2012年高考真题汇编——理科数学:8:不等式
2012年全国统一高考数学试卷(理科)(新课标)(含解析版)
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年高考全国卷理科数学试题(含答案)(word)
2012年高考全国卷理科数学(含答案)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A=},B={1,m} ,A B=A, 则m=A 0或3 C 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=为CC1的中点,则直线AC1与平面BED的距离为A 2 B(5)已知等差数列{an }的前n项和为Sn,a5=5,S5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 (6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin β,则cos2α=(A) -3 (B )-993(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log 52,12z=e ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x (10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73。
高考真题理科数学解析汇编不等式逐题解答
2012年高考真题理科数学解析汇编:不等式一、选择题 1.(2012年高考(重庆理))设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( ) A .34πB .35πC .47πD .2π2 .(2012年高考(重庆理))不等式0121≤+-x x 的解集为( ) A .⎥⎦⎤ ⎝⎛-1,21B .⎥⎦⎤⎢⎣⎡-1,21C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D .[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,3 .(2012年高考(四川理))某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A .1800元B .2400元C .2800元D .3100元4 .(2012年高考(山东理))已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2- 5 .(2012年高考(辽宁理))若[0,)x ∈+∞,则下列不等式恒成立的是( )A .21xe x x ++…B211124x x <-+C .21cos 12x x -…D .21ln(1)8x x x +-… 6 .(2012年高考(辽宁理))设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为( )A .20B .35C .45D .557 .(2012年高考(江西理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( ) A .50,0B .30.0C .20,30D .0,508 .(2012年高考(湖北理))设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14B .13C .12D .349 .(2012年高考(广东理))已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .1-10.(2012年高考(福建理))若函数2xy =图像上存在点(,)x y 满足约束条件30230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为( ) A .12B .1C .32D .2 11.(2012年高考(福建理))下列不等式一定成立的是( )A .21lg()lg (0)4x x x +>>B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈D .211()1x R x >∈+ 12.(2012年高考(大纲理))已知125ln ,log 2,x y z e π-===,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<二、填空题13.(2012年高考(新课标理))设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为_________14.(2012年高考(浙江理))设a ∈R,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________.15.(2012年高考(上海春))若不等式210x kx k -+->对(1,2)x ∈恒成立,则实数k 的取值范围是______.16.(2012年高考(陕西理))设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.17.(2012年高考(陕西理))观察下列不等式213122+< 231151233++<,222111712344+++<照此规律,第五个...不等式为________________________________________. 18.(2012年高考(江苏))已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是____.19.(2012年高考(江苏))已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x的不等式()f x c <的解集为(6)m m +,,则实数c 的值为____.20.(2012年高考(大纲理))若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为_________________.21.(2012年高考(安徽理))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____2012年高考真题理科数学解析汇编:不等式参考答案一、选择题 1.【答案】D【考点定位】本小题主要考查二元一次不等式(组)与平面区域,圆的方程等基础知识,考查运算求解能力,考查数形结合思想,化归与转化思想,属于基础题. 2.【答案】A【解析】(1)(21)01101212210x x x x x x -+≤⎧-⎪≤⇒⇒<≤⎨++≠⎪⎩【考点定位】本题主要考查了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题,属基本题. 3.[答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得 利润为Z 元/天,则由已知,得 Z=300X+400Y且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X 画可行域如图所示,目标函数Z=300X+400Y 可变形为 Y=400zx 43+-这是随Z 变化的一族平行直线 解方程组⎩⎨⎧=+=+12y 2x 12y x 2⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z [点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).4.【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.5.【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+ 所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥ 同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -…,故选C【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大. 6.【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D 【点评】本题主要考查简单线性规划问题,难度适中.该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值. 7.B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+.线性约束条件为50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C .平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系; (4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.8.考点分析:本题主要考察了柯西不等式的使用以及其取等条件.解析:由于222222)())((2cz by ax z y x c b a ++≥++++等号成立当且仅当,t zcy b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t 所以由题知2/1=t 又2/1,==++++++++===t zy x c b a z y x c b a z c y b x a 所以,答案选C.9.解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11. 10.【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确.【考点定位】本题主要考查一元一次不等式组表示平面区域,考查分析判断能力、逻辑推理能力和求解计算能力.11.【答案】C【解析】由基本不等式得212||()x x x R +≥∈,答案C 正确.【考点定位】此题主要考查基本不等式和均值不等式成立的条件和运用,考查综合运用能力,掌握基本不等式的相关内容是解本题的关键. 12.答案D【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法.【解析】ln ln 1e π>=,551log 2log 2<=,1212z e -==>=,故选答案D.二、填空题13.【解析】2z x y =-的取值范围为[3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C 则2[3,3]z x y =-∈-14.【解析】本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解;(B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,—1). 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a or =,舍去0a =,得答案:32a =. 【答案】32a =15.(,2]-∞16.解析:1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-,围成的封闭区域为三角形,2z x y =-在点(0,1)-处取得最大值2.17.解析:第五个...不等式为2222211111111234566+++++< 18.【答案】[] 7e ,.【考点】可行域.【解析】条件4ln 53ln b c a a c c c a c b -+-≤≤≥,可化为:354a c a bc c a bc cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩.设==a bx y c c,,则题目转化为: 已知x y ,满足35400x x y x y y e x >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩,,求y x 的取值范围. 作出(x y ,)所在平面区域(如图).求出=x y e 的切线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥, 则00000==y ex m m e x x x ++,要使它最小,须=0m . ∴yx的最小值在()00P x y ,处,为e .此时,点()00P x y ,在=x y e 上,A B 之间. 当(x y ,)对应点C 时, =45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩,∴yx 的最大值在C 处,为7. ∴y x 的取值范围为[] 7e ,,即b a的取值范围是[] 7e ,. 19.【答案】9.【考点】函数的值域,不等式的解集.【解析】由值域为[0)+∞,,当2=0x ax b ++时有240a b =-=V ,即24a b =, ∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭.∴2()2a f x x c ⎛⎫=+< ⎪⎝⎭解得2a x <+<,22a a x <<.∵不等式()f x c <的解集为(6)m m +,,∴)()622aa --==,解得9c =.20.答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z .21.【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-。
【数学】2012新题分类汇编:不等式(高考真题+模拟新题)
不等式(高考真题+模拟新题)大纲理数3.E1[2011·全国卷] 下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3 大纲理数3.E1[2011·全国卷] A 【解析】 对A 项,若a >b +1,则a -b >1,则a >b ;若a >b ,不能得到a >b +1.对B 项,若a >b -1,不能得到a >b ;对C 项,若a 2>b 2,可得(a +b )(a -b )>0,不能得到a >b ;对D 项,若a 3>b 3,则a >b ,反之,若a >b ,则a 3>b 3,a 3>b 3是a >b 成立的充分必要条件,故选A.大纲文数5.E1[2011·全国卷] 下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3 大纲文数5.E1[2011·全国卷] A 【解析】 对A 项,若a >b +1,则a -b >1,则a >b ;若a >b ,不能得到a >b +1.对B 项,若a >b -1,不能得到a >b ;对C 项,若a 2>b 2,可得(a +b )(a -b )>0,不能得到a >b ;对D 项,若a 3>b 3,则a >b ,反之,若a >b ,则a 3>b 3,a 3>b 3是a >b 成立的充分必要条件,故选A.课标文数6.E1[2011·浙江卷] 若a ,b 为实数,则“0<ab <1”是“b <1a”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件课标文数6.E1[2011·浙江卷] D 【解析】 当0<ab <1,a <0,b <0时,有b >1a ;反过来b <1a,当a <0时,则有ab >1,∴“0<ab <1”是“b <1a”的既不充分也不必要条件.课标理数9.E2[2011·广东卷] 不等式|x +1|-|x -3|≥0的解集是________. 课标理数9.E2[2011·广东卷] {x |x ≥1} 【解析】 由|x +1|≥|x -3|两边平方得x 2+2x +1≥x 2-6x +9,即8x ≥8,解得x ≥1.课标理数4.E2[2011·山东卷] 不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7] B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞) 课标理数4.E2[2011·山东卷] D 【解析】 当|x -5|+|x +3|=10时,求出x 1=6,x 2=-4,画出数轴,显然当x ≥6或x ≤-4时,满足|x -5|+|x +3|≥10.课标理数1.A1,E3[2011·北京卷] 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( )A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞) 课标理数1.A1,E3[2011·北京卷] C 【解析】 由P ∪M =P ,可知M ⊆P ,而集合P ={x |-1≤x ≤1},所以-1≤a ≤1,故选C.课标文数1.A1,E3[2011·北京卷] 已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( ) A .(-∞,-1) B .(1,+∞) C .(-1,1)D .(-∞,-1)∪(1,+∞) 课标文数1.A1,E3[2011·北京卷] D 【解析】 因为集合P ={x |-1≤x ≤1},所以∁U P ={x |x <-1或x >1},故选D.课标文数6.E3[2011·福建卷] 若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 课标文数6.E3[2011·福建卷] C 【解析】 由方程x 2+mx +1=0有两个不相等的实数根,得Δ=m 2-4>0,解得m <-2或m >2,故选C.课标文数5.E3[2011·广东卷] 不等式2x 2-x -1>0的解集是( )A.⎝⎛⎭⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D.⎝⎛⎭⎫-∞,-12∪(1,+∞) 课标文数5.E3[2011·广东卷] D 【解析】 不等式2x 2-x -1>0化为(x -1)(2x +1)>0,解得x <-12或x >1,故选D.课标文数1.E3[2011·山东卷] 设集合M ={x |(x +3)(x -2)<0},N ={x |1≤x ≤3},则M ∩N =( )A .[1,2)B .[1,2]C .(2,3]D .[2,3] 课标文数1.E3[2011·山东卷] A 【解析】 由解不等式知识知M ={x |-3<x <2},又N ={x |1≤x ≤3},所以M ∩N ={x |1≤x <2}.课标文数6.E5[2011·安徽卷] 设变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x ≥0,则x +2y 的最大值和最小值分别为( )A .1,-1B .2,-2C .1,-2D .2,-1 课标文数6.E5[2011·安徽卷] B 【解析】 画出可行域(如图所示阴影部分).可知当直线u =x +2y 经过A (0,1),C (0,-1)时分别对应u 的最大值和最小值.故u max =2,u min =-2.大纲文数4.E5[2011·全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤6,x -3y ≤-2,x ≥1,则z =2x +3y 的最小值为( )A .17B .14C .5D .3 大纲文数4.E5[2011·全国卷] C 【解析】 通过约束条件画出可行域,可知z 的最小值为5,故选C.课标理数8.E5,F3[2011·福建卷] 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2] 课标理数8.E5,F3[2011·福建卷] C 【解析】 画出不等式组表示的平面区域(如图1-2), 又OA →·OM →=-x +y ,取目标函数z =-x +y ,即y =x +z ,作斜率为1的一组平行线,图1-2当它经过点C (1,1)时,z 有最小值,即z min =-1+1=0; 当它经过点B (0,2)时,z 有最大值,即z max =-0+2=2.∴ z 的取值范围是[0,2],即OA →·OM →的取值范围是[0,2],故选C.课标文数21.E5,C9[2011·福建卷] 设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.(1)若点P 的坐标为⎝⎛⎭⎫12,32,求f (θ)的值;(2)若点P (x ,y )为平面区域Ω:⎩⎪⎨⎪⎧x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值.课标文数21.E5,C9[2011·福建卷] 【解答】 (1)由点P 的坐标和三角函数的定义可得⎩⎨⎧sin θ=32,cos θ=12.于是f (θ)=3sin θ+cos θ=3×32+12=2. (2)作出平面区域Ω(即三角形区域ABC )如图1-7所示,其中A (1,0),B (1,1),C (0,1).图1-7于是0≤θ≤π2.又f (θ)=3sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π6, 且π6≤θ+π6≤2π3, 故当θ+π6=π2,即θ=π3时,f (θ)取得最大值,且最大值等于2;当θ+π6=π6,即θ=0时,f (θ)取得最小值,且最小值等于1.课标理数 5.E5[2011·广东卷] 已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .4 2B .3 2C .4D .3 课标理数5.E5图1-1[2011·广东卷] C 【解析】 z =OM →·OA →=(x ,y )·(2,1)=2x +y ,画出不等式组表示的区域(如图1-1),显然当z =2x +y 经过B (2,2)时,z 取最大值,即z max =2+2=4.课标文数 6.E5[2011·广东卷] 已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( )A .3B .4C .3 2D .4 2 课标文数6.E5图1-1[2011·广东卷] B 【解析】 z =OM →·OA →=(x ,y )·(2,1)=2x +y ,画出不等式组表示的区域(如图1-1),显然当z =2x +y 经过B (2,2)时,z 取最大值,即z max =2+2=4.课标理数8.E5[2011·湖北卷] 已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为( )A .[-2,2]B .[-2,3]C .[-3,2]D .[-3,3] 课标理数8.E5[2011·湖北卷] D 【解析】 因为a =()x +z ,3,b =()2,y -z ,且a ⊥b ,所以a·b =2()x +z +3()y -z =0,即2x +3y -z =0.又||x +||y ≤1表示的可行域如图中阴影部分所示(包含边界).图1-1所以当2x +3y -z =0过点B ()0,-1时,z min =-3;当2x +3y -z =0过点A ()0,1时,z max=3.所以z ∈[]-3,3.课标文数8.E5[2011·湖北卷] 直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个课标文数8.E5[2011·湖北卷] B 【解析】 画出不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20 表示的可行域,如图阴影部分所示(含边界).图1-1因为直线2x +y -10=0过点A ()5,0,且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点()5,0.课标理数7.E5[2011·湖南卷] 设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为( )A .(1,1+2)B .(1+2,+∞)C .(1,3)D .(3,+∞)课标理数7.E5[2011·湖南卷] A 【解析】 先画出约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1.表示的可行域,如图1-1.图1-1 直线x +y =1与y =mx 的交点为⎝⎛⎭⎫1m +1,m m +1.由图可知,当x =1m +1,y =mm +1时,目标函数z =x +my 有最大值小于2,则有1m +1+m ×mm +1<2,得1-2<m <1+ 2.又因为m >1,故m 的取值范围为1<m <1+2,故选A.课标文数14.E5[2011·湖南卷] 设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +5y 的最大值为4,则m 的值为________.课标文数14.E5[2011·湖南卷] 3 【解析】 先画出约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1表示的可行域:如右图1-3:图1-3 直线x +y =1与y =mx 的交点为⎝⎛⎭⎫1m +1,m m +1,得到当x =1m +1,y =mm +1时目标函数z=x +5y 有最大值4,则有1m +1+5×mm +1=4,得m =3.课标理数13.E5[2011·课标全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x +2y 的最小值为________.课标理数13.E5[2011·课标全国卷] -6 【解析】 作出可行域如图阴影部分所示, 由⎩⎪⎨⎪⎧y =-2x +3,y =x -9 解得A (4,-5). 当直线z =x +2y 过A 点时z 取最小值,将A (4,-5)代入, 得z =4+2×(-5)=-6.图1-6课标文数14.E5[2011·课标全国卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧3≤2x +y ≤9,6≤x -y ≤9,则z =x +2y 的最小值为_________________________________________________________________.课标文数14.E5[2011·课标全国卷] -6 【解析】 作出可行域如图阴影部分所示,由⎩⎪⎨⎪⎧y =-2x +3,y =x -9解得A (4,-5). 当直线z =x +2y 过A 点时z 取最小值,将A (4,-5)代入, 得z =4+2×(-5)=-6.图1-6课标文数7.E5[2011·山东卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≤0,x -y -2≤0,x ≥0,则目标函数z=2x +3y +1的最大值为( )A .11B .10C .9D .8.5图1-1图1-6课标文数12.E5[2011·陕西卷] 如图1-6所示,点(x ,y )在四边形ABCD 内部和边界上运动,那么2x -y 的最小值为________.课标文数12.E5[2011·陕西卷] 1 【解析】 由图象知函数在点A (1,1)时,2x -y =1;在点B (3,2)时,2x -y =23-2>1;在点C (5,1)时,2x -y =25-1>1;在点D (1,0)时,2x -y =2-0=2>1,故最小值为1.大纲文数10.E5[2011·四川卷] 某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元,派用的每辆乙型卡车需配1名工人,运送一次可得利润350元,该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( )A .4650元B .4700元C .4900元D .5000元 大纲文数10.E5[2011·四川卷] C 【解析】 设该公司合理计划当天派用甲、乙卡车的车辆数分别为x ,y ,则根据条件得x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,x ≤8,y ≤7,x ∈N *,y ∈N *,目标函数z =450x+350y -z .作出约束条件所表示的平面区域,然后平移目标函数对应的直线450x +350y -z =0知,当直线经过直线x +y =12与2x +y =19的交点(7,5)时,目标函数取得最大值,即z =450×7+350×5=4900.大纲理数9.E5[2011·四川卷] 某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车.某天需送往A 地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元,派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z =( )A .4650元B .4700元C .4900元D .5000元大纲理数9.E5[2011·四川卷] C 【解析】 设该公司合理计划当天派用甲、乙卡车的车辆数分别为x ,y ,则根据条件得x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +y ≤12,2x +y ≤19,10x +6y ≥72,x ≤8,y ≤7,x ∈N *,y ∈N *,目标函数z =450x+350y .作出约束条件所表示的平面区域,然后平移目标函数对应的直线450x +350y -z =0知,当直线经过直线x +y =12与2x +y =19的交点(7,5)时,目标函数取得最大值,即z =450×7+350×5=4900.课标文数2.E5[2011·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x -y 的最大值为( )A .-4B .0 C.43D .4课标文数 2.E5[2011·天津卷] D 【解析】 作出可行域,如图1-1所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =2,y =2. 当目标函数z =3x -y 移至(2,2)时,z =3x -y 有最大值4.图1-1课标理数5.E 5[2011·浙江卷] 设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0,若x ,y 为整数,则3x +4y 的最小值是( )A .14B .16C .17D .19 课标理数5.E5[2011·浙江卷] B 【解析】 可行域如图所示:图1-3联立⎩⎪⎨⎪⎧ x +2y -5=0,2x +y -7=0,解之得⎩⎪⎨⎪⎧x =3,y =1.又∵边界线为虚线,且目标函数线的斜率为-34,∴当z =3x +4y 过点(4,1)时,有最小值16.课标文数3.E5[2011·浙江卷] 若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5≥0,2x +y -7≥0,x ≥0,y ≥0,则3x +4y 的最小值是( )A .13B .15C .20D .28 课标文数3.E5[2011·浙江卷] A 【解析】 可行域如图阴影部分所示.联立⎩⎪⎨⎪⎧ x +2y -5=0,2x +y -7=0,解之得⎩⎪⎨⎪⎧x =3,y =1.∴当z =3x +4y 过点(3,1)时,有最小值13.课标文数7.B10,E6[2011·北京卷] 某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件 课标文数7.B10,E6[2011·北京卷] B 【解析】 记平均到每件产品的生产准备费用与仓储费用之和为f (x ),则f (x )=800+x8×x ×1x =800x +x 8≥2800x ×x 8=20,当且仅当800x =x8,即x=80件(x >0)时,取最小值,故选B.课标文数10.B12,E6[2011·福建卷] 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9 课标文数10.B12,E6[2011·福建卷] D 【解析】 f ′(x )=12x 2-2ax -2b , ∵f (x )在x =1处有极值,∴f ′(1)=0,即12-2a -2b =0,化简得 a +b =6, ∵a >0,b >0,∴ab ≤⎝⎛⎭⎫a +b 22=9,当且仅当a =b =3时,ab 有最大值,最大值为9,故选D.课标理数10.N4,E6[2011·湖南卷] 设x ,y ∈R ,且xy ≠0,则⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2的最小值为________.课标理数10.N4,E6[2011·湖南卷] 9 【解析】 方法一:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=1+4x 2y 2+1x 2y 2+4≥5+24x 2y 2×1x 2y 2=9,当且仅当4x 2y 2=1x 2y2时,“=”成立.方法二:利用柯西不等式:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2≥⎝⎛⎭⎫x ×1x +1y ×2y 2=9,当且仅当4x 2y 2=1x 2y2时,等号成立.课标文数3.E6[2011·陕西卷] 设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b2<bC .a <ab <b <a +b 2 D.ab <a <a +b2<b课标文数3.E6[2011·陕西卷] B 【解析】 因为0<a <b ,由基本不等式得ab <a +b2,a <b ,故a +b 2<b +b 2=b ,a =aa <ab ,故答案为B.课标理数16.E6[2011·浙江卷] 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.课标理数16.E6[2011·浙江卷] 2105【解析】 ∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,即(2x +y )2-32·2xy =1,∴(2x +y )2-32·⎝⎛⎭⎫2x +y 22≤1,解之得(2x +y )2≤85,即2x +y ≤2105.课标文数16.E6[2011·浙江卷] 若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是________.课标文数16.E6[2011·浙江卷] 233【解析】 ∵x 2+y 2+xy =1,∴(x +y )2-xy =1,即(x +y )2-⎝⎛⎭⎫x +y 22≤1,∴(x +y )2≤43,x +y ≤233.大纲理数7.E6[2011·重庆卷] 已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是( ) A.72B .4 C.92D .5大纲理数7.E6[2011·重庆卷] C 【解析】 1a +4b =12(a +b )1a +4b =125+b a +4a b ≥125+2b a ·4ab=92. 当且仅当⎩⎪⎨⎪⎧b a =4a b ,a +b =2即a =23,b =43时取到等号.∴y min =92.大纲文数7.E6[2011·重庆卷] 若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( )A .1+ 2B .1+ 3C .3D .4大纲文数7.E6[2011·重庆卷] C 【解析】 ∵x >2,∴f (x )=x +1x -2=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.大纲文数15.E6[2011·重庆卷] 若实数a ,b ,c 满足2a +2b =2a +b,2a +2b +2c =2a +b +c ,则c的最大值是_____________________________________________________________________.大纲文数15.E6[2011·重庆卷] 2-log 23 【解析】 2a +b =2a +2b ≥22a +b ,当且仅当a =b 时,2a +b ≥4取“=”.由2a +2b +2c =2a +b +c 得2a +b +2c =2a +b ·2c ,∴2c=2a +b 2a b -1=1+12a b -1≤1+14-1=43,故c ≤log 243=2-log 23.课标文数20.D5,E7[2011·广东卷]设b >0,数列{a n }满足a 1=b ,a n =nba n -1a n -1+n -1(n ≥2).(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n,2a n ≤b n +1+1.课标文数20.D5,E7[2011·广东卷] 【解答】 (1)由a 1=b >0,知a n =nba n -1a n -1+n -1>0,n a n =1b +1b ·n -1a n -1. 令A n =n a n ,A 1=1b,当n ≥2时,A n =1b +1bA n -1=1b +...+1b n -1+1b n -1A 1 =1b + (1)n -1+1b n . ①当b ≠1时,A n =1b ⎝⎛⎭⎫1-1b n 1-1b=b n -1b n (b -1),②当b =1时,A n =n .∴a n =⎩⎪⎨⎪⎧nb n(b -1)b n -1,b ≠1,1, b =1.(2)证明:当b ≠1时,欲证2a n =2nb n (b -1)b n -1≤b n +1+1,只需证2nb n ≤(b n +1+1)b n -1b -1.∵(b n +1+1)b n -1b -1=b 2n +b 2n -1+…+b n +1+b n -1+b n -2+…+1=b n ⎝⎛⎭⎫b n +1b n +b n -1+1b n 1+…+b +1b>b n(2+2+…+2) =2nb n ,∴2a n =2nb n (b -1)b n-1<1+b n +1. 当b =1时,2a n =2=b n +1+1.综上所述2a n ≤b n +1+1.大纲理数22.B12,E8[2011·全国卷] (1)设函数f (x )=ln(1+x )-2xx +2,证明:当x >0时,f (x )>0;(2)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为p .证明:p <⎝⎛⎭⎫91019<1e 2.大纲理数22.B12,E8[2011·全国卷] 【解答】 (1)f ′(x )=x 2(x +1)(x +2)2.当x >0时,f ′(x )>0,所以f (x )为增函数,又f (0)=0.因此当x >0时,f (x )>0.(2)p =100×99×98×…×8110020.又99×81<902,98×82<902,…,91×89<902,所以p <⎝⎛⎭⎫91019.由(1)知:当x >0时,ln(1+x )>2xx +2.因此,⎝⎛⎭⎫1+2x ln(1+x )>2. 在上式中,令x =19,则19ln 109>2,即⎝⎛⎭⎫10919>e 2. 所以p <⎝⎛⎭⎫91019<1e 2.课标文数22.B12,E8[2011·湖南卷] 设函数f (x )=x -1x-a ln x (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1和x 2,记过点A (x 1,f (x 1)),B (x 2,f (x 2))的直线的斜率为k .问:是否存在a ,使得k =2-a ?若存在,求出a 的值;若不存在,请说明理由.课标文数22.B12,E8[2011·湖南卷] 【解答】 (1)f (x )的定义域为(0,+∞).f ′(x )=1+1x 2-a x =x 2-ax +1x 2.令g (x )=x 2-ax +1,其判别式Δ=a 2-4.①当|a |≤2时,Δ≤0,f ′(x )≥0.故f (x )在(0,+∞)上单调递增. ②当a <-2时,Δ>0,g (x )=0的两根都小于0. 在(0,+∞)上,f ′(x )>0.故f (x )在(0,+∞)上单调递增.③当a >2时,Δ>0,g (x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42.当0<x <x 1时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 故f (x )分别在(0,x 1),(x 2,+∞)上单调递增,在(x 1,x 2)上单调递减. (2)由(1)知,a >2.因为f (x 1)-f (x 2)=(x 1-x 2)+x 1-x 2x 1x 2-a (ln x 1-ln x 2),所以,k =f (x 1)-f (x 2)x 1-x 2=1+1x 1x 2-a ·ln x 1-ln x 2x 1-x 2.又由(1)知,x 1x 2=1,于是k =2-a ·ln x 1-ln x 2x 1-x 2.若存在a ,使得k =2-a ,则ln x 1-ln x 2x 1-x 2=1.即ln x 1-ln x 2=x 1-x 2.亦即x 2-1x 2-2ln x 2=0(x 2>1).(*)再由(1)知,函数h (t )=t -1t -2ln t 在(0,+∞)上单调递增,而x 2>1,所以x 2-1x 2-2ln x 2>1-11-2ln1=0.这与(*)式矛盾.故不存在a ,使得k =2-a .课标文数21.B12,E8[2011·陕西卷] 设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值;(2)讨论g (x )与g ⎝⎛⎭⎫1x 的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.课标文数21.B12,E8[2011·陕西卷] 【解答】 (1)由题设知f (x )=ln x ,g (x )=ln x +1x.∴g ′(x )=x -1x2.令g ′(x )=0得x =1,当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调增区间, 因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点. 所以g (x )的最小值为g (1)=1.(2)g ⎝⎛⎭⎫1x =-ln x +x .设h (x )=g (x )-g ⎝⎛⎭⎫1x =2ln x -x +1x, 则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g ⎝⎛⎭⎫1x ,当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0. 因此,h (x )在(0,+∞)内单调递减, 当0<x <1时,h (x )>h (1)=0.即g (x )>g ⎝⎛⎭⎫1x .当x >1时,h (x )<h (1)=0,即g (x )<g ⎝⎛⎭⎫1x .(3)由(1)知g (x )的最小值为1,所以,g (a )-g (x )<1a ,对任意x >0成立⇔g (a )-1<1a,即ln a <1,从而得0<a <e. 课标理数19.E9[2011·安徽卷](1)设x ≥1,y ≥1,证明x +y +1xy ≤1x +1y+xy .(2)1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . 课标理数19.E9[2011·安徽卷] 【解析】 本题考查不等式的基本性质,对数函数的性质和对数换底公式等基本知识,考查代数式的恒等变形能力和推理论证能力.【解答】 (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y+xy⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1) =(xy -1)(xy -x -y +1) =(xy -1)(x -1)(y -1).既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0,从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得log c a =1xy ,log b a =1x ,log c b =1y,log a c =xy .于是,所要证明的不等式即为x +y +1xy ≤1x +1y+xy .其中x =log a b ≥1,y =log b c ≥1.故由(1)立知所要证明的不等式成立.课标理数21.B12,E9[2011·湖北卷](1)已知函数f (x )=ln x -x +1,x ∈(0,+∞),求函数f (x )的最大值; (2)设a k ,b k (k =1,2,…,n )均为正数,证明:①若a 1b 1+a 2b 2+…+a n b n ≤b 1+b 2+…+b n ,则ab 11ab 22…ab nn ≤1;②若b 1+b 2+…+b n =1,则1n ≤bb 11bb 22…bb nn ≤b 21+b 22+…+b 2n . 课标理数21.B12,E9[2011·湖北卷] 【解答】(1)f (x )的定义域为(0,+∞),令f ′(x )=1x-1=0,解得x =1,当0<x <1时,f ′(x )>0,f (x )在(0,1)内是增函数; 当x >1时,f ′(x )<0,f (x )在(1,+∞)内是减函数. 故函数f (x )在x =1处取得最大值f (1)=0.(2)证明:①由(1)知,当x ∈(0,+∞)时,有f (x )≤f (1)=0,即ln x ≤x -1. ∵a k ,b k >0,从而有ln a k ≤a k -1,得b k ln a k ≤a k b k -b k (k =1,2,…,n ), 求和得∑k =1nln ab kk ≤∑k =1na kb k -∑k =1nb k ,∵∑k =1n a k b k ≤∑k =1n b k ,∴∑k =1nln ab kk ≤0,即ln(ab 11ab 22…ab nn )≤0,∴ab 11ab 22…ab nn ≤1.②(i)先证bb 11bb 22…bb nn ≥1n ,设a k =1nb k(k =1,2,…,n ),则∑k =1n a k b k =∑k =1n 1n =1=∑k =1n b k ,于是由①得⎝⎛⎭⎫1nb 1b 1⎝⎛⎭⎫1nb 2b 2…⎝⎛⎭⎫1nb n b n ≤1,即1bb 11bb 22…bb nn≤nb 1+b 2+…+b n =n ,∴bb 11bb 22…bb nn ≥1n.(ii)再证bb 11bb 22…bb nn ≤b 21+b 22+…+b 2n , 记S =∑k =1nb 2k ,设a k =b k S (k =1,2,…,n ),则∑k =1n a k b k =1S ∑k =1nb 2k=1=∑k =1n b k , 于是由①得⎝⎛⎭⎫b 1S b 1⎝⎛⎭⎫b 2S b 2…⎝⎛⎭⎫b n S b n ≤1, 即bb 11bb 22…bb nn ≤Sb 1+b 2+…+b n =S ,∴bb 11bb 22…bb nn ≤b 21+b 22+…+b 2n . 综合(i)(ii),②得证.课标文数20.B12,E9[2011·湖北卷] 设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l .(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f (x )+g (x )=mx 有三个互不相同的实根0、x 1、x 2,其中x 1<x 2,且对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立,求实数m 的取值范围.课标文数20.B12,E9[2011·湖北卷] 【解答】 (1)f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3. 由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线, 故有f (2)=g (2)=0,f ′(2)=g ′(2)=1.由此得⎩⎪⎨⎪⎧ 8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. (2)由(1)得f (x )=x 3-4x 2+5x -2, 所以f (x )+g (x )=x 3-3x 2+2x .依题意,方程x (x 2-3x +2-m )=0有三个互不相同的实根0、x 1、x 2, 故x 1、x 2是方程x 2-3x +2-m =0的两相异的实根.所以Δ=9-4(2-m )>0,即m >-14.又对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立.特别地,取x =x 1时,f (x 1)+g (x 1)-mx 1<-m 成立,得m <0. 由韦达定理,可得x 1+x 2=3>0,x 1x 2=2-m >0, 故0<x 1<x 2.对任意的x ∈[x 1,x 2],有x -x 2≤0,x -x 1≥0,x >0, 则f (x )+g (x )-mx =x (x -x 1)(x -x 2)≤0, 又f (x 1)+g (x 1)-mx 1=0,所以函数f (x )+g (x )-mx 在x ∈[x 1,x 2]的最大值为0.于是当-14<m <0时,对任意的x ∈[x 1,x 2],f (x )+g (x )<m (x -1)恒成立.综上,m 的取值范围是⎝⎛⎭⎫-14,0. 大纲理数10.E9[2011·重庆卷] 设m ,k 为整数,方程mx 2-kx +2=0在区间(0,1)内有两个不同的根,则m +k 的最小值为( )A .-8B .8C .12D .13 大纲理数10.E9[2011·重庆卷] D 【解析】 设f (x )=mx 2-kx +2,由f (0)=2,知f (x )的图象恒过定点(0,2).因此要使已知方程在区间(0,1)内有两个不同的根,即f (x )的图象在区间(0,1)内有两个不同的交点,必有⎩⎪⎨⎪⎧m >0,f (1)=m -k +2>0,0<k2m <1,Δ=k 2-8m >0,即⎩⎪⎨⎪⎧m >0,k >0,m -k +2>0,2m -k >0,k 2-8m >0,在直角坐标系mOk 中作出满足不等式平面区域,如图1-4所示,设z =m +k ,则直线m+k -z =0经过图中的阴影中的整点(6,7)时,z =m +k 取得最小值,即z min =13.图1-4[2011·金堂月考] 设a,b∈R,若a-|b|>0,则下列不等式中正确的是()A.b-a>0 B.a3+b3<0C.b+a>0 D.a2-b2<0[2011·黄冈质检] 已知x>y>z,且x+y+z=0,下列不等式中成立的是()A.xy>yzB.xz>yzC.xy>xzD.x|y|>z|y|[2011·新都一中月考] 下列四个不等式:①a<0<b;②b<a<0;③b<0<a;④0<b<a,其中能使1a<1b成立的充分条件有__________.[2011·浠水模拟] 不等式x2-x-6x-1>0的解集为()A.{x|x<-2或x>3}B.{x|x<-2或1<x<3}C.{x|-2<x<1或x>3}D.{x|-2<x<1或1<x<3}[2011·湖南师大附中月考] 不等式4x-3·2x+2<0的解集是__________.[2011·四川金堂中学月考] 下列不等式的证明过程正确的是 ( )A .若a 、b ∈R ,则b a +a b ≥2b a ·ab =2B .若a ∈R -,则a +4a ≥-2a ·4a=-4C .若a 、b ∈R +,则lg a +lg b ≥2lg a lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2[2011·重庆模拟] 设x ,y ∈R ,a >1,b >1,若a x =b y =2,2a +b =8,则1x +1y的最大值为__________.[2011·北京`西城一模] 已知平面区域Ω=⎩⎪⎨⎪⎧⎪⎪⎪(x ,y )⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ≤x +1,y ≥0,x ≤1, M =⎩⎪⎨⎪⎧⎪⎪⎪(x ,y )⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ≤-|x |+1,y ≥0,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为( )A.14B.13 C.12 D.23。
2012年高考真题——理科数学试题及答案(天津卷、山东卷、上海卷、全国新课标卷、大纲版)解析版
2012年普通高等学校招生全国统一考试(天津卷)数 学 (理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数ii+-37= (A ) 2 + i (B )2 – i (C )-2 + i (D )-2 – i【解析】复数i ii i i i i i -=-=+---=+-2101020)3)(3()3)(7(37,选B. 【答案】B(2)设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.【答案】A(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为(A )-1 (B )1 (C )3 (D )9【解析】第一次循环,415125=-=--=x ,第二次循环11214=-=-=x ,第三次循环不满足条件输出3112=+⨯=x ,选C.【答案】C(4)函数22)(3-+=x x f x在区间(0,1)内的零点个数是 (A )0 (B )1 (C )2 (D )3【解析】因为函数22)(3-+=x x f x的导数为032ln 2)('2≥+=x x f x,所以函数22)(3-+=x x f x 单调递增,又0121)0(<-=-=f ,01212)1(>=-+=f ,所以根据根的存在定理可知在区间)1,0(内函数的零点个数为1个,选B. 【答案】B(5)在52)12(xx -的二项展开式中,x 的系数为(A )10 (B )-10 (C )40 (D )-40【解析】二项展开式的通项为k k k k k k kk x C xx C T )1(2)1()2(310555251-=-=---+,令1310=-k ,解得3,93==k k ,所以x x C T 40)1(232354-=-=,所以x 的系数为40-,选D.【答案】D(6)在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【解析】因为B C 2=,所以B B B C cos sin 2)2sin(sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821sin 2sin cos =⨯==B C B 。
2012年高考真题理科数学解析汇编:不等式.pdf
一、学习目标 1、懂得学好各门学科、全面打好基础以及参加社会生活和社会实践的重要意义。
2、能根据学科特点和个人实际选择学习方法,提高学习效率;开阔眼界,学习通过多种渠道获得知识。
3、学会发挥个人特长,培养多方面的兴趣;积极参加社会生活和社会实践,在生活和实践中增长才干。
二、学习重难点 重点:兼顾全面基础与学科特长 难点:从社会生活和社会实践中学习 三、体验学习 (二)小组合作总结 小强向学习成绩好的小明和小丽请教学英语的好方法。
小明说:“早晨七点背单词记的最牢。
”小丽说:“错了,晚上八点才最好。
”小强迷惑了,为什么两个人的方法不一样,究竟谁的才是最好的?他该怎么做? 四、快乐链接 进入初中后,李明的数学成绩越来越好,语文成绩却下降了。
妈妈问他原因,他说数学老师讲课很有意思,他很喜欢,而语文老师的上课方式他不太喜欢,上语文课的时候就不想听,慢慢地对语文也没什么兴趣了。
想一想:①李明是以什么标准来确定 自己的学习喜好? ②如果李明这样继续下去,会有什么后果? ③在你的学习中,有类似的情况吗?如果你是李明,你会如何去学习你不感兴趣的学科? ④作为李明的同龄人,你觉得中学阶段的我们可以仅凭自己的喜好来决定学或不学或用不用功学哪门课吗?(结合课本30页“比尔.盖茨的建议”谈启示) 五、自主检测 1.王博认为:在初中的学习中,语文、数学、英语是主课,必须学好,其他学科是辅科,可以少花时间,及格即可。
对此认识正确的是( ) A.这是科学的学习方法 B.这不利于我们的全面发展 C.主次分明,以主带辅,共同提高 D.有利于培养起学习语、数、外的兴趣 2.初一学生小华决定利用假期参加义工组织的活动。
通过这种方式体验社会生活,可以( ) ①把课堂学到的理论知识与社会实践联系起来,加深对课堂的理解 ②能培养和锻炼小华的实践能力 ③早日独立,摆脱父母的管教 ④培养小华的社会责任感A. ①②③B. ②③④C. ①③④D. ①②④ 3.阿强觉得一个人独自学习效果好,而小伟觉得与伙伴一起学习效果更好;小丽在周围同学说话的时候也能看书,而阿华却做不到。
2012年高考数学试题分类汇编第八部分不等式
第八部分 不等式(2012湖南卷文)7 . 设 a >b >1,0c < ,给出下列三个结论: ①c a >c b;② c a <cb ; ③ log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__.A .① B.① ② C.② ③ D.① ②③ 【答案】D【解析】由不等式及a >b >1知11a b <,又0c <,所以c a >cb,①正确;由指数函数的图像与性质知②正确;由a >b >1,0c <知11a c b c c ->->->,由对数函数的图像与性质知③正确.1. (2012年福建卷理下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 2. (2012年福建卷理若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21B .1C .23D .2(2012年广东卷理)5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1(2012年安徽文)(8)若x ,y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则y x z -=的最小值是(A ) -3 (B )0 (C ) 32(D )3 【解析】选A【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-(2012年山东卷文)(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(2012年广东卷理)9.不等式|2|||1x x +-≤的解集为___________. (2012年山东卷理)(13)若不等式的解集为,则实数k=__________。
2012年全国统一高考数学试卷(理科)(新课标)(含解析版)
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年高考真题——理科数学(新课标卷)解析版(1)
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( ) 【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-【解析】选C1i-+,1:p z =,22:2p z i =,3:p z 的共轭复数为4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( ) 【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) 【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) 【解析】选B该几何体是三棱锥,底面是俯视图,高为3此几何体的体积为11633932V =⨯⨯⨯⨯= (8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( ) 【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考真题——理科数学(全国卷)Word版
2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A={1.3. m},B={1,m} ,A B=A, 则m=A 0或3B 0或3C 1或3D 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=22E为CC1的中点,则直线AC1与平面BED的距离为A 2B 3C 2D 1(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B)(C)(D)(7)已知α为第二象限角,sinα+sinβ=33,则cos2α=(A)5-3(B)5-9(C)59(D)53(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。
2012年高考真题——理科数学(全国卷)Word版含答案
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1A =,{1,}B m =,AB A =,则m = (A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100 (6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b - (7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A)3- (B)9- (C)9 (D)3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
2012年高考试题分类汇编(不等式)
2012年高考试题分类汇编(不等式)考点1 不等式的基本性质1.(2012·湖南卷·文科)设1a b >>,0c <,给出下列三个结论 ①c ca b > ②c c a b < ③log ()log ()b a a c b c ->- 其中所有的正确结论的序号是A.①B.①②C.②③D.①②③ 2.(2012·四川卷·文科)设,a b 为正实数,现有下列命题:①若221a b -=,则1a b -<; ②若111b a-=,则1a b -<;1=,则1a b -<; ④若331a b -=,则1a b -<. 其中的真命题有_______.(写出所有真命题的编号)考点2 解不等式或证明不等式考法1 一元二次不等式1.(2012·课标全国卷·文科)已知集合{}220A x x x =--<,{}11B x x =-<<,则A.A B ⊂B.B A ⊂C.A B =D.A B =∅I2.(2012·浙江卷·理科)设集合{}14A x x =<<,集合{}2230B x x x =--≤,则()R A C B =A.(1,4)B.(3,4)C.(1,3)D.(1,2)(3,4) 3.(2012·北京卷·文理)已知集合{}320A x R x =∈+>,{(1)(3)B x R x x =∈+-0}>,则A B =A.(),1-∞-B.2(1)3--,C.2(,3)3- D.(3)+∞, 4.(2012·湖南卷·理科)设集合{}1,0,1M =-,{}2N x x x =≤,则M N =A.{}0B.{}0,1C.{}1,1-D.{}1,0,1- 5.(2012·陕西卷·理科)集合{lg 0}M x x =>,2{4}N x x =≤,则M N =A.()12,B.[)12,C.(]12,D.[]12,6.(2012·江西卷·文科)若全集{}24U x R x =∈≤,则{}11A x R x =∈+≤的补集U C A =A.{}02x R x ∈<<B.{}02x R x ∈≤<C.{}02x R x ∈<≤D.{}02x R x ∈≤≤7.(2012·福建卷·文科)已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围___. 考法2 含有绝对值符合的不等式1.(2012·天津卷·文科)集合{25}A x R x =∈-<中的最小整数为 .2.(2012·山东卷·理科)若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =_______.3.(2012·天津卷·理科)已知集合{23}A x R x =∈+<,集合{()(2)0}B x R x m x =∈--<,且(1,)A B n =-则m =______,n =________. 4.(2012·广东卷·理科)不等式21x x +-≤的解集为_____. 5.(2012·湖南卷·理科)不等式21210x x +-->的解集为_______. 6.(2012·江西卷·理科)在实数范围内,不等式21216x x -++≤的解集为 . 7.(2012·陕西卷·理科)若存在实数x 使13x a x -+-≤成立,则实数a 的取值范围是 . 考法3 分式不等式1.(2012·重庆卷·理科)不等式0121≤+-x x 的解集为 A.1(,1]2- B.1[,1]2- C.1(,)[1,)2-∞-+∞ D.1(,][1,)2-∞-+∞2.(2012·重庆卷·文科)不等式102x x -<+的解集为 A.(1,)+∞ B.(,2)-∞- C.(2,1)- D.(,2)(1,)-∞-+∞3.(2012·江西卷·文科)不等式2902x x ->-的解集是_______.考法4 数的大小比较1.(2012·全国大纲卷·文理)已知ln x π=,5log 2y = , 12z e -=,则 A.x y z << B.z x y << C.z y x << D.y z x <<2.(2012·重庆卷·文科)已知22log 3log a =+22log 9log b =-3log 2c =, 则,,a b c 的大小关系是A.a b c =<B.a b c =>C.a b c <<D.a b c >>考点3 基本不等式1.(2012·福建卷·理科)下列不等式一定成立的是A.21lg()lg (0)4x x x +>>B.1sin 2 (,)sin x x k k z xπ+≥≠∈ C.212 ()x x x R +≥∈ D.211 ()1x R x >∈+ 2.(2012·陕西卷·文科)小王从甲地到乙地的时速分别为a 和b (a b <),其 全程的平均时速为v ,则A.a v <v =v <2a b + D.2a bv +=3.(2012·北京卷·文科)已知{}n a 为等比数列,下面结论中正确的是 A.1322a a a +≥ B.2221322a a a +≥ C.若13a a =,则12a a = D.若31a a >,则42a a >4.(2012·陕西卷·理科)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值B. 2C. 12D. 12-考点4 线性规划1.(2012·课标全国卷·理科)设,x y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为_______.2.(2012·山东卷·理科)设变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是A.3[,6]2-B.3[,1]2--C.[16]-,D.3[6]2-, 3.(2012·安徽卷·文理)若,x y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x 则x y -的取值范围 .4.(2012·天津卷·文科)设变量,x y 满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则32z x y=-的最小值为A.-5B.-4C.-2D.35.(2012·全国大纲卷·文理)若,x y 满足约束条件⎪⎩⎪⎨⎧≥-+≤-+≥+-0330301y x y x y x ,则3z x y=-的最小值为_____.6.(2012·广东卷·理科)已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A.12B.11C.3D.-17.(2012·广东卷·文科)已知变量,x y 满足约束条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最大值为A.3B.1C.5-D.6-8.(2012·浙江卷·文科)设2z x y =+,其中实数,x y 满足102000x y x y x y -+≥⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,则z 的取值范围是__ _.9.(2012·辽宁卷·理科)设变量,x y 满足10020015x y x y y -≤⎧⎪≤+≤⎨⎪≤≤⎩,则23x y +的最大值为A.20B.35C.45D.55 10.(2012·福建卷·理科)若函数2x y =图像上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的最大值为 A .12 B.1 C.32D.2。
2012年高考真题理科数学解析汇编:不等式
2012年高考真题理科数学解析汇编:不等式一、选择题1 .(2012年高考(重庆理))设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( )A .34π B .35πC .47π D .2π2 .(2012年高考(重庆理))不等式0121≤+-x x 的解集为 ( )A .⎥⎦⎤ ⎝⎛-1,21B .⎥⎦⎤⎢⎣⎡-1,21C .[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121.D .[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121,3 .(2012年高考(四川理))某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是 ( ) A .1800元 B .2400元 C .2800元 D .3100元4 .(2012年高考(山东理))已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是( )A .3[,6]2-B .3[,1]2--C .[1,6]-D .3[6,]2-5 .(2012年高考(辽宁理))若[0,)x ∈+∞,则下列不等式恒成立的是 ()A .21x e x x ++ B211124x x <-+C .21cos 12x x -D .21ln(1)8x x x +-6 .(2012年高考(辽宁理))设变量x,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为 ( )A .20B .35C .45D .557 .(2012年高考(江西理))某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 年产量/亩 年种植成本/亩每吨售价黄瓜 4吨 1.2万元 0.55万元 韭菜 6吨 0.9万元 0.3万元 为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为 ( ) A .50,0 B .30.0 C .20,30 D .0,50 8 .(2012年高考(湖北理))设,,,,,a b c x y z 是正数,且22210a b c ++=,22240x y z ++=,20ax by cz ++=,则a b cx y z++=++( )A .14B .13C .12D .349 .(2012年高考(广东理))已知变量x 、y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y=+的最大值为 ( )A .12B .11C .3D .1-10.(2012年高考(福建理))若函数2x y =图像上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪⎪--≤⎨⎪≥⎪⎩,则实数m 的最大值为 ( )A .12 B .1 C .32D .2 11.(2012年高考(福建理))下列不等式一定成立的是 ( )A .21lg()lg (0)4x x x +>>B .1sin 2(,)sin x x k k Z xπ+≥≠∈ C .212||()x x x R +≥∈ D .211()1x R x >∈+ 12.(2012年高考(大纲理))已知125ln ,log 2,x y z e π-===,则( )A .x y z <<B .z x y <<C .z y x <<D .y z x <<二、填空题13.(2012年高考(新课标理))设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y=-的取值范围为_________ 14.(2012年高考(浙江理))设a ∈R,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 15.(2012年高考(上海春))若不等式210x kx k -+->对(1,2)x ∈恒成立,则实数k 的取值范围是______.16.(2012年高考(陕西理))设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为___________.17.(2012年高考(陕西理))观察下列不等式213122+<; 231151233++<; 222111712344+++<…… 照此规律,第五个...不等式为________________________________________. 18.(2012年高考(江苏))已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是____.19.(2012年高考(江苏))已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为____.20.(2012年高考(大纲理))若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y=-的最小值为_________________.21.(2012年高考(安徽理))若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____2012年高考真题理科数学解析汇编:不等式参考答案一、选择题1. 【答案】D [来源:21世纪教育网]【考点定位】本小题主要考查二元一次不等式(组)与平面区域,圆的方程等基础知识,考查运算求解能力,考查数形结合思想,化归与转化思想,属于基础题.2. 【答案】A【解析】(1)(21)01101212210x x x x x x -+≤⎧-⎪≤⇒⇒<≤⎨++≠⎪⎩【考点定位】本题主要考查了分式不等式的解法,解题的关键是灵活运用不等式的性质,属于基础试题,属基本题. 3. [答案]C[解析]设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得 利润为Z 元/天,则由已知,得 Z=300X+400Y且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X 画可行域如图所示,目标函数Z=300X+400Y 可变形为Y=400z x 43+- 这是随Z 变化的一族平行直线解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ⎩⎨⎧==∴4y 4x 即A(4,4) 280016001200max =+=∴Z[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).4. 【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A.5. 【答案】C【解析】设2211()cos (1)cos 122f x x x x x =--=-+,则()()sin ,g x f x x x '==-+所以()cos 10g x x '=-+≥,所以当[0,)x ∈+∞时,()()()(0)0,g x g x f x g '==为增函数,所以≥同理21()(0)0cos (1)02f x f x x =∴--≥,≥,即21cos 12x x -,故选C【点评】本题主要考查导数公式,以及利用导数,通过函数的单调性与最值来证明不等式,考查转化思想、推理论证能力、以及运算能力,难度较大. 6. 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D 【点评】本题主要考查简单线性规划问题,难度适中.该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值. 21世纪教育网 7. B 【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力.设黄瓜和韭菜的种植面积分别为x,y 亩,总利润为z 万元,则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+.线性约束条件为50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组50,43180,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩表示的可行域,易求得点()()()0,50,30,20, 0,45A B C . [来源:21世纪教育网]平移直线0.9z x y =+,可知当直线0.9z x y =+经过点()30,20B ,即30,20x y ==时,z 取得最大值,且max 48z =(万元).故选B.【点评】解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;(4)作答——就应用题提出的问题作出回答.体现考纲中要求会从实际问题中抽象出二元线性规划.来年需要注意简单的线性规划求最值问题.8. 考点分析:本题主要考察了柯西不等式的使用以及其取等条件.解析:由于222222)())((2cz by ax z y x c b a ++≥++++ 等号成立当且仅当,t zc y b x a ===则a=t x b=t y c=tz ,10)(2222=++z y x t 所以由题知2/1=t ,又2/1,==++++++++===t zy x c b a z y x c b a z c y b x a 所以,答案选C. 9. 解析:B.画出可行域,可知当代表直线过点A 时,取到最大值.联立21y y x =⎧⎨=-⎩,解得32x y =⎧⎨=⎩,所以3z x y =+的最大值为11.10. 【答案】B【解析】30x y +-=与2y x =的交点为(1,2),所以只有1m ≤才能符合条件,B 正确.【考点定位】本题主要考查一元一次不等式组表示平面区域,考查分析判断能力、逻辑推理能力和求解计算能力. [来源:21世纪教育网]11. 【答案】C【解析】由基本不等式得212||()x x x R +≥∈,答案C 正确.【考点定位】此题主要考查基本不等式和均值不等式成立的条件和运用,考查综合运用能力,掌握基本不等式的相关内容是解本题的关键. 21世纪教育网12.答案D【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法.【解析】ln ln 1e π>=,551log 2log 52<=,12124z e e -==>=,故选答案D.二、填空题13. 【解析】2z x y =-的取值范围为[3,3]-约束条件对应四边形OABC 边际及内的区域:(0,0),(0,1),(1,2),(3,0)O A B C 则2[3,3]z x y =-∈-14. 【解析】本题按照一般思路,则可分为一下两种情况:(A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,—1). 21世纪教育网 考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:302a or=,舍去0a =,得答案:32a =. 【答案】32a = 15. (,2]-∞16.解析:1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x ,围成的封闭区域为三角形,2z x y =-在点(0,1)处取得最大值2. 17.解析:第五个...不等式为2222211111111234566+++++< 18. 【答案】[] 7e ,.【考点】可行域.【解析】条件4ln 53ln b c a a c c c a c b -+-≤≤≥,可化为:354a c a b c c a bc cb e c⎧⋅+≥⎪⎪⎪+≤⎨⎪⎪⎪≥⎩.设==a b x y c c,,则题目转化为:已知x y ,满足35400xx y x y y ex >y >+≥⎧⎪+≤⎪⎨≥⎪⎪⎩,,求y x 的取值范围. 作出(x y ,)所在平面区域(如图).求出=x y e 的切线的斜率e ,设过切点()00P x y ,的切线为()=0y ex m m +≥, 则00000==y ex m m e x x x ++,要使它最小,须=0m . ∴yx的最小值在()00P x y ,处,为e .此时,点()00P x y ,在=x y e 上,A B 之间. 当(x y ,)对应点C 时, =45=205=7=7=534=2012y x y x yy x y x y xx --⎧⎧⇒⇒⇒⎨⎨--⎩⎩,∴y x 的最大值在C 处,为7.∴y x 的取值范围为[] 7e ,,即b a的取值范围是[] 7e ,. 19. 【答案】9.【考点】函数的值域,不等式的解集.【解析】由值域为[0)+∞,,当2=0x ax b ++时有240a b =-=,即24a b =,∴2222()42a a f x x ax b x ax x ⎛⎫=++=++=+ ⎪⎝⎭.∴2()2a f x x c ⎛⎫=+< ⎪⎝⎭解得2a x +,22a a x <<.∵不等式()f x c <的解集为(6)m m +,,∴)()622aa -=,解得9c =.20. 答案:1-【命题意图】本试题考查了线性规划最优解的求解的运用.常规题型,只要正确作图,表示出区域,然后借助于直线平移法得到最值.【解析】做出不等式所表示的区域如图,由yxz-=3得zxy-=3,平移直线xy3=,由图象可知当直线经过点)1,0(C时,直线zxy-=3的截距最大,此时z最小,最小值为1-3=-=yxz. 21. 【解析】x y-的取值范围为_____[3,0]-约束条件对应ABC∆边际及内的区域:3(0,3),(0,),(1,1)2A B C则[3,0]t x y=-∈-友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!。
2012年高考真题汇编——理科数学(解析版)8:不等式
2012 高考真题分类汇编:不等式1.【2012 高考真题重庆理 2】不等式x 10 的解集为2x 1A. 1,1 B. 1,1 C. . 1 1,D. , 1 1,对22 22【答案】 A【解析】原不等式等价于 ( x 1)(2x 1) 0 或 x 1 0 ,即 1 1 或 x1 ,所以不x 1 2 x 1 ,选 A.等式的解为2 2.【2012 高考真题浙江理 9】设 a 大于 0, b 大于 0.A.若 2a +2a=2b +3b ,则 a > bB.若 2a +2a=2b +3b ,则 a > bC.若 a b - 3b ,则 a > bD.若 a b 2 -2a=2 2 -2a=a -3b ,则 a< b 【答案】 A 【 解 析 】 若 2a2 a 2b 3 , 必 有 2 a 2a b b2 . 构 造 函 数 : f x 2x 2x ,则 b 2 x 恒成立,故有函数 x 在 x > 0 上单调递增, 即 a > b 成立.其f x 2 2x f x 2 l n 2 2 0 余选项用同样方法排除.故选A 3.【 2012 高考真题四川理 9】某公司生产甲、乙两种桶装产品。
已知生产甲产品1 桶需耗A 原料 1 千克、B 原料 2 千克;生产乙产品1 桶需耗 A 原料2 千克, B 原料 1 千克。
每桶甲 产品的利润是 300 元,每桶乙产品的利润是 400 元。
公司在生产这两种产品的计划中, 要求 每天消耗 A 、 B 原料都不超过12 千克。
通过合理安排生产计划,从每天生产的甲、乙两种 产品中,公司共可获得的最大利润是() A 、1800 元 B 、2400 元 C 、 2800 元 D 、3100 元【答案】 C.【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z,x 2 y 122x y 12则约束条件为,目标函数为Z 300x 400 y ,x0y 0第 1 页共 10 页可行域为,当目标函数直线经过点 M 时 z 有最大值,x 2 y 12得 M (4,4) ,代入目标函数得 z 2800 ,故选 C.联立方程组y 12 2xx 2 y 2 4.【2012 高考真题山东理 5】已知变量 x, y 满足约束条件 2x y 4 ,则目标函数4x y 1z 3x y 的取值范围是( A ) [3, 6] ( B ) [ 3 ,1] 2 2 3] ( C ) [ 1,6] ( D ) [ 6, 2【答案】 A【解析】 做出不等式所表示的区域如图,由 z 3x y得 y 3x z ,平移直线 y 3x ,由图象可知当直线经过点 E( 2,0) 时,直线 y3x z 的截距最小,此时 z 最大为 z 3x y 6 ,当直线经过C 点时,直线截距最大,此时z 最小,第 2 页共 10 页4x y 1 x 1 3 3由 ,解得2 ,此时 z 3x y3 ,所以 z 3x y 的取值范2x y 4 y 3 2 2 围是 [ 3,6] ,选 A.2 x y 105.【2012 高考真题辽宁理8】设变量 x , y满足0 x y 20, 则 2x 3y 的最大值为 0 y 15(A) 20 (B) 35(C) 45(D) 55【答案】 D【解析】 画出可行域,根据图形可知当 x=5,y=15 时 2x+3y 最大,最大值为 55,故选 D 【点评】 本题主要考查简单线性规划问题, 难度适中。
2012年高考真题——理科数学(全国卷)Word版
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第I 卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、 选择题1、 复数131i i-++= A 2+I B 2-I C 1+2i D 1- 2i2、已知集合A =,B ={1,m} ,A B =A, 则m=A 0或3 C 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24y =1 4 已知正四棱柱ABCD- A1B1C1D1中 ,AB=2,CC1=E 为CC1的中点,则直线AC1与平面BED 的距离为D 1(5)已知等差数列{an}的前n 项和为Sn ,a5=5,S5=15,则数列的前100项和为 (A)100101 (B) 99101 (C) 99100 (D) 101100(6)△ABC 中,AB 边的高为CD ,若a·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)(7)已知α为第二象限角,sin α+sin β,则cos2α=(A) -3 (B )-9(8)已知F1、F2为双曲线C :x²-y²=2的左、右焦点,点P 在C 上,|PF1|=|2PF2|,则cos ∠F1PF2= (A)14 (B )35 (C)34 (D)45(9)已知x=ln π,y=log52,12z=e ,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE =BF=7。
2012年高考真题汇编——理科数学(解析版)8:不等式
2012 高考真题分类汇编:不等式x 1【2012 高考真题重庆理2】不等式02x 1的解集为1 A. ,121B. ,121 1C. . 1,D. , 1, 对2 2【答案】 A1【解析】原不等式等价于( x 1)(2x 1) 0或x 1 0,即x 1 或x 1,所以不21等式的解为 1x ,选 A.21.【2012 高考真题浙江理9】设a 大于0,b 大于0.A.若2a+2a=2b+3b,则a>b B.若2a+2a=2b+3b,则a>ba b- a bC.若2 -2a=2 3b,则a>bD.若2 -2a=a -3b,则a<b【答案】 Aa ab b ,必有 2 2 2 2 xa ab b .构造函数: 2 2【解析】若 2 2 2 3 f x x ,则x xf x 2 l n 2 2 恒0 成立,故有函数 f x 2 2x 在x>0 上单调递增,即a>b 成立.其余选项用同样方法排除.故选 A2.【2012 高考真题四川理9】某公司生产甲、乙两种桶装产品。
已知生产甲产品 1 桶需耗 A 原料 1 千克、 B 原料 2 千克;生产乙产品 1 桶需耗 A 原料 2 千克, B 原料 1 千克。
每桶甲产品的利润是300 元,每桶乙产品的利润是400 元。
公司在生产这两种产品的计划中,要求每天消耗 A 、B 原料都不超过12 千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800 元B、2400 元C、2800 元D、3100 元【答案】 C.【解析】设生产x桶甲产品,y 桶乙产品,总利润为Z,则约束条件为x2xx2yy1212,目标函数为Z 300 x400 y ,y 0第1 页共10 页可行域为,当目标函数直线经过点M 时z 有最大值,联立方程组x2x2 yy1212得M ( 4,4) ,代入目标函数得z 2800 ,故选 C.x 2y 23.【2012 高考真题山东理5】已知变量x, y满足约束条件2x y 4,则目标函数4x y 1z 3x y 的取值范围是(A)3[ ,6]2(B)3[ , 1]2(C)[ 1,6] (D)3 [ 6, ]2【答案】 A【解析】做出不等式所表示的区域如图,由z 3x y 得y 3x z,平移直线y 3x ,由图象可知当直线经过点E( 2,0) 时,直线y 3x z的截距最小,此时z 最大为z 3x y 6,当直线经过 C 点时,直线截距最大,此时z最小,第2 页共10 页由4x2xyy 41,解得xy123,此时3 3z 3x y 3 ,所以z 3x y 的取值范2 23围是[ ,6] ,选 A.2x y 104.【2012 高考真题辽宁理8】设变量x,y 满足0 x y 20,则2x 3y 的最大值为0 y 15(A) 20 (B) 35 (C) 45 (D) 55【答案】 D【解析】画出可行域,根据图形可知当x=5,y=15 时2x+3y 最大,最大值为55,故选 D【点评】本题主要考查简单线性规划问题,难度适中。
高考真题汇编——理科数学(解析版)8:不等式
2012高考真题分类汇编:不等式1.【2012高考真题重庆理2】不等式0121≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝⎛-∞-,121, 对【答案】A【解析】原不等式等价于0)12)(1(<+-x x 或01=-x ,即121<<-x 或1=x ,所以不等式的解为121≤<-x ,选A. 2.【2012高考真题浙江理9】设a 大于0,b 大于0.A.若2a +2a=2b +3b ,则a >bB.若2a +2a=2b +3b ,则a >bC.若2a -2a=2b-3b ,则a >bD.若2a -2a=a b -3b ,则a <b 【答案】A【解析】若2223a b a b +=+,必有2222a ba b +>+.构造函数:()22x f x x =+,则()2l n 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除.故选A3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元【答案】C.【解析】设生产x 桶甲产品,y 桶乙产品,总利润为Z ,则约束条件为⎪⎪⎩⎪⎪⎨⎧>>≤+≤+00122122y x y x y x ,目标函数为300400Z x y =+,可行域为,当目标函数直线经过点M 时z 有最大值,联立方程组⎩⎨⎧=+=+122122y x y x 得)4,4(M ,代入目标函数得2800=z ,故选C.4.【2012高考真题山东理5】已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2- (B )3[,1]2-- (C )[1,6]- (D )3[6,]2-【答案】A【解析】做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)0,2(E 时,直线z x y -=3的截距最小,此时z 最大为63=-=y x z ,当直线经过C 点时,直线截距最大,此时z 最小,由⎩⎨⎧=+-=-4214y x y x ,解得⎪⎩⎪⎨⎧==321y x ,此时233233-=-=-=y x z ,所以y x z -=3的取值范围是]6,23[-,选A. 5.【2012高考真题辽宁理8】设变量x ,y 满足,15020010⎪⎩⎪⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为(A) 20 (B) 35 (C) 45 (D) 55 【答案】D【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D 【点评】本题主要考查简单线性规划问题,难度适中。
2012年高考真题——理科数学(全国卷)Word版含答案
2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若C B a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A )3- (B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高考真题分类汇编:不等式
1.【2012高考真题重庆理2】不等式01
21
≤+-x x 的解集为 A.⎥⎦⎤ ⎝⎛-
1,21 B.⎥⎦⎤⎢⎣⎡-1,21 C.[)+∞⋃⎪⎭⎫ ⎝⎛-∞-,121. D.[)+∞⋃⎥⎦⎤ ⎝
⎛
-∞-,121, 对
【答案】A
2.【2012高考真题浙江理9】设a 大于0,b 大于0.
A.若2a +2a=2b +3b ,则a >b
B.若2a +2a=2b +3b ,则a >b
C.若2a -2a=2b-3b ,则a >b
D.若2a -2a=a b -3b ,则a <b 【答案】A
3.【2012高考真题四川理9】某公司生产甲、乙两种桶装产品。
已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克。
每桶甲产品的利润是300元,每桶乙产品的利润是400元。
公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克。
通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )
A 、1800元
B 、2400元
C 、2800元
D 、3100元
【答案】C.
4.【2012高考真题山东理5】已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪
+≤⎨⎪-≥-⎩
,则目标函数
3z x y =-的取值范围是
(A )3[,6]2- (B )3
[,1]2
-- (C )[1,6]- (D )3
[6,]2
-
【答案】A
5.【2012高考真题辽宁理8】设变量x ,y 满足,15020010⎪⎩
⎪
⎨⎧≤≤≤+≤≤-y y x y x 则y x 32+的最大值为
(A) 20 (B) 35 (C) 45 (D) 55 【答案】D
【解析】画出可行域,根据图形可知当x=5,y=15时2x +3y 最大,最大值为55,故选D 【点评】本题主要考查简单线性规划问题,难度适中。
该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。
6.【2012高考真题广东理5】已知变量x ,y 满足约束条件⎪⎩
⎪
⎨⎧≤-≥+≤112y x y x y ,则z=3x+y 的最大值为
A.12
B.11
C.3
D.-1 【答案】B
7.【2012高考真题福建理5】下列不等式一定成立的是
A.
B.
C.
D.
【答案】C.
8.【2012高考真题江西理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
为使一年的种植总利润(总利润=总销售收入减去总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为
A .50,0
B .30,20
C .20,30
D .0,50 【答案】B
【命题立意】本题考查函数的简单应用,以及简单的线性规划问题。
9.【2012高考真题湖北理6】设,,,,,a b c x y z 是正数,且22210a b c ++=,
22240x y z ++=,20ax by cz ++=,则
a b c
x y z
++=++
A .1
4
B .13
C .1
2
D .
3
4
【答案】C
【解析】由于2
22222)())((2
cz by ax z y x c b a ++≥++++
等号成立当且仅当
,t z
c
y b x a ===则a=t x b=t y c=t z ,10)(2222=++z y x t
所以由题知2/1=t ,又
2/1,==++++++++===t z
y x c b a z y x c b a z c y b x a 所以,答案选C. 10.【2012高考真题福建理9】若函数y=2x
图像上存在点(x ,y )满足约束条件
⎪⎩
⎪
⎨⎧≥≥--≤-+m x y x y x 03203,则实数m 的最大值为 A .12 B.1 C. 3
2
D.2
【答案】B.
11.【2012高考真题山东理13】若不等式42kx -≤的解集为{}
13x x ≤≤,则实数
k =__________. 【答案】2=k
12.【2012高考真题安徽理11】若,x y 满足约束条件:02323x x y x y ≥⎧⎪
+≥⎨⎪+≤⎩
;则x y -的取值范围为
_____.
【答案】[3,0]-
【命题立意】本题考查线性规划知识,会求目标函数的范围。
13.【2012高考真题全国卷理13】若x ,y 满足约束条件则z=3x-y 的最小值为
_________.
【答案】1-
14.【2012高考江苏13】(5分)已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若
关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ . 【答案】9。
【考点】函数的值域,不等式的解集。
15.【2012高考江苏14】(5分)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则
b
a
的取值范围是 ▲ . 【答案】[] 7e ,。
16.【2012高考真题浙江理17】设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =
______________.
【答案】a =【解析】本题按照一般思路,则可分为一下两种情况: (A )2
(1)10
10
a x x ax ≤⎧⎨≤⎩----, 无解; (B )2
(1)10
10a x x ax ≥⎧⎨
≥⎩
----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图)
我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1). 考查函数y 1=(a -1)x -1:令y =0,得M (
1
1
a -,0),还可分析得:a >1; 考查函数y 2=x 2
-ax -1:显然过点M (11a -,0),代入得:2
11011a a a ⎛⎫
-
-= ⎪--⎝⎭
,
解之得:a =
,舍去a =
,得答案:a =
17.【2012高考真题新课标理14】 设,x y 满足约束条件:,0
13x y x y x y ≥⎧⎪
-≥-⎨⎪+≤⎩
;则2z x y =-的取值
范围为 【答案】]3,3[-
【解析】做出不等式所表示的区域如图,由y x z 2-=得
z x y 2121-=
,平移直线x y 21=,由图象可知当直线经过点)0,3(D 时,直线z x y 2
121-=的截距最小,此时z 最大为32=-=y x z ,当直线经过B 点时,直线截距最大,此时z 最小,
由⎩⎨⎧=+-=-31y x y x ,解得⎩
⎨⎧==21y x ,即)2,1(B ,此时3412-=-=-=y x z ,所以33≤≤-z ,
即z 的取值范围是]3,3[-.。