八年级下册数学第五章《分式》

合集下载

八年级数学下册课件第五章一节《认识分式》北师大版

八年级数学下册课件第五章一节《认识分式》北师大版

(2)当a取何值时,分式有意义.
解:(1)当a=1时,
a 1 11 2; 2a 1 2 1 1 a 1 2 1 1; 当a=2时, 2a 1 2 2 1
a 1 1 1 0; 当a=-1时, 2a 1 2 ( 1) 1
1 (2)由分母2a-1=0,得 a . 2 1 a 1 a 所以,当 时,分式 2a 1有意义.
35 a 45b ab
b ax
一 分式的概念 上面问题中出现了代数式
2400 x 30
2400 x
35 a 45b ab
b ax
它们的形式和分数有什么联系?它们是整式吗?(讨论)
A 这些式子都可写成 B 的形式,分子、分母都是
整式 , 分母中都含 字母 ,整式分母中 不含 字母。所以以上式 不是整式。 子
2
做一做
练习:1.当x=0时,求分式 的值。
8 2. 当x取什么值时,分式 有意义? x 1
三 分式值为零的条件
A 想一想:分式 的值为零应满足什么条件? B
当A=0且 B≠0时,分式的值为0. 注意:分式值为零是分式有意义的一种特殊情况.
例2. 分式
x 1 x 1
2
=0,则x=

三个条件
2400 x
2400 x 30
• (1)2010年上海世博会吸引了成千上万的参观者,某 一时段内的统计结果显示,前 a 天日均参观人数 35 万 人,后 b 天日均参观人数 45 万人,这(a + b)天日均 参观人数为多少万人? • (2)文林书店库存一批图书,其中一种图书的原价是 每册 a 元,现每册降价 x 元销售,当这种图书的库存全 部售出时,其销售额为 b 元.降价销售开始时,文林书 店这种图书的库存量是多少?

八年级数学下册《分式》教案北师大版

八年级数学下册《分式》教案北师大版

【推荐】猜灯谜作文(精选30篇)【推荐】猜灯谜作文(精选30篇)在平时的学习、工作或生活中,大家对作文都不陌生吧,借助作文可以宣泄心中的情感,调节自己的心情。

你知道作文怎样才能写的好吗?下面是小编整理的猜灯谜作文,仅供参考,欢迎大家阅读。

猜灯谜作文篇1一年一度的中秋节快到了,中秋节的时候的习俗有:博饼,放孔明灯,敬田头,听香……看着妈妈忙忙碌碌地准备着,陷入美好的记忆中。

去年的中秋节,妈妈决定吃完饭后上天台边赏月边猜谜语,我们乐得直拍手叫好。

“一起赏月,猜谜语啦!”妈妈大喊。

我和弟弟都还在做自己的事。

妈妈提高嗓音:“快来一起赏月,猜谜语啦!”我和弟弟迅速打开房门,以最快的速度赶到天台上。

爸爸妈妈已经坐在天台的椅子上等我们了,我和弟弟也跟着坐在了旁边的椅子上。

开始猜谜语了,妈妈先下手为强:“我先出,听好了。

充耳不闻无话讲,打一茶叶名。

”妈妈话音刚落,爸爸马上接:“是龙井。

”爸爸平日里可爱喝茶了,这种简单的问题怎能难倒他。

“不能常喝浓茶,会生病哦!”我一本正经地说道,“书上就是这样写的!”爸爸微笑着说:“女儿长大了,懂事了!好吧,听你的,我以后要少喝浓茶。

”我们一家人就在这月光下,开始品尝月饼。

我们大口大口地往嘴里塞。

妈妈嘱咐我们:“吃慢点,别噎着了。

”我对妈妈说:“一定不会的,如果噎着了,我就是个大傻子。

”爸爸妈妈放声大笑。

吃完月饼后,爸爸说:“该我出了。

七品小官不明断,打一食品。

”妈妈马上反应过来,说:“是芝麻糊。

”弟弟急了:“现在该我出了。

谜语是话到嘴边又咽下,打一食品。

”“我知道,谜底是云吞。

”我高兴地大喊。

妈妈对我说:“小声点,别吵到人家赏月。

”“好吧,不过该我出了。

三两木耳,打一地理名词。

”我严肃地说。

这可把全家给难住了,“哈哈,不懂了吧?我来告诉你们吧,是森林。

”我得意地说道,爸爸妈妈哈哈大笑。

全家人沉浸在浓浓的月光中。

又是中秋月圆时,月儿圆,人团圆。

仰望夜空,昨夜星辰早已坠落,今日明月正当空。

数学八年级下册第五章

数学八年级下册第五章

数学八年级下册第五章一、分式的概念。

1. 定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(x)/(x + 1),(1)/(x)都是分式,而(x)/(3)(这里分母是常数3,不含有字母)不是分式是整式。

2. 分式有意义的条件。

- 分式(A)/(B)有意义的条件是分母B≠0。

例如对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。

3. 分式值为零的条件。

- 分式(A)/(B)的值为零的条件是A = 0且B≠0。

例如对于分式(x - 1)/(x+1),当x - 1 = 0(即x = 1)且x+1≠0(x≠ - 1)时,分式的值为0。

二、分式的基本性质。

1. 性质内容。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

例如(x)/(y)=(x×2)/(y×2)=(2x)/(2y)。

2. 约分。

- 把一个分式的分子与分母的公因式约去,叫做分式的约分。

例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。

3. 最简分式。

- 分子与分母没有公因式的分式叫做最简分式。

像(x + 1)/(x^2+1)就是最简分式,而(2x)/(4x^2)不是最简分式,化简后为(1)/(2x)。

三、分式的乘除法。

1. 分式乘法法则。

- 分式乘分式,用分子的积做积的分子,分母的积做积的分母。

即(A)/(B)·(C)/(D)=(A× C)/(B× D)。

例如(2)/(3)·(x)/(y)=(2x)/(3y)。

2. 分式除法法则。

- 分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

即(A)/(B)÷(C)/(D)=(A)/(B)·(D)/(C)=(A× D)/(B× C)。

八年级下数学第五章《分式与分式方程》

八年级下数学第五章《分式与分式方程》

八年级下数学第五章《分式与分式方程》3.分式的加减法 第二课时西安市中铁中学 焦卫 教材分析:分式的加减法是代数变形的基础之一,也是数学学习过程中知识与能力的综合,是后续知识的基础。

类似于分数加减运算的学习过程,在学习了同分母分式的加减法法则后,循序渐进,继续异分母分式的加减法的学习。

根据《课程标准》要求的目标,本节课教学重点放在落实和理解,不求繁难。

教学时对异分母分式加减法法则的探索过程上,要使学生充分活动起来,以已有的知识基础和经验基础,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则。

学情分析:知识技能基础:学生通过前面的学习已经了解掌握了因式分解、分式(分数)的基本性质、分式的约分及乘除运算,有了观察、类比、尝试猜想、归纳的经历感受。

在上节课有学习了同分母的分式的加减法法则,这是对这课异分母分式加减法学习的铺垫。

活动经验基础:从学习字母表示数开始,学生就经历过许多从实际问题建模的思想,用代数式去解决实际问题的经验。

同时在前面的学习中,学生也经历了很多合作交流的学习过程,具有了一定的活动的经验和合作与交流的能力。

一、教学目标:①知识目标:会找最简公分母,能进行分式的通分;理解并掌握异分母分式加减法的法则;会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;②能力目标:经历异分母分式的加减运算和通分的探讨过程,训练学生的分式运算能力,发展学生观察、类比、归纳、猜测、验证等能力,培养数学学习中的转化能力.③情感目标:培养学生在学习中转化未知问题为已知问题的能力和意识;进一步通过实例发展学生的符号感和用数学的意识。

二、教学重点:掌握异分母分式加减法的法则,会进行简单分式的加减运算。

教学难点:确定最简公分母通分。

三、教学方法:观察类比、尝试猜想、归纳转化表现方式与教具:多媒体与演示工具 四、教学过程:(一)活动准备:复习与回顾1. 填空:①同分母分式相加减, 不变,把 相加减。

北师版八年级下册数学第5章 分式与分式方程 认识分式

北师版八年级下册数学第5章 分式与分式方程 认识分式

认识分式
下列说法正确的是( D )
A. 是整式,不是分式 B. 是分式
C. 是x2分式 D. 是分式
3a
x
π
11
n
xy
5m
易错点:对分式的定义理解不透导致判断出错
课堂小结
认识分式
点拨:判断一个式子是不是分式要看它的原始状态的分 母中是否含有字母,不能将原式化简、整理后去判断, 所以是分式,不是分式,是含分式的式子,不是分式,
知1-讲
面对日益严重的土地沙化问题,某县决定在一定期限内固沙 造林2400hm2, 实际每月固沙造林的面积比原计划多30hm2,结果 提前完成原计划的任务. 如果设原计划每月固沙造林xhm2,那么 (1)原计划完成造林任务需要多少个月? (2)实际完成造林任务用了多少个月?
感悟新知
做一做
知1-讲
(1)2010年上海世博会吸引了成千上万的参观者,某一时段内
第5章分式与分式方程
5.1认识分式
第1课时认识分式
学习目标
1 课时讲解
分式的定义 分式有意义的条件 分式的值为零的条件
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
课时导入
回忆:什么叫整式? 请你举例说明.
整式
单项式:数与字母或字母与字母的积 多项式:几个单项式的和
感悟新知
知识点 1 分式的定义
的统计结果显示,前a天日均参观人数35万,后b天日均参
观人数45万,这(a+b)天日均参观人数为多少万?
(2)文林书店库存一批图书,其中一种图书的原价是每册a元,
现每册降价x元销售,当这种图书的库存全部售出时,其
销售额为b元.降价销售开始时,文林书店这种图书的库存

八年级数学下册 第五章 分式与分式方程 4 分式方程教学课件下册数学课件

八年级数学下册 第五章 分式与分式方程 4 分式方程教学课件下册数学课件
2.能通过(tōngguò)列分式方程解决现实情境中的问题.
12/12/2021
第十六页,共二十三页。
甲、乙两名同学玩“托球赛跑”的游戏(yóuxì),商定:用球拍托
着乒乓球从起跑线l起跑(如图),绕过点P跑回起跑线;途中乒乓球掉
下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于
心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.比赛结束后,甲同学
花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多
少元.
解:设第一批盒装花的进价是 x 元/盒,
3 000
5 000
则 x ×2=
,解得
x-5
x=30.
经检验,x=30 是原方程的根.
答:第一批盒装花每盒的进价是 30 元.
12/12/2021
第二十页,共二十三页。
本节课主要是在分式方程的概念和分式方程的解法的
基础上对分式方程的应用进行学习,在应用中要注意寻找等
量关系(guān xì),根据等量关系列出分式方程.
12/12/2021
第二十一页,共二十三页。
12/12/2021
第二十二页,共二十三页。
内容(nèiróng)总结
教学课件。2.能将实际问题中的等量关系用分式方程表示.。1.知道解分式方程的一般步骤.。1.能根据题意
寻找等量关系.。2.能通过列分式方程解决现实(xiànshí)情境中的问题.。息回答:哪位同学获胜
No
Image
12/12/2021
第二十三页,共二十三页。
量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌
梅以低于进价20%的价格全部售出,前后一共获利750元,求
小李所进的乌梅有多少千克.

八年级下册数学知识点分式

八年级下册数学知识点分式

八年级下册数学知识点分式八年级下册数学知识点——分式一、定义分式是指由分子和分母以及分割符号(如:横线或斜线等)组成的算式,通常表示为a/b的形式,其中a、b均为整数,b不为0。

二、基本概念1. 真分数:分子小于分母的分式称为真分数,如1/2、2/3等。

2. 假分数:分子大于或等于分母的分式称为假分数,如5/3、9/4等。

3. 通分:对于分母不同的分式,将它们的分母约分至相同,即将它们化为相同分母的分式,这个过程称为通分。

4. 约分:对于分子分母有公共因数的分式,可以将它们约分成最简分式,即分子分母同时除以它们的公共因数,得到的分式称为最简分式。

三、分式的四则运算1. 加减法分式的加减法其实就是先通分,再将分子按照加减法的规则相加减,然后将结果约分为最简分式。

例如:7/10 + 5/6 = 21/30 + 25/30 = 46/30 = 23/152. 乘法分式的乘法就是将两个分式的分子和分母分别相乘,然后将结果约分为最简分数。

例如:2/3 × 3/4 = 6/12 = 1/23. 除法分式的除法相当于将分式的乘数乘上被除数的倒数,即将分子与被除数的分母相乘,分母与被除数的分子相乘,得到的结果再约分为最简分数。

例如:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8四、分式的应用1. 分式在比例问题中的应用分式在比例问题中的应用非常广泛,例如在解题时需要求出比例中某一部分的值,在这种情况下,就可以通过分式的运算来求解。

例如:若三个数的比例为a : b : c,且a = 3/4,b = 1/2,求c的值。

根据比例的定义,可得a : b = 3/4 : 1/2 = 3/2,那么c : a = 3/2 : 1,即c = (3/2) ÷ 1 × a = (3/2) × (3/4) = 9/8。

因此c = 9/8。

2. 分式在解方程中的应用在解方程中,有时需要将方程变形成分式的形式,然后进行分式的运算,最后再将分式恢复为方程,从而得到方程的解。

北师大版八年级下册数学 第五章 分式与分式方程(知识点)

北师大版八年级下册数学  第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。

如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。

分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。

分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。

字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。

3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。

字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。

通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。

八年级数学下册(新版北师大版)第五章_分式与分式方程

八年级数学下册(新版北师大版)第五章_分式与分式方程

第五章 分式与分式方程第一节 认识分式(一)一、学习准备1、分式的概念:整式A 除以整式B ,可以表示成AB的形式,如果 中含有字母,那么我们称AB为__________。

2、分式与整式的区别:分式一定含有分母,且分母中一定含有 ;而整式不一定...含有分母,若含有分母,分母中一定不含有字母。

3、分式有意义、无意义或等于零的条件: (1)分式AB有意义...的条件:分式的 的值不等于零; (2)分式AB 无意义...的条件:分式的 的值等于零; (3)分式AB的值为零的条件:分式的 的值等于零,且分式的 的值不等于零; 二、教材精读1、理解分式的概念253817233312y x x x xy y x y x y x x -++-, , ,-,-, , , ?些是整式?哪些是分式 在下列式子中,哪例π解:有意义?取何值时, 当例112-x x模块二 合作探究 1、下列代数式:132m -,31,x π,1x ,1xx -,32(1)x y x x --,其中是分式的有:__________________________________________。

2、当x 取何值时,下列分式有意义?()x 211 ()3x 71x 32-- ()132-x x3、当x 取何值时,下列分式无意义?()2x5x 1- ()5x 61x 22-+ ()2x 3x 3+-4、当x 取何值时,下列分式的值为零?()xx +21 ()x x 342- ()45233-+x x()33||4+-x x ()86452+-x x模块三 形成提升1、下列各式中,哪些是整式?哪些是分式?①5x -7,②3x 2-1,③123+-a b ,④7)(p n m +,⑤72,⑥1222-+-x y xy x ,⑦c b +54答:______________________________。

(填序号)2、当x 取何值时,分式2132x x +-无意义?3、当x 为何值时,分式232-+x x 的值为零?4、若分式2242x x x ---的值为零,则x 的值是____________。

八年级数学下-第五章 分式与分式方程 知识点归纳与练习

八年级数学下-第五章 分式与分式方程 知识点归纳与练习

八年级数学下-第五章 分式与分式方程 知识点归纳与练习1、分式:一般地,用,A B 表示两个整式,A B ÷可以表示成A B 的形式,如果B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母,对于任意一个分式,分母都不能为零. 练习1、下列各式中哪些是整式?哪些是分式? 211(1);;(3);(4);2242b a b x xy x y a x ++-+- (2) 2、分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值保持不变.这一性质可以用式子表示为:,(0)b b m b b m m a a m a a m ⋅÷==≠⋅÷. 把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.练习2、化简下列分式2225(1);;20xy a ab x y b ab++ (2)最简分式:在化简的结果中,如果分子和分母已没有公因式,这样的分式称为最简分式,化简分式时,通常要使结果成为最简分式或是整式.3、分式的乘除法:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后在与被除式相乘.这一法则可以用式子 表示为:;b d bd b d b c bc a c ac a c a d ad⋅=÷=⋅= . 练习3、 计算2222244(1);(4);2x xy xy x xy y x y x y x y x y+-+÷÷---+ (2)4、分式的加减法:同分母的分式相加减,分母不变,把分子相加减. 这一法则可以用式子表示为:b c b c a a a±±=.练习4,计算222(1);(2);(3);22a b x y m n n n a b b a x y y x n m n m n m++++-------- 通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分,为了计算方便,异分母分式通分时,通常取最简单的公分母(最简公分母)作为它们的共同分母. 异分母分式的加减法法则是:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.这一法则可以用式子表示为:;b d bc ad bc ad a c ac ac ac±±=±= 练习5,计算22111(1);(2);(3);423332a b a a a x x a b--+---+ 5、分式方程:分母中含有未知数的方程叫做分式方程.因为解分式方程可能产生增根,所以解分式方程必须检验.通常只需检验所得的根是否使原方程中分式的分母的值等于零就好了,如果使原方程中分式的分母的值等于零,则舍去此根. 练习6、解方程653121(1);(2)1;(3)2;1(1)4433x x y x x x x x y y+--=+==-++---- 巩固练习:。

八年级下册数学分式知识点

八年级下册数学分式知识点

八年级下册数学分式知识点分式是初中数学重要的知识点之一,也是学习高中数学和其他学科的基础。

在八年级下册数学教学中,分式作为一个重要的知识点,将持续出现。

一、分式的概念分式是指一个数可以表示为非整数的两个整数的比值,分子和分母。

分式一般写作a/b,其中a为分子,b为分母。

分子表示分式的被除数,分母表示除数。

例如,7/3是一个分式,其中7是分子,3是分母。

二、分式的化简化简分式是指将分式化为最简整数形式。

最简整数形式是指分子和分母不含公因数(除了1)的分式。

取出分子和分母的公因数,并将其约掉,即可将分式化简为最简整数形式。

例如,将12/20化简为最简整数形式,步骤如下:- 取出公因数,得到12=2×2×3, 20=2×2×5- 约掉公因数2×2,得到12/20 = 3/5三、分式的四则运算分式的四则运算是指分式间的加、减、乘、除运算。

1. 加减运算若要对分式进行加减运算,则需要先将分式化为通分分式,即将分母相同的分式合并到一起。

例如,将2/3和1/4相加,步骤如下:- 将2/3表示为8/12,将1/4表示为3/12- 将8/12和3/12相加,得到11/122. 乘法运算若要对分式进行乘法运算,则将分式的分子、分母分别相乘即可。

例如,将2/3和3/4相乘,步骤如下:- 分子相乘,得到2×3=6- 分母相乘,得到3×4=12- 将6/12化简为最简整数形式,得到1/23. 除法运算若要对分式进行除法运算,则需要将除数的分子和分母调换位置,再将被除数与调换后的除数相乘。

例如,将3/4除以2/5,步骤如下:- 将除数调换位置得到5/2- 将3/4和5/2相乘,得到15/8四、分式的应用分式在实际生活和工作中有广泛的应用,如商业折扣、物品配方、工作效率计算等。

例如,某商场举办打折活动,若某商品原价为60元,打8折后价格为多少?- 打八折后,商品价格为60×0.8=48元- 商品的打折折扣为原价和打折后价格的比值,即8/10或4/5五、分式的重要性学习分式对于初中数学知识和高中数学知识的学习来说,都具有重要的作用。

北师大版八年级数学下册第五章 《分式与分式方程》1分式的概念

北师大版八年级数学下册第五章 《分式与分式方程》1分式的概念

1、分式的概念当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.整式与分式统称为有理式在理解分式的概念时,注意以下三点: ⑴分式的分母中必然含有字母; ⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开,分数线有括号和除号的作用. 分式有意义的条件:对于分式,分母不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义. 即若0B ≠,式子A B 有意义;若0B =,则式子AB 无意义;若A=0且0B ≠,则0A B =例1、在下列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a +例2、代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A.1个B.1个C.1个D.1个例3、求下列分式有意义的条件: ⑴1x ⑵33x + ⑶2a b a b+-- 练习:1、要使分式23xx -有意义,则x 须满足的条件为.2、若33aa -有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对2.要使分式)3)(1()3)(1(-++-x x x x 有意义,只需( )A 、1≠x 或3-≠xB 、1-≠x 或3≠xC 、1≠x 或3≠xD 、1-≠x 且3≠x3.下列说法中,正确的是( ) A 、如果A 、B 是整式,则AB就是分式. B 、分式都是有理式,有理式也都是分式 C 、只要分式中分子为零,分式的值就为零 D 、只要分式中分母为零,分式就无意义4.分式21x ax +-中,当a x -=时,以下结论中正确的是( ) A 、分式的值为零 B 、分式无意义C 、当12a ≠-时,分式的值为零 D 、不同于以上答案2、分式的值为0的条件:即0,0A B =≠例4、当x 为何值时,下列分式的值为0?⑴1x x +⑵211x x -+⑶33x x --⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+3、课堂拓展 例5. 设y=12+x x,当x 为何值时: (1)y 为正数? (2)y 为负数? (3)y 为零?(2) 求下列分式的值: ①1282-+x x ,其中x =-21;4、课后练习一、下列说法正确吗?1.2a是分式.( ) 2. xx 2不是分式.( )3. 若分式112-x 有意义,则x ≠1.( )4. 当分式的分子为零时,分式的值一定是零.( ) 二、请你填一填1.代数式11,,0,2,4,1222++-++-x x b a b a a y x x 中,是整式的有_________,是分式的有_________. 2. 若M=1)2)(1(2--+x x x ,则当x____时,M 有意义;当x=___时,M=0;当x=_____时,M=4. 3. 当x________时,分式xx -52的值为正数.4. 在正数范围内定义一种运算*,其规则为a*b=ba 11+,则x*(x+1)=________. 三、认真选一选1. 下列各式中,是分式的是 ( ) A.2+a 2 B.32y x - C. π1 D.21(a+b)2. 下列分式中,当x=-2时,有意义的是( ) A.22+-x x B.22-+x x C.2||2-+x xD.422--x x 3. 不论x 取何值时,下列分式总有意义的是( )A.21xx -B.22)2(+x x C.2+x x D.22+x x4. 若x 2-9=0,则分式3652-+-x x x 的值为( )A.1B.-5C.1或-5D.55. 如果分式33--x x 的值为1,则x 的值为 ( )A.x ≥0B. x >3C. x ≥0且x ≠3D. x ≠3 四、好好想一想1. 当x 取什么数时,下列分式有意义?①912-x ②12+x x ③242+-x x2. 当x =2时分式ax x --314没有意义,求a .3. 求下列分式的值: ②22y x x -,其中x =-1,y=-21.4. 是否存在x 的值,使得当a=2时,分式22xa xa -+的值为0?。

华东师大版数学八年级下册

华东师大版数学八年级下册

华东师大版数学八年级下册一、分式。

1. 分式的概念。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(x)/(x + 1),(1)/(x)等都是分式。

- 分式有意义的条件是分母不为零,如对于分式(1)/(x - 2),当x≠2时,分式有意义。

2. 分式的基本性质。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

- 利用分式的基本性质可以进行分式的约分和通分。

约分是将分式的分子、分母中的公因式约去,如(6x^2y)/(8xy^2)=(3x)/(4y);通分是将几个异分母的分式化为与原来分式相等的同分母分式,如(1)/(x - 1)和(1)/(x + 1)通分后为(x + 1)/((x - 1)(x + 1))和(x - 1)/((x - 1)(x + 1))。

3. 分式的运算。

- 分式的乘除:分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即(a)/(b)·(c)/(d)=(ac)/(bd);分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即(a)/(b)÷(c)/(d)=(a)/(b)·(d)/(c)=(ad)/(bc)。

- 分式的加减:同分母分式相加减,分母不变,分子相加减,即(a)/(c)+(b)/(c)=(a + b)/(c);异分母分式相加减,先通分,变为同分母的分式,再加减,如(1)/(x)+(1)/(y)=(y)/(xy)+(x)/(xy)=(x + y)/(xy)。

二、函数及其图象。

1. 函数的概念。

- 在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

北师大版八年级数学下册第五章分式与分式方程课件

北师大版八年级数学下册第五章分式与分式方程课件

X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。

北师版八年级下册数学第5章 分式与分式方程 解分式方程

北师版八年级下册数学第5章 分式与分式方程 解分式方程

感悟新知
1.
解方程:(1)
3= x-1
4 x

(2)
2
x x-3

5 3-2
x
=4.
知1-练
解:(1)
3= x-1
4 x
.
方程两边都乘x(x-1),得3x=4(x-1).
解这个方程,得x=4.
检验:将x=4代入原方程,得左边=1=右边.
所以,x=4是原方程的根.
感悟新知
(2)
x 2x-3

3-52 x =4.
感悟新知
知识点 3 分式方程的增根
议一议
在解方程时1,x小亮的1 解法2 如下: x2 2x
方程两边都乘x-2,得 1-x=-1-2(x-2). 解这个方程,得x=2.
你认为x=2是原方程的根吗?与同伴交流.
知2-讲
感悟新知
归纳
知3-讲
在这里,x=2不是原方程的根,因为它使得原 分式方程的分母为零,我们称它为原方程的增根.
知1-练
感悟新知
例2 解分式方程:
(1) x (2) x2 4
2 x2
1; x2
x1 x1
3 x2 x
. 2
导引:解分式方程的步骤: ①去分母,化分式方程为整式方程; ②解整式方程; ③检验,并写出原分式方程的根.
知1-练
感悟新知
(1) x
2
1;
x2 4 x 2 x 2
解:
x
2 1,
x 2x 2 x 2 x 2
第5章分式与分式方程
5.4分式方程
第2课时解分式方程
学习目标
1 课时讲解
解分式方程 分式方程的根(解) 分式方程的增根

八年级下册数学总结框第五章分式与分式方程 -回复

八年级下册数学总结框第五章分式与分式方程 -回复

八年级下册数学总结第五章分式与分式方程一、分式的基本概念1. 分式的定义分式也叫有理数的除法,它由分子、分母组成,分式的计算是有理数的除法,是数学中的一种基本运算。

2. 分式的分类分式可以分为真分式、假分式和整式。

- 真分式:分子的次数小于分母的次数,如1/2。

- 假分式:分式的分子的次数大于或等于分母的次数,如3x/2。

- 整式:分子恒定或分子等于零的分式,如5或0。

3. 分式的简化对于分式进行约分,使分子与分母互质,或者可以整除,使得分式的值保持不变。

4. 分式的扩展分式的扩展是指将分式中的分子或分母,或者同时乘以同一非零数,得到一个等值的新分式。

二、分式的运算分式的加减法需要通分,即找到它们的最小公倍数,然后按最小公倍数进行加减操作。

2. 分式的乘除法分式的乘法是指分子与分子相乘,分母与分母相乘;分式的除法是指将一个分式乘以另一个分式的倒数。

三、分式的应用1. 分式的比较当两个分式比较大小时,可以通分后再比较大小。

2. 分式与实际问题在实际生活中,分式可以用来表示比率、百分比、比例等概念。

3. 分式方程的应用分式方程是含有分式的方程,在实际问题中有着广泛的应用,如工程中的流水问题和当量问题等。

四、分式方程1. 分式方程的定义含有分式的方程称为分式方程,它的未知数在分式中。

对于分式方程的解法,常常需要将分式方程转化为整式方程,然后按照整式方程的解法进行操作。

3. 分式方程的应用分式方程在工程、生活等方面有着广泛的应用,如投资、流水等问题。

以上是八年级下册数学第五章分式与分式方程的相关内容总结,希望对大家有所帮助。

(以上内容参考自《新课标人教版八年级下册数学教材》)五、分式方程的解法对于分式方程的解法,我们可以通过一些方法来求解,其中常用的方法包括:1. 通分:对于含有分式的方程,通常需要进行通分操作,将方程中的分式化简为通分后的整式方程。

2. 去分母:可以通过乘以分母的倒数来去掉分母,将分式方程化简为整式方程。

八年级数学下册 第五章 分式与分式方程

八年级数学下册 第五章 分式与分式方程

第五章分式与分式方程1.经历用分式、分式方程表示现实情境中数量关系的过程,了解分式、最简分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号意识.2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会求分式的值,会解可化为一元一次方程的分式方程,会检验分式方程的解,发展运算能力.1.经历通过观察、归纳、类比、猜想,从而获得分式的基本性质、分式乘除法则、分式加减法则的过程,发展合情推理能力与代数式的恒等变形能力,积累类比的活动经验.2.能解决一些与分式、分式方程有关的实际问题,发展分析问题、解决问题的能力和应用意识.培养学生的观察能力和类比意识,培养学生勇于质疑、严谨求实的科学态度.本章主要学习分式的概念、基本性质与运算,分式方程及其应用.分式是代数式的重要组成部分.分式的基本性质与运算法则是代数式恒等变形的重要依据,是有关比例的学习基础.分式与分数、因式分解、一元一次方程、反比例函数等联系密切,在中学数学、物理、化学等学科和生产实践中有着广泛的应用.根据《标准》的要求,本章教科书特别关注了下列几个方面:(1)分式、分式方程是描述现实世界数量关系的模型.在学习分式、分式方程的概念时,教科书通过用字母表示现实情境中的数量关系,丰富了分式、分式方程的实际背景,以帮助学生领会分式、分式方程的模型作用,体会分式、分式方程与现实生活的密切联系.(2)在学习分式的基本性质及其运算法则时,十分注重观察、归纳、类比、猜想等思维方法的应用.(3)分式运算的教学重点是运算法则建立的过程和对算理的理解.在分式运算的设计中,教科书适当降低了分式纯运算的难度,只对较简单的分式进行化简、求值与运算.具体地,教科书设计了4节内容:第1节“认识分式”.通过土地沙化、上海世博会等实例中存在的数量关系引入分式的概念,体会分式的模型作用;通过类比分数的基本性质,理解分式的基本性质.第2节“分式的乘除法”.通过类比分数乘除法的法则,获得分式乘除法的法则,并会用法则进行分式运算.第3节“分式的加减法”.通过类比分数加减法的法则,获得分式加减法的法则,并会用法则进行分式运算.第4节“分式方程”.通过列出刻画行程、捐款等实例的方程,分析所列出方程的共同特征,理解分式方程的概念,进而学习怎样解分式方程,并会用分式方程解决简单的实际问题.【重点】1.分式的概念,正确理解分式的基本性质.2.运用分式乘除法的法则进行简单的分式乘除运算.3.会进行简单的分式加减运算.4.能将实际问题中的等量关系用分式方程表示出来;会解可化为一元一次方程的分式方程,会检验根的合理性.【难点】1.理解和掌握分式有意义的条件;推导分式的基本性质;运用分式的基本性质将分式进行变形.2.分式乘除法法则的推导.3.确定公分母,分式方程的正确变形,检验根的合理性.4.列分式方程解应用题.1.让学生经历用字母表示实际问题中数量关系的过程,进一步发展符号感.让学生经历用字母表示实际问题中数量关系的过程是发展学生符号感的重要环节,与以前用字母表示数量关系相比,本章表示量与量之间关系的代数式可以是分式.教学时应鼓励学生独立思考、自主探索问题情境中的数量关系,并运用符号进行表示.在此基础上可根据教学的实际情况组织学生对一些难点问题展开讨论、交流.2.让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展学生的合情推理能力.教科书为学生探索分式运算的法则提供了丰富的素材,教学时应将重点放在对法则的探索过程上,使学生充分活动起来,在观察、类比、猜想、尝试等一系列思维活动中,发现法则、理解法则、应用法则.同时,还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有条理思考问题的能力.3.解分式方程的关键是把分式方程转化为整式方程.在引导学生探索分式方程的解法时,要注意体现这种“转化”的思想.另外,对分式方程的解法,只要求掌握可化为一元一次方程的分式方程,教学过程中要注意把握这一要求.4.列分式方程解决应用问题比列一元一次方程(组)要稍复杂一些.教学时要引导学生抓住寻找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示等量关系等关键环节.对于常用的数量关系,虽然学生以前大都接触过,但在本章的教学中仍要注意复习、总结,引导学生举一反三,进一步提高分析问题与解决问题的能力.此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验、理解所获得结果的合理性.回顾与思考1课时1认识分式1.了解分式的概念,明确分式和整式的区别,会用分式表示生活情境中的数量关系.2.掌握分式是否有意义、分式的值是否为零的判断方法.3.在分数性质的基础上掌握分式的基本性质,并能利用分式的基本性质对分式进行变形.让学生观察、分析分式的特点,提高学生分析问题、解决问题的能力.培养学生类比的思维习惯,培养学生严谨认真的科学态度.【重点】分式的概念与基本性质.【难点】分式有意义和分式值为零的条件及其应用.第课时1.能用分式表示现实情境中的数量关系,体会分式的模型思想,进一步发展符号感.2.了解分式的概念,明确分式与整式的区别.1.经历用字母表示现实情境中数量关系的过程,了解分式的概念,体会分式的模型思想,进一步发展符号感.2.使学生经历分析、类比、归纳等活动,培养学生的自学能力,获得学习代数知识的常用方法.1.通过教材土地沙化问题的情境,体会保护人类生存环境的重要性.2.培养学生类比联想的思维习惯.【重点】分式的概念.【难点】理解和掌握分式有意义的条件.【教师准备】多媒体课件.【学生准备】回忆小学学过的分数的有关知识及七年级学过的整式的有关知识.导入一:【问题】下列式子中哪些是整式?哪些是单项式?哪些是多项式?a,-3x2y3,5x-1,x2+xy+y2,.解:a,-3x2y3,5x-1,x2+xy+y2,是整式;a,-3x2y3,是单项式;5x-1,x2+xy+y2是多项式.[设计意图]因为分式概念的学习是学生通过观察、比较分式与整式的区别而获得的,所以必须熟练掌握整式的概念.导入二:【问题】学生思考讨论,用式子表达题目中的数量关系:(1)面对日益严重的土地沙化问题,某县决定在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前完成原计划的任务.如果设原计划每月固沙造林x公顷,那么原计划完成造林任务需要个月,实际完成造林任务用了个月.,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?【师生活动】让学生充分思考,最好让学生积极投身于问题情境中,根据学生的情况教师可以给予适当的提示和引导.解:(1)(2)-册.[设计意图]让学生经历探索实际问题中数量关系的过程.通过问题情境,让学生初步感受分式是解决问题的一种模型,体会分式的意义,发展符号感.一、认识分式思路一(针对导入一)(1)一箱苹果售价a元,箱子与苹果的总质量为m kg,箱子的质量为n kg,则每千克苹果的售价是多少元?(2)一块土地分为两块棉田,第一块x公顷,收棉花m千克,第二块y公顷,收棉花n千克,这块土地平均每公顷的棉产量是多少?(3)文林书店库存一批图书,其中一种图书的原价是每册a元,现每册降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,文林书店这种图书的库存量是多少?根据学生交流、讨论,可得出结果.解:(1)-.(2) kg.(3)-册.2.认识分式问题1刚才这些代数式有什么共同特征?它们与整式有什么不同?学生分组交流讨论,展示讨论结果,教师及时补充.它们的共同特征:(1)它们是由分子、分母与分数线构成的;(2)分母中都含有字母.它们与整式的不同点:它们的分母中都含有字母,而整式的分母中不含有字母,例如,-,它们都含有分母,但分母中都不含有字母,所以它们是整式.一般地,用A,B表示两个整式,A÷B可以表示成的形式.如果B中含有字母,那么称为分式,其中A称为分式的分子,B称为分式的分母.问题2分式中,字母可以取任意实数吗?学生领会分式的概念并思考得出:不可以.因为分式中分母含有字母,而分母是除式,不能为零,因此字母的取值就受到制约,即字母的取值不能使分母为零,否则分式就会失去意义.问题3在什么情况下分式的值为0?学生通过类比分数的性质得出:分式的分子为0的时候,分式的值为0.思路二(针对导入二)讨论内容:(针对前面列出的三个代数式)这些代数式有什么共同特征?它们与整式有什么不同?老师提出思考问题:(1)整式中的分母有没有字母?(2)前面的三个代数式中,分母中有没有字母?(3)前面的三个代数式是不是分数呢?(4)前面的三个代数式中,字母能取任意值吗?(5)前面的三个代数式的值在什么情况下为零?问题预设:学生会比较容易发现这几个式子的分母中都含有字母,但容易与整式中有数字分母的情况混淆,把字母等同于数字看待,这就无法顺利总结出分式的概念.2.认识分式根据学生的观察、讨论,老师进行总结:这三个代数式的共同特征是分母中都含有字母,而整式中虽然也有分母,但分母中不含字母.这样的代数式我们称为分式.一般地,用A,B表示两个整式,A÷B可以表示为的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.对于任意一个分式,分母都不能为零.[设计意图]让学生通过观察、归纳总结出整式与分式的异同,从而得出分式的概念.学生通过观察、类比及小组讨论,基本能得出分式的定义,对于分式的分母不能为0,有的小组考虑到了,有的没有考虑到,就这一点可以让学生类比分数的分母不能为0加以理解.这样获得的知识,理解更加透彻,掌握更加牢固,运用起来会更灵活.[知识拓展]1.当整式相除不能整除时,就出现了分式,所以分式实际上是一个商式,其分子是被除式,分母是除式.2.整式和分式统称为有理式,即有理式包括整式和分式.3.分式的概念包括3个方面:(1)分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;(2)分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;(3)在任何情况下,分式的分母的值都不可以为0,否则分式无意义.这里,分母是指除式而言,而不是只就分母中某一个字母来说的.也就是说,分式的分母不为零是隐含在此分式中而无需注明的条件.二、例题讲解(教材例1)(1)当a=1,2,-1时,分别求分式-的值;(2)当a取何值时,分式-有意义?〔解析〕(1)分式的值是由字母的取值决定的,但要注意的是字母的取值一定不能让分母为0,即一定要让分式有意义.(2)只有当分式的分母不为0时,分式才有意义.解:(1)当a=1时,-=-=2.当a=2时,-=-=1.当a=-1时,-=---=0.(2)当分母的值为零时,分式没有意义,除此以外,分式都有意义.由分母2a-1=0,得a=.所以当a≠时,分式-有意义.[设计意图]让学生体会分式的意义,理解如果字母的取值使得分母的值为零,那么分式没有意义,反之则有意义.通过例题讲解,让学生从两方面来理解分式:一是分式中的字母可以表示使分式有意义的任何数;二是分式可与分数类比,分式的分母也不能为零.学生基本能够计算出分式的值,但对于分式在什么条件下有意义,一下子掌握还有一定的难度,需要通过与分数进行类比,多举例才能理解得更深刻.1.分式的概念.一般地,用A,B表示两个整式,A÷B可以表示成的形式,如果B中含有字母,那么称为分式.其中A称为分式的分子,B称为分式的分母.2.分式有意义的条件.分式有意义的条件是分母不为0.3.分式的值为0的条件是分子等于0,且分母不等于0.1.(2015·随州中考)若代数式-+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1解析:若代数式-+有意义,则有-解得x≥0且x≠1.故选D.2.若分式-有意义,则x的取值范围是.解析:依题意得3x+5≠0,解得x≠-,因此x的取值范围是x≠-.故填x≠-.3.若分式-的值为0,则x的值是.解析:在这个分式中,x2-1是分子,x+1是分母,因此,分式-的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.4.对于分式---,已知当x=-3时,分式的值为0;当x=2时,分式无意义.试求m,n的值.解:∵当x=-3时,分式的值为0,∴-----即--又∵当x=2时,分式无意义,∴m-2n+3×2=0,即m-2n=-6.解方程组---得-第1课时一、认识分式1.分式初探2.认识分式二、例题讲解一、教材作业【必做题】教材第109页随堂练习的1,2题.【选做题】教材第109页习题5.1的1,2,3题.二、课后作业【基础巩固】1.下列各式是分式的是()A. B. C.+y D.2.(2015·金华中考)要使分式有意义,则x的取值应满足()A.x=-2B.x≠2C.x>-2D.x≠-23.若分式-的值为0,则()A.x=-2B.x=0C.x=1或-2D.x=14.若分式-有意义,则x的取值范围是()A.x≠3B.x=3C.x>3D.x<3【能力提升】5.使分式--无意义的a的值为()A.2B.-2 C ±2 D.36.若分式--的值为1,则x的值为()A.1B.-2 C ±1 D.27.一项工作,甲单独做x小时完成,乙单独做比甲多用6小时完成,那么乙单独做t小时(t<6)能完成这项工作的()A. B. C. D.-8.下列各式中,可能取值为0的是()A.-B.-C.-D.9.若-的值为正数,则x的取值范围是()A.x<-2B.x<1C.x>-2且x≠1D.x>110.要使分式-的值为负,则x.11.当x时,分式--有意义.【拓展探究】12.把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为 cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.13.已知当x=1时,分式-无意义;当x=4时,此分式的值为零,求a+b的值.【答案与解析】1.B(解析:由分式的定义可知,分母中含有字母的是分式,注意π为实数,不是字母.故选B.)2.D(解析:分式有意义的条件是分母不为0,则由题意得x+2≠0,则x≠-2.故选D.)3.D(解析:分式值为0的条件是分子为0且分母不为0,所以有-解之即可.故选D.)4.A(解析:分式有意义的条件是分母不为0,即3-x≠0,解之即可.故选A.)5.C(解析:分式无意义的条件是分母为0,即-2=0,解之即可.故选C.)6.D(解析:分式值为1的条件是分子等于分母,且分母不为0,即---解之即可.故选D.)7.C(解析:乙单独做完这项工作需要(x+6)小时,则单独做t小时(t<6)能完成这项工作的.故选C.)8.B(解析:A中分子m2+1>0;B中当m=1时,分子为0,分母不为0,分式的值为0;C中当m=-1时,分子为0,分母为0,分式无意义;D中分子m2+1>0.故选B.)的分母x2-2x+1=(x-1)2≥0,所以若分式的值为正数,则有x+2>0且x-1≠0,即x>-2 9.C(解析:因为分式-且x≠1.故选C.)的值为负,需使分母3-x<0,即x>3.故填>3.)10.>3(解析:要使分式-有意义,则x2-1≠0,解之即可.故填≠±1.)11.≠±1(解析:若分式--12.无意义,所以1-a=0,解得a=1;因为当x=4时,此分式的值为零,所以4+2b=0,解13.解:因为当x=1时,分式-得b=-2,所以a+b=1+(-2)=-1.在学习分式的概念时,避免了传统教学中对于概念的直接给出,叫学生死记硬背,忽略学生学习的过程,也不考虑学生是否真正理解,本课时是让学生通过观察、归纳出整式与分式的异同,从而总结出分式的概念,学生对这样获得的知识,理解得更透彻.对学生学习效果的反馈不够及时,还不能够较全面地了解学生的学习情况,对不足之处未能及时补充.在学习中,要注意观察学生的情感变化,是否遇到困难,学生的积极性、热情是否发挥出来,投入的程度有多少,是否每个学生都参与其中等,作为教师应时刻关注这些,以便适时地引导他们,调动他们,鼓励他们.随堂练习(教材第109页)1.解:(1)当x取1以外的任何实数时,分式都有意义.(2)当x取±3以外的任何实数时,分式都有意义.2.解:当x=0时,-=-.当x=-2时,-=.当x=时,-=0.3.提示: kg.习题5.1(教材第109页)1.解:(2)(4)是整式,(1)(3)是分式.2.提示:(1)x=.(2)x=-2.3.解:当a=-1,b=时,-=--=.-元/kg.4.提示:这箱橘子的零售价至少应定为-5.提示:(1)平均每公顷的棉产量是 kg.(2)这种商品每件的成本是元.易错点考虑问题不全面导致错误已知分式的值为整数,求整数x的所有可能值.-的值为整数,则x-1的值可为1,2,3,6.∴x=2,3,4,7.错解:若分式-的值为负整数时x的值,造成漏解.错因分析:忽略了分式-正解:若分式的值为整数,-则x-1的值可为±6,±3,±2,±1,∴x=7,4,3,2,-5,-2,-1,0.第课时1.能正确理解和运用分式的基本性质.2.能解决一些与分式有关的简单的实际问题.3.会进行简单分式的乘除运算,具有一定的代数化归能力.4.增强学生的代数推理能力与应用意识.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法.通过运用分式的基本性质对分式进行变形,获得分式变形的基本方法,体验学习的乐趣.【重点】理解分式的基本性质,会进行分式的化简.【难点】灵活应用分式的基本性质将分式变形.【教师准备】预设学生学习过程中容易出错的地方.【学生准备】复习分数的基本性质.导入一:【问题】有位老爷爷把一块地分给三个儿子.老大分到了这块地的,老二分到了这块地的,老三分到了这块地的.老大、老二觉得自己很吃亏,于是他们就争吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话后,三兄弟就停止了争吵.你知道阿凡提给他们讲的是什么吗?这里涉及了分数的基本性质,那么分式也有这样的性质吗?[设计意图]创设故事情境导入新课,激发了学生学习的好奇心,同时复习了分数的基本性质,为学习分式的基本性质做好铺垫.导入二:上节课我们类比整式和分数的概念学习了分式的概念,今天我们来继续学习分式的相关知识,请看下面的问题:问题1如图(1)所示,面积为1的长方形平均分成了4份,则阴影部分的面积是多少?问题2如图(2)所示,面积为1的长方形平均分成了2份,则阴影部分的面积是多少?问题3这两块阴影部分的面积相等吗?这个问题同学们会很快说出答案,依据就是分数的基本性质,那么分式是否具有和分数一样的性质呢?[设计意图]提示学生运用类比的思想进行本课时的学习,为学生提供本课时学习方法方面的指导.请看下面的问题.(1)填空:==;==.(2)你认为分式与相等吗?为什么?与呢?与同伴交流.学生独立思考第(1)题,根据分数的基本性质,的分子分母同乘4,可得,的分子分母同时除以2,可得,小组讨论类比第(1)题解决第(2)题.类比分数的基本性质,你能猜想出分式的基本性质吗?学生尝试归纳,相互补充,总结得出分式的基本性质.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0).问题1如图(1)所示,面积为1的长方形,长为a,那么长方形的宽怎么表示呢?问题2如图(2)所示,两个图(1)中的长方形拼接在一起,它的宽怎么表示呢?问题3两图中长方形的宽相等吗?问题4通过怎样的变形可以由得到?通过怎样的变形可以由得到?变形的依据是什么?问题5若n个这样的长方形拼接在一起,它的宽又该如何表示呢?学生分析得出答案为.教师进一步追问:和,相等吗?通过怎样的变形可以使它们相等呢?问题6若(m+1)个这样的长方形拼接在一起,宽又如何表示呢?追问:和,相等吗?通过怎样的变形可以使它们相等呢?问题7能类比分数的基本性质,归纳出分式的基本性质吗?学生根据上面的问题尝试归纳分式的基本性质,教师在学生回答的基础上补充完善.总结:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:=,=(m≠0).教师强调:a,b,m均为整式,m≠0.引导学生分析分数的基本性质与分式的基本性质的区别:在分数的基本性质中,“数”是一个具体的、唯一的确定值,在分式的基本性质中,“整式”的值随整式中的字母的取值不同而变化.[设计意图]一方面提高学生对分式的基本性质的认识,另一方面通过师生归纳,进一步加深对分式基本性质的理解.(1)=(y≠0);(2)=.处理方式:引导学生观察等式的左边和右边各发生了什么变化,讨论解题思路.〔解析〕(1)的分母2x乘y才能化为2xy,为保证分式的值不变,根据分式的基本性质,分子b也要乘y,才能得到.(2)的分子ax除以x得到a,所以分母bx也需要除以x得到b.在这里,由于已知,所以x≠0.解:(1)因为y≠0,所以==.(2)因为x≠0,所以==.(教材例3)化简下列分式:(1);(2)--.处理方式:引导学生观察分式的分子和分母是否有公因式,利用分式的基本性质,对分式进行化简.〔解析〕(1)的分子和分母均有因式ab,所以根据分式的基本性质,可以同时除以ab,则分式可化为ac.(2)对于分式--,先对分子和分母进行因式分解,x2-1=(x+1)(x-1),x2-2x+1=(x-1)2,发现分子分母有公因式x-1,由分式的基本性质可化简.解:(1)==ac.(2)--=--=-.总结:像上面的例3,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.[知识拓展]1.从已知的两个分子或分母的比较中,找到分式变形的依据,再运用分式的基本性质求未知,是解决这类题的方法.2.应用分式的基本性质对分式进行变形需要注意的问题:(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘或除以的必须是同一个整式;(3)所乘或除以的整式的值应该不等于零.三、做一做化简下列分式:(1);(2).〔解析〕根据分式的基本性质进行化简.解:(1) ==.(2)==.四、议一议在化简时,小颖和小明出现了分歧,小颖认为=,而小明认为==,你对他们两人的做法有何看法?与同伴交流.解:在小明的化简结果中,分子和分母已没有公因式,这样的分式称为最简分式.小明的做法正确.[知识拓展]化简分式时,通常要使结果成为最简分式或整式.约分是应用分式的基本性质把分式的分子、分母同时除以同一个整式,使分式的值不变,所以要找准分子和分母的公因式,约分的结果要是最简分式或整式.[设计意图]通过做一做和议一议,检查学生对分式的约分的掌握情况,对于错误及时指出并纠正.五、想一想与有什么关系?(1)--(2)-,与-有什么关系?-的分子分母都乘-1与相等.解:(1)--与-相等.(2)同样的道理,-与-相等.-分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.[设计意图]通过想一想的设计,让学生掌握分式的符号法则.1.分式的基本性质:=,=(m≠0).(1)分式的基本性质的作用:分式进行变形的依据.(2)在运用分式的基本性质时,必须注意分式的分子分母同时乘或除以的是同一个整式,且不为0.(3)分式的基本性质的研究方法:从分数类比到分式,从特殊到一般.2.分子和分母已没有公因式的分式称为最简分式,化简分式时,通常要使结果成为最简分式或整式.3.分式的符号法则:分式的分子、分母及分式本身的三个符号中,任意改变其中两个的符号,分式的值不变;若只改变其中一个或三个全变号,则分式的值变成原分式值的相反数.1.若将分式(a,b均为正数)中的字母a,b的值分别扩大为原来的2倍,则分式的值()A.扩大为原来的2倍B.缩小为原来的C.不改变D.缩小为原来的解析:此分式中的字母分别扩大为原来的2倍,则分式的分子扩大为原来的2倍,分式的分母扩大为原来的4倍,所以分式的值缩小为原来的.故选B.2.填写下列等式中未知的分子或分母.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式练习
一.选择题(共10小题)
1.在式子,,,,,10xy﹣2,中,分式的个数是()A.5 B.4 C.3 D.2
2.若3x﹣2y=0,则等于()
A.B.C.﹣D.或无意义
3.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()
A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4
4.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()
A.B.
C.D.
5.如果m为整数,那么使分式的值为整数的m的值有()
A.2个 B.3个 C.4个 D.5个
6.在盒子里放有三张分别写有整式2,x+3,5的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()
A.B.C.D.
7.如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()
A.B.C.D.
8.要使分式有意义,x的取值范围为()
A.x≠﹣5 B.x>0 C.x≠﹣5且x>0 D.x≥0
9.甲、乙两同学同时从学校出发,步行12千米到李村.甲比乙每小时多走1千米,结果甲比乙早到15分钟.若设乙每小时走x千米,则所列出的方程式()
A.B.C.D.
10.若a+b+c=0,则a()+b()+c()的值为()
A.0 B.﹣1 C.3 D.﹣3
二.填空题(共22小题)
11.a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是,﹣1的差倒数是.已知,是a1的差倒数,a3是的差倒数,a4是a3的差倒数,…,以此类推,则a2012=.
12.若a、b满足,则的值为.
13.已知关于x的分式方程﹣=0无解,则a的值为.
14.计算的结果为.
15.现有男、女工共60人,其中全体男工和全体女工可以用同样的天数完成同样的工作,若将男工和女工人数对调一下,则全体男工需要4天完成此工作,而全体女工去做需要9天才能完成.则男工的人数为.
16.若关于x的方程+=2有增根,则m的值是.
17.若x2﹣3x+1=0,则的值为.
18.已知关于x的分式方程=1的解是非正数,则a的取值范围是.
19.已知=﹣,其中A、B为常数,则4A﹣B的值为.
20.若为整数,且x为整数,则所有符合条件的x的值为.
21.已知实数a>b>0,若满足a2+b2=3ab,则分式的值等于.
22.已知分式的值为零,求x2011=.
23.若关于x的方程的解为x=2,则m的值为.
24.若关于x的分式方程2+=的解是负数,则k的取值范围是.
25.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:
则第n次运算的结果y n=(用含字母x和n的代数式表示).
26.如果记y==f(x),并且f(1)表示当x=1时y的值,即f(1)==;f()表示当x=时y的值,即f()==,那么f(1)+f(2)+f()+f(3)+f()
+…+f(n)+f()=.(结果用含n的代数式表示,n为正整数).
27.已知x2﹣4x﹣5=0,则分式的值是.
28.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则=.
29.对分式,和进行通分,它们的最简公分母为.
30.已知ab=1,M=+,N=+,则M N.(填“<”、“>”或“=”).
31.关于x的分式方程=﹣2解为正数,则m的取值范围是.
32.已知x2+5xy+y2=0(x≠0,y≠0),则代数式+的值等于.
三.解答题(共8小题)
33.阅读下列材料:
x+=c+的解是x1=c,x2=;
x﹣=c﹣(即x+=c+)的解是x1=c,x2=﹣;
x+=c+的解是x1=c,x2=;
x+=c+的解是x1=c,x2=;

(1)请观察上述方程与解的特征,猜想方程x+=c+(m≠0)的解,并验证你的结论;(2)利用这个结论解关于x的方程:x+.
34.先化简再求值:(+)÷,其中a=5,b=2.
35.解方程:=﹣1.
36.有一道题目“先化简,再求值:,其中x=﹣7.”小明做题时把“x=﹣7”错抄成了“x=7”,但他的计算结果也是正确的,请你解释这是怎么回事?
37.先化简,再求值.﹣÷,其中m=﹣1.
38.我市某县为创建省级文明卫生城市,计划将城市道路两旁的人行道进行改造.经调查知:若该工程由甲工程队单独做恰好可在规定时间内完成;若该工程由乙工程队单独完成,则所需天数是规定时间的3倍.如果甲、乙两工程队合做6天后,那么余下的工程由甲工程队单独来做还需1天才能完成.
(1)问该县要求完成这项工程规定的时间是多少天?
(2)已知甲工程队做一天需付给工资8万元,乙工程队做一天需付给工资3万元.现该工程在甲、乙两工程队合做5天后,因甲工程队另有任务,余下的工程由乙工程队单独来完成,该县准备了工程工资款75万元,请问该县准备的工程工资款是否够用?
39.2011年3月11日13点46分日本本州岛附近海域发生9.0级特大地震,同时引发海啸,牵动了全世界人民的心.为了支援日本人民抗震救灾,某休闲用品有限公司主动承担了为日本灾区生产2万顶帐篷的任务,计划10天完成.
(1)按此计划,该公司平均每天应生产帐篷顶;
(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?
40.请先阅读下列解题过程,再解答所提的问题:
解:…第一步
=…第二步
=a﹣2﹣2(a+1)…第三步
=﹣a﹣4…第四步
解答下列问题:
(1)上述解题过程是从哪步开始出现错误的:;
(2)从第二步到第三步是否正确:,若不正确,错误的原因是;
(3)请写出正确的解题过程.。

相关文档
最新文档