二进制十进制数转换表
二进制十进制数的转换
二进制十进制数的转换
二进制和十进制都是数字表示方式,二进制是计算机中常用的数字表示方式,十进制则是我们平常使用的数字表示方式。
在计算机领域,需要经常进行二进制和十进制数之间的转换。
1. 二进制转十进制
二进制数是由 0 和 1 组成的数字表示方式,每一位上的数都是2 的幂次方。
例如,二进制数 1011,其各位数值分别为 1、0、1、1,代表的十进制数为:
1×2+0×2+1×2+1×2=8+0+2+1=11
因此,二进制数 1011 转换成十进制数为 11。
2. 十进制转二进制
十进制数是由 0 到 9 这十个数字组成的数字表示方式,每一位上的数都是 10 的幂次方。
将十进制数转换成二进制数,可以用连续除以 2 的方法。
例如,将十进制数 22 转换成二进制数:第一步:22 ÷ 2 = 11 0
第二步:11 ÷ 2 = 5 (1)
第三步: 5 ÷ 2 = 2 (1)
第四步: 2 ÷ 2 = 1 0
第五步: 1 ÷ 2 = 0 (1)
将上述步骤中每一个余数从下往上排列,得到的二进制数为10110。
以上就是二进制和十进制数之间的转换方法。
在计算机编程中,
经常需要用到这些转换方式。
二进制数转换为十进制数
二进制数和十进制数换算对照表
二进制
0 1 10
十进制
0 1 2
二进制
11 100 101
十进制
3 4 5
二进制
110 111 1000
十进制
6 7 8
二进制
1001 1010 1011
十进制
9 10 11
十进制数转二进制数 二进制数转十进制数
十进制数转换为二进制数
十进制整数转换成二进制整数采用 “除2取余,逆序排列”法。具体做法是: 用2去除十进制整数,可以得到一个商和 余数;再用2去除商,又会得到一个商和 余数,如此进行,直到商为0时为止,然 后把先得到的余数作为二进制数的低位 有效位,后得到的余数作为二进制数高 位有效位,依次排列起来。
制作人:罗
军
时间:2010年12月13日
大家都知道计算机中采用的二进制,但用计算 机解决实际问题时对数值的输入输出通常使用十 进制,这就有一个十进制向二进制转换或由二进 制向十进制转换的过程。也就是说,在使用计算 机进行数据处理时,首先必须把输入的十进制数 转换成计算机所能接受的二进制数;计算机在运 行结束后,再把二进制数转换成人们所习惯的十 进制数输出。这种将数由一种数制转换成另一种 数制称为数制间的转换。
= 1+0 +4 +0 +16
=21
2的n次幂对照表
210 29 28 27 26 25 24 23 22 21 20 1024 512 256 128 64 32 16 8 4 2 1
例3:将二进制数1 1 0 1 0 1 转换成十进制数 32+16+0 + 4 +0 +1
=53 (110101)2=(53)10
8421码二进制对照表
8421码二进制对照表
8421码是一种二进制编码方式,它将四位二进制数映射为十进制数。
具体的8421码二进制对照表如下:
二进制码十进制数
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15
以上是8421码二进制对照表,可以帮助将二进制数转换为十进制数。
例如,如果给定的二进制数是0101,根据对照表可以得知该二进制数对应的十进制数是5。
对照表可以继续扩展到更多的8421码对应的二进制数和十进制数。
例如:
二进制码十进制数
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15
10000 16
10001 17
10010 18
10011 19
10100 20
根据这个扩展的对照表,可以将更多的二进制数转换为十进制数。
例如10010对应的十进制数是18。
二进制和各进制数之间的换算
一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
各种进制之间的转换方法
各种进制之间的转换方法⑴二进制B转换成八进制Q:以小数点为分界线,整数部分从低位到高位,小数部分从高位到低位,每3位二进制数为一组,不足3位的,小数部分在低位补0,整数部分在高位补0,然后用1位八进制的数字来表示,采用八进制数书写的二进制数,位数减少到原来的1/3。
例:◆二进制数转换成八进制数: = 110 110 . 101 100B↓↓ ↓ ↓6 6 . 5 4 =◆八进制数转换成二进制数:3 6 . 2 4Q↓ ↓ ↓ ↓011 110 . 010 100 =◆低位,每4位二进制数为一组,不足4位的,小数部分在低位补0,整数部分在高位补0,然后用1位十六进制的数字来表示,采用十六进制数书写的二进制数,位数可以减少到原来的1/4。
例:◆二进制数转换成十六进制数:.100111B = 1011 0101 1010 . 1001 1100B↓ ↓ ↓ ↓ ↓B 5 A . 9C = 5A◆十六进制数转换成二进制数:= A B . F EH↓ ↓ ↓ ↓1010 1011. 1111 1110 = .1111111B先把八进制数Q转换成二进制数B,再转换成十六进制数H。
例:◆八进制数转换成十六进制数:= 111 100 000 010 . 100 101B= .100101B= 1111 0000 0010 . 1001 0100B= F 0 2 . 9 4H=◆十六进制数转换成八进制数:= 0001 1011 . 1110B== 011 011 . 111B= 3 3 . 7Q=⑷二进制数B转换成十进制数D:利用二进制数B按权展开成多项式和的表达式,取基数为2,逐项相加,其和就是相应的十进制数。
例:◆二进制数转换成十进制数:= 1×25+1×24+0×23+0×22+1×21+0×20+1×2-1= 32+16+2+=◆求8位二进制数能表示的最大十进制数值:最大8位二进制数是BB = 1×27+1×26+1×25+1×24+1×23+1×22+1×21+1×20= 255⑸十进制数D转换成二进制数B:十进制数转换成二进制数时,整数部分和小数部分换算算法不同,需要分别进行。
计算机进制换算
表1-1 几种常用进制之间的对照关系十进制二进制八进制十六进制0 0000 0 01 0001 1 12 0010 2 23 0011 3 34 0100 4 45 0101 5 56 0110 6 67 0111 7 78 1000 10 89 1001 11 910 1010 12 A11 1011 13 B12 1100 14 C13 1101 15 D14 1110 16 E15 1111 17 F1、将(1111101100.0001101)2转换成十六进制数。
0011 1110 1100 . 0001 1010↓↓↓↓↓↓3 E C . 1 A结果为:(1111101100.0001101)2=(3EC.1A)162、(1101100.111)2=1×26+1×25+1×23+1×22+1×2-1+1×2-2+1×2-3=64+32+8+4+0.5+0.25+0.125=(108.875)103、十进制数215用二进制数表示是A)1100001B)1101001C)0011001D)11010111【答案】D【解析】十进制向二进制的转换前面已多次提到,这一点也是大纲要求重点掌握的。
采用"除二取余"法。
4、十六进制数34B对应的十进制数是A)1234B)843C)768D)333【答案】B【解析】十六进制数转换成十进制数的方法和二进制一样,都是按权展开。
5、二进制数0111110转换成十六进制数是A)3FB)DDC)4AD)3E【答案】D【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。
6、二进制数10100101011转换成十六进制数是A)52BB)D45DC)23CD)5E【答案】A【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。
二进制和十进制之间的转换
进制之间的转换一.二进制和十进制的数值特点(先从基数来介绍,所谓基数其实就是本进制中所包含的基本符号的个数。
)1.基数(基本符号的个数)十进制:0—9 二进制0,12.进位规则十进制:逢十进一即1+9=10二进制:逢二进一即1+1=10二.进制之间的转换比如我们向计算中输入156,那么计算机是如何来存储这个数字的呢?当计算机将这个数字存入电脑后,又是如何来显示这个数字的呢?其实非常简单,当我们输入156时,将其10进制转化为2进制存起来,当我们显示是有将对应的2进制转化为10进制之后显示出来。
1.十进制转化为二进制法则:除2取余,直到商为0,反序排列例1.将十进制整数156转换成二进制数。
转换过程如下:即15610 =100111002练习:16810 =10101000225510 =1111111122.二进制转换为十进制法则:按权展开求和(即将R进制按位权形式展开多项式和的形式,求其最后的和)从右向左开始算起,依次列为第0、1、2...位,第n位的数(0或1)乘以2的n次方,得到的结果相加就是答案。
例如:01101011.转十进制:(从右向左)第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.即二进制01101011=十进制107.由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
例2.把2)1001( 转换为十进制。
解:=100123)21202021(⨯+⨯+⨯+⨯=(8+1)10=(9)10练习:1、111111112=( )102、101010112=( ) 10答案:1、2552、171教学小结。
二进制、八进制、十进制和十六进制数转换
100
100 4
111
111 7
2
010
0
000 010000110
6
110
即
10000110
先把二进制数自右向左分组, 每3位分一组,最后一组不够3位的 在前面补0,然后把每一组二进制数 转换为十进制数,最终进行组合即 可得八进制数(147)8
先把八进制数各个位上的数按“十进 制数转为二进制数”的方法转换为3位 二进制数,不足3位的在前面补上0, 然后按顺序组合起来,即得最终的二 进制数( 10000110 )2
01101100
先把八进制数各个位上的数按 “十进制数转为二进制数”的方法转 换为3位二进制数,不足3位的在前面 补上0,然后按顺序组合起来,即得最 终的二进制数( 10000110 )2
(10101111)2
1010 10 A (AF)16
(AF)16
1111 15 F
将十进制数除以2到商为0止,然后将 余数自下而上按顺序取出得:111011, 不足8位时在高位(左边)补上0,即 得最终的二进制数(00111011)2
二进制、八进制、十进制和十六进制数
• 二进制数转为八进制数 例:(01100111)2 (147)8
01
0 01 1
•八进制数转为二进制数
例: (206)8 (10000110)2
二进制、八进制、十进制和十六进制数
• 二进制数转为十六进制数 例:(0110பைடு நூலகம்111)2 (67)16
0110 6 6 0111 7 7
•十六进制数转为二进制数
例: (6C)16 ( 01101100 )2
6
6 0110
C
12 1100
二进制、十六进制转换表
博客园 用户登录 代码改变世界 密码登录 短信登录 忘记登录用户名 忘记密码 记住我 登录 第三方登录/注册 没有账户, 立即注册
二进制、十六进制转换表
原 文 : /blog/static/60628058200841552235617/
十六进制、十进制、二进制转换: 十进制转二进制方法:8421法 例如:把10010110转换成十进制
十六进制 0 1 2 3 4 5 6 7 8 9 A
十进制 0 1 2 3 4 5 6 7 8 9 10
二进制 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
B
11
1011
C
12
1100
D
13
1101
ห้องสมุดไป่ตู้
E
14
1110
F
15
1111
进制转换
进制转换对照表(0~255) - 十进制,十六进制,八进制,二进制一:简述:进位计数制:是人们利用符号来计数的方法。
一种进位计数制包含一组数码符号和两个基本因素。
(1)数码:用不同的数字符号来表示一种数制的数值,这些数字符号称为”数码”。
(2)基:数制所使用的数码个数称为”基”。
(3)权:某数制每一位所具有的值称为”权”。
二:进制转换的理论1、二进制数、十六进制数转换为十进制数:用按权展开法把一个任意R进制数a n a n-1 ...a1a0 . a-1 a-2...a-m转换成十进制数,其十进制数值为每一位数字与其位权之积的和。
a n×R n + a n-1×R n-1 +…+ a1×R 1 + a0×R 0 + a-1×R-1+ a-2×R-2+ …+ a-m ×R-m2:十进制转化成R进制十进制数轮换成R进制数要分两个部分:整数部分:除R取余数,直到商为0,得到的余数即为二进数各位的数码,余数从右到左排列(反序排列)。
小数部分:乘R取整数,得到的整数即为二进数各位的数码,整数从左到右排列(顺序排列)。
3:十六进制转化成二进制每一位十六进制数对应二进制的四位,逐位展开。
4:二进制转化成十六进制将二进制数从小数点开始分别向左(对二进制整数)或向右(对二进制小数)每四位组成一组,不足四位补零。
三:具体实现1:二进制转换成十进制任何一个二进制数的值都用它的按位权展开式表示。
例如:将二进制数(10101.11)2转换成十进制数。
(10101.11)2=1*24+0*23+1*22+0*21+1*20+1*2-1+1*2-2=24+22+20+2-1+2-2=(21.75)102:十进制整理转换成二进制将十进制整数转换成二进制整数采用“除2取倒余法”。
即将十进制整数除以2,得到一个商和一个余数;再将商除以2,又得到一个商和一个余数;以此类推,直到商等于零为止。
二进制与十进制数间的转换、二进制数的四则运算
一、二进制数与十进制数间的转换方法1、正整数的十进制转换二进制:要点:除二取余,倒序排列解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果例如把52换算成二进制数,计算结果如图:52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制数就是110100。
由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位,或者32位....。
于是,一个二进制数用计算机表示时,位数不足2的幂次时,高位上要补足若干个0。
本文都以8位为例。
那么:(52)10=(00110100)22、负整数转换为二进制要点:取反加一解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对取补后的结果加1即可例如要把-52换算成二进制:1.先取得52的二进制:001101002.对所得到的二进制数取反:110010113.将取反后的数值加一即可:11001100即:(-52)10=(11001100)23、小数转换为二进制要点:乘二取整,正序排列解释:对被转换的小数乘以2,取其整数部分(0或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制小数部分,然后取小数部分,再乘以2,直到小数部分为0或者已经去到了足够位数。
每次取的整数部分,按先后次序排列,就构成了二进制小数的序列例如把0.2转换为二进制,转换过程如图:0.2乘以2,取整后小数部分再乘以2,运算4次后得到的整数部分依次为0、0、1、1,结果又变成了0.2,若果0.2再乘以2后会循环刚开始的4次运算,所以0.2转换二进制后将是0011的循环,即:(0.2)10=(0.0011 0011 0011 .....)2循环的书写方法为在循环序列的第一位和最后一位分别加一个点标注4、二进制转换为十进制:整数二进制用数值乘以2的幂次依次相加,小数二进制用数值乘以2的负幂次然后依次相加!比如将二进制110转换为十进制:首先补齐位数,00000110,首位为0,则为正整数,那么将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果如果二进制数补足位数之后首位为1,那么其对应的整数为负,那么需要先取反然后再换算比如11111001,首位为1,那么需要先对其取反,即:-0000011000000110,对应的十进制为6,因此11111001对应的十进制即为-6换算公式可表示为:11111001=-00000110=-6如果将二进制0.110转换为十进制:将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果二、二进制的四则运算二进制四则运算和十进制四则运算原理相同,所不同的是十进制有十个数码,“满十进一”,二进制只有两个数码0和1,“满二进一”。
二进制数转换为十进制数
二进制数转换为十进制数二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:下面是竖式:0110 0100 换算成十进制第0位0 *20 = 0第1位0 * 21 = 0第2位1 *22 = 4第3位0 *23 = 0第4位0 * 24 = 0第5位1 * 25 = 32第6位1 *26 = 64第7位0 *27 = 0 +--———--——-———-—-———-—------100用横式计算为:0 *20 + 0 *21 + 1 *22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 *26 + 0 * 27 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位:1 *22 + 1 * 23 + 1 * 25 + 1 * 26 = 100八进制数转换为十进制数八进制就是逢8进1。
八进制数采用0~7这八数来表达一个数。
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……所以,设有一个八进制数:1507,转换为十进制为:用竖式表示:1507换算成十进制。
第0位7 *80 = 7第1位0 * 81 = 0第2位5 *82 = 320第3位1 * 83 = 512 +--—---—----—-—-—————--——--839同样,我们也可以用横式直接计算:7 *80 + 0 *81 + 5 * 82 + 1 *83 = 839结果是,八进制数1507 转换成十进制数为839十六进制数转换成十进制数2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。
二进制与十进制的转换
课堂引入
定定义义及产产生生
表达措施
进制转换
课堂练习
课后作业
二进制是计算技术中广泛采用 旳一种数制。由0和1两个数码 来表达,进位规则是“逢二进 一”。
德国数理哲学大师莱布尼兹 由《易经》中旳八卦符号联想 而发明发明
课堂引入
定义及产生
表转达换措运施算
进制转换
课堂练习
课后作业
110表达?
课堂引入
定义及产生
(101110)=
(100011)=
98=
13=
135=
表转达换措运施算
进制转换
课堂练习
课后作业
下标区别法 字母区别法
(10)10 (Βιβλιοθήκη 0)210D10B
课堂引入
定义及产生
转换运算
进制转化换
课堂练习
课后作业
二进制转十进制
(1101)=1x23+1x22+0 x21+1x20=13
十进制转二进制
课堂引入
定义及产生
转换运算
进制转换
课课堂堂练练习习
课后作业
二进制转十进制 (1111)= 1x23+1x22+1x21+1x2 0=15 (1010)=1x23+0x22+1x21+0x2 0=10
十进制转二进制
21= 10101
45= 101101 32=100000
课堂引入
定义及产生
转换运算
进制转换
课堂练习
课课堂后作作业业
二进制转十进制
(101011)= 十进制转二进制
课堂引入
定义及产生
表达措施
进制转换
2进10的换算进制
进制转换求助编辑十进制小数转换成二进制小数进制转换是人们利用符号来计数的方法,包含很多种数字转换。
进制转换由一组数码符号和两个基本因素(“基”与“权”)构成。
目录8.8. 八 ----> 二9.9. 十六 ----> 二;二 ----> 十六二、负数C程序代码:(支持负进制)Java代码展开编辑本段一、正数在高速发展的现代社会,计算机浩浩荡荡地成为了人们生活中不可缺少的一部分,帮助人们解决通信,联络,互动等各方面的问题。
今天我就给大家讲讲与计算机甚至日常生活有密切相关的“进制转换”问题。
我们以(25.625)(十)为例讲解一下进制之间的转化问题。
1. 十 -----> 二给你一个十进制,比如:6,如果将它转换成二进制数呢?10进制数转换成二进制数,这是一个连续除以2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。
最后将所有余数倒序排列,得到数就是转换结果。
听起来有些糊涂?我们结合例子来说明。
比如要转换6为二进制数。
“把要转换的数,除以2,得到商和余数”。
那么:十转二示意图要转换的数是6, 6 ÷ 2,得到商是3,余数是0。
“将商继续除以2,直到商为0……”现在商是3,还不是0,所以继续除以2。
那就: 3 ÷ 2, 得到商是1,余数是1。
“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。
那就: 1 ÷ 2, 得到商是0,余数是1“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。
我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成二进制,结果是110。
把上面的一段改成用表格来表示,则为:被除数计算过程商余数6 6/2 3 03 3/2 1 11 1/2 0 1(在计算机中,÷用/ 来表示)2. 二 ----> 十二进制数转换为十进制数二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:下面是竖式:0110 0100 换算成十进制" ^ " 为次方第0位0 * 2^0 = 0第1位0 * 2^1 = 0第2位 1 * 2^2 = 4第3位0 * 2^3 = 0第4位0 * 2^4 = 0第5位 1 * 2^5 = 32第6位 1 * 2^6 = 64第7位0 * 2^7 = 0 +公式:第N位2^(N)---------------------------100用横式计算为:0 * 2 ^ 0 + 0 * 2 ^ 1 + 1 * 2 ^ 2 + 0 * 2 ^ 3 + 0 * 2 ^ 4 + 1 * 2 ^ 5 + 1 * 2 ^ 6 + 0 * 2 ^ 7 = 1000乘以多少都是0,所以我们也可以直接跳过值为0的位:1 *2 ^ 2 + 1 * 2 ^ 5 + 1 * 2 ^ 6 = 1003. 十 ----> 八10进制数转换成8进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成8。
二进制与十进制数间的转换、二进制数的四则运算
一、二进制数与十进制数间的转换方法1、正整数的十进制转换二进制:要点:除二取余,倒序排列解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果例如把52换算成二进制数,计算结果如图:52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制数就是110100。
由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位,或者32位....。
于是,一个二进制数用计算机表示时,位数不足2的幂次时,高位上要补足若干个0。
本文都以8位为例。
那么:(52)10=(00110100)22、负整数转换为二进制要点:取反加一解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对取补后的结果加1即可例如要把-52换算成二进制:1.先取得52的二进制:001101002.对所得到的二进制数取反:110010113.将取反后的数值加一即可:11001100即:(-52)10=(11001100)23、小数转换为二进制要点:乘二取整,正序排列解释:对被转换的小数乘以2,取其整数部分(0或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制小数部分,然后取小数部分,再乘以2,直到小数部分为0或者已经去到了足够位数。
每次取的整数部分,按先后次序排列,就构成了二进制小数的序列例如把0.2转换为二进制,转换过程如图:0.2乘以2,取整后小数部分再乘以2,运算4次后得到的整数部分依次为0、0、1、1,结果又变成了0.2,若果0.2再乘以2后会循环刚开始的4次运算,所以0.2转换二进制后将是0011的循环,即:(0.2)10=(0.0011 0011 0011 .....)2循环的书写方法为在循环序列的第一位和最后一位分别加一个点标注4、二进制转换为十进制:整数二进制用数值乘以2的幂次依次相加,小数二进制用数值乘以2的负幂次然后依次相加!比如将二进制110转换为十进制:首先补齐位数,00000110,首位为0,则为正整数,那么将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果如果二进制数补足位数之后首位为1,那么其对应的整数为负,那么需要先取反然后再换算比如11111001,首位为1,那么需要先对其取反,即:-0000011000000110,对应的十进制为6,因此11111001对应的十进制即为-6换算公式可表示为:11111001=-00000110=-6如果将二进制0.110转换为十进制:将二进制中的三位数分别于下边对应的值相乘后相加得到的值为换算为十进制的结果二、二进制的四则运算二进制四则运算和十进制四则运算原理相同,所不同的是十进制有十个数码,“满十进一”,二进制只有两个数码0和1,“满二进一”。
进制转换计算+ASCII表
一、二进制转化成其他进制1。
二进制(BINARY)——〉八进制(OCTAL)例子1:将二进制数(10010)2转化成八进制数。
(10010)2=(010 010)2=(2 2)8=(22)8例子2:将二进制数(0。
1010)2转化为八进制数。
(0。
10101)2=(0. 101 010)2=(0. 5 2)8=(0.52)8诀窍:因为每三位二进制数对应一位八进制数,所以,以小数点为界,整数位则将二进制数从右向左每3位一隔开,不足3位的在左边用0填补即可;小数位则将二进制数从左向右每3位一隔开,不足3位的在右边用0填补即可。
2. 二进制(BINARY)——〉十进制(DECIMAL)例子1:将二进制数(10010)2转化成十进制数。
(10010)2=(1x24+0x23+0x22+1x21+0x20)10=(16+0+0+2+0)10=(18)10例子2:将二进制数(0.10101)2转化为十进制数。
(0。
10101)2=(0+1x2-1+0x2—2+1x2—3+0x2-4+1x2—5)10=(0+0.5+0.25+0.125+0。
0625+0.03125)10=(0.96875)10诀窍:以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n位的数(0或1)乘以2的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……。
n,然后将第n位的数(0或1)乘以2的—n次方,然后相加即可得到小数位的十进制数(按权相加法)。
3。
二进制(BINARY)——〉十六进制(HEX)例子1:将二进制数(10010)2转化成十六进制数.(10010)2=(0001 0010)2=(1 2)16=(12) 16例子2:将二进制数(0.1010)2转化为十六进制数。
(0。
10101)2=(0. 1010 1000)2=(0。
A 8)16=(0.A8)16诀窍:因为每四位二进制数对应一位十六进制数,所以,以小数点为界,整数位则将二进制数从右向左每4位一隔开,不足4位的在左边用0填补即可;小数位则将二进制数从左向右每4位一隔开,不足4位的在右边用0填补即可。
二进制和各进制数之间的换算
二进制、八进制・十进制.十六进制之间转换一. 十进制与二进制之间的转换(1)十进制转换为二进制.分为整数部分和小数部分①整数部分方法:除2取余法.即每次将整数部分除以2.余数为该位权上的数.而商继续除以2.余数又为上一个位权上的数.这个步骤一直持续下去.直到商为0为止,报后读数时候.从最后一个氽数读起. 一直到最前而的一个余数。
下而举例:例:将十进制的168转换为二进制得出结果将十进制的16S转换为二进制,(10101000)2分析:第一步.将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0o第三步,将商42除以2,商21余数为0o第四步,将商21除以2,商10余数为第五步.将商10除以2.商5余数为0。
第六步.将商5除以2.商2余数为1。
第七步.将商2除以2.商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步.读数•因为帚后一位是经过女次除以2才得到的•因此它是最商位.读数字从最后的余数向前读,li|J 10101000(2)小数部分方法:乘2取整法•即将小数部分乘以久然后取整数部分,剩下的小数部分继续乘以久然后取整数部分,剩下的小数部分又乘以2. —直取到小数部分为零为止。
如果永远不能为零.就同十进制数的四舍五入一样.按照耍求保留女少位小数时,就根据后血一位是0还是1.取舍,如果是零,舍掉.如果是1.向入一位。
换句话说就是0舍1入。
读数要从前而的整数读到后面的整数.下面举例:例1:将0. 125换算为二进制得出结果:将0・125换算为二进制(0.001)2分析:第一步,将0. 125乘以2,得0. 25,则整数部分为0,小数部分为0. 25; 第二步,将小数部分0. 25乘以2,得0. 5,则整数部分为0,小数部分为0.5;第三步,将小数部分0. 5乘以2,得1. 0.则整数部分为1,小数部分为0. 0; 第四步,读数,从第一位读起,读到最后一位,即为0. 001 o例2,将0. 45转换为二进制(保留到小数点第I川位)大家从上面步骤可以看出.X第五次做乘法时候.得到的结果是0・4,那么小数部分继续乘以2.得0.8. 0・8又乘以2的,到1・6这样一直乘下去,锻后不可能得到小数部分为零•因此,这个时候只好学习十进制的方法进行I川舍五入门但是二进制只有0和1两个.于是就出现0舍1入。