创新设计浙江专用2017届高考数学二轮复习专题四立体几何第1讲立体几何中的计算与位置关系课件

合集下载

《创新设计》2017届高考数学二轮复习(浙江专用)Word版训练+专题一+函数与导数、不等式+第4讲

《创新设计》2017届高考数学二轮复习(浙江专用)Word版训练+专题一+函数与导数、不等式+第4讲

一、选择题1.曲线y =x e x +1在点(0,1)处的切线方程是( )A.x -y +1=0B.2x -y +1=0C.x -y -1=0D.x -2y +2=0解析 y ′=e x +x e x =(x +1)e x ,y ′|x =0=1,∴所求切线方程为:x -y +1=0.答案 A2.(2016·南昌模拟)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( )A.13B.12C.23D.1解析 因为y ′=-2e -2x ,∴曲线在点(0,2)处的切线斜率k=-2,∴切线方程为y =-2x +2,该直线与直线y =0和y=x 围成的三角形如图所示,其中直线y =-2x +2与y =x的交点为A ⎝ ⎛⎭⎪⎫23,23,所以三角形面积S =12×1×23=13. 答案 A3.(2016·洛阳模拟)曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A.2B.-2C.12D.-12解析 依题意得y ′=1+ln x ,y ′|x =e =1+ln e =2,所以-1a ×2=-1,所以a=2,故选A.答案 A4.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为( )A.1B.2C.0D.0或2解析 令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x >0,所以h ′(x )x>0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0. 答案 C5.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则下列不等式中成立的是( )A.f (a )<f (1)<f (b )B.f (a )<f (b )<f (1)C.f (1)<f (a )<f (b )D.f (b )<f (1)<f (a )解析 由题意,知f ′(x )=e x +1>0恒成立,所以函数f (x )在R 上是单调递增的,而f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,所以函数f (x )的零点a ∈(0,1);由题意,知g ′(x )=1x +1>0,所以g (x )在(0,+∞)上是单调递增的,又g (1)=ln 1+1-2=-1<0,g (2)=ln 2+2-2=ln 2>0,所以函数g (x )的零点b ∈(1,2).综上,可得0<a <1<b <2.因为f (x )在R 上是单调递增的,所以f (a )<f (1)<f (b ).答案 A二、填空题6.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x ,f ′(x )=1x -3,f ′(1)=-2,切线方程为y =-2x -1.答案 2x +y +1=07.函数f (x )=13x 3-x 2-3x -1的图象与x 轴的交点个数是________.解析 f ′(x )=x 2-2x -3=(x +1)(x -3),函数f (x )在(-∞,-1)和(3,+∞)上是增函数,在(-1,3)上是减函数,由f (x )极小值=f (3)=-10<0,f (x )极大值=f (-1)=23>0知函数f (x )的图象与x 轴的交点个数为3.答案 38.(2016·济南模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎨⎧-a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)三、解答题9.(2016·武汉模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围. 解 (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x. 因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0,此时函数单调递增;当1<x <e 时,g ′(x )<0,此时函数单调递减.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e , 所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是 ⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0, 解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2. 10.(2016·平顶山二调)已知函数f (x )=ln x -ax +b x ,对任意的x ∈(0,+∞),满足f (x )+f ⎝ ⎛⎭⎪⎫1x =0,其中a ,b 为常数. (1)若f (x )的图象在x =1处的切线经过点(0,-5),求a 的值;(2)已知0<a <1,求证:f ⎝ ⎛⎭⎪⎫a 22>0; (3)当f (x )存在三个不同的零点时,求a 的取值范围.(1)解 在f (x )+f ⎝ ⎛⎭⎪⎫1x =0中,取x =1,得f (1)=0, 又f (1)=ln 1-a +b =-a +b =0,所以b =a .从而f (x )=ln x -ax +a x ,f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2, f ′(1)=1-2a .又f ′(1)=-5-f (1)0-1=5,所以1-2a =5,a =-2. (2)证明 f ⎝ ⎛⎭⎪⎫a 22=ln a 22-a 32+2a =2ln a +2a -a 32-ln 2. 令g (x )=2ln x +2x -x 32-ln 2,则g ′(x )=2x -2x 2-3x 22=-3x 4+4(x -1)2x 2. 所以x ∈(0,1)时,g ′(x )<0,g (x )单调递减,故x ∈(0,1)时,g (x )>g (1)=2-12-ln 2>1-ln e =0,所以0<a <1时,f ⎝ ⎛⎭⎪⎫a 22>0. (3)解 f ′(x )=1x -a ⎝ ⎛⎭⎪⎫1+1x 2=-ax 2+x -a x 2. ①当a ≤0时,在(0,+∞)上,f ′(x )>0,f (x )单调递增,所以f (x )至多只有一个零点,不合题意;②当a ≥12时,在(0,+∞)上,f ′(x )≤0,f (x )单调递减,所以f (x )至多只有一个零点,不合题意;③当0<a <12时,令f ′(x )=0,得x 1=1-1-4a 22a<1, x 2=1+1-4a 22a>1. 此时,f (x )在(0,x 1)上单调递减,在(x 1,x 2)上单调递增,在(x 2,+∞)上单调递减,所以f (x )至多有三个零点.因为f (x )在(x 1,1)上单调递增,所以f (x 1)<f (1)=0.又因为f ⎝ ⎛⎭⎪⎫a 22>0,所以∃x 0∈⎝ ⎛⎭⎪⎫a 22,x 1,使得f (x 0)=0. 又f ⎝ ⎛⎭⎪⎫1x 0=-f (x 0)=0,f (1)=0, 所以f (x )恰有三个不同的零点:x 0,1,1x 0. 综上所述,当f (x )存在三个不同的零点时,a 的取值范围是⎝ ⎛⎭⎪⎫0,12. 11.已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值;(2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.(1)解 由f (x )=e x -ax 2-bx -1,有g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ],当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e 2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减.因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ;当12<a <e 2时,令g ′(x )=0,得x =ln (2a )∈(0,1),所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b.综上所述,当a≤1 2时,g(x)在[0,1]上的最小值是g(0)=1-b;当12<a<e2时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2a ln(2a)-b;当a≥e2时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)证明设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤12时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点,不合题意.当a≥e2时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,不合题意.所以12<a<e2.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0. 由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.。

《创新设计》2017届高考数学二轮复习(浙江专用)大题规范天天练+星期三+第四周

《创新设计》2017届高考数学二轮复习(浙江专用)大题规范天天练+星期三+第四周

星期三 (解析几何) 2017年____月____日解析几何知识(命题意图:考查直线与椭圆的位置关系及三角形面积的最值问题)(本小题满分15分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1、F 2分别为椭圆的左、右焦点,D 、E 分别是椭圆的上顶点与右顶点,且S △DEF 2=1-32.(1)求椭圆C 1的方程;(2)在椭圆C 1落在第一象限的图象上任取一点作C 1的切线l ,求l 与坐标轴围成的三角形的面积的最小值.解 (1)由题意知e =c a =32,故c =32a ,b =12a .因为S △DEF 2=12(a -c )×b =12⎝⎛⎭⎪⎫a -32a ×a 2= 14⎝ ⎛⎭⎪⎫1-32a 2=1-32, 故a 2=4,即a =2,b =12a =1,c =3,所以椭圆C 1的方程为x 24+y 2=1.(2)∵l 与椭圆C 1相切于第一象限内的一点,∴直线l 的斜率必存在且为负.设直线l 的方程为y =kx +m (k <0),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,消去y 整理可得 ⎝ ⎛⎭⎪⎫k 2+14x 2+2kmx +m 2-1=0,① 根据题意可得方程①有两相等实根,∴Δ=(2km )2-4⎝ ⎛⎭⎪⎫k 2+14(m 2-1)=0,整理可得m 2=4k 2+1.② ∵直线l 与两坐标轴的交点分别为⎝ ⎛⎭⎪⎫-m k ,0,(0,m )且k <0, ∴l 与坐标轴围成的三角形的面积S =12·m 2-k,③ ②代入③可得S =(-2k )+1-2k≥2(当且仅当k =-12时取等号), ∴l 与坐标轴围成的三角形面积的最小值为2.。

(浙江专用)高考数学二轮复习 专题四 立体几何 第1讲 空间几何体专题强化训练-人教版高三全册数学试

(浙江专用)高考数学二轮复习 专题四 立体几何 第1讲 空间几何体专题强化训练-人教版高三全册数学试

第1讲空间几何体专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4 B.8C.12 D.16解析:选D.如图,以AA1为底面矩形一边的四边形有AA1C1C、AA1B1B、AA1D1D、AA1E1E这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCD­A1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A,E,C1的平面与棱DD1相交于点F,且F是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).4.(2019·某某模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.(2019·某某十校联考)某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.(2019·某某市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.(2019·某某八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.(2019·某某省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C ­BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC ­BB 1D 1D =23×12×2×2×4=163,S C ­BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.(2019·某某市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4 cm 2.答案:π211π413.(2019·某某省“五校联盟”质量检测)已知球O 的表面积为25π,长方体的八个顶点都在球O 的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R ,则4πR 2=25π,所以R =52,所以球的直径为2R =5,设长方体的长、宽、高分别为a 、b 、c ,则长方体的表面积S =2ab +2ac +2bc ≤a 2+b 2+a 2+c 2+b 2+c 2=2(a 2+b 2+c 2)=50.答案:5014.(2019·某某省高三考前质量检测)某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥P ­ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:3715.(2019·某某市高考数学二模)在正方体ABCD ­A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体棱长为1,则四面体B ­EB 1D 1的体积为________.解析:取CC 1中点F ,连接D 1F ,B 1F ,则BE 綊D 1F , 所以∠B 1D 1F 为异面直线BE 与B 1D 1所成的角.设正方体棱长为1,则B 1D 1=2,B 1F =D 1F =1+14=52.所以cos ∠B 1D 1F =12B 1D 1D 1F =2252=105. V B ­EB 1D 1=V D 1­BB 1E =13S △BB 1E ·A 1D 1=13×12×1×1×1=16.答案:1051616.已知棱长均为a 的正三棱柱ABC ­A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC ­A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. 答案:117.(2019·瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减. 所以f (a )在a =2处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a =2也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ­ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ­ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ­ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′­PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′­PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )0 f (x )单调递增极大值单调递减由上表易知,当PA =x =233时,V A ′­PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .。

创新设计浙江专用2017届高考数学二轮复习专题四立体几何第2讲立体几何中的向量方法课件

创新设计浙江专用2017届高考数学二轮复习专题四立体几何第2讲立体几何中的向量方法课件
θ 0≤θ
π ≤ ,则 2
热点一 向量法证明平行与垂直 【例1】 如图,在直三棱柱ADE-BCF中,平面 ABFE和平面ABCD都是正方形且互相垂直,M为 AB的中点,O为DF的中点,运用向量方法求证:
(1)OM∥平面 BCF; (2)平面 MDF⊥平面 EFCD.
证明
法一
△BCK为等边三角形.
取 BC 的中点 O,连接 KO,则 KO⊥BC,又平面 BCFE⊥平面 ABC,平面 BCFE∩平面 ABC=BC,所以 KO⊥平面 ABC. 以点 O 为原点,分别以射线 OB,OK 的方向为 x,z 的正方向, 建立空间直角坐标系 O-xyz. 由题意得 B(1,0,0),C(-1,0,0),K(0,0, 3),
则 P(0,- 3,2),A(0,- 3,0),B(1,0,0), C(0, 3,0),D(-1,0,0),E(0,- 3,1). (1)设平面 BDE 的法向量为 n1=(x1,y1,z1), → =(-1,- 3,1),BD → =(-2,0,0), 因为BE → n1·BD =0, -2x1=0, 由 得 → -x - 3y1+z1=0, n1·BE=0, 1 令 z1= 3,得 y1=1,所以 n1=(0,1, 3).
取 BC 的中点 E,连接 AE.
由 AB=AC 得 AE⊥BC, 从而 AE⊥AD,AE= AB -BE =
2 2
AB
2
BC2 - 2 =
5.
→ 的方向为 x 轴正方向,建立如图所示的 以 A 为坐标原点,AE 空间直角坐标系 A-xyz. 由题意知, P(0, 0, 4), M(0, 2, 0), C(
1 1 n1=1,2,-2.同理可得
n2=(0,1,1).

《创新设计》2017届高考数学(浙江专用)二轮教师文档讲义:专题1.1函数图象与性质及函数与方程

《创新设计》2017届高考数学(浙江专用)二轮教师文档讲义:专题1.1函数图象与性质及函数与方程

第1讲 函数图象与性质及函数与方程高考定位 1.以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、最值与值域、奇偶性、单调性;2.利用图象研究函数性质、方程及不等式的解,综合性强;3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理.数形结合思想是高考考查函数零点或方程的根的基本方式.真 题 感 悟1.(2016·山东卷)已知函数f (x )的定义域为R ,当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( )A.-2B.-1C.0D.2解析 当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,即f (x )=f (x +1),∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1)=2,故选D. 答案 D2.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( ) A.3 B.6 C.9D.12解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C. 答案 C3.(2016·全国Ⅰ卷)函数y =2x 2-e |x |在[-2,2]的图象大致为( )解析 f (2)=8-e 2>8-2.82>0,排除A ;f (2)=8-e 2<8-2.72<1,排除B ;在x >0时,f (x )=2x 2-e x,f ′(x )=4x -e x,当x ∈⎝⎛⎭⎪⎫0,14时,f ′(x )<14×4-e 0=0,因此f (x )在⎝ ⎛⎭⎪⎫0,14上单调递减,排除C ,故选D.答案 D4.(2016·山东卷)已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.解析 如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m 在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3. 答案 (3,+∞)考 点 整 合1.函数的性质 (1)单调性①用来比较大小,求函数最值,解不等式和证明方程根的唯一性.②常见判定方法:(ⅰ)定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;(ⅱ)图象法;(ⅲ)复合函数的单调性遵循“同增异减”的原则;(ⅳ)导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a>0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )= -f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数.2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. (2)在研究函数性质特别是单调性、值域、零点时,要注意用好其与图象的关系,结合图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等. 4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解热点一 函数性质的应用【例1】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.a <c <b C.c <a <bD.c <b <a(2)(2016·全国Ⅱ卷)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A.0B.mC.2mD.4m解析 (1)由f (x )=2|x -m |-1是偶函数可知m =0, 所以f (x )=2|x |-1.所以a =f (log 0.53)=2|log 0.53|-1=2log 23-1=2, b =f (log 25)=2|log 25|-1=2log 25-1=4, c =f (0)=2|0|-1=0,所以c <a <b . (2)法一 由题设得12(f (x )+f (-x ))=1,点(x ,f (x ))与点(-x ,f (-x ))关于点(0,1)对称, 则y =f (x )的图象关于点(0,1)对称.又y =x +1x =1+1x ,x ≠0的图象也关于点(0,1)对称.则交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对关于点(0,1)对称. 则111()mmmi i i i i i i x y x y ===+=+∑∑∑=0+m2×2=m ,故选B.法二 特殊函数法,根据f (-x )=2-f (x )可设函数f (x )=x +1,由y =x +1x ,解得两个点的坐标为⎩⎨⎧x 1=-1,y 1=0,⎩⎨⎧x 2=1,y 2=2,此时m =2,所以∑i =1m (x i +y i )=2=m ,故选B.答案 (1)C (2)B探究提高 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).【训练1】 (1)(2015·全国Ⅰ卷)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)(2016·四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.解析 (1)f (x )为偶函数,则ln(x +a +x 2)为奇函数, 所以ln(x +a +x 2)+ln(-x +a +x 2)=0, 即ln(a +x 2-x 2)=0,∴a =1.(2)f (x )是周期为2的函数, 所以f (x )=f (x +2);而f (x )是奇函数,所以f (x )=-f (-x ), 所以f (1)=f (-1),f (1)=-f (-1),即f (1)=0, 又f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12=412=2,故f ⎝ ⎛⎭⎪⎫-52=-2,从而f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 答案 (1)1 (2)-2 热点二 函数图象的问题[微题型1] 函数图象的变换与识别【例2-1】 (1)(2016·浙江诊断)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( ) A.有最小值-1,最大值1 B.有最大值1,无最小值 C.有最小值-1,无最大值D.有最大值-1,无最小值(2)函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 的大致图象为( )解析 (1)由题意得,利用平移变换的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎨⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ), 故h (x )有最小值-1,无最大值.(2)由y 1=1x -x 为奇函数,y 2=sin x 为奇函数,可得函数f (x )=⎝ ⎛⎭⎪⎫1x -x sin x 为偶函数,因此排除C 、D.又当x =π2时,y 1<0,y 2>0,f ⎝ ⎛⎭⎪⎫π2<0,因此选B. 答案 (1)C (2)B探究提高 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与x 轴的交点及值域、单调性、变化趋势、对称性、特殊值等方面找准解析式与图象的对应关系. [微题型2] 函数图象的应用【例2-2】 (1)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是( ) A.(-∞,0] B.(-∞,1) C.[-2,1]D.[-2,0](2)(2015·全国Ⅰ卷)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫-32e ,1 B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1解析(1)函数y=|f(x)|的图象如图.①当a=0时,|f(x)|≥ax显然成立.②当a>0时,只需在x>0时,ln(x+1)≥ax成立.比较对数函数与一次函数y=ax的增长速度.显然不存在a>0使ln(x+1)≥ax在x>0上恒成立.③当a<0时,只需在x<0时,x2-2x≥ax成立.即a≥x-2成立,∴a≥-2.综上所述:-2≤a≤0.故选D.(2)设g(x)=e x(2x-1),y=ax-a,由题知存在唯一的整数x0,使得g(x0)在直线y =ax-a的下方,因为g′(x)=e x(2x+1),所以当x<-12时,g′(x)<0,当x>-12时,g′(x)>0,所以当x=-12时,[g(x)]min=-2e-12,当x=0时,g(0)=-1,当x=1时,g(1)=e>0,直线y=a(x-1)恒过(1,0),则满足题意的唯一整数x0=0,故-a>g(0)=-1,且g(-1)=-3e-1≥-a-a,解得32e≤a<1,故选D.答案(1)D(2)D探究提高(1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 (2016·安庆二模)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,+∞)解析 由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点.如图:∴y =kx -1在直线y =x -1与y =12x -1之间, ∴12<k <1,故选B. 答案 B热点三 函数的零点与方程根的问题 [微题型1] 函数零点的判断【例3-1】 (1)函数f (x )=log 2x -1x 的零点所在的区间为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,3)(2)(2016·武汉二模)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.解析 (1)函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f ⎝ ⎛⎭⎪⎫12=log 212-112=-1-2=-3<0,f (1)=log 21-11=0-1<0, f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0, ∴函数f (x )=log 2x -1x 的零点在区间(1,2)内.(2)f (x )=4cos 2x 2sin x -2sin x -|ln(x +1)|=2sin x ·⎝ ⎛⎭⎪⎫2cos 2x 2-1-|ln(x +1)|=sin 2x -|ln(x +1)|,令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出两个函数y =sin 2x 与函数y =|ln(x +1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f (x )有2个零点. 答案 (1)C (2)2探究提高 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. [微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)(2016·郑州二模)若方程ln(x +1)=x 2-32x +a 在区间[0,2]上有两个不同的实数根,则实数a 的取值范围是( ) A.⎣⎢⎡⎭⎪⎫ln 3-1,ln 2+12 B.[ln 2-1,ln 3-1) C.[ln 2-1,ln 2]D.⎣⎢⎡⎦⎥⎤0,ln 2+12 (2)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫74,+∞ B.⎝ ⎛⎭⎪⎫-∞,74 C.⎝ ⎛⎭⎪⎫0,74 D.⎝ ⎛⎭⎪⎫74,2解析 (1)令f (x )=ln(x +1)-x 2+32x -a ,则f ′(x )=1x +1-2x +32=-(4x +5)(x -1)2(x +1).当x ∈[0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,2]时,f ′(x )<0,f (x )单调递减.由于方程ln(x +1)=x 2-32x +a 在区间[0,2]上有两个不同的实数根,即f (x )=0在区间[0,2]上有两个不同的实数根,其充要条件为 ⎩⎪⎨⎪⎧f (0)=-a ≤0,f (1)=ln 2+12-a >0,f (2)=ln 3-1-a ≤0,解得ln 3-1≤a <ln 2+12.所以方程ln(x +1)=x 2-32x +a 在区间[0,2]上有两个不同的实数根时,实数a 的取值范围是⎣⎢⎡⎭⎪⎫ln 3-1,ln 2+12.(2)函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,又y =f (x )+f (2-x )=⎩⎨⎧x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示, 由图可知,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是⎝ ⎛⎭⎪⎫74,2.答案 (1)A (2)D探究提高 利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 【训练3】 设函数f (x )=x 2+3x +3-a ·e x (a 为非零实数),若f (x )有且仅有一个零点,则a 的取值范围为________.解析 令f (x )=0,可得x 2+3x +3e x =a ,令g (x )=x 2+3x +3e x ,则g ′(x )=(2x +3)·e x -e x ·(x 2+3x +3)(e x )2=-x (x +1)e x ,令g ′(x )>0,可得x ∈(-1,0),令g ′(x )<0,可得x ∈(-∞,-1)∪(0,+∞),所以g (x )在(-1,0)上单调递增,在(-∞,-1)和(0,+∞)上单调递减.由题意知函数y =g (x )的图象与直线y =a 有且仅有一个交点,结合y =g (x )及y =a 的图象可得a ∈(0,e)∪(3,+∞). 答案 (0,e)∪(3,+∞)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0.3.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.三种作函数图象的基本思想方法(1)通过函数图象变换利用已知函数图象作图;(2)对函数解析式进行恒等变换,转化为已知方程对应的曲线;(3)通过研究函数的性质,明确函数图象的位置和形状.5.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、选择题1.(2016·临沂模拟)下列函数中,既是奇函数,又在区间(-1,1)上单调递减的函数是()A.f(x)=sin xB.f(x)=2cos x+1C.f(x)=2x-1D.f(x)=ln 1-x 1+x解析由函数f(x)为奇函数排除B、C,又f(x)=sin x在(-1,1)上单调递增,排除A,故选D.答案 D2.(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数解析易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,又f(x)=ln 1+x1-x =ln⎝⎛⎭⎪⎫-1-2x-1,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故选A.答案 A3.已知二次函数f(x)=x2-bx+a的部分图象如图所示,则函数g(x)=e x+f′(x)的零点所在的区间是()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)解析由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f ′(x )=2x -b ,所以g (x )=e x +2x -b ,所以g ′(x )=e x +2>0,所以g (x )在R 上单调递增,又g (0)=1-b <0,g (1)=e +2-b >0,根据函数的零点存在性定理可知,函数g (x )的零点所在的区间是(0,1),故选B. 答案 B4.(2016·西安八校联考)函数y =x 33x -1的图象大致是( )解析 由3x -1≠0得x ≠0,∴函数y =x 33x -1的定义域为{x |x ≠0},可排除A ;当x =-1时,y =(-1)313-1=32>0,可排除B ;当x =2时,y =1,当x =4时,y =45,但从D 的函数图象可以看出函数在(0,+∞)上是单调递增函数,两者矛盾,可排除D.故选C. 答案 C5.如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |= |OB |tan ∠POB =tan x ,在Rt △PAB 中,|PA |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|PA |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由以上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|PA |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B. 答案 B 二、填空题6.(2016·浙江卷)已知a >b >1.若log a b +log b a =52,a b =b a ,则a =________,b =________.解析 设log b a =t ,则t >1,因为t +1t =52,解得t =2,所以a =b 2,因此a b =(b 2)b =b 2b =b a ,∴a =2b ,b 2=2b ,又b >1,解得b =2,a =4. 答案 4 27.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y=k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.解析 根据[x ]表示的意义可知,当0≤x <1时,f (x )=x ,当1≤x <2时,f (x )=x -1,当2≤x <3时,f (x )=x -2,以此类推,当k ≤x <k +1时,f (x )=x -k ,k ∈Z ,当-1≤x <0时,f (x )=x +1,作出函数f (x )的图象如图,直线y =k (x +1)过点(-1,0),当直线经过点(3,1)时恰有三个交点,当直线经过点(2,1)时恰好有两个交点,在这两条直线之间时有三个交点,故k ∈⎣⎢⎡⎭⎪⎫14,13.答案 ⎣⎢⎡⎭⎪⎫14,138.(2016·海淀二模)设函数f (x )=⎩⎨⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.解析 (1)当a =1时,f (x )=⎩⎨⎧2x-1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1),当x ≥1时,f (x )=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -322-14≥-1,∴f (x )min =-1.(2)由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2. f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.答案 (1)-1 (2)⎣⎢⎡⎭⎪⎫12,1∪[2,+∞)三、解答题9.已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 依题意,得①⎩⎨⎧m >0,Δ=(-2)2-4m >0,f (0)<0或 ②⎩⎨⎧m <0,Δ=(-2)2-4m >0,f (0)>0或 ③⎩⎨⎧m ≠0,Δ=(-2)2-4m =0.显然①无解;解②,得m <0;解③,得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点. 综上所述,m 的取值范围是(-∞,0]∪{1}. 10.已知函数f (x )=x 2-2ln x ,h (x )=x 2-x +a . (1)求函数f (x )的极值;(2)设函数k (x )=f (x )-h (x ),若函数k (x )在[1,3]上恰有两个不同零点,求实数a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),令f ′(x )=2x -2x =0,得x =1. 当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0, 所以函数f (x )在x =1处取得极小值为1. (2)k (x )=f (x )-h (x )=x -2ln x -a (x >0), 所以k ′(x )=1-2x ,令k ′(x )>0,得x >2,所以k (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以⎩⎨⎧k (1)≥0,k (2)<0,k (3)≥0,所以实数a 的取值范围为(2-2ln 2,3-2ln 3]. 11.已知函数f (x )=e x -m -x ,其中m 为常数.(1)若对任意x ∈R 有f (x )≥0成立,求m 的取值范围; (2)当m >1时,判断f (x )在[0,2m ]上零点的个数,并说明理由. 解 (1)f ′(x )=e x -m -1, 令f ′(x )=0,得x =m .故当x∈(-∞,m)时,e x-m<1,f′(x)<0,f(x)单调递减;当x∈(m,+∞)时,e x-m>1,f′(x)>0,f(x)单调递增.∴当x=m时,f(m)为极小值,也是最小值.令f(m)=1-m≥0,得m≤1,即若对任意x∈R有f(x)≥0成立,则m的取值范围是(-∞,1].(2)由(1)知f(x)在[0,2m]上至多有两个零点,当m>1时,f(m)=1-m<0. ∵f(0)=e-m>0,f(0)f(m)<0,∴f(x)在(0,m)上有一个零点.∵f(2m)=e m-2m,令g(m)=e m-2m,∵当m>1时,g′(m)=e m-2>0,∴g(m)在(1,+∞)上单调递增,∴g(m)>g(1)=e-2>0,即f(2m)>0.∴f(m)·f(2m)<0,∴f(x)在(m,2m)上有一个零点.∴故f(x)在[0,2m]上有两个零点.。

2017届高三数学高考二轮复习(书讲解课件)第一部分 专题四 第一讲 空间几何体

2017届高三数学高考二轮复习(书讲解课件)第一部分 专题四 第一讲 空间几何体

第十四页,编辑于星期六:一点 十七分。
第一讲 空间几何体
考点一 空间几何体与三视图
课前自主诊断 课堂对点补短 限时规范训练 上页 下页
考点一 考点二
考点三
[经典结论·全通关] 一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放 在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽 度一样.即“长对正、高平齐、宽相等”.
=BC2,所以 AB⊥AC,所以 AB⊥平面 CC1A1A.
过点 B1 作平行于平面 ABC 的平面分割几何体,则该几何体的体
积 V=VABC-EB1F+VB1-FEA1C1=12×3×4×2+13×4×3
×3=24.
第二十七页,编辑于星期六:一点 十七分。
第一讲 空间几何体
课前自主诊断 课堂对点补短 限时规范训练
考点二
试题
通解
根据三视图可得该几何体的直观图如图中几
上页 下页
优解
考点一 考点二
考点三
何体 A1ABB1C1C 所示,且 AA1,BB1,CC1 都与平面 ABC 垂直,所以平面 AA1B1B,平 面 BB1C1C,平面 CC1A1A 都与平面 ABC 垂 直,又 AB2+AC2=BC2,所以 AB⊥AC,所 以 AB⊥平面 CC1A1A.连接 AB1,CB1 分割几何体,则该几何体的 体积 V=VB1-ABC+VB1-CAA1C1=13×2×12×3×4+13
A.4π
B.92π
C.6π
D.323π
第十二页,编辑于星期六:一点 十七分。
第一讲 空间几何体
考点三
课前自主诊断
课堂对点补短
限时规范训练 上页 下页
试题 解析

《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(二)

《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(二)

(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1},则A∩B=()A.(2,3)B.(2,3]C.(-3,-2)D.[-3,-2)解析∵x2-2x-3≤0,∴-1≤x≤3,∴A=[-1,3].又∵log2(x2-x)>1,∴x2-x-2>0,∴x<-1或x>2,∴B=(-∞,-1)∪(2,+∞).∴A∩B=(2,3].故选B.答案 B2.若复数z满足(3-4i)z=5,则z的虚部为()A.45 B.-45C.4D.-4解析依题意得z=53-4i=5(3+4i)(3-4i)(3+4i)=35+45i,因此复数z的虚部为45.故选A.答案 A3.在等比数列{a n}中,若a4、a8是方程x2-3x+2=0的两根,则a6的值是()A.± 2B.- 2C. 2D.±2解析由题意可知a4=1,a8=2,或a4=2,a8=1.当a4=1,a8=2时,设公比为q,则a8=a4q4=2,∴q2=2,∴a6=a4q2=2;同理可求当a4=2,a8=1时,a6= 2.答案 C4.将函数f (x )=4sin 2x 的图象向右平移φ⎝⎛⎭⎪⎫0<φ<π2个单位长度后得到函数g (x )的图象,若对于满足|f (x 1)-g (x 2)|=8的x 1,x 2,有|x 1-x 2|min =π6,则φ=( ) A.π6 B.π4 C.π3 D.5π12 解析 由题意知,g (x )=4sin(2x -2φ),-4≤g (x )≤4,又-4≤f (x )≤4,若x 1,x 2满足|f (x 1)-g (x 2)|=8,则x 1,x 2分别是函数f (x ),g (x )的最值点,不妨设f (x 1)=-4,g (x 2)=4,则x 1=3π4+k 1π(k 1∈Z ),x 2=⎝ ⎛⎭⎪⎫π4+φ+k 2π(k 2∈Z ),|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ+(k 1-k 2)π(k 1,k 2∈Z ),又|x 1-x 2|min =π6,0<φ<π2,所以π2-φ=π6,得φ=π3,故选C. 答案 C5.如图,多面体ABCD -EFG 的底面ABCD 为正方形,FC =GD =2EA ,其俯视图如下,则其正视图和侧视图正确的是( )解析 注意BE ,BG 在平面CDGF 上的投影为实线,且由已知长度关系确定投影位置,排除A ,C 选项,观察B ,D 选项,侧视图是指光线从几何体的左面向右面正投影,则BG ,BF 的投影为虚线,故选D. 答案 D6.已知直线ax +by +c -1=0(bc >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( ) A.9 B.8 C.4D.2解析 依题意得,圆心坐标是(0,1),于是有b +c =1,4b +1c =⎝ ⎛⎭⎪⎫4b +1c (b +c )=5+4c b +bc ≥5+24c b ×b c =9,当且仅当⎩⎪⎨⎪⎧b +c =1(bc >0),4c b =b c,即b =2c =23时取等号,因此4b +1c 的最小值是9.故选A. 答案 A7.已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且AC =1,PB =AB =2,则球O 的表面积为( ) A.7π B.8π C.9πD.10π解析 依题意记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,∴球O 的表面积为9π.故选C. 答案 C8.设f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,4)上有三个零点,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,1e B.⎝ ⎛⎭⎪⎫ln 22,e C.⎝ ⎛⎭⎪⎫ln 22,1e D.⎝ ⎛⎭⎪⎫0,ln 22 解析 原问题等价于方程|ln x |=ax 在区间(0,4)上有三个根,令h (x )=ln x ⇒ h ′(x )=1x ,由h (x )在(x 0,ln x 0)处切线y -ln x 0=1x 0(x -x 0)过原点得x 0=e ,即曲线h (x )过原点的切线斜率为1e ,而点(4,ln 4)与原点确定的直线的斜率为ln 22,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫ln 22,1e .答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.) 9.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是________.(用数字作答)解析 设4个公司分别为A 、B 、C 、D ,当甲、乙都在A 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在B 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在C 公司时,则选择另一公司不同的选法为A 13A 12;当甲、乙都在D 公司时,则选择另一公司不同的选法为A 13A 12.∴总数为4A 13A 12=24种. 答案 2410.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析 由⎩⎨⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得: a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,公比q =3的等比数列. ∴S 5=1×(1-35)1-3=121.答案 1 12111.已知cos ⎝ ⎛⎭⎪⎫θ+π4=-13,θ为锐角,则sin 2θ=________,sin ⎝ ⎛⎭⎪⎫2θ+π3=________.解析 由cos ⎝ ⎛⎭⎪⎫θ+π4=-13可得22(cos θ-sin θ)=-13,则cos θ-sin θ=-23,两边平方可得1-sin 2θ=29,sin 2θ=79.又θ是锐角,cos θ<sin θ,则θ∈⎝ ⎛⎭⎪⎫π4,π2,2θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos 2θ=-1-sin 22θ=-429,所以sin ⎝ ⎛⎭⎪⎫2θ+π3=12sin 2θ+32cos 2θ=7-4618.答案 797-461812.所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S -ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的体积为________,其外接球的表面积为________.解析 由“正三棱锥的对棱互相垂直”可得SB ⊥AC ,又SB ⊥AM ,AM 和AC 是平面SAC 上的两条相交直线,所以SB ⊥平面SAC ,则SB ⊥SA ,SB ⊥SC .所以正三棱锥S -ABC 的三个侧面都是等腰直角三角形.又AB =22,所以SA =SB =SC =2,故正三棱锥S -ABC 是棱长为2的正方体的一个角,其体积为16SA ·SB ·SC =43,其外接球的直径2R =23,外接球的表面积为4πR 2=12π. 答案4312π 13.若三个非零且互不相等的实数a ,b ,c 满足1a +1b =2c ,则称a ,b ,c 是调和的;若满足a +c =2b ,则称a ,b ,c 是等差的.若集合P 中元素a ,b ,c 既是调和的,又是等差的,则称集合P 为“好集”,若集合M ={x ||x |≤2 014,x ∈Z },集合P ={a ,b ,c }⊆M ,则“好集”P 中的元素最大值为________;“好集”P 的个数为________.解析 由集合P 中元素a ,b ,c 既是调和的,又是等差的,可得⎩⎪⎨⎪⎧1a +1b =2c ,a +c =2b ,则a =-2b ,c =4b ,故满足条件的“好集”P 为形如{-2b ,b ,4b }(b ≠0,b ∈Z )的形式,则-2 014≤4b ≤2 014,解得-503≤b ≤503(b ≠0,b ∈Z ),当b =503时,“好集”P 中的最大元素4b =2 012,且符合条件的b 可取1 006个,故“好集”P 的个数为1 006. 答案 2 012 1 00614.在△ABC 中,若AB =43,AC =4,B =30°,则△ABC 的面积是________. 解析 由余弦定理AC 2=BA 2+BC 2-2·BA ·BC ·cos B 得42=(43)2+BC 2-2×43×BC ×cos 30°,解得BC =4或BC =8.当BC =4时,△ABC 的面积为12×AB ×BC ×sin B =12×43×4×12=43;当BC =8时,△ABC 的面积为12×AB ×BC ×sin B =12×43×8×12=8 3. 答案 43或8 315.已知F 1、F 2分别为椭圆x 24+y 2=1的左、右焦点,过椭圆的中心O 任作一直线与椭圆交于P 、Q 两点,当四边形PF 1QF 2的面积最大时,PF 1→·PF 2→的值为________.解析 易知点P 、Q 分别是椭圆的短轴端点时,四边形PF 1QF 2的面积最大.由于F 1(-3,0),F 2(3,0),不妨设P (0,1),∴PF 1→=(-3,-1),PF 2→=(3,-1),∴PF 1→·PF 2→=-2. 答案 -2。

《创新设计》2017届高考数学(文)二轮复习(全国通用)Word版训练+专题四+立体几何+第2讲

《创新设计》2017届高考数学(文)二轮复习(全国通用)Word版训练+专题四+立体几何+第2讲

一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.答案 A3.若a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的为()A.若a∥α,b∥α,则a∥bB.若α∥a,β∥a,则α∥βC.若a⊥α,b⊥α,则a∥bD.若α⊥β,α⊥γ,则β∥γ解析对于A,空间中平行于同一个平面的两直线可能异面、相交或平行,故A错误;对于B,空间中平行于同一条直线的两面平行或相交,故B错误.对于C,空间中垂直于同一个平面的两条直线平行,故C正确;对于D,空间中垂直于同一个平面的两平面相交或平行,故D错误.答案 C4.已知α,β是两个不同的平面,有下列三个条件:①存在一个平面γ,γ⊥α,γ∥β;②存在一条直线a,a⊂α,a⊥β;③存在两条垂直的直线a,b,a⊥β,b⊥α.其中,所有能成为“α⊥β”的充要条件的序号是()A.①B.②C.③D.①③解析对于①,存在一个平面γ,γ⊥α,γ∥β,则α⊥β,反之也成立,即“存在一个平面γ,γ⊥α,γ∥β”是“α⊥β”的充要条件,所以①对,可排除B、C.对于③,存在两条垂直的直线a,b,则直线a,b所成的角为90°,因为a⊥β,b⊥α,所以α,β所成的角为90°,即α⊥β,反之也成立,即“存在两条垂直的直线a,b,a⊥β,b⊥α”是“α⊥β”的充要条件,所以③对,可排除A,选D.答案 D5.如图,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC解析∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD,又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,CD⊂平面BCD,所以CD⊥平面ABD,又AB⊂平面ABD,则CD⊥AB,又AD⊥AB,AD∩CD=D,所以AB⊥平面ADC,又AB⊂平面ABC,所以平面ABC⊥平面ADC,故选D.答案 D二、填空题6.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线P A垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①P A ∥平面MOB ;②MO ∥平面P AC ;③OC ⊥平面P AC ;④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).解析 ①错误,P A ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面P AC .答案 ②④7.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,AC ∩EF=G ,现在沿AE 、EF 、F A 把这个正方形折成一个四面体,使B 、C 、D 三点重合,重合后的点记为P ,则在四面体P -AEF 中必有________(填序号).①AP ⊥△PEF 所在平面;②AG ⊥△PEF 所在平面;③EP ⊥△AEF 所在平面;④PG ⊥△AEF 所在平面.解析 在折叠过程中,AB ⊥BE ,AD ⊥DF 保持不变.∴ ⎭⎬⎫AP ⊥PE AP ⊥PF PE ∩PF =P ⇒AP ⊥面PEF .答案 ①8.(2016·东北三校联考)点A 、B 、C 、D 在同一个球的球面上,AB =BC =2,AC =2,若四面体ABCD 体积的最大值为23,则这个球的表面积为________.解析 如图所示,O 为球的球心,由AB =BC =2,AC =2可知∠ABC =π2,即△ABC 所在的小圆的圆心O 1为AC 的中点,故AO 1=1,S △ABC =1,当D 为O 1O 的延长线与球面的交点时,D 到平面ABC 的距离最大,四面体ABCD 的体积最大.连接OA ,设球的半径为R ,则DO 1=R +R 2-1,此时V D -ABC =13×S △ABC ×DO 1=13(R +R 2-1)=23,解得R =54,故这个球的表面积为4π⎝ ⎛⎭⎪⎫542=25π4.答案 25π4三、解答题9.(2016·北京卷)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ;(2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由.(1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面P AC ,AC ⊂平面P AC ,∴CD ⊥平面P AC .(2)证明 ∵AB ∥CD ,CD ⊥平面P AC ,∴AB ⊥平面P AC ,AB ⊂平面P AB ,∴平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点, ∴EF 为△P AB 的中位线,∴EF ∥P A .又P A ⊄平面CEF ,EF ⊂平面CEF ,∴P A ∥平面CEF .10.(2015·山东卷)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)法一连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则M为CD的中点,又H为BC的中点,所以HM∥BD,又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.又因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE,因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF ∥HE .又CF ⊥BC ,所以HE ⊥BC .又HE ,GH ⊂平面EGH ,HE ∩GH =H ,所以BC ⊥平面EGH .又BC ⊂平面BCD ,所以平面BCD ⊥平面EGH .11.(2016·南昌5月模拟)如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,∵AE ⊂平面ABE ,∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE ,∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,GN ,MG ⊂平面MGN ,∴平面MGN ∥平面ADE .又MN⊂平面MGN,∴MN∥平面ADE.∴N点为线段CE上靠近C点的一个三等分点.。

2017高考数学二轮浙江专用课件:5-4空间向量与立体几

2017高考数学二轮浙江专用课件:5-4空间向量与立体几

-8热点考题诠释 能力目标解读
1 2 3 4
所以平面PCE⊥平面PAH. 过A作AQ⊥PH于Q,则AQ⊥平面PCE. 所以∠APH是PA与平面PCE所成的角. 在Rt△AEH中,∠AEH=45°,AE=1,
所以 AH= 2 . 在 Rt△PAH 中,PH=
������������
2
������������2
=
2 1 2 5 5· 9 ������ + 9 9
,
,
1 2 2 2 9 5 + 9
2 的最大值为5.
1 2 2 5 + ������ 9 9 2 ������ ≤ 5,


=
5 . 2
-5热点考题诠释 能力目标解读
1 2 3 4
2.
(2016四川,理18)如图,在四棱锥P-ABCD 1 中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为棱AD的中点,异 2 面直线PA与CD所成的角为90°. (1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由; (2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正 弦值.
5· 5+(2-������)2 1 5·
������
5· 9-4������+������2 1
.
当 t=0 时,cos θ=0. 当 t≠0 时,cos θ= 由 t∈[0,2],得 ∈ 所以 9 所以 cos 即 cos θ
1 ������
1 ,+∞ 2
9 -4+1 ������ ������2
1 2 3 4
解析: 以 A 为坐标原点,射线 AB,AD,AQ 分别为 x 轴、y 轴、 z 轴的正半轴,建立如图所示的空间直角坐标系. 设正方形 ABCD 和 ADPQ 的边长为 2, 则 E(1,0,0),F(2,1,0),M(0,y,2)(0≤y≤2). 所以������������ =(2,1,0),������������=(-1,y,2). 所以������������ ·������������ =-2+y,|������������ |= 5,|������������ |= 5 + ������ 2 . 所以 cos θ= =

2017高考数学(浙江专版)二轮复习与策略课件 专题10 立体几何中的向量方法

2017高考数学(浙江专版)二轮复习与策略课件 专题10 立体几何中的向量方法

图 104
2017版高三二轮复习与策略
(1)证明:A1D⊥平面 A1BC; (2)求二面角 A1BDB1 的平面角的余弦值.
2017版高三二轮复习与策略 [解] (1)证明:设 E 为 BC 的中点,由题意得 A1E⊥平面 ABC,
所以 A1E⊥AE. 因为 AB=AC,所以 AE⊥BC. 故 AE⊥平面 A1BC. 由 D,E 分别为 B1C1,BC 的中点, 得 DE∥B1B 且 DE=B1B,从而 DE∥A1A,DE=A1A, 所以四边形 A1AED 为平行四边形. 故 A1D∥AE. 又因为 AE⊥平面 A1BC, 所以 A1D⊥平面 A1BC. 5分 4分 2分
2017版高三二轮复习与策略
可取 m=(0, 7,1). → =0, n· DB 2y2=0, 1 由 即 → =0, - 2x2- 2y2+ 14z2=0, n · BD 可取 n=( 7,0,1). |m· n| 1 于是|cos〈m,n〉|=|m|· |n|=8. 由题意可知,所求二面角的平面角是钝角, 1 故二面角 A1BDB1 的平面角的余弦值为-8. 15 分 12 分
平面 ABED 的法向量为 n=(x2,y2,z2). →· AC m=0, 由 → m =0 AK·
3y1=0, 得 x1+3y1+
5分
3z1=0,
6分
取 m=( 3,0,-1); →· AB n=0, 由 → n=0 AK· 9分
2017版高三二轮复习与策略
2017版高三二轮复习与策略
回访 1
空间向量及其运算
1 1.(2015· 浙江高考)已知 e1,e2 是空间单位向量,e1· e2=2,若空间向量 b 满 5 足 b· e1=2, b· e2=2, 且对于任意 x, y∈R, |b-(xe1+ye2)|≥|b-(x0e1+y0e2)|=1(x0, y0∈R),则 x0=________,y0=________,|b|=________.

(浙江专)高考数学二轮专题复习第一部分专题四立体几何与空间向量讲义

(浙江专)高考数学二轮专题复习第一部分专题四立体几何与空间向量讲义

专题四立体几何与空间向量第一讲空间几何体的三视图、表面积及体积考点一空间几何体的三视图一、基础知识要记牢三视图的排列规则是:“长对正、高平齐、宽相等”.二、经典例题领悟好[例1] (1)(2017·惠州调研)如图所示,将图①中的正方体截去两个三棱锥,得到图②中的几何体,则该几何体的侧视图为( )(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)从几何体的左面看,棱AD1是原正方形ADD1A1的对角线,在视线范围内,画实线;棱C1F不在视线范围内,画虚线.故选B.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体如图①所示,故其侧(左)视图如图②所示.故选B.[答案] (1)B (2)B分析空间几何体的三视图的要点(1)根据俯视图确定几何体的底面.(2)根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的形状,即可得到结果.比较复杂的三视图问题常常借助于长方体确定空间几何体的形状. 三、预测押题不能少1.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .2解析:选B 在正方体中还原该四棱锥如图所示, 从图中易得最长的棱为AC 1=AC 2+CC 21=22+22+22=2 3.考点二 空间几何体的表面积与体积 一、基础知识要记牢常见的一些简单几何体的表面积和体积公式圆柱的表面积公式:S =2πr 2+2πrl =2πr (r +l )(其中r 为底面半径,l 为圆柱的高); 圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中r 为底面半径,l 为母线长); 圆台的表面积公式:S =π(r ′2+r 2+r ′l +rl )(其中r 和r ′分别为圆台的上、下底面半径,l 为母线长);柱体的体积公式:V =Sh (S 为底面面积,h 为高); 锥体的体积公式:V =13Sh (S 为底面面积,h 为高);台体的体积公式:V =13(S ′+S ′S +S )h (S ′,S 分别为上、下底面面积,h 为高);球的表面积和体积公式:S =4πR 2,V =43πR 3(R 为球的半径).二、经典例题领悟好[例2] (1)(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24π C.28π D .32π(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63π C.42π D .36π[解析] (1)由三视图知该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得r =2,c =2πr =4π,h =4, 由勾股定理得:l =22+232=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.(2)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π.[答案] (1)C (2)B1求几何体的表面积及体积问题,关键是空间想象能力,能想出、画出空间几何体,高往往易求,底面放在已知几何体的某一面上.2求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.三、预测押题不能少2.(1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π, ∴r 2=4,r =2,故选B.(2)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为_______.解析:该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.答案:2+π2考点三 球与多面体的切接问题 一、基础知识要记牢(1)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,可采用“补形法”成为一个球内接长方体.(2)正四面体的内切球与外接球半径之比为1∶3. 二、经典例题领悟好[例3] (1)(2016·全国卷Ⅲ)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π23(2)(2018届高三·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .36π B.112π3C .32πD .28π[解析] (1)设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B. (2)根据三视图,可知该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,该三棱柱的底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.∵三棱柱的底面是边长为4的正三角形,∴底面三角形的中心到三角形三个顶点的距离为23×23=433,∴其外接球的半径R =⎝ ⎛⎭⎪⎫4332+22=283,则外接球的表面积S =4πR 2=4π×283=112π3,故选B.[答案] (1)B (2)B处理球与棱柱、棱锥切、接问题的思路(1)过球及多面体中的特殊点(一般为接、切点)或线作截面,化空间问题为平面问题. (2)利用平面几何知识寻找几何体中元素间关系,确定球心位置. (3)建立几何量间关系求半径r . 三、预测押题不能少3.(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )4C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以圆柱的体积V =34π×1=3π4.(2)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.解析:设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR3=32.答案:32[知能专练(十三)]一、选择题1.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )解析:选C 注意到在三视图中,俯视图的宽度应与侧视图的宽度相等,而在选项C 中,其宽度为32,与题中所给的侧视图的宽度1不相等,因此选C. 2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径为( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.3.将边长为1的正方形以其一边所在的直线为旋转轴旋转一周,所得几何体的侧面积为( )A .4πB .3πC .2πD .π解析:选C 由几何体的形成过程知所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.4.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥侧面积和体积分别是( )A .45,8B .45,83C .4(5+1),83D .8,8解析:选B 由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为 22+12=5,所以S 侧=4×⎝ ⎛⎭⎪⎫12×2×5=45,V =13×22×2=83.5.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:选B 由三视图可知该多面体是一个组合体,如图所示,其下面是一个底面为等腰直角三角形的直三棱柱,上面是一个底面为等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为2+4×22×2=12,故选B.6.如图,三棱锥V ­ABC 的底面为正三角形,侧面VAC 与底面垂直且VA =VC ,已知其正视图的面积为23,则其侧视图的面积为( )A.32 B.33 C.34D.36解析:选B 由题意知,该三棱锥的正视图为△VAC ,作VO ⊥AC 于O ,连接OB (图略),设底面边长为2a ,高VO =h ,则△VAC 的面积为12×2a ×h =ah =23.又三棱锥的侧视图为Rt △VOB ,在正三角形ABC 中,高OB =3a ,所以侧视图的面积为12OB ·VO =12×3a ×h =32ah =32×23=33.7.《九章算术》的商功章中有一道题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底圆周长约为( )A .1丈3尺B .5丈4尺C .9丈2尺D .48丈6尺解析:选B 设圆柱底面圆的半径为r ,若以尺为单位,则2 000×1.62=3r 2⎝⎛⎭⎪⎫10+3+13,解得r =9(尺),∴底面圆周长约为2×3×9=54(尺),换算单位后为5丈4尺,故选B.8.(2017·丽水模拟)已知某几何体的三视图如图所示,其中俯视图是正三角形,则该几何体的体积为( )A. 3 B .2 3 C .3 3D .4 3解析:选 B 分析题意可知,该几何体是由如图所示的三棱柱ABC ­A 1B 1C 1截去四棱锥A ­BEDC 得到的,故其体积V =34×22×3-13×1+22×2×3=23,故选B.9.(2017·贵阳质检)三棱锥P ­ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ­ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳模拟)已知三棱锥P ­ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ­ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P ­ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ­ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝ ⎛⎭⎪⎫2332=203,所以三棱锥P ­ABC 的外接球的表面积为4πR 2=80π3,故选D. 二、填空题11.已知某几何体的三视图如图所示,则该几何体的表面积为________,体积为________.解析:由三视图得该几何体为如图所示的三棱锥,其中底面ABC 为直角三角形,∠B =90°,AB =1,BC =2,PA ⊥底面ABC ,PA =2,所以AC =PB =5,PC =3,PC 2=PB 2+BC 2,∴∠PBC =90°,则该三棱锥的表面积为12×1×2+12×1×2+12×2×5+12×2×5=2+25,体积为13×12×1×2×2=23.答案:2+2 5 2312.(2017·诸暨质检)某几何体的三视图如图所示,则该几何体最长的一条棱的长度为________,体积为________.解析:根据三视图,可以看出该几何体是一个底面为正三角形,一条侧棱垂直底面的三棱锥,如图所示,其中底面△BCD 是正三角形,各边长为2,侧棱AD ⊥底面BCD ,且AD =2,底面△BCD 的中垂线长DE =3,∴AC =AB =22,V 三棱锥A ­BCD =13×S △BCD ×AD =13×12×2×3×2=233,即该几何体最长的棱长为22,体积为233.答案:2 2 233 13.一个直棱柱(侧棱与底面垂直的棱柱)被一个平面截去一部分后,所剩几何体的三视图如图所示,则截去的几何体为________(从备选项中选择一个填上:三棱锥、四棱锥、三棱柱、四棱柱),截去的几何体的体积为________.解析:作出直观图可得截去的几何体为底面为直角边长分别为1和2的直角三角形,高为4的三棱锥,其体积V =13×1×22×4=43. 答案:三棱锥 4314.(2018届高三·浙江名校联考)某简单几何体的三视图如图所示,则该几何体的体积为________,其外接球的表面积为________.解析:由三视图得该几何体是一个底面为对角线为4的正方形,高为3的直四棱柱,则其体积为4×4×12×3=24.又直四棱柱的外接球的半径R =⎝ ⎛⎭⎪⎫322+22=52,所以四棱柱的外接球的表面积为4πR 2=25π.答案:24 25π15.(2017·洛阳模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则该几何体的表面积为________.解析:由三视图可知该几何体为一个球体的34,故该几何体的表面积等于球的表面积的34,加上以球的半径为半径的圆的面积,即S =34×4πR 2+πR 2=16π. 答案:16π16.(2016·四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.解析:由正视图知三棱锥的形状如图所示,且AB =AD =BC =CD =2,BD =23,设O 为BD 的中点,连接OA ,OC ,则OA ⊥BD ,OC ⊥BD ,结合正视图可知AO ⊥平面BCD .又OC =CD 2-OD 2=1,∴V 三棱锥A ­BCD =13×⎝ ⎛⎭⎪⎫12×23×1×1=33. 答案:33 17.如图是某三棱柱被削去一个底面后的直观图、侧视图与俯视图.已知CF =2AD ,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示,则该几何体的体积为________.解析:取CF 中点P ,过P 作PQ ∥CB 交BE 于Q ,连接PD ,QD ,则AD∥CP ,且AD =CP .所以四边形ACPD 为平行四边形,所以AC ∥PD .所以平面PDQ ∥平面ABC .该几何体可分割成三棱柱PDQ ­CAB 和四棱锥D ­PQEF ,所以V =V PDQ ­CAB +V D ­PQEF=12×22sin 60°×2+13×1+2×22×3=3 3.答案:3 3 [选做题] 1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B. 2.四棱锥P ­ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A .6B .5 C.92 D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ­ABCD是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.3.(2017·兰州模拟)已知球O 的半径为13,其球面上有三点A ,B ,C ,若AB =123,AC =BC =12,则四面体OABC 的体积为________.解析:如图,过点A ,B 分别作BC ,AC 的平行线,两线相交于点D ,连接CD ,∵AC =BC =12,AB =123,在△ABC 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC =-12, ∴∠ACB =120°,∴在菱形ACBD 中,DA =DB =DC =12,∴点D 是△ABC 的外接圆圆心,连接DO ,在△ODA 中,OA 2=DA 2+DO 2,即DO 2=OA 2-DA 2=132-122=25,∴DO =5,又DO ⊥平面ABC ,∴V O ­ABC =13×12×12×12×32×5=60 3. 答案:60 3 第二讲点、直线、平面之间的位置关系考点一 空间线面位置关系的判断一、基础知识要记牢 空间线线、线面、面面的位置关系的认识和判定是学习立体几何的基础,要在空间几何体和空间图形中理解、表述位置关系,发展空间想象能力.二、经典例题领悟好[例1] (1)(2017·全国卷Ⅲ)在正方体ABCD ­A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC(2)(2016·全国卷Ⅱ)α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.②如果m ⊥α,n ∥α,那么m ⊥n .③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)[解析] (1)法一:由正方体的性质,得A 1B 1⊥BC 1,B 1C ⊥BC 1,A 1B 1∩B 1C =B 1,所以BC 1⊥平面A 1B 1CD .又A 1E ⊂平面A 1B 1CD ,所以A 1E ⊥BC 1.法二:∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B 、D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.(2)对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ⊂α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.[答案] (1)C (2)②③④解决空间线面位置关系的判断问题的常用方法(1)根据空间线面垂直、平行关系的判定定理和性质定理逐一判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.三、预测押题不能少1.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ.又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C、D中均有AB∥平面MNQ.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接OQ,则OQ∥AB.因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MNQ.故选A.考点二空间线面平行、垂直关系的证明一、基础知识要记牢(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(4)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(5)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(6)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(7)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(8)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(9)三垂线定理及逆定理:①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直;②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.二、经典例题领悟好[例2] 如图,在四棱锥P­ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明] (1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,而且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD,∴PA⊥CD.∴CD⊥平面PAD.∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF.∴CD⊥EF.又BE∩EF=E,∴CD⊥平面BEF.又CD⊂平面PCD,∴平面BEF⊥平面PCD.(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,即空间向平面的转化:面面⇔线面⇔线线.三、预测押题不能少2.由四棱柱ABCD­A1B1C1D1截去三棱锥C1­B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,因为ABCD­A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C,因为O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为E,M分别为AD,OD的中点,所以EM∥AO.因为AO⊥BD,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E⊂平面A1EM,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.[知能专练(十四)]一、选择题1.下列四个命题中,正确命题的个数是( )①若平面α∥平面β,直线m∥平面α,则m∥β;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;④直线m,n为异面直线,且m⊥平面α,n⊥平面β,若m⊥n,则α⊥β.A.0 B.1C.2 D.3解析:选B ①若平面α∥平面β,直线m∥平面α,则m∥β或m⊂β,故①不正确;②若平面α⊥平面γ,且平面β⊥平面γ,则α∥β或相交,故②不正确;③平面α⊥平面β,且α∩β=l,点A∈α,A∉l,若直线AB⊥l,则AB⊥β;此命题中,若B∈β,且AB与l异面,同时AB⊥l,此时AB与β相交,故③不正确;命题④是正确的.2.(2017·泉州模拟)设a,b是互不垂直的两条异面直线,则下列命题成立的是( ) A.存在唯一直线l,使得l⊥a,且l⊥bB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一平面α,使得a⊂α,且b∥αD.存在唯一平面α,使得a⊂α,且b⊥α解析:选C a,b是互不垂直的两条异面直线,把它放入正方体中如图,由图可知A不正确;由l∥a,且l⊥b,可得a⊥b,与题设矛盾,故B不正确;由a⊂α,且b⊥α,可得a⊥b,与题设矛盾,故D不正确,故选C.3.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A .①②B .①②③C .①D .②③解析:选B 对于①,∵PA ⊥平面ABC ,∴PA ⊥BC .∵AB 为⊙O 的直径,∴BC ⊥AC ,又∵PA ∩AC =A ,∴BC ⊥平面PAC ,又PC ⊂平面PAC ,∴BC ⊥PC .对于②,∵点M 为线段PB 的中点,∴OM ∥PA ,∵PA ⊂平面PAC ,OM ⊄平面PAC ,∴OM ∥平面PAC .对于③,由①知BC ⊥平面PAC ,∴线段BC 的长即是点B 到平面PAC 的距离.故①②③都正确.4.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( )A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β解析:选B 画出一个长方体ABCD ­A 1B 1C 1D 1.对于A ,C 1D 1∥平面ABB 1A 1,C 1D 1∥平面ABCD ,但平面ABB 1A 1与平面ABCD 相交;对于C ,BB 1⊥平面ABCD ,BB 1∥平面ADD 1A 1,但平面ABCD 与平面ADD 1A 1相交;对于D ,平面ABB 1A 1⊥平面ABCD ,CD ∥平面ABB 1A 1,但CD ⊂平面ABCD .5.(2017·成都模拟)把平面图形M 上的所有点在一个平面上的射影构成的图形M ′称为图形M 在这个平面上的射影.如图,在长方体ABCD ­EFGH 中,AB =5,AD =4,AE =3,则△EBD 在平面EBC 上的射影的面积是( )A .234 B.252 C .10 D .30解析:选A 连接HC ,过D 作DM ⊥HC ,交HC 于M ,连接ME ,MB ,因为BC ⊥平面HCD ,又DM ⊂平面HCD ,所以BC ⊥DM ,因为BC ∩HC =C ,所以DM ⊥平面HCBE ,即D 在平面HCBE 内的射影为M ,所以△EBD 在平面HCBE 内的射影为△EBM ,在长方体中,HC ∥BE ,所以△MBE 的面积等于△CBE 的面积,所以△EBD 在平面EBC上的射影的面积为12×52+32×4=234,故选A. 6.已知E ,F 分别为正方体ABCD ­A 1B 1C 1D 1的棱AB ,AA 1上的点,且AE =12AB ,AF =13AA 1,M ,N 分别为线段D 1E 和线段C 1F 上的点,则与平面ABCD 平行的直线MN 有( )A .1条B .3条C .6条D .无数条解析:选D 取BH =13BB 1,连接FH ,则FH ∥C 1D 1,连接HE ,D 1H ,在D 1E 上任取一点M ,过M 在平面D 1HE 中作MG ∥HO ,交D 1H 于点G ,其中OE =13D 1E ,过O 作OK ⊥平面ABCD 于点K ,连接KB ,则四边形OHBK 为矩形,再过G 作GN ∥FH ,交C 1F 于点N ,连接MN ,由于MG ∥HO ,HO ∥KB ,KB ⊂平面ABCD ,GM ⊄平面ABCD ,所以GM ∥平面ABCD ,同理,GN ∥FH ,可得GN ∥平面ABCD ,由面面平行的判定定理得,平面GMN ∥平面ABCD ,则MN ∥平面ABCD ,由于M 为D 1E 上任一点,故这样的直线MN 有无数条.二、填空题7.已知α,β,γ是三个不重合的平面,a ,b 是两条不重合的直线,有下列三个条件:①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填可能条件的序号).解析:由定理“一条直线与一个平面平行,则过这条直线的任一平面和此平面的交线与该直线平行”可得,横线处可填入条件①或③.答案:①或③8.(2018届高三·江南十校联考)如图,正方体ABCD ­A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确结论的序号是________.解析:过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,∴AA 1⊥MN ,①正确.过M ,N 分别作MR ⊥A 1B 1,NS ⊥B 1C 1于点R ,S ,连接RS ,当则M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M ,N 分别是AB 1,BC 1的中点时,A 1C 1∥RS ,∴A 1C 1与MN 可以异面,也可以平行,故②④错误.由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,∴平面MNP ∥平面A 1B 1C 1D 1,故③正确.综上所述,正确结论的序号是①③.答案:①③9.(2017·温州模拟)如图,在四面体ABCD 中,E ,F 分别为AB ,CD 的中点,过EF 任作一个平面α分别与直线BC ,AD 相交于点G ,H ,则下列结论正确的是________.①对于任意的平面α,都有直线GF ,EH ,BD 相交于同一点;②存在一个平面α0,使得点G 在线段BC 上,点H 在线段AD 的延长线上;③对于任意的平面α,都有S △EFG =S △EFH ;④对于任意的平面α,当G ,H 在线段BC ,AD 上时,几何体AC ­EGFH 的体积是一个定值. 解析:对①,G ,H 分别为相应线段中点时,三线平行,故①错.对②,三线相交时,交点会在BD 上,作图可知②错.对③,如图1,取BD ,AC 的中点I ,J ,则BC ,AD 都与平面EIFJ 平行,故A ,H 到平面EIFJ 的距离相等,B ,G 到平面EIFJ 的距离相等,而E 为AB 的中点,故A ,B 到平面EIFJ 的距离相等,从而G ,H 到平面EIFJ 的距离相等.连接GH 交EF 于K ,则K 为GH 的中点,从而G ,H 到EF 的距离相等,故两三角形的面积相等.③正确.对④,如图2,当H 为D 时,G 为C ,此时几何体的体积为三棱锥A ­CDE 的体积,为四面体体积的一半.当如图2所示时,只需证V C ­EFG =V D ­EFH ,由③可得,只需证C ,D 到截面的距离相等,因为F 为CD 的中点,所以C ,D 到截面的距离相等.故④正确.答案:③④ 三、解答题10.(2016·山东高考)在如图所示的几何体中,D 是AC 的中点,EF ∥DB.(1)已知AB =BC ,AE =EC ,求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点,求证:GH ∥平面ABC . 证明:(1)因为EF ∥DB , 所以EF 与DB 确定平面BDEF . 如图,连接DE .因为AE =EC ,D 为AC 的中点, 所以DE ⊥AC .同理可得BD ⊥AC . 又BD ∩DE =D , 所以AC ⊥平面BDEF . 因为FB ⊂平面BDEF , 所以AC ⊥FB .(2)如图,设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE 的图1图2中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,BC∩DB=B,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.11.(2017·嘉兴模拟)如图,矩形ABCD所在平面与三角形ECD所在平面相交于CD,AE⊥平面ECD.(1)求证:AB⊥平面ADE;(2)若点M在线段AE上,AM=2ME,N为线段CD中点,求证:EN∥平面BDM.证明:(1)因为AE⊥平面ECD,CD⊂平面ECD,所以AE⊥CD.又因为AB∥CD,所以AB⊥AE.在矩形ABCD中,AB⊥AD,因为AD∩AE=A,AD⊂平面ADE,AE⊂平面ADE,所以AB⊥平面ADE.(2)连接AN交BD于F点,连接FM,因为AB∥CD且AB=2DN,所以AF=2FN,又AM=2ME,所以EN∥FM,又EN⊄平面BDM,FM⊂平面BDM,所以EN∥平面BDM.12.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点.(1)求证:平面EFG∥平面PMA;(2)求证:平面EFG⊥平面PDC.证明:(1)∵E,G,F分别为MB,PB,PC的中点,∴EG∥PM,GF∥BC.又∵四边形ABCD是正方形,∴BC∥AD,∴GF∥AD.∵EG,GF在平面PMA外,PM,AD在平面PMA内,∴EG∥平面PMA,GF∥平面PMA.又∵EG,GF都在平面EFG内且相交,∴平面EFG∥平面PMA.。

《创新设计》2017届高考数学(浙江专用)二轮教师文档讲义:专题2.2三角恒等变换与解三角形

《创新设计》2017届高考数学(浙江专用)二轮教师文档讲义:专题2.2三角恒等变换与解三角形

第2讲 三角恒等变换与解三角形高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题.真 题 感 悟1.(2016·全国Ⅲ卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C.1D.1625解析 tan α=34,则cos 2α+2sin 2α=cos 2α+2sin 2αcos 2α+sin 2α=1+4tan α1+tan 2α=6425.答案 A2.(2016·全国Ⅱ卷)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =________.解析 在△ABC 中由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B = sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 答案 21133.(2015·全国Ⅰ卷)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析 如图所示,延长BA ,CD 交于点E ,则可知在△ADE 中,∠DAE =105°,∠ADE =45°,∠E =30°, ∴设AD =12x ,则AE =22x ,DE =6+24x ,令CD =m ,∵BC =2,∴⎝ ⎛⎭⎪⎫6+24x +m ·sin 15°=1⇒6+24x +m =6+2, ∴0<x <4,而AB =6+24x +m -22x =6-24x +m =6+2-22x , ∴AB 的取值范围是(6-2,6+2). 答案 (6-2,6+2)4.(2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知 2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B cos A )=sin C , 2cos C sin(A +B )=sin C ,故2sin C cos C =sin C .可得cos C =12,所以C =π3. (2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25.所以△ABC 的周长为5+7.考 点 整 合1.三角函数公式(1)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(2)诱导公式:对于“k π2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β;tan(α±β)=tan α±tan β1∓tan αtan β.(4)二倍角公式:sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.2.正、余弦定理、三角形面积公式(1)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R (R 为△ABC 外接圆的半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ;sin A =a 2R ,sin B =b 2R ,sin C =c2R ;a ∶b ∶c =sin A ∶sin B ∶sin C .(2)a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C ; 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ; 变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C . (3)S △ABC =12ab sin C =12ac sin B =12bc sin A .热点一 三角恒等变换及应用【例1】 (1)(2015·重庆卷)若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=( )A.1B.2C.3D.4(2)已知α为锐角,若cos ⎝ ⎛⎭⎪⎫α+π6=35,则cos ⎝⎛⎭⎪⎫2α-π6=________.(3)(2016·合肥质检)已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2.则sin 2α=________.解析 (1)cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsin π5sin α·cos π5-cos αsin π5=tan αtan π5+1tan αtan π5-1=2+12-1=3.(2)∵α为锐角,cos ⎝ ⎛⎭⎪⎫α+π6=35>0,∴α+π6为锐角,∴sin ⎝ ⎛⎭⎪⎫α+π6=45,则sin ⎝ ⎛⎭⎪⎫2α+π3=2sin ⎝ ⎛⎭⎪⎫α+π6cos ⎝ ⎛⎭⎪⎫α+π6=2×45×35=2425,又cos ⎝ ⎛⎭⎪⎫2α-π6=sin ⎝ ⎛⎭⎪⎫2α+π3,∴cos ⎝ ⎛⎭⎪⎫2α-π6=2425.(3)cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α =12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,即sin ⎝⎛⎭⎪⎫2α+π3=-12.∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32,∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12.答案 (1)C (2)2425 (3)12探究提高 1.解决三角函数的化简求值问题的关键是把“所求角”用“已知角”表示(1)当已知角有两个时,“所求角”一般表示为“两个已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.2.求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解.【训练1】 (1)已知sin 2α=23,则cos 2⎝ ⎛⎭⎪⎫α+π4=( )A.16 B.13 C.12D.23(2)(2016·成都模拟)sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=( )A.-63 B.-66 C.66 D.63(3)(2016·中山模拟)已知cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β=________.解析 (1)法一 cos 2⎝ ⎛⎭⎪⎫α+π4=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2α+π2=12(1-sin 2α)=16.法二 cos ⎝ ⎛⎭⎪⎫α+π4=22cos α-22sin α.所以cos 2⎝ ⎛⎭⎪⎫α+π4=12(cos α-sin α)2=12(1-2sin αcos α) =12(1-sin 2α)=16.(2)sin(π-α)=sin α=-53,又α∈⎝ ⎛⎭⎪⎫π,3π2,∴cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-532=-23. 由cos α=2cos 2α2-1,α2∈⎝ ⎛⎭⎪⎫π2,3π4,得cos α2=-cos α+12=-66.所以sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-66.(3)因为cos(2α-β)=-1114, 且π4<2α-β<π, 所以sin(2α-β)=5314. 因为sin(α-2β)=437, 且-π4<α-2β<π2. 所以cos(α-2β)=17,所以cos(α+β)=cos[(2α-β)-(α-2β)] =cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β) =-1114×17+5314×437=12. 又π4<α+β<3π4,所以α+β=π3.答案 (1)A (2)B (3)π3 热点二 正、余弦定理的应用 [微题型1] 三角形基本量的求解【例2-1】 (2016·四川卷)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c . (1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin Cc 中,有 cos A k sin A +cos B k sin B =sin Ck sin C ,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C .(2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有 cos A =b 2+c 2-a 22bc =35. 所以sin A =1-cos 2A =45.由(1),sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B . 故tan B =sin Bcos B =4.探究提高 1.解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则考虑两个定理都有可能用到.2.关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角恒等变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”. [微题型2] 求解三角形中的最值问题【例2-2】 (2016·绍兴模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0. (1)求A ;(2)若a =2,求△ABC 面积的最大值.解 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,所以A =π3.(2)法一 由(1)得B +C =2π3⇒C =2π3-B ⎝ ⎛⎭⎪⎫0<B <2π3,由正弦定理得a sin A =b sin B =csin C =2sin π3=43, 所以b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝ ⎛⎭⎪⎫2π3-B= 433⎝ ⎛⎭⎪⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝ ⎛⎭⎪⎫2B -π6+33.易知-π6<2B -π6<7π6,故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3. 法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c =2时,等号成立. 所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.探究提高 求解三角形中的最值问题常用如下方法:(1)将要求的量转化为某一角的三角函数,借助于三角函数的值域求最值.(2)将要求的量转化为边的形式,借助于基本不等式求最值. [微题型3] 解三角形与三角函数的综合问题【例2-3】 (2016·四川成都诊断二)已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA→·BC →的值. 解 (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π6.∵f (x )的最小正周期为π, ∴T =2π2|ω|=π. ∵ω>0,∴ω=1.(2)设△ABC 中角A ,B ,C 所对的边分别是a ,b ,c . ∵f (B )=-2,∴2sin ⎝ ⎛⎭⎪⎫2B +π6=-2,即sin ⎝⎛⎭⎪⎫2B +π6=-1,解得B =2π3(B ∈(0,π)).∵BC =3,∴a =3,∵sin B =3sin A , ∴b =3a ,∴b =3. 由正弦定理,有3sin A =3sin 2π3, 解得sin A =12. ∵0<A <π3,∴A =π6. ∴C =π6,∴c =a = 3.∴BA→·BC →=ca cos B =3×3×cos 2π3=-32. 探究提高 解三角形与三角函数的综合题,其中,解决与三角恒等变换有关的问题,优先考虑角与角之间的关系;解决与三角形有关的问题,优先考虑正弦、余弦定理.【训练2】 (2016·浙江卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B + sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24, 故有sin B sin C =12sin 2B =sin B cos B ,因sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B . 当B +C =π2时,A =π2; 当C -B =π2时,A =π4. 综上,A =π2或A =π4.1.对于三角函数的求值,需关注:(1)寻求角与角关系的特殊性,化非特殊角为特殊角,熟练准确地应用公式; (2)注意切化弦、异角化同角、异名化同名、角的变换等常规技巧的运用; (3)对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,对于很难入手的问题,可利用分析法. 2.三角形中判断边、角关系的具体方法:(1)通过正弦定理实施边角转换;(2)通过余弦定理实施边角转换;(3)通过三角变换找出角之间的关系;(4)通过三角函数值符号的判断以及正、余弦函数的有界性进行讨论;(5)若涉及两个(或两个以上)三角形,这时需作出这些三角形,先解条件多的三角形,再逐步求出其他三角形的边和角,其中往往用到三角形内角和定理,有时需设出未知量,从几个三角形中列出方程(组)求解.3.解答与三角形面积有关的问题时,如已知某一内角的大小或三角函数值,就选择S =12ab sin C 来求面积,再利用正弦定理或余弦定理求出所需的边或角.一、选择题1.已知α∈R ,sin α+2cos α=102,则tan 2α等于( ) A.43 B.34 C.-34D.-43解析 ∵sin α+2cos α=102, ∴sin 2 α+4sin α·cos α+4cos 2α=52. 用降幂公式化简得4sin 2α=-3cos 2α, ∴tan 2α=sin 2αcos 2α=-34.故选C. 答案 C2.(2016·宁波二模)已知锐角△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( ) A.10 B.9 C.8D.5解析 化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,又角A 为锐角, 解得cos A =15,由a 2=b 2+c 2-2bc cos A ,得b =5. 答案 D3.(2016·全国Ⅲ卷)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( ) A.31010 B.1010 C.-1010D.-31010 解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD =1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以cos A =-1010.答案 C4.(2014·新课标全国Ⅰ卷)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A.3α-β=π2 B.2α-β=π2 C.3α+β=π2 D.2α+β=π2解析 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝ ⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2. 答案 B5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A.3 B.932 C.332D.3 3解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6①. ∵C =π3,由余弦定理得c 2=a 2+b 2-ab ②,由①和②得 ab =6,∴S △ABC =12ab sin C =12×6×32=332,故选C. 答案 C 二、填空题6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析 ∵cos A =-14,0<A <π,∴sin A =154, S △ABC =12bc sin A =12bc ×154=315,∴bc =24,又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52,由余弦定理得, a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8.答案 87.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 在△ABC 中,AB =600,∠BAC =30°,∠ACB =75°-30°=45°,由正弦定理得BC sin ∠BAC =AB sin ∠ACB ,即BC sin 30°=600sin 45°,所以BC =300 2.在Rt △BCD 中,∠CBD =30°,CD =BC tan ∠CBD =3002·tan 30°=100 6. 答案 100 68.(2016·杭州模拟)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.解析 ∵sin A +2sin B =2sin C . 由正弦定理可得a +2b =2c ,即c =a +2b2,cos C =a 2+b 2-c 22ab =a 2+b 2-⎝⎛⎭⎪⎫a +2b 222ab=3a 2+2b 2-22ab 8ab ≥26ab -22ab 8ab =6-24, 当且仅当3a 2=2b 2即a b =23时等号成立.∴cos C 的最小值为6-24.答案6-24三、解答题9.(2016·北京卷)在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值.解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac . 由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以 C =3π4-A ,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝ ⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4,∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2,即A =π4时,2cos A +cos C 取得最大值为1.10.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.解 (1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去), 因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20,又b =5,知c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21.又由正弦定理得sin B sin C =b a sin A ·ca sin A = bc a 2sin 2A =2021×34=57.11.(2015·山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z , 可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z );单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,当且仅当b =c 时等号成立. 因此12bc sin A ≤2+34. 所以△ABC 面积的最大值为2+34.\。

高考理数二轮总复习讲义课件(浙江专版用) 第一部分 专题四 立体几何 第1讲

高考理数二轮总复习讲义课件(浙江专版用) 第一部分 专题四 立体几何 第1讲

栏目 导引
第十二章
选考部分
1.必记概念与关系 四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平 行六面体、长方体之间的关系.
栏目 导引
第十二章
选考部分
2.活用公式与结论 (1)常用面积和体积公式 ① S 圆柱侧= 2π rl, S 圆锥侧=π rl, S 球 =4π R2. 1 4 ② V 柱 =Sh, V 锥 = Sh, V 球 = π R3. 3 3 (2)三视图排列规则:俯视图放在正(主 )视图的下面,长度与 正 (主 )视图一样;侧(左)视图放在正(主)视图的右面,高度和 正 (主 )视图一样,宽度与俯视图一样.画三视图的基本要求: 正 (主 )俯一样长,俯侧(左)一样宽,正(主 )侧 (左 )一样高.
第十二章
选考部分
(1)(2015· 高考福建卷)某几何体的三视图如图所示,则 该几何体的表面积等于( B )
A. 8+ 2 2 C. 14+2 2
B. 11+2 2 D. 15
栏目 导引
第十二章
选考部分
(2) (2015· 高考重庆卷 )某几何体的三视图如图所示,则该几何 体的体积为 ( A )
栏目 导引
第十二章
选考部分
(2)由题意知, 侧视图中的长应等于俯视图中两个相对的小三 角形的高的和,小三角形的边长为 2,所以高为 3,则侧视 图中的长为 2 3,又侧视图中的高与此六棱锥的高相等,而 该几何体的底面边长为 2,侧棱长为 7,所以该六棱锥的高 为 ( 7) 2- 22= 3,所以该几何体的侧视图为 C.
第十二章
选考部分
栏目 导引
专题四 立体几何 第十二章 选考部分
第1讲 空间几何体
栏目 导引
专题四 立体几何 第十二章 选考部分

创新设计(浙江专用)高考数学二轮复习专题四立体几何第1讲立体几何中的计算与位置关系练习

创新设计(浙江专用)高考数学二轮复习专题四立体几何第1讲立体几何中的计算与位置关系练习

专题四 立体几何 第1讲 立体几何中的计算与位置关系练习一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥n C.n ⊥lD.m ⊥n解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,C 正确.故选C. 答案 C2.(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D.1+26π 解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π,故选C. 答案 C3.(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2 C.6πD.32π3解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2. 答案 B4.(2014·全国Ⅰ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 2 B.4 2 C.6D.4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6,选C. 答案 C5.已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( ) A.存在某个位置,使得直线AC 与直线BD 垂直 B.存在某个位置,使得直线AB 与直线CD 垂直 C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直解析 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD . 答案 B 二、填空题6.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.解析 如图,过D 作DG ⊥AF ,垂足为G ,连接GK , ∵平面ABD ⊥平面ABC ,又DK ⊥AB , ∴DK ⊥平面ABC ,∴DK ⊥AF . ∴AF ⊥平面DKG ,∴AF ⊥GK .容易得到,当F 接近E 点时,K 接近AB 的中点,当F 接近C 点时,K 接近AB 的四等分点.所以t 的取值范围是⎝ ⎛⎭⎪⎫12,1.答案 ⎝ ⎛⎭⎪⎫12,1 7.一个四面体的三视图如图所示,则该四面体的表面积是________.解析 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+ 3.答案 2+ 38.(2016·浙江卷)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由A ⎝ ⎛⎭⎪⎫0,62,0,B ⎝⎛⎭⎪⎫302,0,0, C ⎝⎛⎭⎪⎫0,-62,0,作DH ⊥AC 于H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝ ⎛⎭⎪⎫-306cos α,-63,306sin α, 则BD ′→=⎝ ⎛⎭⎪⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD →·n |BD →|·|n |=639+5cos α, 所以cos α=-1时,cos θ取最大值66.答案66三、解答题9.在正三角形ABC 中,E ,F ,P 分别是AB ,AC ,BC 边上的点,满足AE ∶EB =CF ∶FA =CP ∶PB =1∶2(如图1),将△AEF 折起到△A 1EF 的位置,连接A 1B ,A 1C (如图2).(1)求证:FP ∥平面A 1EB ; (2)求证:EF ⊥A 1B .证明 (1)∵CP ∶PB =CF ∶FA ,∴FP ∥BE , 又BE ⊂平面A 1EB ,FP ⊄平面A 1EB , ∴FP ∥平面A 1EB .(2)不妨设正三角形ABC 的边长为3, 则AE =1,AF =2.又∵∠EAF =60°,∴EF 2=AE 2+AF 2-2AE ·AF cos ∠EAF =12+22-2×1×2cos 60°=3,∴EF = 3. 在△AEF 中,有AF 2=AE 2+EF 2,∴EF ⊥AE , 即EF ⊥AB .则在题图2中, 有EF ⊥A 1E ,EF ⊥BE ,又A 1E ,BE ⊂平面A 1BE ,A 1E ∩BE =E ,∴EF ⊥平面A 1EB ,又∵A 1B ⊂平面A 1EB ,∴EF ⊥A 1B .10.(2017·江南十校联考)如图1,等腰梯形ABCD 中,BC ∥AD ,CE ⊥AD ,AD =3BC =3,CE =1.求△CDE 沿CE 折起得到四棱锥F -ABCE (如图2),G 是AF 的中点.(1)求证:BG ∥平面ECE ;(2)当平面FCE ⊥平面ABCE 时,求三棱锥F -BEG 的体积. (1)证明 如图,取EF 的中点M ,连接GM 、MC ,则GM 綊12AE .∵等腰梯形ABCD 中,BC =1,AD =3, ∴BC 綊12AE .∴GM 綊BC ,∴四边形BCMG 是平行四边形, ∴BG ∥CM .又CM ⊂平面FCE ,BG ⊄平面FCE , ∴BG ∥平面FCE .(2)解 ∵平面FCE ⊥平面ABCE ,平面FCE ∩平面ABCE =CE ,EF ⊂平面FCE ,FE ⊥CE ,∴FE ⊥平面ABCE .又V F -BEG =V B -GEF =12V B -AEF =12V F -ABE ,S △ABE =12×2×1=1,∴V F -BEG =12×13×1×1=16.11.如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE , ∵AE ⊂平面ABE , ∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE , ∴AE ⊥平面BCE . 又BE ⊂平面BCE , ∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG∥平面ADE.同理,GN∥平面ADE.又∵GN∩MG=G,GN,MG⊂平面MGN,∴平面MGN∥平面ADE.又MN⊂平面MGN,∴MN∥平面ADE.∴N点为线段CE上靠近C点的一个三等分点.。

《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(四)

《创新设计》2017届高考数学二轮复习(浙江专用)小题综合限时练(四)

(限时:40分钟)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m +n 等于( ) A.9 B.8 C.7D.6解析 ∵M ={x |x 2-4x <0}={x |0<x <4},N ={x |m <x <5},且M ∩N ={x |3<x <n },∴m =3,n =4,∴m +n =3+4=7.故选C. 答案 C2.《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺D.1631尺解析 依题意知,每天的织布数组成等差数列,设公差为d ,则5×30+30×292d =390,解得d =1629.故选B. 答案 B3.已知直线l :x +y +m =0与圆C :x 2+y 2-4x +2y +1=0相交于A 、B 两点,若△ABC 为等腰直角三角形,则m =( ) A.1 B.2 C.-5D.1或-3解析 △ABC 为等腰直角三角形,等价于圆心到直线的距离等于圆的半径的22.圆C 的标准方程是(x -2)2+(y +1)2=4,圆心到直线l 的距离d =|1+m |2,依题意得|1+m |2=2,解得m =1或-3.故选D. 答案 D4.多面体MN -ABCD 的底面ABCD 为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是( )A.16+33B.8+632C.163D.203解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,∵正视图为等腰梯形,侧视图为等腰三角形,∴四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,∴V N -BCFE =13×4×2=83.可将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,∴多面体的体积为203.故选D. 答案 D5.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12B.π4C.π3D.π6解析 由题意得T 2=π2,T =π,ω=2,又2x 0+π6=k π(k ∈Z ),x 0=k π2-π12(k ∈Z ),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴x 0=5π12.故选A.答案 A6.已知向量a 、b 的模都是2,其夹角是60°,又OP →=3a +2b ,OQ →=a +3b ,则P 、Q 两点间的距离为( ) A.2 2B. 3C.2 3D. 2解析 ∵a ·b =|a |·|b |·cos 60°=2×2×12=2,PQ →=OQ →-OP →=-2a +b ,∴|PQ →|2=4a 2-4a ·b +b 2=12,∴|PQ →|=2 3.故选C. 答案 C7.设双曲线x 24-y 23=1的左、右焦点分别为F 1、F 2,过F 1的直线l 交双曲线左支于A 、B 两点,则|BF 2|+|AF 2|的最小值为( ) A.192 B.11 C.12D.16解析 由双曲线定义可得|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,两式相加可得|AF 2|+|BF 2|=|AB |+8,由于AB 为经过双曲线的左焦点与左支相交的弦,而|AB |min =2b 2a =3,∴|AF 2|+|BF 2|=|AB |+8≥3+8=11.故选B. 答案 B8.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A.c ≤3 B.3<c ≤6 C.6<c ≤9D.c >9解析 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9]. 答案 C二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)9.若x 、y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,若目标函数z =ax +3y 仅在点(1,0)处取得最小值,则实数a 的取值范围为________.解析 画出关于x 、y 约束条件的平面区域如图所示,当a =0时,显然成立.当a >0时,直线ax +3y -z =0的斜率k =-a3>k AC =-1,∴0<a <3.当a <0时,k =-a3<k AB =2,∴-6<a <0.综上所得,实数a 的取值范围是(-6,3). 答案 (-6,3)10.已知{a n }为等差数列,若a 1+a 5+a 9=8π,则{a n }前9项的和S 9=________,cos(a 3+a 7)的值为________.解析 由{a n }为等差数列得a 1+a 5+a 9=3a 5=8π,解得a 5=8π3,所以{a n }前9项的和S 9=9(a 1+a 9)2=9a 5=9×8π3=24π.cos(a 3+a 7)=cos 2a 5=cos 16π3=cos 4π3=-12. 答案 24π -1211.函数f (x )=4sin x cos x +2cos 2x -1的最小正周期为________,最大值为________.解析 f (x )=2sin 2x +cos 2x =5sin(2x +φ),tan φ=12,所以最小正周期T =2π2=π,最大值为 5. 答案 π512.设函数f (x )=⎩⎪⎨⎪⎧|log 3(x +1)|,-1<x ≤0,tan ⎝ ⎛⎭⎪⎫π2x ,0<x <1,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=________,若f (a )<f ⎝ ⎛⎭⎪⎫12,则实数a 的取值范围是________.解析 由题意可得f ⎝ ⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.当-1<a ≤0时,f (a )=|log 3(a +1)|<1,-1<log 3(a +1)<1,解得-23<a <2,所以-23<a ≤0;当0<a <1时,f (a )=tan ⎝ ⎛⎭⎪⎫π2a <1,0<π2a <π4,0<a <12,综上可得实数a 的取值范围是⎝ ⎛⎭⎪⎫-23,12.答案 1 ⎝ ⎛⎭⎪⎫-23,1213.已知圆O :x 2+y 2=r 2与圆C :(x -2)2+y 2=r 2(r >0)在第一象限的一个公共点为P ,过点P 作与x 轴平行的直线分别交两圆于不同两点A ,B (异于P 点),且OA ⊥OB ,则直线OP 的斜率k =________,r =________.解析 两圆的方程相减可得点P 的横坐标为 1.易知P 为AB 的中点,因为OA ⊥OB ,所以|OP |=|AP |=|PB |,所以△OAP 为等边三角形,同理可得△CBP 为等边三角形,所以∠OPC =60°.又|OP |=|OC |,所以△OCP 为等边三角形,所以∠POC =60°,所以直线OP 的斜率为 3.设P (1,y 1),则y 1=3,所以P (1,3),代入圆O ,解得r =2.答案3 214.已知偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,若区间[-1,3]上,函数g (x )=f (x )-kx -k 有3个零点,则实数k 的取值范围是________. 解析 根据已知条件知函数f (x )为周期为2的周期函数;且x ∈[-1,1]时,f (x )=|x |;而函数g (x )的零点个数便是函数f (x )和函数y =kx+k 的交点个数.∴①若k >0,如图所示,当y =kx +k 经过点(1,1)时,k =12;当经过点(3,1)时,k =14.∴14<k <12.②若k <0,即函数y =kx +k 在y 轴上的截距小于0,显然此时该直线与f (x )的图象不可能有三个交点,即这种情况不存在.③若k =0,得到直线y =0,显然与f (x )图象只有两个交点.综上所得,实数k 的取值范围是⎝ ⎛⎭⎪⎫14,12.答案 ⎝ ⎛⎭⎪⎫14,1215.已知数列{a n }满足a 1=-1,a 2>a 1,|a n +1-a n |=2n ,若数列{a 2n -1}单调递减,数列{a 2n }单调递增,则数列{a n }的通项公式为a n =________.解析 由题意得a 1=-1,a 2=1,a 3=-3,a 4=5,a 5=-11,a 6=21,……,然后从数字的变化上找规律,得a n +1-a n =(-1)n +12n ,则利用累加法即得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=-1+2-22+…+(-1)n 2n -1=(-1)[1-(-2)n ]1-(-2)=(-2)n -13.答案 (-2)n -13。

创新设计(浙江专用)2017届高考数学二轮复习 教师用书3 专题四-专题五

创新设计(浙江专用)2017届高考数学二轮复习 教师用书3 专题四-专题五

2017届高考数学二轮复习 教师用书3 专题四-专题五第1讲 立体几何中的计算与位置关系高考定位 (1)以三视图和空间几何体为载体考查面积与体积,难度中档偏下;(2)以选择题、填空题的形式考查线线、线面、面面位置关系的判定与性质定理对命题的真假进行判断,属基础题;空间中的平行、垂直关系的证明也是高考必考内容,多出现在立体几何解答题中的第(1)问.真 题 感 悟1.(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A.17πB.18πC.20πD.28π解析 由题知,该几何体的直观图如图所示,它是一个球(被过球心O 且互相垂直的三个平面)切掉左上角的18后得到的组合体,其表面积是球面面积的78和三个14圆面积之和,易得球的半径为2,则得S =78×4π×22+3×14π×22=17π,故选A.答案 A2.(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+365 B.54+18 5 C.90D.81解析 由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5. 答案 B3.(2016·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm 2,体积是________cm 3.解析 由三视图可知,该几何体为两个相同长方体组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2). 答案 72 324.(2016·浙江卷)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体P -BCD的体积的最大值是________. 解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ×sin ∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD的最大值为16×3=12.答案 12考 点 整 合1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行六面体、长方体之间的关系.2.几何体的摆放位置不同,其三视图也不同,需要注意长对正,高平齐,宽相等.3.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch (c 为底面周长,h 为高); ②S 锥侧=12ch ′(c 为底面周长,h ′为斜高);③S 台侧=12(c +c ′)h ′(c ′,c 分别为上下底面的周长,h ′为斜高);④S 球表=4πR 2(R 为球的半径). (2)柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.4.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α. (2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b . 5.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α. (2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b . (3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.热点一 空间几何体的表面积与体积的求解[微题型1] 以三视图为载体求几何体的面积与体积【例1-1】 (1)(2016·衡水大联考)如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为( ) A.203 B.8 C.223D.163(2)某三棱锥的三视图如图所示,该三棱锥的表面积是( ) A.28+6 5 B.30+6 5 C.56+12 5 D.60+12 5解析 (1)由图知此几何体为边长为2的正方体裁去一个三棱锥.所以此几何体的体积为2×2×2-13×12×1×2×2=223.故选C.(2)由几何体的三视图可知,该三棱锥的直观图如图所示, 其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD , 所以AC =41,且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5. 在Rt △BCD 中,BD =5,CD =4, 故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5.因此,该三棱锥的表面积为S =30+6 5. 答案 (1)C (2)B探究提高 截割体、三棱锥的三视图是高考考查的热点和难点,解题的关键是由三视图还原为直观图,首先确定底面,再根据正视图、侧视图确定侧面.[微题型2] 求多面体的体积【例1-2】 (1)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD 则几何体EFC 1-DBC 的体积为( )A.66B.68C.70D.72(2)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.解析 (1)如图,连接DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-BDC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66. 故所求几何体EFC 1-DBC 的体积为66. (2)利用三棱锥的体积公式直接求解.V D 1-EDF =V F -DD 1E =13S △D 1DE ·AB =13×12×1×1×1=16.另解(特殊点法):让E 点和A 点重合,点F 与点C 重合, 则V D 1-EDF =13×S △ACD ×D 1D =13×12×1×1×1=16.答案 (1)A (2)16探究提高 (1)求三棱锥的体积,等体积转化是常用的方法,转换原则是其高易求,底面放在已知几何体的某一面上.(2)若所给的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法求解.[微题型3] 与球有关的面积、体积问题【例1-3】 (1)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( ) A.8π B.16π C.32πD.64π(2)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此三棱锥的体积为( ) A.26 B.36 C.23D.22解析 (1)由三视图可知,几何体为一横放的四棱锥,其底面是边长为4的正方形,高为2,平面SAB ⊥平面ABCD ,易知SA =SB =2 2.如图所示.故可补全为以DA 、SA 、SB 为棱的长方体, 故2R =DA 2+SA 2+SB 2=32= 42,∴R =22,∴S 表=4πR 2=32π.(2)法一 (排除法)V <13×S △ABC ×2=36,排除B 、C 、D ,选A.法二 (直接法):在Rt △ASC 中,AC =1,∠SAC =90°,SC =2,所以SA =4-1= 3.同理,SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因为△SAC ≌△SBC ,所以BD ⊥SC ,AD=BD ,故SC ⊥平面ABD ,且△ABD 为等腰三角形.因为∠ASC =30°,故AD =12SA =32,则△ABD的面积为12×1×AD 2-⎝ ⎛⎭⎪⎫122=24,则三棱锥S -ABC 的体积为13×24×2=26.答案 (1)C (2)A探究提高 涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【训练1】 (1)(2017·东营模拟)某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72(2)(2016·北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D.1解析 (1)还原为如图所示的直观图,S 表=S △ABC +S △DEF +S 矩形ACFD +S 梯形ABED +S 梯形CBEF=12×3×4+12×3×5+5×3+12×(2+5)×4+12×(2+5)×5=60. (2)由三视图知,三棱锥如图所示:由侧视图得高h =1,又底面积S =12×1×1=12.所以体积V =13Sh =16.答案 (1)B (2)A热点二 空间中的平行与垂直 [微题型1] 空间线面位置关系的判断【例2-1】 已知平面α、β,直线m ,n ,给出下列命题: ①若m ∥α,n ∥β,m ∥n ,则α∥β; ②若α∥β,m ∥α,n ∥β,则m ∥n ; ③若m ⊥α,n ⊥β,m ⊥n ,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是________(填写所有真命题的序号).解析若m∥α,n∥β,m∥n,则α,β可能平行或相交,①是假命题;若α∥β,m∥α,n∥β,则m,n可能是平行、相交、异面中的任何一种位置关系,②是假命题;由线面垂直的性质和面面垂直的判定可知③④是真命题,故真命题序号是③④.答案③④探究提高长方体(或正方体)是一类特殊的几何体,其中蕴含着丰富的空间位置关系.因此,对于某些研究空间直线与直线、直线与平面、平面与平面之间的平行、垂直关系问题,常构造长方体(或正方体),把点、线、面的位置关系转移到长方体(或正方体)中,对各条件进行检验或推理,根据条件在某一特殊情况下不真,则它在一般情况下也不真的原理,判断条件的真伪,可使此类问题迅速获解.[微题型2] 平行、垂直关系的证明【例2-2】(2016·昆明统考)如图,在侧棱与底面垂直的四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥BC,且AA1=AB=BC=1,CD=2.(1)求证:AB1⊥平面A1BC;(2)在线段CD上是否存在点N,使得D1N∥平面A1BC?若存在,求出三棱锥N-AA1C的体积;若不存在,请说明理由.(1)证明因为四棱柱ABCD-A1B1C1D1的侧棱垂直底面,所以A1A⊥平面ABCD,又BC⊂平面ABCD,所以BC⊥AA1,因为BC⊥AB,AB∩AA1=A,AB⊂平面AA1B1B,AA1⊂平面AA1B1B,所以BC⊥平面AA1B1B.又AB1⊂平面AA1B1B,所以AB1⊥BC,因为A1A⊥AB,A1A=AB=1,所以四边形AA1B1B为正方形,所以AB1⊥A1B,因为A1B∩BC=B,A1B,BC⊂平面A1BC,所以AB1⊥平面A1BC.(2)解法一在线段CD上存在点N,且当N为CD的中点时,D1N∥平面A1BC.证明如下:连接BN、D1N,因为AB∥CD,AB=1,CD=2,所以AB∥DN且AB=DN,所以四边形ABND为平行四边形,所以BN∥AD且BN=AD.在四棱柱ABCD-A1B1C1D1中,A1D1∥AD且A1D1=AD,所以A 1D 1∥BN 且A 1D 1=BN ,所以四边形A 1BND 1为平行四边形,所以D 1N ∥A 1B . 又D 1N ⊄平面A 1BC ,A 1B ⊂平面A 1BC , 所以D 1N ∥平面A 1BC .连接A 1N 、AN 、AC ,所以S △ACN =S △BCN =12×1×1=12,又A 1A ⊥平面ABCD ,且A 1A =1,所以V N -AA 1C =V A 1-ACN =13S △ACN ×A 1A =13×12×1=16,即三棱锥N -AA 1C 的体积为16.法二 在线段CD 上存在点N ,且当N 为CD 的中点时,D 1N ∥平面A 1BC ,证明如下:取C 1D 1的中点M ,连接AN 、A 1M 、D 1N 、MC ,因为四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AB =1,CD =2, 所以A 1B 1∥C 1D 1,A 1B 1=1,C 1D 1=2,所以A 1B 1∥MC 1且A 1B 1=MC 1,所以四边形A 1B 1C 1M 为平行四边形, 所以A 1M ∥B 1C 1且A 1M =B 1C 1.又BC ∥B 1C 1且BC =B 1C 1,所以A 1M ∥BC 且A 1M =BC , 所以四边形A 1BCM 为平行四边形,所以A 1B ∥CM , 又D 1M =NC =1且D 1M ∥NC , 所以四边形D 1MCN 为平行四边形, 所以CM ∥D 1N ,所以D 1N ∥A 1B . 又D 1N ⊄平面A 1BC ,A 1B ⊂平面A 1BC , 所以D 1N ∥平面A 1BC .连接A 1N 、AC ,所以S △ACN =12×1×1=12,又A 1A ⊥平面ABCD ,且A 1A =1,所以V N -AA 1C =V A 1-ACN =13S △ACN ×A 1A =13×12×1=16,即三棱锥N -AA 1C 的体积为16.探究提高 垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.【训练2】 (2016·深圳模拟)如图,在四棱锥P -ABCD 中,AB ⊥AC ,AB ⊥PA ,AB ∥CD ,AB =2CD ,E ,F ,G ,M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点.求证:(1)CE ∥平面PAD ; (2)平面EFG ⊥平面EMN .证明 (1)法一 如图1,取PA 的中点H ,连接EH ,DH . 又因为E 为PB 的中点,所以EH ∥AB ,且EH =12AB .图1又AB ∥CD ,CD =12AB ,所以EH ∥CD ,且EH =CD .所以四边形DCEH 是平行四边形.所以CE ∥DH . 又DH ⊂平面PAD ,CE ⊄平面PAD ,因此,CE ∥平面PAD .图2法二 如图2,连接CF .因为F 为AB 的中点, 所以AF =12AB .又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形.因此CF ∥AD . 又CF ⊄平面PAD ,AD ⊂平面PAD , 所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA .又EF ⊄平面PAD ,PA ⊂平面PAD , 所以EF ∥平面PAD . 因为CF ∩EF =F , 故平面CEF ∥平面PAD .又CE ⊂平面CEF ,所以CE ∥平面PAD .(2)因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又AB ⊥PA ,所以AB ⊥EF . 同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG , 因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点, 所以MN ∥DC ,又AB ∥DC , 所以MN ∥AB , 所以MN ⊥平面EFG . 又MN ⊂平面EMN , 所以平面EFG ⊥平面EMN .1.求解几何体的表面积或体积(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.(4)求解几何体的表面积时要注意S 表=S 侧+S 底.2.球的简单组合体中几何体度量之间的关系,如棱长为a 的正方体的外接球、内切球、棱切球的半径分别为32a ,a 2,22a . 3.锥体体积公式为V =13Sh ,在求解锥体体积中,不能漏掉13.4.空间中点、线、面的位置关系的判定(1)可以从线、面的概念、定理出发,学会找特例、反例.(2)可以借助长方体,在理解空间点、线、面位置关系的基础上,抽象出空间线、面的位置关系的定义.5.垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l ⊥α,a ⊂α⇒l ⊥a .6.解决平面图形的翻折问题,关键是抓住平面图形翻折前后的不变“性”与“量”,即两条直线的平行与垂直关系以及相关线段的长度、角度等.一、选择题1.(2016·浙江卷)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A.m ∥l B.m ∥n C.n ⊥lD.m ⊥n解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,C 正确.故选C. 答案 C2.(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D.1+26π解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π,故选C. 答案 C3.(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4π B.9π2 C.6πD.32π3解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.答案 B4.(2014·全国Ⅰ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 2 B.4 2 C.6D.4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A-BCD ,最长的棱为AD =(42)2+22=6,选C.答案 C5.已知矩形ABCD ,AB =1,BC =2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( ) A.存在某个位置,使得直线AC 与直线BD 垂直 B.存在某个位置,使得直线AB 与直线CD 垂直 C.存在某个位置,使得直线AD 与直线BC 垂直D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直解析 对于AB ⊥CD ,因为BC ⊥CD ,可得CD ⊥平面ACB ,因此有CD ⊥AC .因为AB =1,BC =2,CD =1,所以AC =1,所以存在某个位置,使得AB ⊥CD .答案 B 二、填空题6.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.解析 如图,过D 作DG ⊥AF ,垂足为G ,连接GK , ∵平面ABD ⊥平面ABC ,又DK ⊥AB , ∴DK ⊥平面ABC ,∴DK ⊥AF . ∴AF ⊥平面DKG ,∴AF ⊥GK .容易得到,当F 接近E 点时,K 接近AB 的中点,当F 接近C 点时,K 接近AB 的四等分点.所以t 的取值范围是⎝ ⎛⎭⎪⎫12,1. 答案 ⎝ ⎛⎭⎪⎫12,1 7.一个四面体的三视图如图所示,则该四面体的表面积是________.解析 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+ 3.答案 2+ 38.(2016·浙江卷)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设O 是AC 中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由A ⎝ ⎛⎭⎪⎫0,62,0,B ⎝ ⎛⎭⎪⎫302,0,0,C ⎝ ⎛⎭⎪⎫0,-62,0,作DH ⊥AC 于H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝ ⎛⎭⎪⎫-306cos α,-63,306sin α,则BD ′→=⎝ ⎛⎭⎪⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD →·n |BD →|·|n |=639+5cos α, 所以cos α=-1时,cos θ取最大值66. 答案66三、解答题9.在正三角形ABC 中,E ,F ,P 分别是AB ,AC ,BC 边上的点,满足AE ∶EB =CF ∶FA =CP ∶PB =1∶2(如图1),将△AEF 折起到△A 1EF的位置,连接A 1B ,A 1C (如图2).(1)求证:FP ∥平面A 1EB ; (2)求证:EF ⊥A 1B .证明 (1)∵CP ∶PB =CF ∶FA ,∴FP ∥BE , 又BE ⊂平面A 1EB ,FP ⊄平面A 1EB , ∴FP ∥平面A 1EB .(2)不妨设正三角形ABC 的边长为3, 则AE =1,AF =2.又∵∠EAF =60°,∴EF 2=AE 2+AF 2-2AE ·AF cos ∠EAF =12+22-2×1×2cos 60°=3,∴EF = 3. 在△AEF 中,有AF 2=AE 2+EF 2,∴EF ⊥AE , 即EF ⊥AB .则在题图2中,有EF ⊥A 1E ,EF ⊥BE ,又A 1E ,BE ⊂平面A 1BE ,A 1E ∩BE =E ,∴EF ⊥平面A 1EB ,又∵A 1B ⊂平面A 1EB ,∴EF ⊥A 1B .10.(2017·江南十校联考)如图1,等腰梯形ABCD 中,BC ∥AD ,CE ⊥AD ,AD =3BC =3,CE =1.求△CDE 沿CE 折起得到四棱锥F -ABCE (如图2),G 是AF 的中点.(1)求证:BG ∥平面ECE ;(2)当平面FCE ⊥平面ABCE 时,求三棱锥F -BEG 的体积. (1)证明 如图,取EF 的中点M ,连接GM 、MC ,则GM 綊12AE .∵等腰梯形ABCD 中,BC =1,AD =3, ∴BC 綊12AE .∴GM 綊BC ,∴四边形BCMG 是平行四边形, ∴BG ∥CM .又CM ⊂平面FCE ,BG ⊄平面FCE , ∴BG ∥平面FCE .(2)解 ∵平面FCE ⊥平面ABCE ,平面FCE ∩平面ABCE =CE ,EF ⊂平面FCE ,FE ⊥CE ,∴FE ⊥平面ABCE .又V F -BEG =V B -GEF =12V B -AEF =12V F -ABE ,S △ABE =12×2×1=1,∴V F -BEG =12×13×1×1=16.11.如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE , ∵AE ⊂平面ABE , ∴AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ACE , ∴AE ⊥BF .∵BC ∩BF =B ,BC ,BF ⊂平面BCE , ∴AE ⊥平面BCE . 又BE ⊂平面BCE , ∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE , ∴MG ∥平面ADE . 同理,GN ∥平面ADE .又∵GN ∩MG =G ,GN ,MG ⊂平面MGN , ∴平面MGN ∥平面ADE . 又MN ⊂平面MGN , ∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.第2讲 立体几何中的向量方法高考定位 以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.真 题 感 悟(2016·浙江卷)如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示. 因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC , 且AC ⊥BC ,所以AC ⊥平面BCK , 因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK ,且CK ∩AC =C ,CK ,AC ⊂平面ACFD , 所以BF ⊥平面ACFD .(2)解 法一 如图,延长AD ,BE ,CF 相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,所以KO ⊥平面ABC .以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向, 建立空间直角坐标系O -xyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32.因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.所以,二面角B -AD -F 的平面角的余弦值为34. 法二 过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B -AD -F 的平面角.在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以,二面角B -AD -F 的平面角的余弦值为34. 考 点 整 合1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0.(2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2.(3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则 cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|a ·μ||a ||μ|=|cosa ,μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π),则|cos θ|=|μ·v ||μ||v |=|cosμ,v |.热点一 向量法证明平行与垂直【例1】 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点,运用向量方法求证:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .法一 证明 由题意,得AB ,AD ,AE 两两垂直,以A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12. (1)OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF , ∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1),由⎩⎪⎨⎪⎧n 1·DF →=0,n 1·DM →=0.得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎪⎨⎪⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 法二 证明 (1)OM →=OF →+FB →+BM →=12DF →-BF →+12BA → =12(DB →+BF →)-BF →+12BA →=-12BD →-12BF →+12BA → =-12(BC →+BA →)-12BF →+12BA →=-12BC →-12BF →.∴向量OM →与向量BF →,BC →共面, 又OM ⊄平面BCF ,∴OM ∥平面BCF . (2)由题意知,BF ,BC ,BA 两两垂直, ∵CD →=BA →,FC →=BC →-BF →,∴OM →·CD →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·BA →=0,OM →·FC →=⎝ ⎛⎭⎪⎫-12BC →-12BF →·(BC →-BF →)=-12BC →2+12BF →2=0.∴OM ⊥CD ,OM ⊥FC ,又CD ∩FC =C , ∴OM ⊥平面EFCD . 又OM ⊂平面MDF , ∴平面MDF ⊥平面EFCD .探究提高 解决本类问题的关键步骤是建立恰当的坐标系,用坐标表示向量或用基底表示向量,证法的核心是利用向量的数量积或数乘运算.【训练1】 如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,PA =AB =2,∠BAD =60°,E 是PA 的中点. (1)求证:直线PC ∥平面BDE ; (2)求证:BD ⊥PC .证明 设AC ∩BD =O .因为∠BAD =60°,AB =2,底面ABCD 为菱形,所以BO =1,AO =CO =3,AC ⊥BD如图,以O 为坐标原点,以OB ,OC 所在直线分别为x 轴,y 轴,过点O 且平行于PA 的直线为z 轴,建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0),D (-1,0,0),E (0,-3,1).(1)设平面BDE 的法向量为n 1=(x 1,y 1,z 1),因为BE →=(-1,-3,1),BD →=(-2,0,0), 由⎩⎪⎨⎪⎧n 1·BD →=0,n 1·BE →=0,得⎩⎨⎧-2x 1=0,-x 1-3y 1+z 1=0,令z 1=3,得y 1=1, 所以n 1=(0,1,3). 又PC →=(0,23,-2), 所以PC →·n 1=0+23-23=0, 即PC →⊥n 1,又PC ⊄平面BDE , 所以PC ∥平面BDE .(2)因为PC →=(0,23,-2),BD →=(-2,0,0), 所以PC →·BD →=0. 故BD ⊥PC .热点二 利用空间向量求空间角 [微题型1] 求线面角【例2-1】 (2016·全国Ⅲ卷)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明 由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綉AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC , 从而AE ⊥AD ,AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5. 以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1). 于是cos 〈n ,AN →〉=n ·AN →|n ||AN →|=8525.设AN 与平面PMN 所成的角为θ,则sin θ=8525,∴直线AN 与平面PMN 所成的角的正弦值为8525.探究提高 利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. [微题型2] 求二面角【例2-2】 (2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则 ⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.探究提高 利用法向量的根据是两个半平面的法向量所成的角和二面角的平面角相等或互补,在能断定所求二面角的平面角是锐角、直角或钝角的情况下,这种方法具有一定的优势,但要注意,必须能断定“所求二面角的平面角是锐角、直角或钝角”,在用法向量法求二面角的大小时,务必要作出这个判断,否则解法是不严谨的.【训练2】 (2015·福建卷)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF ∥平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值.法一 (1)证明 如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得,AB ∥CD ,AB =CD , 所以GH ∥DF ,且GH =DF , 从而四边形HGFD 是平行四边形, 所以GF ∥DH .又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)解 如图,在平面BEC 内,过B 点作BQ ∥EC .因为BE ⊥CE ,所以BQ ⊥BE . 又因为AB ⊥平面BEC , 所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE →,BQ →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0),F (2,2,1). 因为AB ⊥平面BEC ,所以BA →=(0,0,2)为平面BEC 的法向量. 设n =(x ,y ,z )为平面AEF 的法向量. 又AE →=(2,0,-2),AF →=(2,2,-1), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0.取z =2,得n =(2,-1,2).从而cos 〈n ,BA →〉=n ·BA →|n |·|BA →|=42×3=23,所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.法二 (1)证明 如图,取AB 中点M ,连接MG ,MF . 又G 是BE 的中点,可知GM ∥AE . 又AE ⊂平面ADE ,GM ⊄平面ADE , 所以GM ∥平面ADE .在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点得MF ∥AD . 又AD ⊂平面ADE ,MF ⊄平面ADE . 所以MF ∥平面ADE .又因为GM ∩MF =M ,GM ⊂平面GMF ,MF ⊂平面GMF , 所以平面GMF ∥平面ADE . 因为GF ⊂平面GMF , 所以GF ∥平面ADE . (2)解 同法一.热点三 向量法解决立体几何中的探索性问题【例3】 如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,PA =PD =2,BC =12AD =1,CD = 3. (1)求证:平面PQB ⊥平面PAD ;(2)在棱PC 上是否存在一点M ,使二面角M -BQ -C 为30°,若存在,确定M 的位置;若不存在,请说明理由.(1)证明 ∵AD ∥BC ,BC =12AD ,Q 为AD 的中点,∴BC ∥DQ 且BC =DQ ,∴四边形BCDQ 为平行四边形,∴CD ∥BQ . ∵∠ADC =90°,∴∠AQB =90°,即QB ⊥AD , ∵PA =PD ,∴PQ ⊥AD ,∵PQ ∩BQ =Q ,PQ ,BQ ⊂平面PBQ ,∴AD ⊥平面PBQ , ∵AD ⊂平面PAD ,∴平面PQB ⊥平面PAD .(2)解 当M 是棱PC 上靠近点C 的四等分点时,有二面角M -BQ -C 为30°,理由如下: 由(1)知PQ ⊥AD . ∵平面PAD ⊥平面ABCD , 且平面PAD ∩平面ABCD =AD , ∴PQ ⊥平面ABCD .以Q 为原点,QA 为x 轴,QB 为y 轴,QP 为z 轴建立空间直角坐标系,则平面BQC 的一个法向量n =(0,0,1),Q (0,0,0),P (0,0,3),B (0,3,0),C (-1,3,0). 设满足条件的点M (x ,y ,z )存在,则PM →=(x ,y ,z -3),MC →=(-1-x ,3-y ,-z ), 令PM →=tMC →,其中t >0,∴⎩⎨⎧x =t (-1-x ),y =t (3-y ),z -3=t (-z ),∴⎩⎪⎨⎪⎧x =-t1+t ,y =3t 1+t,z =31+t .在平面MBQ 中, QB →=(0,3,0),QM →=⎝ ⎛⎭⎪⎫-t 1+t ,3t 1+t ,31+t ,∴平面MBQ 的一个法向量m =(3,0,t ), ∵二面角M -BQ -C 为30°, ∴cos 30°=⎪⎪⎪⎪⎪⎪n ·m |n |·|m |=|t |3+0+t2=32,解得t =3.所以满足条件的点M 存在,M 是棱PC 的靠近点C 的四等分点.探究提高 (1)确定点的坐标时,通常利用向量共线来求,如本例PM →=tMC →来求M 点的坐标. (2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.【训练3】 (2016·北京卷)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由. (1)证明 ∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD .又AB ⊥AD ,AB ⊂平面ABCD . ∴AB ⊥平面PAD .∵PD ⊂平面PAD .∴AB ⊥PD . 又PA ⊥PD ,PA ∩AB =A . ∴PD ⊥平面PAB .(2)解 取AD 中点O ,连接CO ,PO ,∵PA =PD ,∴PO ⊥AD . 又∵PO ⊂平面PAD ,平面PAD ⊥平面ABCD , ∴PO⊥平面ABCD ,∵CO ⊂平面ABCD ,∴PO ⊥CO , ∵AC =CD ,∴CO ⊥AD .以O 为原点建立如图所示空间直角坐标系.易知P (0,0,1),B (1,1,0),D (0,-1,0),C (2,0,0).则PB →=(1,1,-1),PD →=(0,-1,-1),PC →=(2,0,-1). CD →=(-2,-1,0).设n =(x 0,y 0,1)为平面PDC 的一个法向量.由⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0得⎩⎪⎨⎪⎧-y 0-1=0,2x 0-1=0,解得⎩⎪⎨⎪⎧y 0=-1,x 0=12. 即n =⎝ ⎛⎭⎪⎫12,-1,1.设PB 与平面PCD 的夹角为θ.则sin θ=|cos 〈n ,PB →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·PB →|n ||PB →|=⎪⎪⎪⎪⎪⎪⎪⎪12-1-114+1+1×3 =33. (3)解 设M 是棱PA 上一点,则存在λ∈[0,1]使得AM →=λAP →,因此点M (0,1-λ,λ),BM →=(-1,-λ,λ),因为BM ⊄平面PCD ,所以BM ∥平面PCD ,当且仅当BM →·n =0,即(-1,-λ,λ)·⎝ ⎛⎭⎪⎫12,-1,1=0,解得λ=14,所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时AM AP =14.1.两条直线夹角的范围为⎣⎢⎡⎦⎥⎤0,π2.设直线l 1,l 2的方向向量分别为n 1,n 2,其夹角为θ,则cos θ=|cosn 1,n 2|=|n 1·n 2||n 1||n 2|.2.二面角的范围为[0,π].设半平面α与β的法向量分别为n 1与n 2,二面角为θ,则|cos θ|=|cosn 1,n 2|=|n 1·n 2||n 1||n 2|. 3.利用空间向量求解二面角时,易忽视二面角的范围,误以为两个法向量的夹角就是所求的二面角,导致出错.4.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特。

创新设计(浙江专用)2017届高考数学二轮复习 大题规范天天练 星期三 第一周 解析几何

创新设计(浙江专用)2017届高考数学二轮复习 大题规范天天练 星期三 第一周 解析几何

星期三 (解析几何)2017年____月____日解析几何(命题意图:考查椭圆方程的求解及直线与椭圆相交情况下的范围问题)(本小题满分15分)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,以BF 2为直径的圆D 经过椭圆的上顶点A ,且|BF 1→|=|AF 1→|,F 1A →·BA →=6.(1)求椭圆C 的方程及圆D 的方程;(2)斜率为k 的直线l 过右焦点F 2,且与椭圆C 交于M 、N 两点,若在x 轴上存在点P (m ,0),使得以PM 、PN 为邻边的平行四边形为菱形,求实数m 的取值范围.解 (1)因为以BF 2为直径的圆经过椭圆的上顶点A ,且|BF 1→|=|AF 1→|,所以∠BAF 2=π2,∠BAF 1=∠ABF 1, 所以∠F 1AF 2+∠BAF 1=∠AF 2B +∠ABF 1,所以∠F 1AF 2=∠AF 2F 1,所以△F 1AF 2是等边三角形.所以|AF 1→|=|F 1F 2→|=|BF 1→|=2c ,又|AF 1→|2=|OF 1→|2+|OA →|2,即4c 2=c 2+b 2=a 2,则B (-3c ,0),F 1(-c ,0),F 2(c ,0),A (0,b ),所以F 1A →·BA →=(c ,b )·(3c ,b )=3c 2+b 2=6,所以a 2=4,b 2=3,c 2=1,所以椭圆C 的方程为x 24+y 23=1. 由F 1(-1,0),|AF 1→|=2,得圆D 的方程为(x +1)2+y 2=4.(2)由(1)知F 2(1,0),则l :y =k (x -1), 联立⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1,消去y 整理得(3+4k 2)x 2-8k 2x +4k 2-12=0, 设M (x 1,y 1)、N (x 2,y 2),则Δ=(-8k 2)2-4(3+4k 2)(4k 2-12)=16×9(k 2+1)>0,x 1+x 22 =8k 23+4k 2,y 1+y 2=k (x 1+x 2-2), 所以PM →+PN →=(x 1-m ,y 1)+(x 2-m ,y 2)=(x 1+x 2-2m ,y 1+y 2).由于菱形的对角线互相垂直,则(PM →+PN →)·MN →=0,因为MN →的一个方向向量是(1,k ),故x 1+x 2-2m +k (y 1+y 2)=0,所以x 1+x 2-2m +k 2(x 1+x 2-2)=0,所以k 2⎝ ⎛⎭⎪⎫8k 23+4k 2-2+8k 23+4k 2-2m =0,由已知条件知k ≠0,所以m =k 23+4k 2=13k 2+4,所以0<m <14,故实数m 的取值范围是⎝ ⎛⎭⎪⎫0,14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)面面平行的判定定理:a⊂β ,b⊂β ,a∩b=P,a∥α , b∥α ⇒α ∥β . (4)面面平行的性质定理:α∥β,α ∩γ =a, β ∩γ =b⇒a∥b.
5.直线、平面垂直的判定及其性质
(1)线面垂直的判定定理:m⊂α ,n⊂α ,m∩n=P, l⊥m,l⊥n⇒l⊥α . (2)线面垂直的性质定理:a⊥α,b⊥α ⇒a∥b. (3)面面垂直的判定定理:a⊂β ,a⊥α ⇒α ⊥β . (4)面面垂直的性质定理:α⊥β,α ∩β =l,a⊂α ,a⊥l⇒a⊥β .
1 B.3 D.1
解析 (1)还原为如图所示的直观图,S 表=S△ABC+S△DEF 1 1 +S 矩形 ACFD+S 梯形 ABED+S 梯形 CBEF=2×3×4+2×3×5+ 1 1 5×3+ ×(2+5)×4+ ×(2+5)×5=60. 2 2
(2)由三视图知,三棱锥如图所示:由侧视图得高 1 1 h=1,又底面积 S= ×1×1= . 2 2 1 1 所以体积 V= Sh= . 3 6
答案 B
3.(2016· 浙江卷)某几何体的三视图如图所示(单位:cm),则该几 何体的表面积是________cm2,体积是________cm3.
解析
由三视图可知,该几何体为两个相同长方体组合,长方
体的长、宽、高分别为4 cm、2 cm、2 cm,其直观图如下:
其体积V=2×2×2×4=32(cm3),由于两个长方体重叠部分
第1讲 立体几何中的计算与位置关系
高考定位
1.以三视图和空间几何体为载体考查面积与体积,
难度中档偏下;2.以选择题、填空题的形式考查线线、线面、 面面位置关系的判定与性质定理对命题的真假进行判断,属
基础题;空间中的平行、垂直关系的证明也是高考必考内容,
多出现在立体几何解答题中的第(1)问.
真题感悟
故 2R= DA2+SA2+SB2= 32=4 2, ∴R=2 2,∴S 表=4πR2=32π. 1 3 (2)法一 (排除法)V<3×S△ABC×2= 6 ,排除 B、C、D, 选 A.
法二
(直接法):在 Rt△ASC 中,AC=1,∠SAC=90°,SC=
2,所以 SA= 4-1= 3.同理,SB= 3.BC,所以 BD⊥SC,AD =BD,故 SC⊥平面 ABD,且△ABD 为等腰三角形.因为∠ASC 1 3 1 =30°,故 AD=2SA= 2 ,则△ABD 的面积为2×1× AD
)
A.28+6 5 C.56+12 5
B.30+6 5 D.60+12 5
解析
(1) 由图知此几何体为边长为 2 的正方体
裁去一个三棱锥.
1 1 所以此几何体的体积为 2×2×2-3×2×1×2 22 ×2= 3 .故选 C.
(2)由几何体的三视图可知,该三棱锥的直观图如 图所示,其中 AE⊥平面 BCD,CD⊥BD,且 CD =4,BD=5,BE=2,ED=3,AE=4. ∵AE=4,ED=3,∴AD=5.
(2)已知三棱锥S-ABC的所有顶点都在球O的球面
上,△ABC是边长为1的正三角形,SC为球O的直 径,且SC=2,则此三棱锥的体积为(
2 A. 6 3 B. 6 2 C. 3
)
2 D. 2
解析 (1)由三视图可知,几何体为一横放的四棱 锥,其底面是边长为 4 的正方形,高为 2,平面 SAB⊥平面 ABCD,易知 SA=SB=2 2.如图所示. 故可补全为以 DA、SA、SB 为棱的长方体,
1 答案 (1)A (2)6
探究提高 (1)求三棱锥的体积,等体积转化是常用的方法, 转换原则是其高易求,底面放在已知几何体的某一面上. (2)若所给的几何体的体积不能直接利用公式得出,则常用转
换法、分割法、补形法等方法求解.
[微题型3]
与球有关的面积、体积问题
【例1-3】 (1)如图所示是一个几何体的三视图, 则这个几何体外接球的表面积为( A.8π C.32π B.16π D.64π )
直线、直线与平面、平面与平面之间的平行、垂直关系问
题,常构造长方体(或正方体),把点、线、面的位置关系转 移到长方体(或正方体)中,对各条件进行检验或推理,根据 条件在某一特殊情况下不真,则它在一般情况下也不真的 原理,判断条件的真伪,可使此类问题迅速获解.
[微题型2]
平行、垂直关系的证明
【例 2-2】 (2016· 昆明统考)如图,在侧棱与底 面垂直的四棱柱 ABCD-A1B1C1D1 中, AB∥CD, AB⊥BC,且 AA1=AB=BC=1,CD=2.
(2)柱体、锥体和球的体积公式: ①V 柱体=Sh(S 为底面面积,h 为高); 1 ②V 锥体= Sh(S 为底面面积,h 为高); 3 4 ③V 球= π R3. 3
4.直线、平面平行的判定及其性质
(1)线面平行的判定定理:a⊄α ,b⊂α ,a∥b⇒a∥α . (2)线面平行的性质定理:a∥α,a⊂β ,α ∩β =b⇒a∥b.
1.(2016· 全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆 28π 及每个圆中两条互相垂直的半径.若该几何体的体积是 3 , 则 它的表面积是( )
A.17π
B.18π
C.20π
解析
D.28π
由题知,该几何体的直观图如图所示,它是一
个球(被过球心 O 且互相垂直的三个平面)切掉左上角 1 7 的8后得到的组合体,其表面积是球面面积的8和三个 1 7 圆面积之和,易得球的半径为 2,则得 S= ×4π× 4 8 1 2 +3×4π×22=17π,故选 A.
故所求几何体 EFC1-DBC 的体积为 66. (2)利用三棱锥的体积公式直接求解. 1 1 1 1 VD1-EDF=VF-DD1E=3S△D1DE·AB=3×2×1×1×1=6. 另解(特殊点法):让 E 点和 A 点重合,点 F 与点 C 重合, 1 1 1 1 则 VD1-EDF=3×S△ACD×D1D=3×2×1×1×1=6.
答案 (1)B (2)A
热点二 空间中的平行与垂直
[微题型1]
空间线面位置关系的判断
【例2-1】 已知平面α、β,直线m,n,给出下列命题:
①若 m∥α,n∥β ,m∥n,则 α∥β; ②若 α∥β,m∥α ,n∥β ,则 m∥n; ③若 m⊥α,n⊥β ,m⊥n,则 α⊥β; ④若 α⊥β,m⊥α ,n⊥β ,则 m⊥n. 其中是真命题的是________(填写所有真命题的序号).
为一个边长为 2 的正方形,所以表面积为 S = 2(2×2×2 + 2×4×4)-2×2×2=2×(8+32)-8=72(cm2). 答案 72 32
4.(2016· 浙江卷 ) 如图,在△ABC 中, AB = BC = 2 ,
∠ ABC = 120 ° .若平面 ABC 外的点 P 和线段 AC上的
2
答案 A
2.(2016· 全国 Ⅲ 卷 ) 如图,网格纸上小正方形
的边长为1,粗实线画出的是某多面体的三
视图,则该多面体的表面积为(
A.18+36 5 C.90
解析
)
B.54+18 5 D.81
由题意知, 几何体为平行六面体, 边长分别为 3, 3, 45,
几何体的表面积 S=3×6×2+3×3×2+3× 45×2=54+ 18 5.
又 CD⊥BD,CD⊥AE,则 CD⊥平面 ABD,故 CD⊥AD,所以 AC= 41,且 S△ACD=10.在 Rt△ABE 中,AE=4,BE=2,故 AB =2 5.在 Rt△BCD 中,BD=5,CD=4,故 S△BCD=10,且 BC = 41.在△ABD 中,AE=4,BD=5,故 S△ABD=10. 在△ABC 中,AB=2 5,BC=AC= 41,则 AB 边上的高 h=6,故 S△ABC 1 =2×2 5×6=6 5.因此,该三棱锥的表面积为 S=30+6 5.
解析 若 m∥α,n∥β,m∥n,则 α,β可能平行或相交,① 是假命题;若 α∥β,m∥α,n∥β,则 m,n 可能是平行、相交、 异面中的任何一种位置关系,②是假命题;由线面垂直的性质 和面面垂直的判定可知③④是真命题,故真命题序号是③④.
答案 ③④
探究提高 长方体(或正方体)是一类特殊的几何体,其中蕴 含着丰富的空间位置关系.因此,对于某些研究空间直线与
热点一 空间几何体的表面积与体积的求解
[微题型1] 以三视图为载体求几何体的面积与体积
【例1-1】 (1)(2016· 衡水大联考)如图,网格
纸上小正方形的边长为1,粗实线和虚线画
出的是多面体的三视图,则该多面体的体 积为(
20 A. 3 22 C. 3
)
B.8 16 D. 3
(2)某三棱锥的三视图如图所示,该三棱锥的表面积是(
点D ,满足 PD= DA, PB=BA,则四面体 P - BCD 的体积的最大值是________.
解析 设 PD=DA=x,
在△ABC 中,AB=BC=2,∠ABC=120°, ∴AC= AB2+BC2-2· AB· BC· cos∠ABC = 4+4-2×2×2×cos 120°=2 3, 1 ∴CD=2 3-x,且∠ACB=2(180°-120°)=30°,
1 1 1 ∴S△BCD=2BC·DC×sin∠ACB=2×2×(2 3-x)×2 1 =2(2 3-x).要使四面体体积最大, 当且仅当点 P 到平面 BCD 的 距离最大,而 P 到平面 BCD 的最大距离为 x. 1 1 1 则 V 四面体 PBCD=3×2(2 3-x)x=6[-(x- 3)2+3],由于 0<x< 1 1 2 3,故当 x= 3时,V 四面体 PBCD 的最大值为6×3=2.
1 答案 2
考 点 整 合 1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平行 六面体、长方体之间的关系.
2.几何体的摆放位置不同,其三视图也不同,需要注意长对正,
相关文档
最新文档