的长为.【解答】证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJ中,由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.【点评】本题综合考查了垂线的定义,平行线的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,解直角三角形,一元二次方程等相关知识,重点掌握相似三角形的判定与性质,难点是辅助线构建全等三角形,圆周角和相似三角形.。

相似三角形与圆的综合题

相似三角形与圆的综合题

相似三角形与圆的综合考题1、已知:如图,AB是⊙O的直径,E是AB延长线上一点,过E作⊙O的切线ED,切点为C,AD⊥ED交ED于点D,交⊙O于点F,CG⊥AB交AB于点G.求证:BG•AG=DF•DA.2、已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:AB:AC=BF:DF.3、(南通)已知:如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC,E为垂足.(1)求证:∠ADE=∠B;(2)过点O作OF∥AD,与ED的延长线相交于点F,求证:FD•DA=FO•DE.4、如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.5、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.6、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.7、如是⊙O的直径,CB、CD分别切⊙O于B、D两点,点E在CD的延长线上,且CE=AE+BC;(1)求证:AE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BE交DF于点M,求证:DM=MF.8、已知:如图,AB是⊙O的直径,D是⊙O上一点,连结BD并延长,使CD=BD,连结AC。

2023年九年级中考数学高频专题突破--相似三角形与圆的综合(含解析)

2023年九年级中考数学高频专题突破--相似三角形与圆的综合(含解析)

2023年中考数学高频专题突破--相似三角形与圆的综合1.如图,△ABC 内接于△O ,且AB 为△O 的直径,OD△AB ,与AC 交于点E ,与过点C 的△O 的切线交于点D .(1)若AC=4,BC=2,求OE 的长.(2)试判断△A 与△CDE 的数量关系,并说明理由.2.如图,已知三角形ABC 的边AB 是△0的切线,切点为B .AC 经过圆心0并与圆相交于点D 、C ,过C 作直线CE 丄AB ,交AB 的延长线于点E .(1)求证:CB 平分△ACE 。

(2)若BE=3,CE=4,求△O 的半径.3.如图,在 ABC 中, CA CB = ,BC 与 A 相切于点D ,过点A 作AC 的垂线交CB 的延长线于点E ,交 A 于点F ,连结BF.(1)求证:BF 是 A 的切线.(2)若 5BE = , 20AC = ,求EF 的长.4.如图,已知BC 是△O 的直径,点D 为BC 延长线上的一点,点A 为圆上一点,且AB=AD ,AC=CD .(1)求证:△ACD△△BAD;(2)求证:AD是△O的切线.5.如图,AB是△O的直径,BC切△O于点B,OC平行于弦AD,过点D作DE△AB 于点E,连结AC,与DE交于点P.求证:(1)PE=PD(2)AC•PD=AP•BC6.如图,AB是△O的直径,弦CD△AB,垂足为H,连接AC,过BD上一点E作EG△AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是△O的切线;(2)延长AB交GE的延长线于点M,若AH=2,CH ,求OM的长.7.如图,O是ABC的外接圆,直线EG与O相切于点E EG BC,连接AE交BC于点D.,//(1)求证: AE 平分 BAC ∠ ;(2)若 ABC ∠ 的平分线 BF 交 AD 于点F ,且 3DE = , 2DF = ,求 AF 的长.8.如图,以 Rt ABC ∆ 的直角边 AB 为直径作 O 交斜边 AC 于点 D ,过圆心 O 作 //OE AC ,交 BC 于点 E ,连接 DE .(1)判断 DE 与 O 的位置关系并说明理由;(2)求证: 22DE CD OE =⋅ ;(3)若 4tan 3C =, 52DE = ,求 AD 的长. 9.如图, ABC 内接于,O AB 是 O 的直径, BD 与 O 相切于点B , BD 交 AC 的延长线于点D ,E 为 BD 的中点,连接 CE .(1)求证: CE 是 O 的切线.(2)已知 5BD CD == ,求O ,E 两点之间的距离.10.如图,已知直线PT 与△O 相切于点T ,直线PO 与△O 相交于A ,B 两点.(1)求证:PT 2=PA•PB ;(2)若PT=TB= ,求图中阴影部分的面积.11.如图,在矩形ABCD 中,以BC 边为直径作半圆O ,OE△OA 交CD 边于点E ,对角线AC 与半圆O 的另一个交点为P ,连接AE.(1)求证:AE 是半圆O 的切线;(2)若PA =2,PC =4,求AE 的长.12.如图,AB 是△O 的直径,点C 、D 在圆上, BC = CD ,过点C 作CE△AD 延长线于点E.(1)求证:CE 是△O 的切线;(2)若BC =3,AC =4,求CE 和AD 的长.13.将一副三角板Rt△ABD 与Rt△ACB (其中△ABD=90°,△D=60°,△ACB=90°,△ABC=45°)如图摆放,Rt△ABD 中△D 所对直角边与Rt△ACB 斜边恰好重合.以AB 为直径的圆经过点C ,且与AD 交于点 E ,分别连接EB ,EC .(1)求证:EC 平分△AEB ;(2)求 ACE BEC SS 的值.14.如图,在等腰锐角三角形ABC 中,AB =AC ,过点B 作BD△AC 于D ,延长BD 交△ABC 的外接圆于点E ,过点A 作AF△CE 于F ,AE ,BC 的延长线交于点G.(1)判断EA 是否平分△DEF ,并说明理由;(2)求证:①BD =CF ;②BD 2=DE 2+AE•EG.15.如图,在Rt△ABC 中,△ACB =90°,点E 是BC 的中点,以AC 为直径的△O 与AB 边交于点D ,连接DE.(1)判断直线DE 与△O 的位置关系,并说明理由;(2)若CD =3,DE = 52,求△O 的直径. 16.如图,已知BC△AC ,圆心O 在AC 上,点M 与点C 分别是AC 与△O 的交点,点D 是MB 与△O 的交点,点P 是AD 延长线与BC 的交点,且 AD AP =AM AO.(1)求证:PD是△O的切线;(2)若AD=12,AM=MC,求BPMD的值.17.如图,已知三角形ABC的边AB是O的切线,切点为B.AC经过圆心O并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分△ACE;(2)若BE=3,CE=4,求O的半径.18.已知:四边形OABC是菱形,以O为圆心作△O,与BC相切于点D,交OA于E,交OC于F,连接OD,DF.(1)求证:AB是△O的切线;(2)连接EF交OD于点G,若△C=45°,求证:GF2=DG•OE.19.已知:如图,MN为△O的直径,ME是△O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分△DMN.求证:(1)DE 是△O 的切线;(2)ME 2=MD•MN .20.如图,在 ABC ∆ 中, 90C ∠=︒ , AD 平分 BAC ∠ 交 BC 于点D ,过点A 和点D 的圆,圆心O 在线段 AB 上, O 交 AB 于点E ,交 AC 于点F .(1)判断 BC 与 O 的位置关系,并说明理由;(2)若 8AD = , 10AE = ,求 BD 的长.21.如图,在△ABC 中,AB=AC ,以AC 为直径的△O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若BD=2,BE=3,求AC 的长.答案解析部分1.【答案】(1)解:∵AB 为△O 的直径,∴△ACB=90°,在Rt△ABC 中,由勾股定理得:AB== =2 ,∴OA= 12 AB= ,∵OD△AB ,∴△AOE=△ACB=90°,又∵△A=△A ,∴△AOE△△ACB ,∴OE OA BC AC = ,即 24OE = ,解得:OE= (2)解:△CDE=2△A ,理由如下:连接OC ,如图所示:∵OA=OC ,∴△1=△A ,∵CD 是△O 的切线,∴OC△CD ,∴△OCD=90°,∴△2+△CDE=90°,∵OD△AB ,∴△2+△3=90°,∴△3=△CDE ,∵△3=△A+△1=2△A ,∴△CDE=2△A .【解析】【分析】(1)由圆周角定理得出△ACB=90°,由勾股定理求出AB==2 ,得出OA= 12 AB= ,证明△AOE△△ACB ,得出对应边成比例即可得出答案;(2)连接OC ,由等腰三角形的性质得出△1=△A ,由切线的性质得出OC△CD ,得出△2+△CDE=90°,证出△3=△CDE ,再由三角形的外角性质即可得出结论.2.【答案】(1)证明:如图1,连接OB ,∵AB 是△0的切线,∴OB△AB ,∵CE 丄AB ,∴OB△CE ,∴△1=△3,∵OB=OC ,∴△1=△2,∴△2=△3,∴CB 平分△ACE ;(2)解:如图2,连接BD ,∵CE 丄AB ,∴△E=90°,∴,∵CD 是△O 的直径,∴△DBC=90°,∴△E=△DBC ,∴△DBC△△CBE ,∴CD BC =BC EC,∴BC 2=CD•CE ,∴CD=254=254,∴OC=12CD=258, ∴△O 的半径=258【解析】【解答】(1)证明:如图1,连接OB ,由AB 是△0的切线,得到OB△AB ,由于CE 丄AB ,的OB△CE ,于是得到△1=△3,根据等腰三角形的性质得到△1=△2,通过等量代换得到结果.(2)如图2,连接BD 通过△DBC△△CBE ,得到比例式CD BC =BC EC,列方程可得结果. 【分析】此题是圆的应用,涉及有切线性质,等腰三角形性质和三角形相似对应边成比例进而求得线段的值、3.【答案】(1)证明:如图,连接 AD ,CA CB = ,CAB ABC ∴∠=∠ ,AE AC ⊥ ,90CAB EAB ∴∠+∠=︒又 A 切BC 于点D ,=90ADB ∴∠︒ ,90ABD BAD ∴∠+∠=︒ ,BAE BAD ∴∠=∠ .又 AB AB = , AF AD = ,()ABF ABD SAS ∴≌ ,90AFB ADB ∴∠=∠=︒ ,BF ∴ 是 A 的切线(2)解:由(1)得: 90AFB FAC ∠=∠=︒ , //BF AC ∴ ,BEF CEA ∴∽ ,BE BF CE CA∴= , 20CB CA == , 5BE = ,552020BF ∴=+ , 4BF ∴= ,3EF ∴==【解析】【分析】(1)连接AD ,利用等腰三角形的性质可证得△CAB=△ABC ,利用垂直的定义可求出△CAB+△EAB=90°;再利用切线的性质和余角的性质去证明△BAE=△BAD;然后根据SAS证明△ABF△△ABD,利用全等三角形的性质,可求出△AFB=90°,利用切线的判定定理,可证得结论.(2)由BF△AC,可证得△BEF△△CEA,利用相似三角形的性质可求出BF的长;再利用勾股定理求出EF的长.4.【答案】(1)证明:∵AB=AD,∴△B=△D,∵AC=CD,∴△CAD=△D,∴△CAD=△B,∵△D=△D,∴△ACD△△BAD(2)证明:连接OA,∵OA=OB,∴△B=△OAB,∴△OAB=△CAD,∵BC是△O的直径,∴△BAC=90°,∴OA△AD,∴AD是△O的切线.【解析】【分析】(1)根据等腰三角形的性质得到△CAD=△B,由于△D=△D,于是得到△ACD△△BAD;(2)连接OA,根据的一句熟悉的性质得到△B=△OAB,得到△OAB=△CAD,由BC是△O的直径,得到△BAC=90°即可得到结论.5.【答案】(1)证明:∵AB是△O的直径,BC是切线,∴AB△BC,∵DE△AB,∴DE△BC,∴△AEP△△ABC,∴EP AEBC AB…①,又∵AD△OC,∴△DAE=△COB,∴△AED△△OBC,∴212ED AE AE AE BC OB AB AB ===…②,由①②,可得ED=2EP ,∴PE=PD .(2)证明:∵AB 是△O 的直径,BC 是切线,∴AB△BC ,∵DE△AB ,∴DE△BC ,∴△AEP△△ABC ,∴AP PE AC BC =, ∵PE=PD ,∴AP PD AC BC=,∴AC•PD=AP•BC . 【解析】【解答】首先根据AB 是△O 的直径,BC 是切线,可得AB△BC ,再根据DE△AB ,判断出DE△BC ,△AEP△△ABC ,所以EP AE BC AB =;然后判断出2ED AE BC AB=,即可判断出ED=2EP ,据此判断出PE=PD 即可. 【分析】首先根据△AEP△△ABC ,判断出AP PE AC BC=;然后根据PE=PD ,可得AP PD AC BC=,据此判断出AC•PD=AP•BC 即可. 6.【答案】(1)证明:连接OE ,如图,∵GE=GF ,∴△GEF=△GFE ,而△GFE=△AFH ,∴△GEF=△AFH ,∵AB△CD ,∴△OAF+△AFH=90°,∴△GEA+△OAF=90°,∵OA=OE ,∴△OEA=△OAF ,∴△GEA+△OEA=90°,即△GEO=90°,∴OE△GE ,∴EG 是△O 的切线(2)解:连接OC ,如图,设△O 的半径为r ,则OC=r ,OH=r-2,在Rt△OCH 中, 2222)r r -+=( ,解得r=3,在Rt△ACH 中,AC===, ∵AC△GE ,∴△M=△CAH ,∴Rt△OEM△Rt△CHA , ∴OM OE AC CH= , 即= ,解得:OM= . 【解析】【分析】(1)连接OE ,如图,通过证明△GEA+△OEA=90°得到OE△GE ,然后根据切线的判定定理得到EG 是△O 的切线;(2)连接OC ,如图,设△O 的半径为r ,则OC=r ,OH=r-2,利用勾股定理得到 2222)r r -+=( ,解得r=3,然后证明Rt△OEM△Rt△CHA ,再利用相似比计算OM 的长.7.【答案】(1)解:连接OE .∵直线EG与△O相切于E,∴OE△EG.∵EG△BC,∴OE△BC,∴BE CE=,∴△BAE=△CAE.∴AE平分△BAC;(2)解:如图,∵AE平分△BAC,∴△1=△4,∵△1=△5,∴△4=△5,∵BF平分△ABC,∴△2=△3,∵△6=△3+△4=△2+△5,即△6=△EBF,∴EB=EF,∵DE=3,DF=2,∴BE=EF=DE+DF=5,∵△5=△4,△BED=△AEB,∴△EBD△△EAB,∴BE DEEA BE=,即535EA=,∴AE= 253,∴AF=AE-EF= 253-5=103.【解析】【分析】(1)连接OE,利用垂径定理、圆周角、弧、弦的关系证得结论;(2)根据题意证明BE=EF ,得到BE 的长,再证明△EBD△△EAB 得到BE DE EA BE= , 求出AE ,从而得到AF . 8.【答案】(1)解:DE 是圆O 的切线证明:连接OD∵OE△AC∴△1=△3,△2=△A∵OA=OD∴△1=△A∴△2=△3在△BOE 和△DOE 中OE=OD ,△2=△3,OE=OE∴△BOE△△DOE (SAS )∴△ODE=△OBE=90°∴OD△DE∴DE 是圆O 的切线(2)解:证明:连接BD∵AB 是直径∴△BDC=△ADB=△ABC=90°∵OE△AC ,O 是AB 的中点∴OE 是△ABC 的中位线∴AC=2OE∵△BDC=△ABC ,△C=△C∴△ABC△△BDC ∴2BC AC BC AC CD CD BC==⋅,即 ∴BC 2=2CD•OE∵BC=2DE,∴(2DE)2=2CD•OE ∴22DE CD OE=⋅(3)解:∵4tan3BD CDC==设:BD=4x,CD=3x∵在△BDC中,52DE=,∴BC=2DE=5∴(4x)2+(3x)2=25解之:x=1,x=-1(舍去)∴BD=4∵△ABD=△C∴AD=BD•tan△ABD=416 433⨯=【解析】【分析】(1)连接OD,根据平行线的性质及等腰三角形的性质证明△2=△3,再证明△BOE△△DOE,可证出OD△DE,即可得证。

圆与相似三角形综合问题

圆与相似三角形综合问题

NMEDCBAEDCBAE DCBA学生:科目:数学教师:谭前富知识框架相似三角形的性质是几何证明的重要工具,是证明线段和差问题、相等问题、比例问题、角相等问题的重要方法,尤其在圆中,相似三角形有着极其重要的作用.1、相似三角形的性质相似三角形的对应边成比例,对应角相等,对应边上的中线,角平分线,高线,周长之比等于相似比,面积之比等于相似比的平方.2、相似三角形的判定方法(1)三边对应成比例的两个三角形相似(2)两边对应成比例,夹角相等的两个三角形相似(3)两组角对应相等的两个三角形相似.3、相似三角形中几个的基本图形4、由相似三角形得到的几个常用定理定理1 平行于三角形一边的直线截得的三角形与原三角形形似.如图,若DE∥BC,则AD AE DEAB AC BC,或AD BDAE CE.定理2 平行切割定理如图,,D E分别是ABC的边,AB AC上的点,过点A的直线交,DE BC于,M N,若DE∥MN,则DM BNME NC定理3 (平行线分线段成比例定理)两条直线被一组平行线截得的对应线段成比例.EDCBAl 3l 2l 1C /B /A /CBA l 3l 2l 1C /B /A /CB A如图,若1l ∥2l ∥3l ,则 AB BC ACA B B C A C,定理4(角平分线性质定理) 如图,,AD AE 分别是ABC 的内角平分线与外角平分线,则DB EB AB DC EC AC.定理5 射影定理直角三角形斜边上的高分原三角形成两个直角三角形,这两个三角形与原三角形相似.定理6 相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅定理7 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅定理8 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、三角函数专题(含答案)

圆与相似三角形、解直角三角形及二次函数的综合类型一:圆与相似三角形的综合1.如图,BC是⊙A的直径,△DBE的各个顶点均在⊙A上,BF⊥DE于点F.求证:BD·BE=BC·BF.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O,D,E,C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.解:(1)连结OD,∵DE为切线,∴∠EDC+∠ODC=90°.∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,∴∠EDC=∠ECD,∴ED=EC.∵AC为直径,∴∠ADC=90°,∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=EB,∴EB=EC,即点E为边BC的中点(2)∵AC为直径,∴∠ADC=∠ACB=90°.又∵∠B=∠B,∴△ABC∽△CBD,∴ABBC=BCBD,∴BC2=BD•BA(3)当四边形ODEC为正方形时,∠OCD=45°.∵AC为直径,∴∠ADC=90°,∴∠CAD=90°-∠OCD=90°-45°=45°,∴Rt△ABC为等腰直角三角形类型二:圆与解直角三角形的综合3.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC的中点,DE⊥AB,垂足为点E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;(2)已知CF=5,cosA=25,求BE的长.解:(1)连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD.∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线(2)∵OD∥AB,∴∠COD=∠A,∴cos∠COD=cosA=25.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD=ODOF=25.设⊙O的半径为r,则rr+5=25,解得r=103,∴AB=2OD=AC =203.在Rt△AEF中,∵∠AEF=90°,∴cosA=AEAF=AE5+203=25,∴AE=143,∴BE =AB-AE=203-143=24.(2015·资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)连结AE,若∠C=45°,求sin∠CAE的值.解:(1)连结OD,BD,∵OD=OB,∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB =90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE =90°,∴DE是⊙O的切线(2)过点E作EF⊥CD于点F,设EF=x,∵∠C=45°,∴△CEF,△ABC都是等腰直角三角形,∴CF=EF=x,∴BE=CE=2x,∴AB=BC=22x.在Rt△ABE中,AE=AB2+BE2=10x,∴sin∠CAE=EFAE=10105.如图,△ABC内接于⊙O,直径BD交AC于点E,过点O作FG⊥AB,交AC于点F,交AB于点H,交⊙O于点G.(1)求证:OF·DE=OE·2OH;(2)若⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,求阴影部分的面积.(结果保留根号)解:(1)∵BD是直径,∴∠DAB=90°.∵FG⊥AB,∴DA∥FO,∴△FOE∽△ADE,∴FOAD=OEDE,即OF•DE=OE•AD.∵O是BD的中点,DA∥OH,∴AD=2OH,∴OF•DE=OE•2OH (2)∵⊙O的半径为12,且OE∶OF∶OD=2∶3∶6,∴OE=4,ED=8,OF=6,∴OH=6.在Rt△OBH中,OB=2OH,∴∠OBH=30°,∴∠BOH=60°,∴BH=BO•sin60°=12×32=63,∴S阴影=S扇形GOB-S△OHB=60×π×122360-12×6×63=24π-183类型三:圆与二次函数的综合6.如图,在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D.(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标;(3)设平行于x轴的直线交抛物线于E,F两点,问:是否存在以线段EF为直径的圆,恰好与x轴相切?若存在,求出该圆的半径,若不存在,请说明理由.解:(1)y=-12x2-32x+2(2)以AB为直径的圆的圆心坐标为O′(-32,0),∴O′C=52,O′O=32.∵CD为圆O′的切线,∴O′C⊥CD,∴∠O′CO+∠DCO=90°.又∵∠CO′O+∠O′CO=90°,∴∠CO′O=∠DCO,∴△O′CO∽△CDO,∴O′OOC=OCOD,∴322=2OD,∴OD=83,∴点D的坐标为(83,0) (3)存在.抛物线的对称轴为直线x=-32,设满足条件的圆的半径为|r|,则点E的坐标为(-32+r,r)或F(-32-r,r),而点E在抛物线y=-12x2-32x+2上,∴r=-12(-32+|r|)2-32(-32+|r|)+2,∴r1=-1+292,r2=-1-292(舍去).故存在以线段EF为直径的圆,恰好与x轴相切,该圆的半径为-1+2927.如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于点C,经过A,B,C 三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为.设⊙M与y轴交于点D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α-β)的值;(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.解:(1)由题意,可知C(0,-3),-b2a=1,∴抛物线的解析式为y=ax2-2ax-3(a>0).过点M作MN⊥y轴于点N,连结CM,则MN=1,CM=5,∴CN=2,于是m=-1.同理,可求得B(3,0),∴a×32-2a×3-3=0,解得a=1.∴抛物线的解析式为y=x2-2x-3 (2)由(1)得,A(-1,0),E(1,-4),D(0,1),∴△BCE为直角三角形,BC=32,CE=2,∴OBOD=31=3,BCCE=322=3,∴OBOD=BCCE,即OBBC=ODCE,∴Rt△BOD∽Rt △BCE,得∠CBE=∠OBD=β,因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=COBC=22(3)显然Rt△COA∽Rt△BCE,此时点O(0,0).过点A作AP2⊥AC交y轴的正半轴于点P2,由Rt△CAP2∽Rt△BCE,得P2(0,13).过点C作CP3⊥AC交x轴的正半轴于点P3,由Rt△P3CA∽Rt△BCE,得P3(9,0).故在坐标轴上存在三个点P1(0,0),P2(0,13),P3(9,0),使得以P,A,C为顶点的三角形与△BCE相似。

相似三角形综合测试卷

相似三角形综合测试卷

相似三角形综合测试卷一、选择题(10题共30分)1.用放大镜将图形放大,应该属于( ) A 、相似变换 B 、平移变换 C 、对称变换D 、旋转变换2 一个铝质三角形框架三条边长分别为24cm ,30cm ,36cm ,要做一个与它相似的铝质三角形框架,现有长为27cm ,45cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边,截法有( ) A 、0种 B 、1种 C 、2种 D 、3种3、如图1,P 是Rt △ABC 斜边BC 上异于B 、C 的一点,过P 点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条4、已知△ABC 与△DEF 的相似比为1︰2 ,△ABC 的周长为30cm ,△ DEF 的三边之比为 4︰5︰6,则△DEF 的最长边为( ) A 44cm B 40cm C 36cm D 24cm5、在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为21,把△EFO 缩小,则点E 的对应点E′的坐标是( ) A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4) D .(-2,1)或(2,-1) 6、如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为( ) A .21 B .23 C .22 D .33 7、如图,Rt △ABC 中,∠A=90°,AD ⊥BC 于点D ,若BD :CD=3:2,则tanB=( ) A 、23B .32 C .26 D .36 8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( ) A .16 B .17 C .18 D .19 9、某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长BC =3.6米,墙上影子高CD =1.8米,则树高AB ( )A.2 .8B.3 .8C.4 .8D.5.810.如图,△ABC 中,CD ⊥AB 于D ,一定能确定△ABC 为直角三角形的条件的个数是( )①∠1=∠A ;②;③∠B+∠2=90°;④BC :AC :AB=3:4:5;⑤AC•BD=AD•CD .A.2B.3C.4D.5二、填空题(6题共18分) 11、如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC =_____°,BC =_____;(2)△ABC 与△DEF 是否相似?__________(填相似或不相似)12、如图,把矩形ABCD 对折,折痕为MN ,矩形DMNC 与矩形ABCD 相似,已知AB =4. (1)AD 的长为_______;(2)矩形DMNC 与矩形ABCD 的相似比为_________。

圆中的相似三角形

圆中的相似三角形

巩固练习
练习1
如图AD是△ABC的高,AE是△ABC的外接圆直径. 求证:AB· AC = AE· AD
证明:连结BE
∵ ∴ ∵ ∴

AE⊙O的直径,AD⊥BC ∠ABE =∠ADC=90° ∠E =∠C △ABE∽△ADC
AB AE AD AC
∴ AB·AC =AE·AD
练习2:△ABC中,AB=AC,以AB为直径
的⊙O交BC于D,交AC于E。 若AB=6,CD=2,求CE的长。
E
解:
连接AD、DE 0 ADB 90 AB是直径, 又AB=AC,由“三线合一” 得BD=CD=2,且有 BC=4 B C , 四边形ABDE内接于圆O B DEC ,
DCE ∽ ABC 而 C 公用,
思考与探索(一)
如图1,△APC∼△DPB吗? • 思路:
图1
思考与探索(二)
如图2,△ADE∼△ACB吗?
D 2
A 1 E
四边形BCED内接于 O • 思路: C 2 1800 , 又 1 2 1800 A
BC BF 2 BC BG BF BG BC
证法二:延长CG交⊙O于点M,
又 CBF是公共角, CFB ∽ GCB BC BF BG BC
直径AB CM , BC BM CFB MCB,
BC BG BF
2
直径垂直于弦由垂径定理找等角.
C
2
A
P
D
O
等弧所对的圆周角相等.
B
基础练习2 (黄冈卷)如图,已知AB是⊙O的直径, 点C是⊙O上一点,连结BC,AC,过点C作直线 CD⊥AB于点D,点E是AB上一点,直线CE交⊙O 于点F,连结BF,与直线CD交于点G.

专题37 圆中的三角形相似问题(解析版)

专题37 圆中的三角形相似问题(解析版)

专题37 圆中的三角形相似问题1、如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC平分∠BAD,过C点作CE⊥AD延长线于E点.(1)求证:CE是⊙O的切线;(2)若AB=10,AC=8,求AD的长.解:(1)连接OC,∵OC=OA,∴∠OAC=∠OCA,又∵AC平分∠BAD,∴∠CAD=∠CAO=∠OCA,∴OC∥AE,∵CE⊥AD,即可得OC⊥CE,∴CE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴BC===6,∵∠BAC=∠DAC,∴=,∴BC=CD=6,延长BC交AE的延长线于F,∵∠BAC=∠FAC,AC=AC,∠ACB=∠ACF=90°,∴△ACB≌△ACF(ASA),∴FC=BC=6,AF=AB=10,∵∠CDF=180°﹣∠ADC,∠ABF=180°﹣∠ADC,∴∠CDF=∠ABF,∵∠CFD=∠AFB,∴△CFD∽△AFB,∴=,∴=,∴AD=.2、如图,△AOB中,A(﹣8,0),B(0,),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴交于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F.(1)求证:EF为⊙P的切线;(2)求⊙P的半径.(1)证明:连接CP,∵AP=CP,∴∠PAC=∠PCA,∵AC平分∠OAB,∴∠PAC=∠EAC,∴∠PCA=∠EAC,∴PC∥AE,∵CE⊥AB,∴CP⊥EF,即EF是⊙P的切线;(2)∵AC平分∠OAB,∴∠BAC=∠OAC,∵PA=PC,∴∠PCA=∠PAC,∴∠BAC=∠ACP,∴PC∥AB,∴△OPC∽△OAB,∴=,∵A(﹣8,0),B(0,),∴OA=8,OB=,∴AB=,∴=,∴PC=5,∴⊙P的半径为5.3、如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM的值.解:(1)连接OE,则∠OCB=∠OBC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.4、如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.5、如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是⊙O的切线;(2)若EA=EF=2,求⊙O的半径;解:(1)连接OD,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是⊙O的切线;(2)设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+2,∴BD=CD=DE=r+2,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+2,∴AF=AB﹣BF=2OB﹣BF=2r﹣(2+r)=r﹣2,∵∠BFD=∠EFA,∠B=∠E,∴△BFD∽△EFA,∴,即=解得:r1=1+,r2=1﹣(舍),综上所述,⊙O的半径为1+.6、如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=8,求BE的长.(1)证明:连接OC,∵∠A=∠CBD,∴=,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:∵AB为直径,∴∠ACB=90°,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;(3)解:连接AD,∵AB为直径,∴∠ADB=90°,∵∠DBA=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=tan30°=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴=,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∴△CGB∽△CBE,∴==,∵CG=8,∴BC=8,∴BE=8.7、如图,B,E是⊙O上的两个定点,A为优弧BE上的动点,过点B作BC⊥AB交射线AE于点C,过点C作CF⊥BC,点D在CF上,且∠EBD=∠A.(1)求证:BD与⊙O相切;(2)已知∠A=30°.①若BE=3,求BD的长;②当O,C两点间的距离最短时,判断A,B,C,D四点所组成的四边形的形状,并说明理由.(1)证明:如图1,作直径BG,连接GE,则∠GEB=90°,∴∠G+∠GBE=90°,∵∠A=∠EBD,∠A=∠G,∴∠EBD=∠G,∴∠EBD+∠GBE=90°,∴∠GBD=90°,∴BD⊥OB,∴BD与⊙O相切;(2)解:如图2,连接AG,∵BC⊥AB,∴∠ABC=90°,由(1)知∠GBD=90°,∴∠GBD=∠ABC,∴∠GBA=∠CBD,又∵∠GAB=∠DCB=90°,∴△BCD∽△BAG,∴==tan30°=,又∵Rt△BGE中,∠BGE=30°,BE=3,∴BG=2BE=6,∴BD=6×=2;(3)解:四边形ABCD是平行四边形,理由如下,由(2)知=,=,∴=,∵B,E为定点,BE为定值,∴BD为定值,D为定点,∵∠BCD=90°,∴点C在以BD为直径的⊙M上运动,∴当点C在线段OM上时,OC最小,此时在Rt△OBM中,==,∴∠OMB=60°,∴MC=MB,∴∠MDC=∠MCD=30°=∠A,∵AB⊥BC,CD⊥BC,∴∠ABC=∠DCB=90°,∴AB∥CD,∴∠A+∠ACD=180°,∴∠BDC+∠ACD=180°,∴AC∥BD,∴四边形ABCD为平行四边形.8、如图,AB、CE是⊙O的直径,过点C的切线与AB的延长线交于点P,AD⊥PC于D,连接AC、OD、PE.(1)求证:AC是∠DAP的角平分线;(2)求证:PC2=P A•PB;(3)若AD=3,PE=2DO,求⊙O的半径.证明:(1)∵PC是圆的切线,AD⊥PD,∴AD∥OC,∴∠DAC=∠ACO,∵AO=CO,∴∠CAO=∠ACO,∴∠DAC=∠CAO,∴AC是∠DAP的平分线;(2)如右图,连接BC,∵OC=OB,∴∠OCB=∠OBC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠OBC=90°,∵PC是⊙O的切线,∴∠OCB+∠BCP=90°,∴∠CAB=∠BCP,又∵∠CPB=∠APC,∴△CPB∽△APC,∴=,∴PC2=P A•PB;(3)设半径为r,在Rt△PCE中,PE2=(2r)2+PC2=4r2+PC2,∵PE=2DO,∴4DO2=4r2+PC2,∴4(DO2﹣r2)=PC2,∴4DC2=PC2,∴PC=2CD,∵AD∥OC,∴△PCO∽△PDA,∴=,∴=,∴r=2.9、如图,AB是直经,D是的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于点F.(1)求证:DE是⊙O的切线.(2)试探究AE,AD,AB三者之间的等量关系.(3)若DE=3,⊙O的半径为5,求BF的长.(1)证明:如图1,连接OC,OD,BC,∵AB是直径,∴∠ACB=90°,∵DE⊥AC于E,∴∠E=90°,∴∠ACB=∠E,∴BC∥DE,∵点D是的中点,∴,∴∠COD=∠BOD,又∵OC=OB,∴OD垂直平分BC,∵BC∥DE,∴OD⊥DE,∴DE是⊙O的切线;(2)AD2=AE•AB,理由如下:如图2,连接BD,由(1)知,,∴∠EAD=∠DAB,∵AB为直径,∴∠ADB=∠E=90°,∴△AED∽△ADB,∴=,即AD2=AE•AB;(3)由(1)知,∠E=∠ECH=∠CHD=90°,∴四边形CHDE为矩形,∴ED=CH=BH=3,∴OH===4,∴CE=HD=OD﹣OH=5﹣4=1,AC===8,∴AE=AC+CE=9,∵BF是⊙O的切线,∴∠FBA=∠E=90°,又∵∠EAD=∠DAB,∴△EAD∽△BAF,∴=,即=,∴BF=.10、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.(1)证明:∵EF⊥OG,BC是⊙O的切线,∴∠CBA=∠EFC=90°,∴∠EOF+∠FEB=90°,∠BOC+∠BCO=90°,∵∠EOF=∠COB,∴∠FEB=∠BCO,∵CB,CD是⊙O的切线,∴∠ECF=∠BCO,∴∠FEB=∠ECF;(2)解:如解图,连接OD,则OD⊥CE,∵CB,CD为⊙O的切线,BC=6,DE=4,∴CD=BC=6,∴CE=CD+DE=6+4=10,在Rt△CBE中,根据勾股定理得BE=CE2-BC2=102-62=8,设OD=x,则OE=8-x,在Rt△ODE中,根据勾股定理得OE2=OD2+ED2,即(8-x)2=x2+42,解得x=3,则OE=5.在Rt△ODC中,根据勾股定理得OC=CD2+OD2=62+32=35,∵∠EOF=∠COB,∠EFO=∠CBO,∴△EFO∽△CBO,∴EFCB=OEOC,即EF6=535,解得EF=2 5.11、如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD,CD.过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.(1)证明:∵圆心O在BC上,∴BC是⊙O的直径,∴∠BAC=90°.如解图,连接OD.∵AD平分∠BAC,∴∠BAC=2∠DAC.∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°.即OD⊥BC.∵PD∥BC,∴OD⊥PD.又OD是⊙O的半径,∴PD是⊙O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC.又∠ABC=∠ADC,∴∠P=∠ADC.∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD.∴△PBD∽△DCA;(3)解:∵△ABC是直角三角形,∴BC2=AB2+AC2=62+82=100.∴BC=10.∵OD垂直平分BC,∴DB=DC.∵BC是⊙O的直径,∴∠BDC=90°.在等腰直角三角形BDC中,DC=DB=5 2.∵△PBD∽△DCA,∴PBDC=BDCA,即PB =DC·BD CA =52×528=254. 12、如图,在Rt △ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 的中点,OE 交CD 于点F .(1)若∠BCD =36°,BC =10,求BD ︵的长;(2)判断直线DE 与⊙O 的位置关系,并说明理由;(3)求证:2CE 2=AB ·EF .(1)解:如解图,连接OD ,∵∠BCD =36°,∴∠BOD =2∠BCD =2×36°=72°,∵BC 是⊙O 的直径,BC =10,∴OB =5,∴l BD ︵=72π×5180=2π; (2)解:DE 是⊙O 的切线;理由如下:∵BC 是⊙O 的直径,∴∠ADC =180°-∠BDC =90°,又∵点E 是线段AC 中点,∴DE =12AC =EC , 在△DOE 与△COE 中,⎩⎪⎨⎪⎧OD =OC OE =OE DE =CE,∴△DOE ≌△COE (SSS).∵∠ACB =90°,∴∠ODE =∠OCE =90°,∵OD 是⊙O 的半径,∴DE 是⊙O 的切线;(3)证明:由(2)知,△DOE ≌△COE ,∴OE 是线段CD 的垂直平分线,∴点F 是线段CD 中点,∵点E 是线段AC 中点,则EF =12AD , ∵∠BAC =∠CAD ,∠ADC =∠ACB , ∴△ACD ∽△ABC ,则AC AB =AD AC,即AC 2=AB ·AD , 而AC =2CE ,AD =2EF ,∴(2CE )2=AB ·2EF ,即4CE 2=AB ·2EF ,∴2CE 2=AB ·EF .。

数学相似三角形(竞赛题专页)

数学相似三角形(竞赛题专页)

几何:2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)· GAO DB EC Q P NM · O Q PB DEC N M · A OD BF AECP P A D CB4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.1.∠ABC 的顶点B 在⊙O 外,BA 、BC 均与⊙O 相交,过BA 与圆的交点K 引∠ABC 平分线的垂线,交⊙O 于P ,交BC 于M 。

求证:线段PM 为圆心到∠ABC 平分线距离的2倍。

2.在△ABC 中,AP 为∠A 的平分线,AM 为BC 边上的中线,过B 作BH⊥AP 于H ,AM的延长线交BH 于Q ,求证:PQ∥AB。

EDCB A3.菱形ABCD的内切圆O与各边分别切于E、F、G、H,在EF与GH上分别作⊙O的切线交AB于M,交BC于N,交CD于P,交DA于Q。

求证:MQ∥NP。

4.ABCD是圆内接四边形,其对角线交于P,M、N分别是AD、BC的中点,过M、N分别作BD、AC的垂线交于K。

求证:KP⊥AB。

5.以△ABC的边BC为直径作半圆,与AB、AC分别交于点D、E。

人教版九年级下册: 圆和三角函数综合练习(含答案)

人教版九年级下册: 圆和三角函数综合练习(含答案)

圆与三角函数1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.2.如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.3.已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.(1)求证:BD平分∠ABC;(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;(3)如果AB=10,cos∠ABC=,求AD.4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.5.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.6.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.7.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.8.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.9.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.10.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD 是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.11.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)12.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N 点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.13.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.14.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.15.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.16.如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.17.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.18.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.19.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF 的值.20.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH 的值.2018年01月10日金博初数2的初中数学组卷参考答案与试题解析一.解答题(共25小题)1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.【点评】本题是圆的综合题目,考查了切线的判定、圆周角定理、圆心角、弧、弦之间的关系定理、勾股定理、三角函数、相似三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形相似和运用三角函数、勾股定理才能得出结果.2.如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.【分析】(1)首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点C在⊙O上,即可判断出FC 是⊙O的切线.(2)延长AC、BF交点为M.由△BOF≌△COF可知:BF=CF然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;(3)因为cos∠AOC=,OE=,AE=.由勾股定理可求得EC=.AC=.因为EG=GC,所以EG=.由(2)可知△AEG∽△ABF,可求得CF=BF=.在Rt△ABF中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.【解答】(1)证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴△BOF≌△COF,∴∠OCF=∠OBF=90°,又∵点C在⊙O上,∴FC是⊙O的切线.(2)如下图:延长AC、BF交点为M.由(1)可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.(3)如下图所示:∵cos∠AOC=,∴OE=,AE=.在Rt△EOC中,EC==.在Rt△AEC中,AC==.∵EG=GC,∴EG=.∵△AEG∽△ABF,∴,即.∴BF=.∴CF=.在Rt△ABF中,AF===3r.∵CF是⊙O的切线,AC为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH=.【点评】本题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM是解答本题的关键.3.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.【分析】(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.【解答】(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABD=90°,又∠CFB=90°.∴△CBF∽△DAB.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.4.已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.(1)求证:BD平分∠ABC;(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;(3)如果AB=10,cos∠ABC=,求AD.【分析】(1)先由OD∥BC,根据两直线平行内错角相等得出∠D=∠CBD,由OB=OD,根据等边对等角得出∠D=∠OBD,等量代换得到∠CBD=∠OBD,即BD平分∠ABC;(2)先由圆周角定理得出∠ACB=90°,根据直角三角形两锐角互余得到∠CFB+∠CBF=90°.再由PF=PB,根据等边对等角得出∠PBF=∠CFB,而由(1)知∠OBD=∠CBF,等量代换得到∠PBF+∠OBD=90°,即∠OBP=90°,根据切线的判定定理得出PB是⊙O的切线;(3)连结AD.在Rt△ABC中,由cos∠ABC===,求出BC=6,根据勾股定理得到AC==8.再由OD∥BC,得出△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,根据相似三角形对应边成比例求出AE=4,OE=3,那么DE=OD﹣OE=2,然后在Rt△ADE中根据勾股定理求出AD==2.【解答】(1)证明:∵OD∥BC,∴∠D=∠CBD,∵OB=OD,∴∠D=∠OBD,∴∠CBD=∠OBD,∴BD平分∠ABC;(2)证明:∵⊙O是以AB为直径的△ABC的外接圆,∴∠ACB=90°,∴∠CFB+∠CBF=90°.∵PF=PB,∴∠PBF=∠CFB,由(1)知∠OBD=∠CBF,∴∠PBF+∠OBD=90°,∴∠OBP=90°,∴PB是⊙O的切线;(3)解:连结AD.∵在Rt△ABC中,∠ACB=90°,AB=10,∴cos∠ABC===,∴BC=6,AC==8.∵OD∥BC,∴△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,∴==,==,∴AE=4,OE=3,∴DE=OD﹣OE=5﹣3=2,∴AD===2.【点评】本题是圆的综合题,其中涉及到平行线的性质、等腰三角形的性质、圆周角定理、直角三角形两锐角互余的性质、切线的判定定理、锐角三角函数的定义、勾股定理、相似三角形的判定和性质等知识,综合性较强,难度适中.本题中第(2)问要证某线是圆的切线,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线是常用的方法,需熟练掌握.5.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.【分析】(1)连结OD,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到=,再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF为⊙O的切线;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=2,易得∠BDF=∠DBP=30°,根据含30度的直角三角形三边的关系,在Rt △DBP 中得到PD=BD=,PB=PD=3,接着在Rt △DEP 中利用勾股定理计算出PE=2,由于OP ⊥BC ,则BP=CP=3,所以CE=1,然后利用△BDE ∽△ACE ,通过相似比可得到AE=,再证明△ABE ∽△AFD ,利用相似比可得DF=12,最后根据扇形面积公式,利用S阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算;(3)连结CD ,如图2,由=可设AB=4x ,AC=3x ,设BF=y ,由=得到CD=BD=2,先证明△BFD ∽△CDA ,利用相似比得到xy=4,再证明△FDB ∽△FAD ,利用相似比得到16﹣4y=xy ,则16﹣4y=4,然后解方程易得BF=3.【解答】证明:(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴=,∴OD ⊥BC ,∵BC ∥EF ,∴OD ⊥DF ,∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=BD=,PB=PD=3,在Rt △DEP 中,∵PD=,DE=,∴PE==2,∵OP ⊥BC ,∴BP=CP=3, ∴CE=3﹣2=1,易证得△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1:,∴AE=∵BE ∥DF ,∴△ABE ∽△AFD ,∴=,即=,解得DF=12,在Rt △BDH 中,BH=BD=,∴S 阴影部分=S △BDF ﹣S 弓形BD=S △BDF ﹣(S 扇形BOD ﹣S △BOD )=•12•﹣+•(2)2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.【点评】本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和切线的判定定理;会计算不规则几何图形的面积;会灵活运用相似三角形的判定与性质计算线段的长.6.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…(9分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.【分析】(1)由垂直的定义可得∠EBF=∠ADF=90°,于是得到∠C=∠BFE,从而证得△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证得∠DBO=90°,即可得到BD与⊙O相切;(3)如图2,连接CF,HE,有等腰直角三角形的性质得到CF=BF,由于DF垂直平分AC,得到AF=CF=AB+BF=1+BF=BF,求得BF=,有勾股定理解出EF=,推出△EHF是等腰直角三角形,求得HF=EF=,通过△BHF∽△FHG,列比例式即可得到结论.【解答】(1)证明:∵∠ABC=90°,∴∠EBF=90°,∵DF⊥AC,∴∠ADF=90°,∴∠C+∠A=∠A+∠AFD=90°,∴∠C=∠BFE,在△ABC与△EBF中,,∴△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证明如下:∵OB=OF,∴∠OBF=∠OFB,∵∠ABC=90°,AD=CD,∴BD=CD,∴∠C=∠DBC,∵∠C=∠BFE,∴∠DBC=∠OBF,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD与⊙O相切;(3)解:如图2,连接CF,HE,∵∠CBF=90°,BC=BF,∴CF=BF,∵DF垂直平分AC,∴AF=CF=AB+BF=1+BF=BF,∴BF=,∵△ABC≌△EBF,∴BE=AB=1,∴EF==,∵BH平分∠CBF,∴,∴EH=FH,∴△EHF是等腰直角三角形,∴HF=EF=,∵∠EFH=∠HBF=45°,∠BHF=∠BHF,∴△BHF∽△FHG,∴,∴HG•HB=HF2=2+.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.8.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【分析】(1)直接利用圆周角定理得出AD⊥BC,再利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,即可求出AE的长,再判断△AEG∽△DEA,求出EG•ED 的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.9.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.【分析】(1)利用圆内接四边形的性质得出∠D=∠EBC,进而利用互余的关系得出∠GBE=∠EBC,进而求出即可;(2)首先得出∠D=∠ABG,进而利用全等三角形的判定与性质得出△BCE≌△BGE(ASA),则CE=EG,再利用等腰三角形的性质求出即可;(3)首先求出CO的长,再求出tan∠ABH===,利用OP2+PB2=OB2,得出a的值进而求出答案.【解答】(1)证明:如图1,∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC,∵GF⊥AD,AE⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABF=∠D,∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE平分∠GBC;(2)证明:如图2,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE和△BGE中,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG;(3)解:如图3,连接CO并延长交⊙O于M,连接AM,∵CM是⊙O的直径,∴∠MAC=90°,∵∠M=∠D,tanD=,∴tanM=,∴=,∵AG=4,AC=AG,∴AC=4,AM=3,∴MC==5,∴CO=,过点H作HN⊥AB,垂足为点N,∵tanD=,AE⊥DE,∴tan∠BAD=,∴=,设NH=3a,则AN=4a,∴AH==5a,∵HB平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF===,∴AB==10a,∴NB=6a,∴tan∠ABH===,过点O作OP⊥AB垂足为点P,∴PB=AB=5a,tan∠ABH==,∴OP=a,∵OB=OC=,OP2+PB2=OB2,∴25a2+a2=,∴解得:a=,∴AH=5a=.【点评】此题主要考查了圆的综合以及勾股定理和锐角三角函数关系等、全等三角形的判定与性质知识,正确作出辅助线得出tan∠ABH==是解题关键.10.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.【分析】(1)连结OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证.(2)连结OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°,根据垂径定理可得出结论.(3)连结AC、BC、OG,由sinB=,求出OG,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.【解答】(1)证明:连结OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EGP=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连结OG,OP,∵BG2=BF•BO,∴=,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,由垂径定理知:BG=PG;(3)解:如图,连结AC、BC、OG、OP,∵sinB=,∴=,∵OB=r=3,∴OG=,由(2)得∠EPG+∠OPB=90°,∠B+∠BGF=∠OGF+∠BGF=90°,∴∠B=∠OGF,∴sin∠OGF==∴OF=1,∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,在Rt△BCA中,CF2=BF•FA,∴CF===2.∴CD=2CF=4.【点评】本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.11.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.【分析】(1)由于题目没有说明直线AB与⊙O有交点,所以过点O作OF⊥AB于点F,然后证明OC=OF即可;(2)连接CE,先求证∠ACE=∠ODC,然后可知△ACE∽△ADC,所以,而tan∠D==;(3)由(2)可知,AC2=AE•AD,所以可求出AE和AC的长度,由(1)可知,△OFB∽△ABC,所以,然后利用勾股定理即可求得AB的长度.【解答】(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.【点评】本题考查圆的综合问题,解题的关键是证明△ACE∽△ADC.本题涉及勾股定理,解方程,圆的切线判定知识,内容比较综合,需要学生构造辅助线才能解决问题,对学生综合能力要求较高.12.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.【分析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan ∠ABD的值.【解答】(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:方法一:设DE=1,则AC=2,由AC2=AD×AE∴20=AD(AD+1)∴AD=4或﹣5(舍去)∵DC2=AC2﹣AD2∴DC=2,∴tan∠ABD=tan∠ACD==2;方法二:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD•DE∵AC=2DE,∴设DE=x,则AC=2x,则AC2﹣AD2=AD•DE,期(2x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣5x(负数舍去),则DC==2x,故tan∠ABD=tan∠ACD===2.【点评】此题主要考查了圆的综合以及切线的判定、相似三角形的判定与性质、勾股定理等知识,根据题意表示出AD,DC的长是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形与圆的综合考题1、已知:如图,AB是⊙O的直径,E是AB延长线上一点,过E作⊙O的切线ED,切点为C,AD⊥ED交ED于点D,交⊙O于点F,CG⊥AB交AB于点G.求证:BG•AG=DF•DA.2、已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:AB:AC=BF:DF.3、(南通)已知:如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC,E为垂足.(1)求证:∠ADE=∠B;(2)过点O作OF∥AD,与ED的延长线相交于点F,求证:FD•DA=FO•DE.4、如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.5、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.6、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.7、如是⊙O的直径,CB、CD分别切⊙O于B、D两点,点E在CD的延长线上,且CE=AE+BC;(1)求证:AE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BE交DF于点M,求证:DM=MF.8、已知:如图,AB是⊙O的直径,D是⊙O上一点,连结BD并延长,使CD=BD,连结AC。

过点D作DE⊥AC,垂足是点E.过点B作BE⊥AB,交ED延长线于点F,连结OF。

求证:(1)EF是⊙O的切线;(2)△OBF∽△DEC。

9、如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 切线,交OD的延长线于点E,连结BE.(1)求证:BE与⊙O相切;(2)连结AD并延长交BE于点F,若OB=6,且sin∠ABC=23,求BF的长.10、如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE ⊥AC交AC的延长线于点E,OE交AD于点F。

(1)求证:DE是⊙O的切线;(2)若45ACAB,求AFDF的值;(3)在(2)的条件下,若⊙O直径为10,求△EFD的面积.11、已知:如图,在Rt△ABC中,∠A=90°,以AB为直径作⊙O,BC交⊙O于点D,E是边AC的中点,ED、AB的延长线相交于点F.求证:(1)DE为⊙O的切线.(2)AB•DF=AC•BF.12、如图,以△ABC的边AB为直径的⊙O与边BC交于点D,过点D作DE⊥AC,垂足为E,延长AB、ED交于点F,AD平分∠BAC.(1)求证:EF是⊙O的切线;(2)若AE=3,AB=4,求图中阴影部分的面积.13、知AB是⊙O的直径,直线l与⊙O相切于点C且AC AD,弦CD交AB于E,BF⊥l,垂足为F,BF 交⊙O于G。

(1)求证:CE2=FG·FB;(2)若tan∠CBF=12,AE=3,求⊙O的直径。

14.如图,圆内接四边形ABCD的对角线AC平分∠BCD,BD交AC于点F,过点A作圆的切线AE交CB的延长线于E.求证:①AE∥BD;②AD 2 = DF·AE15、已知:□ABCD,过点D作直线交AC于E,交BC于F,交AB的延长线于G,经过B、G、F三点作⊙O,过E作⊙O的切线ET,T为切点.求证:ET = ED16、如图,△ABC中,AB = AC,O是BC上一点,以O为圆心,OB长为半径的圆与AC相切于点A,过点C 作CD⊥BA,垂足为D.求证:(1)∠DAC = 2∠B;(2) CA 2 = CD·CO相似三角形与圆的综合考题(教师版)1、已知:如图,AB是⊙O的直径,E是AB延长线上一点,过E作⊙O的切线ED,切点为C,AD⊥ED交ED 于点D,交⊙O于点F,CG⊥AB交AB于点G.求证:BG•AG=DF•DA.证明:连接BC,FC,CO,∵过E作⊙O的切线ED,∴∠DCF=∠CAD,∠D=∠D,∴△CDF∽△ADC,∴=,∴CD2=AD×DF,∵CG⊥AB,AB为直径,∴∠BCA=∠AGC=∠BGC=90°,∴∠GBC+∠BCG=90°,∠BCG+∠GCA=90°,∴∠GBC=∠ACG,∴△BGC∽△CGA,∴=,∴CG2=BG×AG,∵过E作⊙O的切线ED,∴OC⊥DE,∵AD⊥DE,∴CO∥AD,∴∠OCA=∠CAD,∵AO=CO,∴∠OAC=∠OCA,∴∠OAC=∠CAD,在△AGC和△ADC中,,∴△AGC≌△ADC(AAS),∴CG=CD,∴BG×AG=AD×DF.2、已知:如图,AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,ED与AB的延长线相交于点F.(1)求证:DE为⊙O的切线.(2)求证:AB:AC=BF:DF.3、(南通)已知:如图,AB 是⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,DE ⊥AC ,E 为垂足.(1)求证:∠ADE =∠B ;(2)过点O 作OF ∥AD ,与ED 的延长线相交于点F ,求证:FD •DA =FO •DE .解:(1)方法一:证明:连接OD ,∵OA=OD ,∴∠OAD=∠ODA .∵AB 是⊙O 的直径,∴∠ADB=90°,即AD ⊥BC .又∵AB=AC ,∴AD平分∠BAC,即∠OAD=∠CAD.∴∠ODA=∠DAE=∠OAD.∵∠ADE+∠DAE=90°,∴∠ADE+∠ODA=90°,即∠ODE=90°,OD⊥DE.∵OD是⊙O的半径,∴EF是⊙O的切线.∴∠ADE=∠B.方法二:∵AB是⊙O的直径,∴∠ADB=90°,又DE⊥AC,∴∠DEA=90°,∴∠ADB=∠DEA,∵△ABC中,AB=AC,AD⊥BC,∴AD平分∠BAC,即∠DAE=∠BAD.∴△DAE∽△BAD.∴∠ADE=∠B.(2)证明:∵OF∥AD,∴∠F=∠ADE.又∵∠DEA=∠FDO(已证),∴△FDO∽△DEA.∴FD:DE=FO:DA,即FD•DA=FO•DE.点评:本题主要考查了切线的判定、弦切角定理、圆周角定理、相似三角形的判定和性质;(2)题乘积的形式通常可以转化为比例的形式,通过相似三角形的性质得以证明.4、如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O于点E,且∠BAF=2∠CBF,CG⊥BF于点G,连接AE.(1)直接写出AE与BC的位置关系;(2)求证:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半径长.解:(1)如图1,∵AB是⊙O的直径,∴∠AEB=90°.∴AE⊥BC.(2)如图1,∵BF与⊙O相切,∴∠ABF=90°.∴∠CBF=90°-∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)连接BD,如图2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直径,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC-AD=2r-r=(2-)r=.∴r=2+3.∴⊙O的半径长为2+3.解析:(1)由AB为⊙O的直径即可得到AE与BC垂直.(2)易证∠CBF=∠BAE,再结合条件∠BAF=2∠CBF就可证到∠CBF=∠CAE,易证∠CGB=∠AEC,从而证到△BCG∽△ACE.(3)由∠F=60°,GF=1可求出CG=;连接BD,容易证到∠DBC=∠CBF,根据角平分线的性质可得DC=CG=;设圆O的半径为r,易证AC=AB,∠BAD=30°,从而得到AC=2r,AD=r,由DC=AC-AD=可求出⊙O的半径长.5、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.分析:(1)连接OC,证明∠OCP=90°即可.(2)乘积的形式通常可以转化为比例的形式,通过证明三角形相似得出.(3)可以先根据勾股定理求出DH,再通过证明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的长.解答:(1)证明:连接OC.∵PC=PF,OA=OC,∴∠PCA=∠PFC,∠OCA=∠OAC,∵∠PFC=∠AFH,DE⊥AB,∴∠AHF=90°,∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,∴PC是⊙O的切线.(2)解:点D在劣弧AC中点位置时,才能使AD2=DE•DF,理由如下:连接AE.∵点D在劣弧AC中点位置,∴∠DAF=∠DEA,∵∠ADE=∠ADE,∴△DAF∽△DEA,∴AD:ED=FD:AD,∴AD2=DE•DF.(3)解:连接OD交AC于G.∵OH=1,AH=2,∴OA=3,即可得OD=3,∴DH===2.∵点D在劣弧AC中点位置,∴AC⊥DO,∴∠OGA=∠OHD=90°,在△OGA和△OHD中,,∴△OGA≌△OHD(AAS),∴AG=DH,∴AC=4.点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的性质及全等三角形的性质.6、如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)点D在劣弧AC什么位置时,才能使AD2=DE•DF,为什么?(3)在(2)的条件下,若OH=1,AH=2,求弦AC的长.(1)证明:连接OC.∵PC=PF,OA=OC,∴∠PCA=∠PFC,∠OCA=∠OAC,∵∠PFC=∠AFH,DE⊥AB,∴∠AHF=90°,∴∠PCO=∠PCA+∠ACO=∠AFH+∠FAH=90°,∴PC是⊙O的切线.(2)解:点D在劣弧AC中点位置时,才能使AD2=DE•DF,理由如下:连接AE.∵点D在劣弧AC中点位置,∴∠DAF=∠DEA,∵∠ADE=∠ADE,∴△DAF∽△DEA,∴AD:ED=FD:AD,∴AD2=DE•DF.(3)解:连接OD交AC于G.∵OH=1,AH=2,∴OA=3,即可得OD=3,∴DH===2.∵点D在劣弧AC中点位置,∴AC⊥DO,∴∠OGA=∠OHD=90°,在△OGA和△OHD中,,∴△OGA≌△OHD(AAS),∴AG=DH,∴AC=4.解析:(1)连接OC,证明∠OCP=90°即可.(2)乘积的形式通常可以转化为比例的形式,通过证明三角形相似得出.(3)可以先根据勾股定理求出DH,再通过证明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的长。

相关文档
最新文档