2019版高考数学(理)一轮复习全国经典版:第10章 计数原理、概率、随机变量及分布列 10-9a
2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.2排列
第一节课有 A5 数学课排在第四节课也有 A5 5种方法, 5种方法, 体育课排在第一节课且数学课排在第四节课有 A4 4种方法,
5 4 由排除法得这天课表的不同排法种数为 A6 - 2A + A 6 5 4=504.
故选 D.
3.某班级举办的演讲比赛中,共有 5 位选手参加,其 中 3 位女生、2 位男生.如果 2 位男生不能连续出场,且女 生甲不能排在第一个,那么出场顺序的排法种数为( A.90 B.60 C.48 D.36
2 百位.∴排成的三位奇数有 C2 A 3 2=6 个. 2 ②当选数字 2 时,再从 1,3,5 中取 2 个数字有 C3 种方
法.然后将选中的两个奇数数字选一个排在个位,其余 2
1 2 个数字全排列.∴排成的三位奇数有 C2 C 3 2A2=12 个.
∴由分类加法计数原理,共有 18 个符合条件的三位奇 数.故选 B.
解析 若大一的孪生姐妹乘坐甲车, 则时甲车中的另1 1 外 2 人分别来自不同年级,有 C2 3C2C2=12 种,若大一的孪
生姐妹不乘坐甲车,则有 2 名同学来自同一个年级,另外 2
1 1 1 名分别来自不同年级,有 C3 C2C2=12 种,所以共有 24 种乘
坐方式,故选 A.
8.在航天员进行的一项太空实验中,先后要实施 6 个 程序,其中程序 A 只能出现在第一步或最后一步,程序 B 和 C 实施时必须相邻, 请问实验顺序的编排方法共有( ) A.34 种 B.48 种 C.96 种 D.144 种 解析 由题意知程序 A 只能出现在第一步或最后一步,
4.(2018· 山西质量监测)A,B,C,D,E,F 六人围坐 在一张圆桌周围开会,A 是会议的中心发言人,必须坐最北 面的椅子,B,C 二人必须坐相邻的两把椅子,其余三人坐 剩余的三把椅子,则不同的座次有( ) A.60 种 B.48 种 C.30 种 D.24 种
2019版高考数学(理)高分计划一轮课件:第10章 计数原理、概率、随机变量及其分布 10-2
(3)甲、乙、丙、丁四个好朋友相互发微信,共有多少 条微信?此题属于组合问题.( × )
(4)若组合式 Cxn=Cmn ,则 x=m 成立.( × )
2.教材衍化 (1)(选修 A2-3P18 例 3)6 名同学排成一排,其中甲、乙 两人必须排在240 种 D.120 种
解 (1)从余下的 34 种商品中,选取 2 种有 C324=561 种,∴某一种假货必须在内的不同取法有 561 种.
(2)从 34 种可选商品中,选取 3 种,有 C334=5984 种. ∴某一种假货不能在内的不同取法有 5984 种. (3)从 20 种真货中选取 1 件,从 15 种假货中选取 2 件 有 C120C125=2100 种. ∴恰有 2 种假货在内的不同的取法有 2100 种.
冲关针对训练 (2018·武汉模拟)若从 1,2,3,…,9 这 9 个整数中同时取 4 个不同的数,其和为偶数,则不同的取法共有( ) A.60 种 B.63 种 C.65 种 D.66 种 解析 共有 4 个不同的偶数和 5 个不同的奇数,要使和 为偶数,则 4 个数全为奇数,或全为偶数,或 2 个奇数和 2 个偶数,∴共有不同的取法有 C45+C44+C25C24=66(种).故选 D.
①0 排在个位能被 5 整除的四位数有 A11·(C14C24)A33=144 个;
②0 排在十、百位,但 5 必须排在个位有 A12·A11(C14C13)·A22 =48 个;
③不含 0,但 5 必须排在个位有 A11·(C31C24)A33=108 个. 由分类加法计数原理得所求四位数共有 300 个.
方法技巧 1.求解有限制条件排列问题的主要方法
2.解决有限制条件排列问题的策略 (1)根据特殊元素(位置)优先安排进行分步,即先安排特 殊元素或特殊位置. (2)根据特殊元素当选数量或特殊位置由谁来占进行分 类. 提醒:(1)分类要全,以免遗漏. (2)插空时要数清插空的个数,捆绑时要注意捆绑后元 素的个数及要注意相邻元素的排列数. (3)用间接法求解时,事件的反面数情况要准确.
近年高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4随机事件的概率课后作业理(20
2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4 随机事件的概率课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4 随机事件的概率课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第10章计数原理、概率、随机变量及其分布10.4 随机事件的概率课后作业理的全部内容。
10.4 随机事件的概率[基础送分提速狂刷练]一、选择题1.(2017·湖南十三校二模)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A。
错误! B.错误! C。
错误! D.错误!答案B解析分别记《爱你一万年》《十年》《父亲》《单身情歌》为A1,A2,A3,A4,从这四首歌中选出两首歌进行表演的所有可能结果为A1A2,A1A3,A1A4,A2A3,A 2A4,A3A4,共6个,其中A1未被选取的结果有3个,所以所求概率P=错误!=错误!。
故选B.2.(2018·广东中山模拟)从1,2,3,4,5这5个数中任取两个,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数,上述事件中,是对立事件的是()A.① B.②④ C.③ D.①③答案C解析从1,2,3,4,5这5个数中任取两个,有三种情况:一奇一偶,两个奇数,两个偶数.其中至少有一个是奇数包含一奇一偶,两个奇数这两种情况,它与两个都是偶数是对立事件,而①②④中的事件可能同时发生,不是对立事件,故选C。
(新课标)2019届高考数学一轮复习第十章计数原理、概率、随机变量及其分布10.3随机
A∩B=______ A∩B=______ P(A∪B)=P(A)+P(B)= _______
对立事件
拓展:“互斥事件”与“对立事件”的区别及联系:两个事件 A 与 B 是互 斥事件,有如下三种情况:①若事件 A 发生,则事件 B 就不发生;②若事件 B 发生,则事件 A 就不发生;③事件 A,B 都不发生.两个事件 A 与 B 是对立事 件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥. 4.概率的几个基本性质 (1)概率的取值范围:____________. (2)必然事件的概率 P(E)=____________. (3)不可能事件的概率 P(F)=____________. (4)互斥事件概率的加法公式 ①如果事件 A 与事件 B 互斥,则 P(A∪B)=___________________. 推广: 如果事件 A1, A2, …, An 两两互斥(彼此互斥), 那么事件 A1+A2+… +An 发生的概率, 等于这 n 个事件分别发生的概率的和, 即 P(A1+A2+…+An) =____________________________. ②若事件 B 与事件 A 互为对立事件,则 P(A)=_______________.
有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、 西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( A.互斥事件但非对立事件 B.对立事件但非互斥事件 C.互斥事件也是对立事件 D.以上都不对 )
解:由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是 互斥事件,但不是对立事件.故选 A.
第十章 第一章
集合与常用逻辑用语 计数原理、概率、随机变量及其分布
10.3 随机事在条件 S 下,一定会发生的事件,叫做相对于条件 S 的 ____________. (2) 在条件 S 下,一定不会发生的事件,叫做相对于条件 S 的 ____________. 必然事件与不可能事件统称为相对于一定条件 S 的确定事件. (3)在条件 S 下可能发生也可能不发生的事件,叫做相对于条件 S 的__________. (4)____________和____________统称为事件, 一般用大写字母 A, B,C,…表示.
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-9a
[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为ξ -1 0 1 P121316则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( )A .0B .1C .2D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝ ⎛⎭⎪⎫-1+132×12+⎝ ⎛⎭⎪⎫0+132×13+⎝ ⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为X1则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =ab 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B. 10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝⎛⎭⎪⎫0,12.故选B.二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元). 故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x 、y 的值,并补全频率分布直方图; (2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X ,求X 的分布列及数学期望.解 (1)由题意知,[25,30)内的频率为0.01×5=0.05,故x =100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y =100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7. X 可取0,1,2,P (X =0)=C 213C 220=78190,P (X =1)=C 113C 17C 220=91190,P (X =2)=C 27C 220=21190,故X 的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分,评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X表示抽到评分不低于9分的新生儿数,求X的分布列及数学期望.解(1)设A i表示所抽取的3名新生儿中有i名的评分不低于9分,“至多有1名新生儿的评分不低于9分”记为事件A,则由表格中数据可知P(A)=P(A0)+P(A1)=C312C316+C14C212C316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=1 4,由题意知随机变量X的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164.所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75 ⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A-1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35, 方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974.解 (1)由频率分布直方图可知[125,135)的频率为1-10×(0.01+0.024+0.03+0.016+0.008)=0.12,该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分).(2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13,所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12, P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130, X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
全国通用近年高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时作业六十四10.1分类加法计
(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十四10.1 分类加法计数原理与分步乘法计数原理理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十四10.1 分类加法计数原理与分步乘法计数原理理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十四10.1 分类加法计数原理与分步乘法计数原理理的全部内容。
课时分层作业六十四分类加法计数原理与分步乘法计数原理一、选择题(每小题5分,共35分)1。
从甲地到乙地,每天飞机有5班,高铁有10趟,动车有6趟,公共汽车有12班。
某人某天从甲地前往乙地,则其出行方案共有( )A。
22种 B.33种C。
300种D。
3 600种【解析】选B.由分类加法计数原理知共有5+10+6+12=33种出行方案.2。
用数字0,1,2,3组成三位数的个数为()A.34B。
43C。
3×42 D.4×32【解析】选C.因为0不能在首位,所以首位有3种排法,十位和个位各有4种排法,故共有3×4×4=3×42个三位数。
3。
(2018·洛阳模拟)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16 C。
13 D.10【解析】选C。
分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4。
2019版高考数学(理)高分计划一轮课件:第10章 计数原理、概率、随机变量及其分布 10-2
解 (1)站成两排(前 3 后 4),共有 A77=5040 种不同的 排法.
(2)第一步,从甲、乙、丙三人选一个加到前排,有 3 种,第二步,前排 3 人形成了 4 个空,任选一个空加一人, 有 4 种,第三步,后排 4 人形成了 5 个空,任选一个空加 一人有 5 种,此时形成 6 个空,任选一个空加一人,有 6 种,根据分步计数原理有 3×4×5×6=360 种方法.
(3)甲、乙、丙、丁四个好朋友相互发微信,共有多少 条微信?此题属于组合问题.( × )
(4)若组合式 Cxn=Cmn ,则 x=m 成立.-3P18 例 3)6 名同学排成一排,其中甲、乙 两人必须排在一起的不同排法有( ) A.720 种 B.360 种 C.240 种 D.120 种
方法技巧 1.组合问题的常见题型及解题思路 (1)常见题型:一般有选派问题、抽样问题、图形问题、 集合问题、分组问题等. (2)解题思路:①分清问题是否为组合问题;②对较复 杂的组合问题,要搞清是“分类”还是“分步”,一般是先 整体分类,然后局部分步,将复杂问题通过两个原理化归为 简单问题.见本例(4).
解 7 位同学站成一排,共有 A77种不同的排法; 甲、乙和丙三个同学都相邻的排法共有 A55A33=720 种. 故共有 A77-A55A33=4320 种不同的排法.
[结论探究 3] (1)若将 7 人站成两排,前排 3 人,后排 4 人,共有多少种不同的排法?
(2)若现将甲、乙、丙三人加入队列,前排加 1 人,后 排加 2 人,其他人保持相对位置不变,则有多少种不同的 加入方法?
3.排列数、组合数的公式及性质
4.常用结论 (1)①Amn =(n-m+1)Amn -1; ②Amn =n-n mAmn-1; ③Amn =nAmn--11. (2)①nAnn=Ann+ +11-Ann; ②Amn+1=Amn +mAmn -1. (3)1!+2·2!+3·3!+…+n·n!=(n+1)!-1.
全国通用近年高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时作业六十七10.4随机事件的
(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十七10.4 随机事件的概率理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十七10.4 随机事件的概率理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第十章计数原理与概率、随机变量及其分布课时分层作业六十七10.4 随机事件的概率理的全部内容。
课时分层作业六十七随机事件的概率一、选择题(每小题5分,共35分)1.抛一枚骰子,记“正面向上的点数是1”为事件A,“正面向上的点数是2”为事件B,“正面向上的点数是奇数”为事件C,“正面向上的点数是偶数"为事件D,则下列说法正确的是( )A。
A与B对立B.A与C互斥C.B与C互斥D。
C与D互斥但不对立【解析】选C.由互斥事件、对立事件的定义知C正确,A,B,D都不正确.2。
若A,B为对立事件,则()A.P(A+B)<1B.P(AB)=1C。
P(AB)=P(A)·P(B) D.P(A+B)=1【解析】选D。
由对立事件的定义可知:P(A+B)=1,P(AB)=0 .因此D选项正确.3。
从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164, 179,149,158,159,175。
根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任意抽取一人,估计该生的身高在155.5 cm~170.5 cm之间的概率约为( )A。
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-8a Word版含解析
[重点保分 两级优选练]A 级一、选择题1.(2018·广西柳州模拟)把一枚硬币任意抛掷三次,事件A =“至少有一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=( )A.37B.38C.78D.18 答案 A解析 依题意得P (A )=1-123=78,P (AB )=323=38,因此P (B |A )=P (AB )P (A )=37,故选A. 2.(2018·厦门模拟)甲、乙两人进行乒乓球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A.827B.6481C.49D.89 答案 A解析 第四局甲第三次获胜,并且前三局甲获胜两次,所以所求的概率为P =C 23⎝ ⎛⎭⎪⎫232×13×23=827.故选A.3.(2017·山西一模)甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为23,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( )A.13B.25C.23D.45答案 B解析 由题意,甲获得冠军的概率为23×23+23×13×23+13×23×23=2027,其中比赛进行了3局的概率为23×13×23+13×23×23=827, ∴所求概率为827÷2027=25,故选B.4.口袋里放有大小相同的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1,第n 次摸取红球,1,第n 次摸取白球.如果S n为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫235B .C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135C .C 47⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135D .C 37⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫135答案 B解析 S 7=3说明摸取2个红球,5个白球,故S 7=3的概率为C 27⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫135,故选B.5.(2017·天津模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B .C 912⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582C .C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582答案 D解析 “X =12”表示第12次取到红球,且前11次有9次取到红球,2次取到白球,因此P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582.故选D.6.如果ξ~B ⎝ ⎛⎭⎪⎫15,14,那么使P (ξ=k )取最大值的k 值为( )A .3B .4C .5D .3或4 答案 D解析 采取特殊值法.∵P (ξ=3)=C 315⎝ ⎛⎭⎪⎫143⎝ ⎛⎭⎪⎫3412,P (ξ=4)=C 415⎝ ⎛⎭⎪⎫144⎝ ⎛⎭⎪⎫3411,P (ξ=5)=C 515⎝ ⎛⎭⎪⎫145⎝ ⎛⎭⎪⎫3410,从而易知P (ξ=3)=P (ξ=4)>P (ξ=5).故选D.7.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13 答案 A解析 设A 表示“第一个圆盘的指针落在奇数所在的区域”,则P (A )=23,B 表示“第二个圆盘的指针落在奇数所在的区域”,则P (B )=23.则P (AB )=P (A )P (B )=23×23=49.故选A.8.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥2)的值为( )A.3281B.1127C.6581D.1681 答案 B解析 P (X ≥1)=P (X =1)+P (X =2)=C 12p (1-p )+C 22p 2=59,解得p =13.⎝ ⎛⎭⎪⎫0≤p ≤1,故p =53舍去. 故P (Y ≥2)=1-P (Y =0)-P (Y =1)=1-C 04×⎝ ⎛⎭⎪⎫234-C 14×13×⎝ ⎛⎭⎪⎫233=1127.故选B.9.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 答案 B解析 1000粒种子每粒不发芽的概率为0.1,∴不发芽的种子数ξ~B (1000,0.1).∴1000粒种子中不发芽的种子数的期望E (ξ)=1000×0.1=100粒.又每粒不发芽的种子需补种2粒,∴需补种的种子数的期望E (X )=2×100=200粒.故选B.10.位于坐标原点的一个质点M 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点M 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B .C 25×⎝ ⎛⎭⎪⎫125C .C 35×⎝ ⎛⎭⎪⎫123D .C 25×C 35×⎝ ⎛⎭⎪⎫125答案 B解析 如图,由题可知质点M 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25×⎝ ⎛⎭⎪⎫125.故选B. 二、填空题11.(2017·眉山期末)已知X ~B ⎝ ⎛⎭⎪⎫8,12,当P (X =k )(k ∈N,0≤k ≤8)取得最大值时,k 的值是________.答案 4解析 ∵X ~B ⎝ ⎛⎭⎪⎫8,12,∴P (X =k )=C k 8⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫128-k =C k 8⎝ ⎛⎭⎪⎫128,∴当P (X =k )(k ∈N,0≤k ≤8)取得最大值时只有C k 8是一个变量, ∴根据组合数的性质得到当k =4时,概率取得最大值. 12.(2017·安顺期末)甲、乙二人参加一项抽奖活动,每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4,则已知甲中奖的前提下乙也中奖的概率为________.答案 23解析 每人抽奖中奖的概率均为0.6,两人都中奖的概率为0.4, 设甲中奖概率为P (A ),乙中奖的概率为P (B ),两人都中奖的概率为P (AB ),则P (A )=0.6,P (B )=0.6,两人都中奖的概率为P (AB )=0.4,则已知甲中奖的前提下乙也中奖的概率为P (B |A )=P (AB )P (A )=0.40.6=23.13.(2017·南昌期末)位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为13,则电子兔移动五次后位于点(-1,0)的概率是________.答案 80243解析 根据题意,质点P 移动五次后位于点(-1,0),其中向左移动3次,向右移动2次;其中向左平移的3次有C 35种情况,剩下的2次向右平移;则其概率为C 35×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=80243.14.先后掷两次骰子(骰子的六个面上分别是1,2,3,4,5,6点),落在水平桌面后,记正面朝上的点数分别为x ,y ,记事件A 为“x +y 为偶数”,事件B 为“x ,y 中有偶数且x ≠y ”,则概率P (B |A )=________.答案 13解析 根据题意,事件A 为“x +y 为偶数”,则x ,y 两个数均为奇数或偶数,共有2×3×3=18个基本事件.∴事件A 发生的概率为P (A )=2×3×36×6=12,而A ,B 同时发生,基本事件有“2+4”“2+6”“4+2”“4+6”“6+2”“6+4”,一共有6个基本事件,∴事件A ,B 同时发生的概率为P (AB )=66×6=16,∴P (B |A )=P (AB )P (A )=1612=13.B 级三、解答题15.(2017·河北“五个一名校联盟”二模)空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;300以上为严重污染.一环保人士记录去年某地六月10天的AQI 的茎叶图如图. (1)利用该样本估计该地六月空气质量为优良(AQI ≤100)的天数; (2)将频率视为概率,从六月中随机抽取3天,记三天中空气质量为优良的天数为ξ,求ξ的分布列和数学期望.解 (1)从茎叶图中可以发现样本中空气质量为优的天数为2,空气质量为良的天数为4,∴该样本中空气质量为优良的频率为610=35,从而估计该地六月空气质量为优良的天数为30×35=18.(2)由(1)估计某天空气质量为优良的概率为35,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝⎛⎭⎪⎫3,35.∴P (ξ=0)=⎝ ⎛⎭⎪⎫253=8125,P (ξ=1)=C 13⎝ ⎛⎭⎪⎫35⎝ ⎛⎭⎪⎫252=36125,P (ξ=2)=C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫25=54125,P (ξ=3)=⎝ ⎛⎭⎪⎫353=27125,ξ的分布列为E (ξ)=3×35=1.8.16.党的十九大报告提出:要提高人民健康水平,改革和完善食品、药品安全监管体制.为加大监督力度,某市工商部门对本市的甲、乙两家小型食品加工厂进行了突击抽查,从两个厂家生产的产品中分别随机抽取10件样品,测量该产品中某种微量元素的含量(单位:毫克),所得测量数据如图.食品安全法规定:优等品中的此种微量元素含量不小于15毫克. (1)从甲食品加工厂抽出的上述10件样品中随机抽取4件,求抽到的4件产品优等品的件数ξ的分布列;(2)若从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,求甲、乙食品加工厂抽到的优等品的件数恰好相同的概率.解(1)由茎叶图,从甲食品加工厂抽出的10件样品中,优等品有8件,非优等品有2件,故抽取的4件样品中至少有2件优等品,ξ的可能取值为2,3,4.P(ξ=2)=C28C22C410=215,P(ξ=3)=C38C12C410=815,P(ξ=4)=C48C02C410=13.ξ的分布列为(2)甲食品加工厂抽取的样品中优等品有8件,乙食品加工厂抽取的样品中优等品有7件.故从甲、乙两个食品加工厂的10件样品中分别任意抽取3件,则优等品的件数相同时,可能为1件、2件或3件.优等品同为3件的概率P1=C38C02C310×C37C03C310=49360;优等品同为2件时的概率P2=C28C12C310×C27C13C310=49200;优等品同为1件时的概率P3=C18C22C310×C17C23C310=7600.故所求事件的概率为P=P1+P2+P3=49360+49200+7600=7071800.17.(2018·郑州质检)2017年3月15日下午,谷歌围棋人工智能AlphaGo与韩国棋手李世石进行最后一轮较量,AlphaGo获得本场比赛胜利,最终人机大战总比分定格在1∶4.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图所示,将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)根据已知条件完成下面的列联表,并据此资料判断是否有95%的把握认为“围棋迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解(1)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而2×2列联表如下:将2×2列联表中的数据代入公式计算,得 K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(30×10-15×45)245×55×75×25=10033≈3.030,因为3.030<3.841,所以没有95%的把握认为“围棋迷”与性别有关.(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区学生中抽取一名“围棋迷”的概率为14.由题意知,X ~B ⎝⎛⎭⎪⎫3,14,从而X 的分布列为E (X )=3×14=34,D (X )=3×14×34=916.18.(2018·湖南十三校联考)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为P 0(0<P 0<1),中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)张三选择方案甲抽奖,李四选择方案乙抽奖,记他们的得分和为X ,若X ≤3的概率为79,求P 0;(2)若张三、李四两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,得分和的数学期望较大?解 (1)由已知得张三中奖的概率为23,李四中奖的概率为P 0,且两人中奖与否互不影响.记“这2人的得分和X ≤3”为事件A ,则事件A 的对立事件为“X =5”.因为P (X =5)=23×P 0,所以P (A )=1-P (X =5)=1-23×P 0=79,所以P 0=13.(2)设张三、李四都选择方案甲抽奖的中奖次数为X 1,都选择方案乙抽奖的中奖次数为X 2,则这两人选择方案甲抽奖得分和的数学期望为E (2X 1), 选择方案乙抽奖得分和的数学期望为E (3X 2), 由已知可得X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B (2,P 0), 所以E (X 1)=2×23=43,E (X 2)=2P 0,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=6P 0. 若E (2X 1)>E (3X 2),则83>6P 0⇒0<P 0<49; 若E (2X 1)<E (3X 2),则83<6P 0⇒49<P 0<1; 若E (2X 1)=E (3X 2),则83=6P 0⇒P 0=49.综上所述,当0<P 0<49时,他们都选择方案甲进行抽奖时,得分和的数学期望较大;当49<P 0<1时,他们都选择方案乙进行抽奖时,得分和的数学期望较大;当P 0=49时,他们都选择方案甲或都选择方案乙进行抽奖时,得分和的数学期望相等.。
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-5a Word版含解析
[基础送分 提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1答案 B解析 先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P 1=136,P 2=118,P 3=112.故选B.2.(2018·郑州质检)现有四所大学进行自主招生,同时向一所高中的已获省级竞赛一等奖的甲、乙、丙、丁四位学生发录取通知书,若这四名学生都愿意进入这四所大学的任意一所就读,则仅有两名学生被录取到同一所大学的概率为( )A.12B.916C.1116D.724答案 B解析 所求概率P =C 24·A 3444=916.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16答案 B解析 从1,2,3,4中任取2个不同的数有C 24=6种情况:满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310B.25C.12D.35答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9.设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·浙江金丽衢十二校联考)若在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A.17B.27C.37D.47答案 C解析 因为任取3个顶点连成三角形共有C 38=8×7×63×2=56个,又每个顶点为直角顶点的非等腰三角形有3个,即正方体的一边与过此点的一条面对角线,所以共有24个三角形符合条件.所以所求概率为2456=37.故选C.7.(2017·甘肃质检)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.1564B.15128C.24125D.48125答案 A解析 由计数原理得基本事件的个数,再利用古典概型的概率公式求解.将5本不同的书分给4名同学,共有45=1024种分法,其中每名同学至少一本的分法有C 25A 44=240种,故所求概率是2401024=1564,故选A.8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线x a +y b =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),。
高考数学一轮复习 第10章 计数原理、概率、随机变量及其分布 第8讲 n次独立重复试验与二项分布创新
第8讲 n 次独立重复试验与二项分布[考纲解读] 1.了解条件概率与两个事件相互独立的概念.(重点)2.能够利用n 次独立试验的模型及二项分布解决一些简单的实际问题.(难点) [考向预测] 从近三年高考情况来看,本讲是高考中的一个热点.预测2021年将会考查:①条件概率的计算;②事件独立性的应用;③独立重复试验与二项分布的应用.题型为解答题,试题难度不会太大,属中档题型.1.条件概率及其性质(1)对于任何两个事件A 和B ,在事件A 发生的条件下,事件B 发生的概率叫做□01条件概率,用符号□02P (B |A )来表示,其公式为P (B |A )=□03P (AB )P (A )(P (A )>0).在古典概型中,假设用n (A )表示事件A 中基本事件的个数,那么P (B |A )=n (AB )n (A )(n (AB )表示AB 共同发生的基本事件的个数).(2)条件概率具有的性质 ①□040≤P (B |A )≤1; ②如果B 和C 是两个互斥事件, 那么P ((B ∪C )|A )=□05P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A ,B ,假设A 的发生与B 的发生互不影响,那么称□01A ,B 是相互独立事件.(2)假设A 与B 相互独立,那么P (B |A )=□02P (B ), P (AB )=P (B |A )P (A )=□03P (A )P (B ). (3)假设A 与B 相互独立,那么□04A 与B ,□05A 与B ,□06A 与B 也都相互独立.(4)假设P (AB )=P (A )P (B ),那么□07A 与B 相互独立. 3.独立重复试验与二项分布(1)独立重复试验在□01相同条件下重复做的n 次试验称为n 次独立重复试验.A i (i =1,2,…,n )表示第i 次试验结果,那么P (A 1A 2A 3…A n )=□02P (A 1)P (A 2)…P (A n ). (2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作□03X ~B (n ,p ),并称p 为□04成功概率.在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=□05C k n p k (1-p )n -k(k =0,1,2,…,n ).1.概念辨析(1)相互独立事件就是互斥事件.( )(2)对于任意两个事件,公式P (AB )=P (A )P (B )都成立.( )(3)二项分布是一个概率分布,其公式相当于(a +b )n 二项展开式的通项公式,其中a =p ,b =(1-p ).( )(4)二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )答案 (1)× (2)× (3)× (4)√ 2.小题热身(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P (A )=0.2,P (B )=0.18,P (AB )=0.12,那么P (A |B )和P (B |A )分别为( )A.13,25B.23,25C.23,35D.12,35答案 C解析 由,得P (A |B )=P (AB )P (B )=0.120.18=23, P (B |A )=P (AB )P (A )=0.120.2=35. (2)设随机变量ξ~B ⎝ ⎛⎭⎪⎫5,13,那么P (ξ=3)=( )A.10243 B.32243 C.40243 D.80243答案 C解析 因为ξ~B ⎝ ⎛⎭⎪⎫5,13,所以P (ξ=3)=C 35⎝ ⎛⎭⎪⎫133·⎝ ⎛⎭⎪⎫232=40243. (3)一名信息员维护甲乙两公司的5G 网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,那么至少有一个公司不需要维护的概率为________.答案 0.88解析 P =1-0.4×0.3=0.88.(4)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.答案 49解析 所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-132=49.题型 一 条件概率1.从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数〞,事件B :“取到的2个数均为偶数〞,那么P (B |A )=( )A.18 B.14C.25 D.12答案 B解析解法一:事件A包括的基本事件:(1,3),(1,5),(3,5),(2,4)共4个.事件AB发生的结果只有(2,4)一种情形,即n(AB)=1.故由古典概型概率P(B|A)=n(AB)n(A)=14.应选B.解法二:P(A)=C23+C22C25=410,P(AB)=C22C25=110.由条件概率计算公式,得P(B|A)=P(AB)P(A)=110410=14.应选B.条件探究1假设将本例中的事件B改为“取到的2个数均为奇数〞,那么P(B|A)=________.答案3 4解析P(A)=C23+C22C25=25,P(B)=C23C25=310.又B⊆A,那么P(AB)=P(B)=3 10,所以P(B|A)=P(AB)P(A)=P(B)P(A)=34.条件探究2将本例中的条件改为:从1,2,3,4,5中不放回地依次取2个数,事件A为“第一次取到的是奇数〞,事件B为“第二次取到的是奇数〞,那么P(B|A)=________.答案1 2解析 从1,2,3,4,5中不放回地依次取2个数,有A 25种方法;其中第一次取到的是奇数,有A 13A 14种方法;第一次取到的是奇数且第二次取到的是奇数,有A 13A 12种方法.那么P (A )=A 13A 14A 25=35,P (AB )=A 13A 12A 25=310,所以P (B |A )=P (AB )P (A )=31035=12.2.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内〞,B 表示事件“豆子落在扇形OHE (阴影部分)内〞,那么P (B |A )=________.答案 14解析 由题意可得,事件A 发生的概率P (A )=S 正方形EFGH S 圆O =2×2π×12=2π.事件AB 表示“豆子落在△EOH 内〞,那么P (AB )=S △EOH S 圆O=12×12π×12=12π, 故P (B |A )=P (AB )P (A )=12π2π=14.解决条件概率问题的步骤第一步,判断是否为条件概率,假设题目中出现“〞“在……前提下〞等字眼,一般为条件概率.题目中假设没有出现上述字眼,但事件的出现影响所求事件的概率时,也需注意是否为条件概率.假设为条件概率,那么进行第二步.第二步,计算概率,这里有两种思路:思路一缩减样本空间法计算条件概率,如求P (A |B ),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P (A |B )=n (AB )n (B )计算思路二直接利用公式计算条件概率,即先分别计算出P (AB ),P (B ),再利用公式P (A |B )=P (AB )P (B )计算提醒:要注意P (B |A )与P (A |B )的不同:前者是在A 发生的条件下B 发生的概率,后者是在B 发生的条件下A 发生的概率.1.(2019·某某模拟)甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传这四个项目,每人限报其中一项,记事件A 为“四名同学所报项目各不相同〞,事件B 为“只有甲同学一人报关怀老人项目〞,那么P (A |B )=( )A.14B.34C.29D.59答案 C解析 由题意,得P (B )=3344=27256,P (AB )=A 3344=3128,所以P (A |B )=P (AB )P (B )=29.2.(2019·武侯区校级模拟)如果{a n }不是等差数列,但假设∃k ∈N *,使得a k +a k +2=2a k +1,那么称{a n }为“局部等差〞数列.数列{x n }的项数为4,记事件A :集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},事件B :{x n }为“局部等差〞数列,那么条件概率P (B |A )=( )A.415B.730 C.15 D.16答案 C解析 由数列{x n }的项数为4,记事件A :集合{x 1,x 2,x 3,x 4}⊆{1,2,3,4,5},那么事件A 的基本事件共有A 45=120个,在满足事件A 的条件下,事件B :{x n }为“局部等差〞数列,共有以下24个基本事件:其中含1,2,3的局部等差数列分别为1,2,3,5;5,1,2,3;4,1,2,3,共3个,同理含3,2,1的局部等差数列也有3个,含3,4,5和含5,4,3与上述相同,含2,3,4的有5,2,3,4;2,3,4,1,共2个,同理含4,3,2的也有2个.含1,3,5的有1,3,5,2;2,1,3,5;4,1,3,5;1,3,5,4,共4个,同理含5,3,1的也有4个.所以P (B |A )=24120=15.题型 二 相互独立事件的概率1.(2019·某某二模)甲、乙、丙三人去参加某公司面试,他们被公司录取的概率分别为16,14,13,且三人录取结果相互之间没有影响,那么他们三人中至少有一人被录取的概率为( )A.3172B.712C.2572D.1572答案 B解析 由题意,得他们三人中至少有一人被录取的对立事件是三个人都没有被录取,∴他们三人中至少有一人被录取的概率为P =1-⎝ ⎛⎭⎪⎫1-16⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1-13=712.2.(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜〞的概率.解 (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,那么这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.求相互独立事件概率的步骤第一步,先用字母表示出事件,再分析题中涉及的事件,并把题中涉及的事件分为假设干个彼此互斥的事件的和;第二步,求出这些彼此互斥的事件的概率;第三步,根据互斥事件的概率计算公式求出结果.此外,也可以从对立事件入手计算概率.1.(2019·某某三模)某校在秋季运动会中,安排了篮球投篮比赛,现有20名同学参加篮球投篮比赛,每名同学投进的概率均为0.4;每名同学有2次投篮机会,且各同学投篮之间没有影响;现规定:投进2个得4分,投进1个得2分,1个未进得0分,那么其中1名同学得2分的概率为()A.0.5 B.0.48答案 B解析设“第一次投进球〞为事件A,“第二次投进球〞为事件B,那么得2分的概率为P=P(A B-)+P(A-B)=0.4×0.6+0.6×0.4=0.48.2.某社区举办《“环保我参与〞有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.假设各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解(1)记“甲回答正确这道题〞“乙回答正确这道题〞“丙回答正确这道题〞分别为事件A,B,C,那么P(A)=3 4,且有⎩⎪⎨⎪⎧P (A )·P (C )=112,P (B )·P (C )=14,即⎩⎪⎨⎪⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14,所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A -B -C -)=P (A )·P (B )·P (C )=14×58×13=596, 有1个家庭回答正确的概率为P 1=P (A B -C -+A B C +A -B -C )=34×58×13+14×38×13+14×58×23=724, 所以不少于2个家庭回答正确这道题的概率为 P =1-P 0-P 1=1-596-724=2132.题型 三 独立重复试验与二项分布1.假设同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,那么在3次试验中至少有1次成功的概率是( )A.125729B.80243 C.665729 D.100243答案 C解析 一次试验中,至少有5点或6点出现的概率为1-⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-13=1-49=59,设X 为3次试验中成功的次数,所以X ~B ⎝ ⎛⎭⎪⎫3,59,故所求概率P (X ≥1)=1-P (X =0)=1-C 03×⎝ ⎛⎭⎪⎫590×⎝ ⎛⎭⎪⎫493=665729,应选C.2.为了弘扬国粹,提高民族自豪感,坐落于某实验中学内的艺术馆为学员们提供书法、国画、古琴、茶艺等教学服务,其中学习书法和国画的学员最多.为了研究喜欢书法和喜欢国画之间的联系,随机抽取了80名学员进行问卷调查,发现喜欢国画的人的比例为70%,喜欢书法的人的比例为50%.(1)(2)有人认为喜欢书法与喜欢国画有关,你同意这种看法吗?说明理由; (3)假定学员们都按照自己的喜好进行了系统学习.根据传统,国画上有题字和落款才算完整作品,那么既学书法又学国画的学员们创作的作品可以称为“书画兼优〞.为了配合实验中学七十年校庆,打算随机挑选5幅作品展览.设其中“书画兼优〞的作品数为X ,求X 的分布列.参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参考数据:解 (1)由题意,得c +16=80×(1-50%),∴c =24. ∵a +c =80×70%,∴a =32.∵a +b =80×50%,∴b =8. ∴a =32,b =8,c =24.(2)我同意这种看法.理由如下: K 2=80×(32×16-24×8)240×40×56×24≈3.81.∵3.81>2.706,∴有90%以上的把握认为喜欢书法与喜欢国画有关, ∴我同意这种看法.(3)由(1)知一幅作品“书画兼优〞的概率为3280=25. X 的所有可能取值为0,1,2,3,4,5.P (X =0)=C 05⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫355=2433125, P (X =1)=C 15·25·⎝ ⎛⎭⎪⎫354=162625,P (X =2)=C 25⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫353=216625, P (X =3)=C 35⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫352=144625, P (X =4)=C 45⎝ ⎛⎭⎪⎫254·35=48625, P (X =5)=C 55⎝ ⎛⎭⎪⎫255⎝ ⎛⎭⎪⎫350=323125. ∴X 的分布列如下.P 2433125162625216625144625486253231251.独立重复试验的实质及应用独立重复试验的实质是相互独立事件的特例,应用独立重复试验公式可以简化求概率的过程.2.判断某概率模型是否服从二项分布P n(X=k)=C k n p k(1-p)n-k的三个条件(1)在一次试验中某事件A发生的概率是一个常数p.(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的.(3)该公式表示n次试验中事件A恰好发生了k次的概率.提醒:在实际应用中,往往出现数量“较大〞“很大〞“非常大〞等字眼,这说明试验可视为独立重复试验,进而判定是否服从二项分布.1.春节期间,某旅游景区推出掷圆圈套玩具鹅的游戏,吸引了一大批的游客参加,规那么是:每人花10元拿到5个圆圈,在离最近的玩具鹅的2米处掷圆圈5次,只要圆圈连续套住同一只鹅颈3次,就可以获得套住的那只玩具鹅.假设某游客每次掷圆圈套住鹅颈的概率为23,且每次掷圆圈的结果互不影响,那么该游客获得一只玩具鹅的概率为()A.481 B.881C.13 D.104243答案 D解析 设“第i 次套住鹅颈〞为事件A i (i =1,2,3,4,5),那么A -i 表示“第i 次未套住鹅颈〞,依题意可得该游客能获得一只玩具鹅的3种情形:A 1A 2A 3,A -1A 2A 3A 4,A -1A -2A 3A 4A 5,而P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827,P (A -1A 2A 3A 4)=⎝ ⎛⎭⎪⎫233×13=881,P (A -1A -2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132=8243,故该游客获得一只玩具鹅的概率为827+881+8243=104243,应选D.2.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H 和V .现有A ,B ,C 三种不同配方的药剂,根据分析,A ,B ,C 三种药剂能控制H 指标的概率分别为0.5,0.6,0.75,能控制V 指标的概率分别为0.6,0.5,0.4,能否控制H 指标与能否控制V 指标之间相互没有影响.(1)求A ,B ,C 三种药剂中恰有一种能控制H 指标的概率;(2)某种药剂能使两项指标H 和V 都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X 的分布列.解 (1)A ,B ,C 三种药剂中恰有一种能控制H 指标的概率为P =P (A B -C -)+P (A B C )+P (A -B -C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)∵A 有治疗效果的概率为P A =0.5×0.6=0.3, B 有治疗效果的概率为P B =0.6×0.5=0.3,C有治疗效果的概率为P C=0.75×0.4=0.3,∴A,B,C三种药剂有治疗效果的概率均为0.3,可看成3次独立重复试验,即X~B(3,0.3).∵X的可能取值为0,1,2,3,∴P(X=k)=C k3×0.3k×(1-0.3)3-k,即P(X=0) =C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027.故X的分布列如下.X 012 3P 0.3430.4410.1890.027组基础关1.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,如果从两个口袋内各摸出一个球,那么56是()A.2个球不都是白球的概率B.2个球都不是白球的概率C.2个球都是白球的概率D.2个球恰好有一个球是白球的概率答案 A解析∵2个球不都是白球的对立事件是2个球都是白球,从甲口袋摸出白球和从乙口袋摸出白球两者是相互独立的,∴2个球都是白球的概率P =13×12=16,∴2个球不都是白球的概率是1-16=56.应选A.2.(2019·某某三市第一次联考)某机械研究所对新研发的某批次机械元件进行寿命追踪调查,随机抽查的200个机械元件情况如下:2个元件的使用寿命在30天以上的概率为( )A.1316B.2764 C.2532 D.2732答案 D解析 由表可知元件使用寿命在30天以上的频率为150200=34,那么所求概率为C 23⎝ ⎛⎭⎪⎫342×14+⎝ ⎛⎭⎪⎫343=2732. 3.位于坐标原点的一个质点M 按下述规那么移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点M 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B.C 25×⎝ ⎛⎭⎪⎫125C .C 35×⎝⎛⎭⎪⎫123D.C 25×C 35×⎝⎛⎭⎪⎫125 答案 B解析 如图,由题可知质点M 必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验中向右恰好发生2次的概率.所求概率为P =C 25×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫123=C 25×⎝ ⎛⎭⎪⎫125.应选B.4.某居民小区有两个相互独立的安全防X 系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,假设在任意时刻恰有一个系统不发生故障的概率为940,那么p 等于( )A.110B.215C.16D.15答案 B解析 由题意得,18(1-p )+78p =940, ∴p =215.5.(2019·某某调研)某学校10位同学组成的志愿者组织分别由李老师和X 老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和X 老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.那么甲同学收到李老师或X 老师所发活动通知信息的概率为( )A.25B.1225C.1625D.45 答案 C解析 设A 表示“甲同学收到李老师所发活动通知信息〞,B 表示“甲同学收到X 老师所发活动通知信息〞,由题意P (A )=410=25,P (B )=410=25,∴甲同学收到李老师或X 老师所发活动通知信息的概率为25+25-25×25=1625.应选C.6.投掷一枚图钉,设钉尖向上的概率为p ,连续掷一枚图钉3次,假设出现2次钉尖向上的概率小于出现3次钉尖向上的概率,那么p 的取值X 围为( )A.⎝ ⎛⎭⎪⎫12,34B.⎝ ⎛⎭⎪⎫34,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫13,1 答案 B解析 ∵投掷一枚图钉,钉尖向上的概率为p (0<p <1),连续掷一枚图钉3次,∴出现2次钉尖向上的概率为C 23p 2(1-p ),出现3次钉尖向上的概率为p 3.∵出现2次钉尖向上的概率小于出现3次钉尖向上的概率,∴C 23p 2(1-p )<p 3,即p 2(3-4p )<0,解得p >34,∴p 的取值X 围为⎝ ⎛⎭⎪⎫34,1.7.(2019·某某模拟)某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场〞的前提下,学生丙第一个出场的概率为( )A.313 B.413 C.14 D.15答案 A解析 设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场〞;事件B 为“学生丙第一个出场,〞那么P (A )=A 44+C 13C 13A 33A 55=78A 55,P (AB )=C 13A 33A 55=18A 55,那么P (B |A )=P (AB )P (A )=1878=313. 8.(2019·武昌区模拟)抛掷一枚质地均匀的骰子两次,记A ={两次的点数均为奇数},B ={两次的点数之和为4},那么P (B |A )=________.答案 29解析 根据题意,抛掷一枚质地均匀的骰子两次,有6×6=36种情况,记A ={两次的点数均为奇数},B ={两次的点数之和为4},事件A 包含3×3=9种情况,事件AB 有2种情况,那么P (A )=3×336=936,P (AB )=236,那么P (B |A )=P (AB )P (A )=29.9.某大厦的一部电梯从底层出发后只能在第18,19,20层停靠,假设该电梯在底层有5位乘客,且每位乘客在这三层的每一层下电梯的概率为13,用ξ表示5位乘客在第20层下电梯的人数,那么P (ξ=4)=________.答案 10243解析 依题意,ξ~B ⎝ ⎛⎭⎪⎫5,13,故P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243. 10.(2019·全国卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主〞.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,那么甲队以4∶1获胜的概率是________.答案 0.18解析 甲队以4∶1获胜,甲队在第5场(主场)获胜,前4场中有一场输. 假设在主场输一场,那么概率为2×0.6×0.4×0.5×0.5×0.6;假设在客场输一场,那么概率为2×0.6×0.6×0.5×0.5×0.6. ∴甲队以4∶1获胜的概率P =2×0.6×0.5×0.5×(0.6+0.4)×0.6=0.18.组 能力关1.(2019·某某市高三调研)甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球.现随机地从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,那么从乙袋中取出的球是红球的概率为( )A.13B.12C.59D.29答案 B解析 分两类:①假设从甲袋中取出黄球,那么乙袋中有3个黄球和2个红球,从乙袋中取出的球是红球的概率为25;②假设从甲袋中取出红球,那么乙袋中有2个黄球和3个红球,从乙袋中取出的球是红球的概率为35;∴所求概率P =12×⎝ ⎛⎭⎪⎫25+35=12.应选B. 2.(2020·某某摸底)为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,假设他前一球投进那么后一球也投进的概率为34,假设他前一球投不进那么后一球投进的概率为14.假设他第1球投进的概率为34,那么他第2球投进的概率为( )A.34 B.58 C.716 D.916答案 B解析 设该运动员第2球投进的概率为p 2,第1球投进的概率为p 1=34,∴p 2=34p 1+14(1-p 1)=12p 1+14=12×34+14=58.应选B.3.(2019·某某一模)某超市在中秋节期间举行有奖销售活动,凡消费金额满200元的顾客均获得一次抽奖的机会,中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X 为4名顾客获得的红包金额总和,那么P (10≤X ≤15)=________.答案 312625解析 中奖一次即可获得5元红包,没有中奖不得红包.现有4名顾客均获得一次抽奖机会,且每名顾客每次中奖的概率均为0.4,记X 为4名顾客获得的红包金额总和,那么P (10≤X ≤15)=C 24×0.42×0.62+C 34×0.43×0.6=312625.4.为研究家用轿车在高速公路上的车速情况,交通部门随机选取100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100 km/h 的有40人,不超过100 km/h 的有15人;在45名女性驾驶员中,平均车速超过100 km/h 的有20人,不超过100 km/h 的有25人.(1)在被调查的驾驶员中,从平均车速不超过100 km/h 的人中随机抽取2人,求这2人恰好有1名男性驾驶员和1名女性驾驶员的概率;(2)以上述样本数据估计总体,从高速公路上行驶的家用轿车中随机抽取3辆,记这3辆车平均车速超过100 km/h 且为男性驾驶员的车辆为X ,求X 的分布列.解 (1)平均车速不超过100 km/h 的驾驶员有40人,从中随机抽取2人的方法总数为C 240,记“这2人恰好有1名男性驾驶员和1名女性驾驶员〞为事件A ,那么事件A 所包含的基本事件数为C 115C 125,所以所求的概率P (A )=C 115C 125C 240=15×2520×39=2552.(2)根据样本估计总体的思想,从总体中任取1辆车,平均车速超过100 km/h 且为男性驾驶员的概率为40100=25, 故X ~B ⎝ ⎛⎭⎪⎫3,25.所以P (X =0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125, P (X =1)=C 13⎝ ⎛⎭⎪⎫25⎝ ⎛⎭⎪⎫352=54125, P (X =2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫35=36125, P (X =3)=C 33⎝ ⎛⎭⎪⎫253⎝ ⎛⎭⎪⎫350=8125. 所以X 的分布列如下.X 0 1 2 3 P2712554125361258125组 素养关1.(2019·某某六校教育研究会第二次联考)为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,统计数据如表所示,支付方式 微信 支付宝 购物卡 现金 人数200150150100率近似代替概率.(1)求三人中使用微信支付的人数多于现金支付的人数的概率. (2)记X 为三人中使用支付宝支付的人数,求X 的分布列.解 (1)由表格得顾客使用微信、支付宝、购物卡和现金支付的概率分别为13,14,14,16.设Y 为三人中使用微信支付的人数,Z 为使用现金支付的人数, 事件A 为“三人中使用微信支付的人数多于现金支付的人数〞,那么P (A )=P (Y =3)+P (Y =2)+P (Y =1,且Z =0)=⎝ ⎛⎭⎪⎫133+C 23⎝ ⎛⎭⎪⎫132×23+C 13⎝ ⎛⎭⎪⎫13×⎝ ⎛⎭⎪⎫122=127+29+14=55108. (2)由题意可知X ~B ⎝ ⎛⎭⎪⎫3,14,故所求分布列如下. X 0 1 2 3 P276427649641642.(2019·某某一模)某市市民用水拟实行阶梯水价,每人月用水量不超过w 立方米的部分按4元/立方米收费,超出w 立方米的部分按10元/立方米收费,从该市随机调查了10000位市民,获得了他们某月的用水量数据,整理得到如下频率分布直方图,并且前四组频数成等差数列.(1)求a ,b ,c 的值及居民月用水量在2~2.5内的频数;(2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w 至少定为多少?(w取整数)(3)假设将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量不超过2.5立方米的人数记为X,求其分布列.解(1)∵前四组频数成等差数列,∴所对应的频率组距也成等差数列,设a=0.2+d,b=0.2+2d,c=0.2+3d,∴0.5×(0.2+0.2+d+0.2+2d+0.2+3d+0.2+d+0.1+0.1+0.1)=1,解得d=0.1,∴a=0.3,b=0.4,c=0.5.居民月用水量在2~2.5内的频率为0.5×0.5=0.25.居民月用水量在2~2.5内的频数为0.25×10000=2500.(2)由题图及(1)可知,居民月用水量小于2的频率为(0.2+0.3+0.4)×0.5=0.45,小于3的频率为0.45+(0.5+0.3)×0.5=0.85,∴为使80%以上居民月用水价格为4元/立方米,应将w至少定为3.(3)将频率视为概率,设A(单位:立方米)代表居民月用水量,可知P(A≤2.5)=0.7,由题意,X~B(3,0.7),P(X=0)=C03×0.33=0.027,P(X=1)=C13×0.32×0.7=0.189,P(X=2)=C23×0.3×0.72=0.441,P(X=3)=C33×0.73=0.343.∴X的分布列如下.。
2019版高考数学(理)高分计划一轮课件:第10章 计数原理、概率、随机变量及其分布 10-7
(2)(选修 A2-3P49T3)从一副 52 张(去掉两张王)的扑克 牌中任取 5 张,其中黑桃张数的概率分布公式是 _P__(ξ_=__k_)=__C__k1C3_C55_253_-9_k(_k_=__0,_1_,2_,_3_,4_,_5_) _,黑桃不多于 1 张的概率是 ____0_._6_3_3____.
1 6
5 则 P(|X-3|=1)=____1_2___.
解析 由13+m+14+16=1,解得 m=14, P(|X-3|=1)=P(X=2)+P(X=4)=14+16=152.
经典题型冲关
题型 1 离散型随机变量分布列的性质
典例 1,2,3,4,5).
设 随 机 变 量 ξ 的 分 布 列 P ξ=5k = ak(k =
(1)记 X 表示一辆车从地到乙地遇到红灯的个数,求 随机变量 X 的分布列和数学期望;
(2)若有 2 辆车独立地从甲地到乙地,求这 2 辆车共遇 到 1 个红灯的概率.
解 (1)随机变量 X 的所有可能取值为 0,1,2,3.
P(X=0)=1-12×1-13×1-14=14,
解析 a、b、c 成等差数列,2b=a+c,又 a+b+c=1, ∴b=13,∴P(|X|=1)=a+c=23.
2.设离散型随机变量 X 的分布列为 X0 1 2 3 4 P 0.2 0.1 0.1 0.3 m
求:(1)2X+1 的分布列; (2)|X-1|的分布列.
解 由分布列的性质知: 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 首先列表为
[ 条 件 探 究 1] 若 将 典 例 条 件 “P ξ=5k = ak , k = 1,2,3,4,5”变为“P(ξ=i)=a23i,i=1,2,3”,求 a 的值.
2019高考理数(北京专用)一轮课件:10 第十章 计数原理与概率、随机变量及其分布 第二节 排列与组合
排列与组合
总纲目录
总纲目录
教材研读
1.排列与排列数 2.组合与组合数 3.排列数、组合数的公式及性质
考点突破
考点一 排列问题 考点二 组合问题
考点三 排列与组合的综合应用
教材研读
教材研读
1.排列与排列数
(1)排列:从n个不同元素中取出m(m≤n)个元素,① 按照一定的顺序排
成一列 ,叫做从n个不同元素中取出m个元素的一个排列.
5.已知
1 1 m m - C6 = C5
7 m m= ,则 10C 7
.2
答案 2
解析 由已知得m的取值范围为{m|0≤m≤5,m∈Z}, B
m!(5 m)! - 5!
m!(6 m)! 6!
7 (7 m)!m! 10 7! ,整理可得m2-23m+42=0,解得m=21(舍去)或m=2. =
计数原理得出总数
捆绑法 相邻问题捆绑处理,即可以把相邻元素看作一个整体与其他元素进行排列,同时注意捆绑元素 的内部排列 插空法 不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列
后的空中
除法 间接法 对于定序问题,可先不考虑顺序限制,排列后,再除以已定元素的全排列 对于分类过多的问题,利用正难则反,等价转化的方法
A2 2
A3 3
法,故有 × =12种排法.
所以共有24+12=36种排法.
A2
A3
考点突破
方法技巧 1.求解有限制条件排列问题的主要方法
选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由 分类加法计数原理得出总数 选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-3a Word版含解析
[基础送分 提速狂刷练]一、选择题1.(2018·广东测试)⎝ ⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( ) A .-54 B.54 C .-1516 D.1516答案 D解析 T r +1=C r 6(x 2)6-r ⎝ ⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12r C r 6x 12-3r ,令12-3r =0,解得r =4.∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D. 2.(2018·福建厦门联考)在⎝ ⎛⎭⎪⎫1+x +1x 201810的展开式中,x 2的系数为( )A .10B .30C .45D .120答案 C解析 因为⎝ ⎛⎭⎪⎫1+x +1x 201810=⎣⎢⎡⎦⎥⎤(1+x )+1x 201810=(1+x )10+C 110(1+x )91x 2018+…+C 1010⎝ ⎛⎭⎪⎫1x 201810,所以x 2只出现在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C.3.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( )A .-4B .-3C .-2D .-1答案 D解析 由二项式定理得(1+x )5的展开式的通项为T r +1=C r 5·x r ,所以当r =2时,(1+ax )(1+x )5的展开式中相应x 2的系数为C 25,当r =1时,相应x 2的系数为C 15·a ,所以C 25+C 15·a =5,a =-1,故选D. 4.(2018·河南百校联盟模拟)(3-2x -x 4)(2x -1)6的展开式中,含x 3项的系数为 ( )A .600B .360C .-600D .-360答案 C解析 由二项展开式的通项公式可知,展开式中含x 3项的系数为3×C 3623(-1)3-2×C 2622(-1)4=-600.故选C.5.若⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式的常数项为( )A .-40B .-20C .20D .40答案 D解析 令x =1,得(1+a )(2-1)5=2,∴a =1.∴⎝ ⎛⎭⎪⎫2x -1x 5的通项为T r +1=C r 5·(2x )5-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·25-r ·C r 5·x 5-2r . 令5-2r =1,得r =2.令5-2r =-1,得r =3.∴展开式的常数项为(-1)2×23·C 25+(-1)3·22·C 35=80-40=40.故选D.6.在⎝⎛⎭⎪⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中的常数项是( )A .-7B .7C .-28D .28答案 B解析 由题意知n =8,T r +1=C r 8·⎝ ⎛⎭⎪⎫x 28-r ·⎝ ⎛⎭⎪⎪⎫-13x r =(-1)r ·C r 8·x 8-r 28-r ·=(-1)r ·C r 8·,由8-r -r 3=0,得r =6.∴T 7=C 68·122=7,即展开式中的常数项为T 7=7.故选B. 7.(2018·石家庄模拟)若⎝ ⎛⎭⎪⎫x 2-1ax 9(a ∈R )的展开式中x 9的系数是-212,则⎠⎛0a sin x d x 的值为( ) A .1-cos2 B .2-cos1 C .cos2-1 D .1+cos2 答案 A解析 由题意得T r +1=C r 9·(x 2)9-r ·(-1)r ·⎝ ⎛⎭⎪⎫1ax r =(-1)r ·C r 9·x 18-3r ·1a r ,令18-3r =9,得r =3,所以-C 39·1a 3=-212,解得a =2.所以⎠⎛0a sin x d x =(-cos x )20=-cos2+cos0=1-cos2.故选A .8.设a ∈Z ,且0≤a <13,若512018+a 能被13整除,则a =( )A .0B .1C .11D .12答案 D解析 512018+a =(52-1)2018+a =522018+C 12018·522017·(-1)+…+C 20172018×52×(-1)2017+1+a , ∵522018能被13整除,∴只需a +1能被13整除即可,∴a =12.故选D.9.(2018·合肥质检)若(x +2+m )9=a 0+a 1(x +1)+a 2·(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为( )。
2019版高考数学(理)高分计划一轮狂刷练:第10章 计数原理、概率、随机变量及其分布 10-6a Word版含解析
[基础送分 提速狂刷练]一、选择题1.(2017·陕西榆林二模)若函数f (x )=⎩⎪⎨⎪⎧e x ,0≤x <1,ln x +e ,1≤x ≤e在区间[0,e]上随机取一个实数x ,则f (x )的值不小于常数e 的概率是( )A.1e B .1-1e C.e 1+e D.11+e答案 B解析 当0≤x <1时,f (x )<e ,当1≤x ≤e 时,e ≤f (x )≤1+e ,∵f (x )的值不小于常数e ,∴1≤x ≤e ,∴所求概率为e -1e =1-1e ,故选B.2.(2018·绵阳模拟)在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23 答案 C解析 如图所示,在边AB 上任取一点P ,因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S4”等价于事件“|BP |∶|AB |>14”,即P ⎝ ⎛⎭⎪⎫△PBC 的面积大于S 4=|P A ||BA |=34.故选C.3.已知实数a 满足-3<a <4,函数f (x )=lg (x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定答案 C解析 若f (x )的值域为R ,则Δ1=a 2-4≥0,得a ≤-2或a ≥2. 故P 1=-2-(-3)4-(-3)+4-24-(-3)=37.若f (x )的定义域为R ,则Δ2=a 2-4<0,得-2<a <2.故P 2=47.∴P 1<P 2.故选C.4.(2017·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4 B.π12 C.π4 D .1-π12 答案 A解析 鱼缸底面正方形的面积为22=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π4,故选A.5.(2017·铁岭模拟)已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12.故选C.6.(2018·沧州七校联考)用一平面截一半径为5的球面得到一个圆,则此圆面积小于9π的概率是( )A.45B.15C.13D.12 答案 B解析 如图,此问题属几何概型,球的直径为10,用一平面截该球面,所得的圆面积大于等于9π的概率为P (A )=810=45.∴所截得圆的面积小于9π的概率为P (A -)=1-45=15.故选B. 7.(2017·福建宁德一模)若从区间(0,e),(e 为自然对数的底数,e =2.71828…)内随机选取两个数,则这两个数之积小于e 的概率为( )A.2eB.1e C .1-2e D .1-1e 答案 A 解析设随机选取的两个数为x ,y ,由题意得⎩⎨⎧0<x <e ,0<y <e ,该不等式组在坐标系中对应的区域面积为e 2,又不等式组⎩⎨⎧0<x <e ,0<y <e ,xy <e在坐标系中对应的区域面积为e +⎠⎛1e ex d x=2e ,∴所求概率为2e ,故选A.8.(2017·河南三市联考)在区间[-π,π]内随机取两个数分别为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π4 答案 B解析 函数f (x )=x 2+2ax -b 2+π2有零点,需Δ=4a 2-4(-b 2+π2)≥0,即a 2+b 2≥π2成立.而a ,b ∈[-π,π],建立平面直角坐标系,满足a 2+b 2≥π2,点(a ,b )如图阴影部分所示,所求事件的概率为P =2π×2π-π32π×2π=4π2-π34π2=1-π4.故选B .9.(2018·江西模拟)向面积为S 的平行四边形ABCD 中任投一点M ,则△MCD 的面积小于S3的概率为( )A.13B.35C.23D.34 答案 C解析 设△MCD 的高为ME ,ME 的反向延长线交AB 于F ,当“△MCD 的面积等于S 3”时,12CD ·ME =13CD ·EF ,即ME =23EF ,过M 作GH ∥AB ,则满足△MCD 的面积小于S3的点M 在▱CDGH 中,由几何概型的概率公式得到△MCD 的面积小于S3的概率为2S 3S =23.故选C .10.(2018·湖北襄阳优质高中联考)已知λ=3⎠⎛01x 2d x ,在矩形ABCD中,AB =2,AD =1,则在矩形ABCD 内(包括边界)任取一点P ,使得AP →·AC →≥λ的概率为( )A.18 B .14 C.34 D.78 答案D解析 由已知得λ=3⎠⎛01x 2d x =3×13x 310=1.建立如图所示的平面直角坐标系.则A(0,0),C (2,1),设P (x ,y ),则AP →=(x ,y ),AC →=(2,1),故AP →·AC →=2x +y ,则满足条件的点P (x ,y )使得2x +y ≥1,由图可知满足条件的点P 所在的区域(图中阴影区域)的面积S =2×1-12×1×12=2-14=74,故所求概率为742=78,故选D.二、填空题11. 如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,则BM <1的概率是________.答案 25解析 ∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.12.一个长方体空屋子,长、宽、高分别为5米、4米、3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.答案 π120解析 依题意,放在地面一角处的捕蝇器能捕捉到的空间体积V 0=18×4π3×13=π6(立方米),又空屋子的体积V =5×4×3=60(立方米),三个捕蝇器捕捉到的空间体积V ′=3V 0=π2(立方米). 故苍蝇被捕捉的概率是π260=π120.13.(2018·湖北八校联考)正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案 23解析 利用定积分直接求面积,再利用几何概型的概率公式求解.正方形内阴影部分的面积S =2⎠⎛-11(1-x 2)d x =2⎝ ⎛⎭⎪⎫x -13x 3|1-1=2×43=83,所以所求概率为834=23.14.(2018·河南洛阳模拟)已知O (0,0),A (2,1),B (1,-2),C ⎝⎛⎭⎪⎫35,-15,动点P (x ,y )满足0≤OP →·OA →≤2且0≤OP →·OB →≤2,则点P 到点C 的距离大于14的概率为________.答案 1-5π64解析 ∵O (0,0),A (2,1),B (1,-2),C ⎝ ⎛⎭⎪⎫35,-15,动点P (x ,y )满足0≤OP →·OA →≤2且0≤OP →·OB →≤2,∴⎩⎨⎧0≤2x +y ≤2,0≤x -2y ≤2.如图,不等式组⎩⎨⎧0≤2x +y ≤2,0≤x -2y ≤2对应的平面区域为正方形OEFG 及其内部,|CP |>14对应的平面区域为阴影部分.由⎩⎨⎧x -2y =0,2x +y =2解得⎩⎪⎨⎪⎧x =45,y =25,即E ⎝ ⎛⎭⎪⎫45,25,∴|OE |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫252=255, ∴正方形OEFG 的面积为45,则阴影部分的面积为45-π16, ∴根据几何概型的概率公式可知所求的概率为45-π1645=1-5π64.三、解答题15.(2018·广东深圳模拟)已知复数z =x +yi (x ,y ∈R )在复平面上对应的点为M .(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机抽取一个数作为x ,从集合Q 中随机抽取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组: ⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.解 (1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型, 其中事件A 包含的基本事件共2个:i,2i , ∴所求事件的概率为P (A )=212=16.(2)依条件可知,点M 均匀地分布在平面区域{(x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧0≤x ≤3,0≤y ≤4内,属于几何概型.该平面区域的图形为图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )|⎩⎨⎧ x +2y -3≤0,x ≥0,y ≥0,其图形如图中的三角形OAD (阴影部分).又直线x +2y -3=0与x 轴,y 轴的交点分别为A (3,0),D ⎝ ⎛⎭⎪⎫0,32, ∴三角形OAD 的面积为S 1=12×3×32=94.∴所求事件的概率为P =S 1S =9412=316.16.设f (x )和g (x )都是定义在同一区间上的两个函数,若对任意x ∈[1,2],都有|f (x )+g (x )|≤8,则称f (x )和g (x )是“友好函数”,设f (x )=ax ,g (x )=b x .(1)若a ∈{1,4},b ∈{-1,1,4},求f (x )和g (x )是“友好函数”的概率;(2)若a ∈[1,4],b ∈[1,4],求f (x )和g (x )是“友好函数”的概率. 解 (1)设事件A 表示f (x )和g (x )是“友好函数”,则|f (x )+g (x )|(x ∈[1,2])所有的情况有x -1x ,x +1x ,x +4x ,4x -1x ,4x +1x ,4x +4x ,共6种且每种情况被取到的可能性相同.又当a >0,b >0时ax +b x 在⎝⎛⎭⎪⎫0, b a 上递减,在⎝ ⎛⎭⎪⎫ b a ,+∞上递增;x -1x 和4x -1x 在(0,+∞)上递增,∴对x ∈[1,2]可使|f (x )+g (x )|≤8恒成立的有x -1x ,x +1x ,x +4x ,4x-1x ,故事件A 包含的基本事件有4种,∴P (A )=46=23,故所求概率是23.(2)设事件B 表示f (x )和g (x )是“友好函数”,∵a 是从区间[1,4]中任取的数,b 是从区间[1,4]中任取的数,∴点(a ,b )所在区域是长为3,宽为3的正方形区域.要使x ∈[1,2]时,|f (x )+g (x )|≤8恒成立,需f (1)+g (1)=a +b ≤8且f (2)+g (2)=2a +b 2≤8,∴事件B 表示的点的区域是如图所示的阴影部分.∴P (B )=12×⎝ ⎛⎭⎪⎫2+114×33×3=1924, 故所求的概率是1924.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块四 模拟演练·提能增分[A 级 基础达标]1.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后尚余子弹数目的均值为( )A .2.44B .3.376C .2.376D .2.4答案 C解析 X =k 表示第(4-k )次命中目标, P (X =3)=0.6, P (X =2)=0.4×0.6, P (X =1)=0.42×0.6, P (X =0)=0.43×(0.6+0.4),∴E (X )=3×0.6+2×0.4×0.6+1×0.42×0.6=2.376.2.[2018·长沙检测]已知随机变量X 服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15 答案 C解析 P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 3.随机变量X 的分布列如下:其中a ,b ,c 成等差数列.若E (X )=13,则D (X )的值是( ) A.49 B.59 C.23D.95解析 a +b +c =1.又∵2b =a +c ,故b =13,a +c =23.由E (X )=13,得13=-a +c ,故a =16,c =12.D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59.故选B.4.签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为( )A .5B .5.25C .5.8D .4.6答案 B解析 由题意可知,X 可以取3,4,5,6,P (X =3)=1C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X =6)=C 25C 36=12.∴E (X )=3×120+4×320+5×310+6×12,得E (X )=5.25.5.为了了解某地区高三男生的身体发育状况,抽查了该地区1000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X (kg)服从正态分布N (μ,22),且正态曲线如图所示.若体重大于58.5 kg 小于等于62.5 kg 属于正常情况,则这1000名男生中体重属于正常情况的人数是( )A .997B .954C .819D .683解析 由题意,可知μ=60.5,σ=2,故P (58.5<X ≤62.5)=P (μ-σ<X ≤μ+σ)=0.6826,从而体重属于正常情况的人数是1000×0.6826≈683.6.已知随机变量ξ的分布列为P (ξ=m )=13,P (ξ=μ)=a ,若E (ξ)=2,则D (ξ)的最小值等于________.答案 0解析 由13+a =1,得a =23,又E (ξ)=2, ∴m 3+2μ3=2,m =6-2μD (ξ)=13(m -2)2+23(μ-2)2=2μ2-8μ+8=2(μ-2)2, ∴μ=2时,D (ξ)最小值=0.7.[2018·南宁模拟]某高校进行自主招生的面试程序如下:共设3道题,每道题答对给10分,答错倒扣5分(每道题都必须答,但相互不影响),设某学生答对每道题的概率为23,则该学生在面试时得分的期望值为________.答案 15解析 记学生面试的得分为随机变量η,则η的可能取值为-15,0,15,30,则有P (η=-15)=⎝ ⎛⎭⎪⎫133=127,P (η=0)=C 13×⎝ ⎛⎭⎪⎫132×23=627,P (η=15)=C 23×13×⎝ ⎛⎭⎪⎫232=1227,P (η=30)=⎝ ⎛⎭⎪⎫233=827.所以该学生面试得分的数学期望E (η)=(-15)×127+0×627+15×1227+30×827=15.8.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可以看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16,∴成绩不低于120分的学生约为600×16=100(人).9.[2018·江西师大附中模拟]已知某校的数学专业开设了A ,B ,C ,D 四门选修课,甲、乙、丙3名学生必须且只需选修其中一门.(1)求这3名学生选择的选修课互不相同的概率;(2)若甲和乙要选同一门课,求选修课A 被这3名学生选修的人数X 的分布列和数学期望.解 (1)3名学生选择的选修课所有不同选法有43=64种;各人互不相同的选法有A 34种,故互不相同的概率P =A 3443=38.(2)选修课A 被这3名学生选修的人数X 的可能取值为0,1,2,3, P (X =0)=3242=916,P (X =1)=342=316, P (X =2)=342=316,P (X =3)=142=116. 所以X 的分布列为数学期望E (X )=0×916+1×316+2×316+3×116=34.10.袋中有1个白球和4个黑球,每次从中任取1个球,每次取出的黑球不再放回,直到取出白球为止.记取球次数为ξ.(1)求ξ的概率分布; (2)求ξ的数学期望及方差.解 (1)ξ的所有可能取值为1,2,3,4,5,并且有 P (ξ=1)=15=0.2,P (ξ=2)=45×14=0.2, P (ξ=3)=45×34×13=0.2, P (ξ=4)=45×34×23×12=0.2, P (ξ=5)=45×34×23×12×11=0.2. 因此ξ的分布列是(2)E (ξ)=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2=3, D (ξ)=(1-3)2×0.2+(2-3)2×0.2+(3-3)2×0.2+(4-3)2×0.2+(5-3)2×0.2=2.[B 级 知能提升]1.甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为X ,则E (X )为( )A .1B .1.5C .2D .2.5答案 B解析 X 可取0,1,2,3,P (X =0)=C 36C 36×C 36=120,P (X =1)=C 16×C 25×C 23C 36×C 36=920,P (X =2)=C 26×C 14×C 13C 36×C 36=920,P (X =3)=C 36C 36×C 36=120,故E (X )=0×120+1×920+2×920+3×120=1.5.2.[2018·山东聊城联考]已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.3.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.设X 为该毕业生得到面试的公司个数.若P (X =0)=112,则D (X )=________.答案 1318解析 由题意,知13×(1-p )2=112,即p =12,所以P (X =1)=23×⎝ ⎛⎭⎪⎫1-122+13×12×⎝ ⎛⎭⎪⎫1-12+13×⎝ ⎛⎭⎪⎫1-12×12=13,P (X =2)=23×12×⎝ ⎛⎭⎪⎫1-12+23×⎝ ⎛⎭⎪⎫1-12×12+13×12×12=512,P (X =3)=23×⎝ ⎛⎭⎪⎫122=16,所以E (X )=0×112+1×13+2×512+3×16=53,所以D (X )=112×⎝⎛⎭⎪⎫0-532+13×⎝⎛⎭⎪⎫1-532+512×⎝⎛⎭⎪⎫2-532+16×⎝⎛⎭⎪⎫3-532=1318.4.[2018·宁夏模拟]某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分.某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(1)求该考生本次测验选择题得50分的概率;(2)求该考生本次测验选择题所得分数的分布列和数学期望. 解 (1)设选对一道“能排除2个选项的题目”为事件A ,选对一道“能排除1个选项的题目”为事件B ,则P (A )=12,P (B )=13.该考生选择题得50分的概率为P (A )·P (A )·P (B )·P (B )=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=136.(2)该考生所得分数X =30,35,40,45,50, P (X =30)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-132=19, P (X =35)=C 12⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122·C 12·13×23=13,P (X =40)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫232+C 12·⎝ ⎛⎭⎪⎫122·C 12·13×23+⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=1336, P (X =45)=C 12⎝ ⎛⎭⎪⎫122·⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫122·C 12·13×23=16,P (X =50)=⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫132=136.该考生所得分数X 的分布列为所以E (X )=30×19+35×13+40×1336+45×16+50×136=1153分. 5.[2018·湖北武汉模拟]某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N (168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm 和184 cm 之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.(1)由频率分布直方图估计该校高三年级男生平均身高状况; (2)求这50名男生身高在172 cm 以上(含172 cm)的人数; (3)在这50名男生身高在172 cm 以上(含172 cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全市前130名的人数记为ξ,求ξ的数学期望.参考数据: 若ξ~N (μ,σ2),则 P (μ-σ<ξ≤μ+σ)=0.6826,P (μ-2σ<ξ≤μ+2σ)=0.9544, P (μ-3σ<ξ≤μ+3σ)=0.9974.解 (1)由频率分布直方图,经过计算该校高三年级男生平均身高为⎝⎛⎭⎪⎫162×5100+166×7100+170×8100+174×2100+178×2100+182×1100×4=168.72.(2)由频率分布直方图知,后3组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172 cm 以上(含172 cm)的人数为10.(3)∵P (168-3×4<ξ≤168+3×4)=0.9974, ∴P (ξ≥180)=1-0.99742=0.0013. ∴0.0013×100000=130.∴全市前130名男生的身高在180 cm 以上,这50人中180 cm 以上的有2人.随机变量ξ可取0,1,2,于是P (ξ=0)=C 28C 210=2845,P (ξ=1)=C 18C 12C 210=1645,P (ξ=2)=C 22C 210=145,∴E (ξ)=0×2845+1×1645+2×145=25.。