二进制数转换成十进制数
二进制十进制数的转换

二进制十进制数的转换
二进制和十进制都是数字表示方式,二进制是计算机中常用的数字表示方式,十进制则是我们平常使用的数字表示方式。
在计算机领域,需要经常进行二进制和十进制数之间的转换。
1. 二进制转十进制
二进制数是由 0 和 1 组成的数字表示方式,每一位上的数都是2 的幂次方。
例如,二进制数 1011,其各位数值分别为 1、0、1、1,代表的十进制数为:
1×2+0×2+1×2+1×2=8+0+2+1=11
因此,二进制数 1011 转换成十进制数为 11。
2. 十进制转二进制
十进制数是由 0 到 9 这十个数字组成的数字表示方式,每一位上的数都是 10 的幂次方。
将十进制数转换成二进制数,可以用连续除以 2 的方法。
例如,将十进制数 22 转换成二进制数:第一步:22 ÷ 2 = 11 0
第二步:11 ÷ 2 = 5 (1)
第三步: 5 ÷ 2 = 2 (1)
第四步: 2 ÷ 2 = 1 0
第五步: 1 ÷ 2 = 0 (1)
将上述步骤中每一个余数从下往上排列,得到的二进制数为10110。
以上就是二进制和十进制数之间的转换方法。
在计算机编程中,
经常需要用到这些转换方式。
二进制数转换成十进制数的方法

二进制数转换成十进制数的方法
二进制数转换成十进制数的方法是一种基本的计算技巧。
二进制数是由0和1组成的数字系统,而十进制数则是由0到9的数字组成的系统。
当需要将一个二进制数转换成十进制数时,需要将每个二进制位的值乘以相应的权重,然后将这些结果相加得到十进制结果。
例如,二进制数1101可以转换成十进制数的过程如下:
1. 首先,确定每个二进制位的权重。
从右向左数,第一位的权重为1,第二位的权重为2,第三位的权重为4,第四位的权重为8。
2. 将每个二进制位的值乘以相应的权重。
对于二进制数1101,第一位的值为1,乘以1得到1;第二位的值为0,乘以2得到0;第三位的值为1,乘以4得到4;第四位的值为1,乘以8得到8。
3. 将乘积相加得到十进制结果。
1+0+4+8=13,因此二进制数1101转换成十进制数的结果为13。
需要注意的是,在使用这种方法将二进制数转换成十进制数时,需要注意二进制数的位数和每个二进制位的权重。
如果二进制数的位数很多,或者权重很大,可能需要使用计算器或者其他工具来进行计算。
- 1 -。
二进制与十进制转化规则

二进制与十进制转化规则二进制与十进制转化二进制与十进制是计算机科学中最基本的数字系统。
在进行二进制与十进制转换时,我们需要遵循以下规则:二进制转换为十进制1.将二进制数从右向左按权展开,权值从0开始,每位的权值为2的幂次方。
即右侧第一位的权值为20,第二位为21,以此类推。
2.将每位上的数值与对应位的权值相乘,并将结果累加求和。
3.最终得到的累加和即为转换后的十进制数。
举例:将二进制数101011转换为十进制数。
1.从右向左,按权展开:12^0 + 12^1 + 02^2 + 12^3 + 02^4 +12^5 = 1 + 2 + 0 + 8 + 0 + 32 = 432.因此,二进制数101011转换为十进制数为43。
十进制转换为二进制1.将十进制数不断除以2,得到的余数即为二进制数的最低位,商继续除以2,直到商为0为止。
2.将得到的二进制数的各位按相反的顺序排列,即得到转换后的二进制数。
举例:将十进制数57转换为二进制数。
1.57 ÷ 2 = 28 余 12.28 ÷ 2 = 14 余 03.14 ÷ 2 = 7 余 04.7 ÷ 2 = 3 余 15. 3 ÷ 2 = 1 余 16. 1 ÷ 2 = 0 余 17.反向排列得到的余数:8.因此,十进制数57转换为二进制数为。
以上是二进制与十进制转化的基本规则和示例。
通过掌握这些规则,我们可以在计算机科学中进行二进制与十进制之间的转换。
二进制与十进制转换的应用二进制与十进制转换在计算机科学中具有广泛的应用,特别是在计算机的存储和处理方面。
以下是一些常见的应用示例:存储和传输数据计算机中的所有数据都是以二进制表示的。
在实际存储和传输数据时,我们通常会使用二进制数。
将数据从十进制转换为二进制可以使数据更加紧凑和高效。
例如,一个整数在十进制下可能需要几位或几十位的数字来表示,但是在二进制下却可以更简洁地表示。
二进制转十进制

二进制转十进制是从最后一位算,具体是这样的::如:01101011.转十进制:第0位:1乘2的0次方=11 1乘2的1次方=2:20乘2的2次方=03:1乘2的3次方=84:0乘2的4次方=05:1乘2的5次方=3261乘2的6次方=647:0乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.你可明白?可再问.十进制转二进制:是一个连续除2的过程.用上例转换:107除2商53余153除2商26余126除2商13余013除2商6余16除2商3余03除2商1余11除2商0余1.当商出现0时,就不要除了.然后把余数反住排列就行了.107=1101011.二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.十进制转二进制:用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为100101110进制概念1。
十进制十进制使用十个数字(0、1、2、3、4、5、6、7、8、9)记数,基数为10,逢十进一。
历史上第一台电子数字计算机ENIAC是一台十进制机器,其数字以十进制表示,并以十进制形式运算。
设计十进制机器比设计二进制机器复杂得多。
而自然界具有两种稳定状态的组件普遍存在,如开关的开和关,电路的通和断,电压的高和低等,非常适合表示计算机中的数。
二进制转十进制

二进制数转换成十进制数二进制的1101转化成十进制1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始相反用十进制的数除以2 每除一下将余数就记在旁边最后按余数从下向上排列就可得到1101或者用下面这种方法:文档收集自网络,仅用于个人学习13=8+4+0+1=8+4+1(算出等于13就行了)由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
文档收集自网络,仅用于个人学习本人有个更直接的方法,例如二进制数1000110转成十进制数可以看作这样:数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。
如此计算只需要牢记2的前十次方即可在此本人为大家陈述一下:2的0次方是1 文档收集自网络,仅用于个人学习2的1次方是22的2次方是42的3次方是82的4次方是162的5次方是322的6次方是642的7次方是1282的8次方是2562的9次方是5122的10次方是10242的11次方是20482的12次方是4096 文档收集自网络,仅用于个人学习2的13次方是81922的14次方是163842的15次方是327682的16次方是655362的17次方是1310722的18次方是2621442的19次方是5242882的20次方是1048576在这里仅为您提供前20次方,若需要更多请自己查询。
编辑本段十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法。
二进制转换数字

二进制转换数字
二进制转换数字指的是将二进制数转换为十进制数的过程。
例如,将二进制数1010转换为十进制数,结果是10。
具体转换方法是,将二进制数从右往左每一位上的数字乘以对应的权值(2的幂次方),然后将各位上的结果相加得到最终的十进制数。
另外,二进制数转换成十进制数还有如下例子:
1.二进制数 1101 转换为十进制数是 13。
2.二进制数 10110 转换为十进制数是 22。
总结来说,二进制转换数字就是将二进制数转换为十进制数,以便更好地理解和处理计算机内部的数据。
将二进制数转化成十进制的方法。

将二进制数转化成十进制的方法。
将一个二进制数转化成十进制数的方法是将每一位上的数字乘以2的n次幂(n为该位在二进制数中的位置,最右边一位的n为0,往左依次递增),然后把所有的结果相加即可得到十进制数。
例如,二进制数1011转换成十进制数的计算步骤如下:
1. 从右往左,第一位是1,乘以2的0次幂(即1),得到1;
2. 第二位是1,乘以2的1次幂(即2),得到2;
3. 第三位是0,乘以2的2次幂(即4),得到0;
4. 第四位是1,乘以2的3次幂(即8),得到8;
5. 将所有结果相加,1+2+0+8=11,因此二进制数1011转化成十进制数为11。
需要注意的是,如果二进制数中有小数部分,则按照类似的方法把小数部分转化成十进制数,然后加上整数部分转化成的十进制数即可。
- 1 -。
二进制到十进制转换

二进制的1101转化成十进制1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始相反用十进制的13除以2 每除一下将余数就记在旁边最后按余数从下向上排列就可得到1101十进制转二进制:用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余01/2 = 0 余1故二进制为100101110二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
二进制转十进制本人有个更直接的方法,例如二进制数1000110转成十进制数可以看作这样:数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。
如此计算只需要牢记2的前十次方即可在此本人为大家陈述一下:2的0次方是12的1次方是22的2次方是42的3次方是82的4次方是162的5次方是322的6次方是642的7次方是1282的8次方是2562的9次方是5122的10次方是10242的11次方是20482的12次方是40962的13次方是81922的14次方是163842的15次方是327682的16次方是65536在这里仅为您提供前16次方,若需要更多请自己查询。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二进制数转换成十进制数
二进制的1101转化成十进制
1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13 转化成十进制要从右到左用二进制的每个数去乘以2的相应次方
不过次方要从0开始
相反用十进制的数除以2 每除一下将余数就记在旁边
最后按余数从下向上排列就可得到1101
十进制转二进制:
用2辗转相除至结果为1
将余数和最后的1从下向上倒序写就是结果
例如302
302/2 = 151 余0
151/2 = 75 余1
75/2 = 37 余1
37/2 = 18 余1
18/2 = 9 余0
9/2 = 4 余1
4/2 = 2 余0
2/2 = 1 余0
1/2 = 0 余1
故二进制为100101110
二进制转十进制
从最后一位开始算,依次列为第0、1、2...位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107.
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
二进制转十进制
本人有个更直接的方法,例如二进制数1000110转成十进制数可以看作这样:
数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即
2+4+64=70 次方数即1的位数减一。
如此计算只需要牢记2的前十次方即可在此本人为大家陈述一下:2的0次方是1
2的1次方是2
2的2次方是4
2的3次方是8
2的4次方是16
2的5次方是32
2的6次方是64
2的7次方是128
2的8次方是256
2的9次方是512
2的10次方是1024
2的11次方是2048
2的12次方是4096
2的13次方是8192
2的14次方是16384
2的15次方是32768
2的16次方是65536
在这里仅为您提供前16次方,若需要更多请自己查询。
十进制数转换为二进制数
十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
十进制转二进制
110011
1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。
具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
十进制整数转二进制
如:255=(11111111)B
255/2=127=====余1
127/2=63======余1
63/2=31=======余1
31/2=15=======余1
15/2=7========余1
7/2=3=========余1
3/2=1=========余1
1/2=0=========余1
789=1100010101
789/2=394.5 =1 第10位
394/2=197 =0 第9位
197/2=98.5 =1 第8位
98/2=49 =0 第7位
49/2=24.5 =1 第6位
24/2=12 =0 第5位
12/2=6 =0 第4位
6/2=3 =0 第3位
3/2=1.5 =1 第2位
1/2=0.5 =1 第1位
2.十进制小数转换为二进制小数
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。
具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的整数部分为零,或者整数部分为1,此时0或1为二进制的最后一位。
或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
十进制小数转二进制
如:0.625=(0.101)B
0.625*2=1.25======取出整数部分1
0.25*2=0.5========取出整数部分0
0.5*2=1==========取出整数部分1
再如:0.7=(0.1 0110 0110...)B 0.7*2=1.4========取出整数部分1 0.4*2=0.8========取出整数部分0 0.8*2=1.6========取出整数部分1 0.6*2=1.2========取出整数部分1 0.2*2=0.4========取出整数部分0 0.4*2=0.8========取出整数部分0 0.8*2=1.6========取出整数部分1 0.6*2=1.2========取出整数部分1 0.2*2=0.4========取出整数部分0。