二级减速器箱体设计
二级减速器毕业设计论文
人生最大的幸福,是发现自己爱的人正好也爱着自己。
济源职业技术学院毕业设计题目二级直齿圆柱齿轮减速器系别机电系专业机电一体化班级机电0808 姓名乔吉培学号08010813指导教师菅毅日期2010年12月设计任务书题目:带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求:1:运输带的有效拉力为F=2500N2:运输带的工作速度为V=1.7m/s3:卷筒直径为D=300mm5:两班制连续单向运转(每班8小时计算)载荷变化不大室内有粉尘6:工作年限十年(每年300天计算)小批量生产设计进度要求:第一周拟定分析传动装置的设计方案:第二周选择电动机计算传动装置的运动和动力参数:第三周进行传动件的设计计算校核轴轴承联轴器键等:第四周绘制减速器的装配图:第五周准备答辩指导教师(签名):摘要齿轮传动是现代机械中应用最广的一种传动形式它由齿轮、轴、轴承及箱体组成的齿轮减速器用于原动机和工作机或执行机构之间起匹配转速和传递转矩的作用齿轮减速器的特点是效率高、寿命长、维护简便因而应用极为广泛本设计讲述了带式运输机的传动装置--二级圆柱齿轮减速器的设计过程首先进行了传动方案的评述选择齿轮减速器作为传动装置然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)运用AutoCAD软件进行齿轮减速器的二维平面设计完成齿轮减速器的二维平面零件图和装配图的绘制关键词:齿轮啮合轴传动传动比传动效率目录1、引言 12、电动机的选择 22.1. 电动机类型的选择 22.2.电动机功率的选择 22.3.确定电动机的转速 23、计算总传动比及分配各级的传动比 43.1. 总传动比 43.2.分配各级传动比 44、计算传动装置的传动和动力参数 54.1.电动机轴的计算 54.2.Ⅰ轴的计算(减速器高速轴) 54.3.Ⅱ轴的计算(减速器中间轴) 54.4.Ⅲ轴的计算(减速器低速轴) 64.5.Ⅳ轴的计算(卷筒轴) 65、传动零件V带的设计计算75.1.确定计算功率75.2.选择V带的型号75.3.确定带轮的基准直径dd1 dd2 75.4.验算V带的速度75.5.确定V带的基准长度Ld和实际中心距a 75.6.校验小带轮包角ɑ1 85.7.确定V带根数Z 85.8.求初拉力F0及带轮轴的压力FQ 85.9.设计结果96、减速器齿轮传动的设计计算 106.1.高速级圆柱齿轮传动的设计计算106.2.低速级圆柱齿轮传动的设计计算117、轴的设计 147.1.高速轴的设计147.2.中间轴的设计157.3.低速轴的设计168、滚动轴承的选择209、键的选择 2010、联轴器的选择2111、齿轮的润滑2112、滚动轴承的润滑2113、润滑油的选择2214、密封方法的选取22结论23致谢24参考文献251、引言计算过程及说明国外减速器现状齿轮减速器在各行各业中十分广泛地使用着是一种不可缺少的机械传动装置当前减速器普遍存在着体积大、重量大或者传动比大而机械效率过低的问国外的减速器以德国、丹麦和日本处于领先地位特别在材料和制造工艺方面占据优势减速器工作可靠性好使用寿命长但其传动形式仍以定轴齿轮传动为主体积和重量问题也未解决好最近报导日本住友重工研制的FA型高精度减速器美国Jan-Newton公司研制的X-Y式减速器在传动原理和结构上与本项目类似或相近都为目前先进的齿轮减速器当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展因此除了不断改进材料品质、提高工艺水平外还在传动原理和传动结构上深入探讨和创新平动齿轮传动原理的出现就是一例减速器与电动机的连体结构也是大力开拓的形式并已生产多种结构形式和多种功率型号的产品目前超小型的减速器的研究成果尚不明显在医疗、生物工程、机器人等领域中微型发动机已基本研制成功美国和荷兰近期研制分子发动机的尺寸在纳米级范围如能辅以纳米级的减速器则应用前景远大2、电动机的选择2.1. 电动机类型的选择按已知的工作要求和条件选用Y型全封闭笼型三相异步电动机2.2.电动机功率的选择Pd=Fv/(1000ηηw)由电动机的至工作机之间的总效率为ηηw=η1η23η32η4η5η6η1、η2、η3、η4、η5、η6分别为带的传动、齿轮传动的轴承、齿轮传动、齿轮传动联轴器、卷筒轴的轴承、卷筒的效率则ηηw=0.96³0.993³0.972³0.97³0.98³0.96=0.82Pd=Fv/(1000ηηw)=2500³1.7/1000³0.82=5.2kw2.3.确定电动机的转速卷筒轴的工作转速为nW =60³1000³V/ΠD=60³1000³1.7/300³π=108.28r/min取V带传动比i 1=2 ~4齿轮传动比i2=8~40则总传动比为i总=16~160故电动机转速的可选范围nd=i总³nW=﹙16~160﹚³108.28r/min=﹙1732~17325﹚r/min符合这一范围的同步转速有3000 r/min再根据计算出的容量由参考文献【1】查得Y132s1-2符合条件型号额定功率同步转速满载转速Y132s1-25.5 kw3000r/min2900r/min3、计算总传动比及分配各级的传动比3.1. 总传动比i总=n电动/nW=2900/108.28=26.783.2.分配各级传动比i1为V带传动的传动比 i1的范围(2~4) i1=2.5 i2为减速器高速级传动比i3为低速级传动比i4为联轴器连接的两轴间的传动比 i4 =1i总= i1 i2 i3 i4i2 i3=26.78/2.5=10.71i2=(1.3 i2 i3)1/2=3.7i3=2.94、计算传动装置的传动和动力参数4.1.电动机轴的计算n0=nm=2900r/minP0= Pd =5.2kwT0=9550³P0/n0=9550³5.2/2900=17.12N.m4.2.Ⅰ轴的计算(减速器高速轴)n1=n0/i1=2900/2.5=1160r/minP1=P0³η1=5.2³0.96=4.99kwT1=9550³P1/n1带=9550³4.99/1160=41.1N.m4.3.Ⅱ轴的计算(减速器中间轴)n2=n1/i2=1160/3.7=313.51 r/minP2=P1³η22³η3=4.99³0.992³0.97=4.75kwT2=9550³P2/n2=9550³4.75/313.51=144.57 N.m4.4.Ⅲ轴的计算(减速器低速轴)n3=n2/i3=313.51/2.9=108.11r/minP3=P2³η2³η3³η4=4.75³0.99³0.97³0.97=4.42kwT3=9550³P3/n3=9550³4.42/108.11=390.53 N.m4.5.Ⅳ轴的计算(卷筒轴)n4=n3=108.11r/minP4=P3³η5³η6=4.42³0.98³0.96=4.16kwT4=9550³P4/n4=9550³4.16/108.11=367.41 N.m5、传动零件V带的设计计算5.1.确定计算功率PC=KA²P额=1.1²5.5=6.05 kw5.2.选择V带的型号由PC的值和主动轮转速由【1】图8.12选A型普通V带5.3.确定带轮的基准直径dd1 dd2由【1】表8.6和图8.12 选取dd1=80mm且dd1=80mm>dmin=75mm大带轮基准直径为dd2=dd1³n0/n1=2900³80/1160=200mm按【1】表8.3选取标准值dd2=200mm 则实际传动比ii =dd2/dd1=200/80=2.5主动轮的转速误差率在±5%内为允许值5.4.验算V带的速度V=Π³dd1³n0/60000=12.14m/s在5~25 m/s范围内5.5.确定V带的基准长度Ld和实际中心距a按结构设计要求初定中心距a0=500mmL0=2 a0+∏﹙dd1+dd2﹚/2+﹙dd2-dd1﹚2/4 a0 =1000+∏³280/2+1602/2000=1446.8mm由【1】表8.4选取基准长度Ld=1400mm实际中心距a为a=a0+﹙Ld-L0﹚/2=1000+﹙1400-1446.8﹚/2= 476.6mm5.6.校验小带轮包角ɑ1α=[180°-﹙dd2-dd1﹚/a ] ³57.3°=[180°-﹙200-80﹚/476.6] ³57.3°=165.6°>120°合格5.7.确定V带根数ZZ≥Pc/[P0] =Pc/﹙P0+ΔP0﹚³Kα³KcP0=[1.22+﹙1.29-1.22﹚³﹙2900-2800﹚/﹙3200-2800﹚] =1.24kwΔP0=Kb³n0³﹙1-1/Ki﹚=0.0010275³2900³﹙1-1/1.1373﹚=0.3573kwKL=0.96Kα=0.97Z=6.05/﹙1.24+0.3573﹚³0.97³0.96=4.06圆整得Z=45.8.求初拉力F0及带轮轴的压力FQ由【1】表8.6查得q=0.1kg/mF0=500³Pc2.5/Kα-1﹚/z³V+qV2=113N轴上压力Fq为Fq=2³F³z³sin165.6/2=2³113³4³sin165.6/2=894.93N5.9.设计结果选用4根A-1400GB/T11544-1997的V带中心距476.6mm 轴上压力894.93N 带轮直径80mm和200mm6、减速器齿轮传动的设计计算6.1.高速级圆柱齿轮传动的设计计算6.1.1.选择齿轮材料及精度等级小齿轮选用45号钢调质硬度为220~250HBS大齿轮选用45号钢正火硬度为170~210HBS因为是普通减速器故选用9级精度要求齿面粗糙度Ra≦3.2~6.3μm6.1.2.按齿面接触疲劳强度设计T1=41.1N²m=41100N²mm由【1】表10.11查得K=1.1选择齿轮齿数小齿轮的齿数取25则大齿轮齿数Z2=i2²Z1=92.5圆整得Z1=93齿面为软齿面由【1】表10.20选取Ψd=1由【1】图10.24查得σHLim1 =560 MPa σHLim2 =530 MPa由表【1】10.10查得SH=1 N1=60njLh=60³1160³1³( 10³300³16) =3.34³109N2= N1/ i2=3.34³109/3.7=9.08³108查【1】图10.27知ZNT1=0.9 ZNT2=1[σH]1= ZNT1³σHLim1/SH=0.9³560/1=504 MPa[σH]2= ZNT2³σHLim2/SH=1³530/1 =530 MPa故d1≧76.43³[KT1﹙i2+1﹚/Ψd³i2³[σH]12]1/3=76.43³[1.1³41100³﹙3.7+1﹚/1³3.7³5042]1/3=46.62mmm= d1/Z1=46.62/25=1.86由【1】表10.3知标准模数 m=26.1.3.计算主要尺寸d1=m Z1=2³25=50mmd2=m Z2=2³93=186mmb=Ψdd1=1³50=50mm小齿轮的齿宽取 b2=50mm 大齿轮的齿宽取 b1=55ma=m﹙Z1+Z2﹚/2=2³﹙25+93/2=118m6.1.4.按齿根弯曲疲劳强度校核查【1】表10.13得 YF1 =2.65 YF2=2.18应力修正系数YS查【1】表10.14得 YS1=2.21 YS2=1.79许用弯曲应力[σF]由【1】图10.25查得σFlim1 =210 MPa σFlim2 =190 MPa由【1】表10.10差得 SF=1.3由【1】图10.26查得 YNT1=YNT2=0.9有公式(10.14)可得[σF]1= YNT1³σFlim1/SF =210³0.9/1.3=145.38 MPa[σF]2= YNT2³σFlim2/SF =190³0.9/1.3=131.54 MPa 故σF1 =2KT YF YS/bm2Z1=76.19MPa<[σF]1=145.38MPaσF2 =σF1³YF2³YS2/YF1³YS1=76.19³2.21³1.79/2.65³1.59 =71.53MPa<[σF]2 =131.54MPa所以齿根弯曲强度校核合格6.1.5.检验齿轮圆周速度V=πd1³n1/60000=3.14³50³1160/60000=3.03 m/s由【1】表10.22可知选9级精度是合适的6.2.低速级圆柱齿轮传动的设计计算6.2.1.选择齿轮材料及精度等级小齿轮选用45号钢调质硬度为220~250HBS大齿轮选用45号钢正火硬度为170~210HBS因为是普通减速器故选用9级精度要求齿面粗糙度Ra≦3.2~6.3μm6.2.2.按齿面接触疲劳强度设计T2=144.57N²m=145000N²mm n2=313.51r/min由【1】表10.11查得K=1.1选择齿轮齿数小齿轮的齿数取31则大齿轮齿数Z2=i3²Z1=89.9圆整得Z1=90齿面为软齿面由【1】表10.20选取Ψd=1由【1】图10.24查得σHLim1 =550 MPa σHLim2 =530 MPa由表【1】10.10查得SH=1 N1=60njLh=60³313.51³1³( 10³300³16) =9.03³108N2= N1/ i3=9.03³108/2.9=3.11³108查【1】图10.27知ZNT1=1 ZNT2=1.06[σH]1= ZNT1³σHLim1/SH=1³550/1=550 MPa[σH]2= ZNT2³σHLim2/SH=1.06³530/1 =562 MPa故d1≧76.43³[KT1﹙i2+1﹚/Ψd³i3³[σH]12]1/3=76.43³[1.1³145000³﹙2.9+1﹚/1³2.9³5502]1/3=68.02mmm= d1/Z1=68.02/31=2.2由【1】表10.3知标准模数 m=2.56.2.3.计算主要尺寸d1=m Z1=2.5³31=77.5mmd2=m Z2=2.5³90=225mmb=Ψdd1=1³77.5=77.5mm大齿轮的齿宽取 b2=80mm 小齿轮的齿宽取 b1=85mma=m﹙Z1+Z2﹚/2=2³﹙31+90)/2=151.25m6.2.4.按齿根弯曲疲劳强度校核查【1】表10.13得 YF1 =2.53 YF2=2.22应力修正系数YS查【1】表10.14得 YS1=1.64 YS2=1.79许用弯曲应力[σF]由【1】图10.25查得σFlim1 =210 MPa σFlim2 =190 MPa由【1】表10.10差得 SF=1.3由【1】图10.26查得 YNT1=YNT2=1有公式(10.14)可得[σF]1= YNT1³σFlim1/SF =210³1/1.3=162 MPa[σF]2= YNT2³σFlim2/SF =190³1/1.3=146 MPa故σF1 =2KT YF YS/bm2Z1=85.4MPa<[σF]1=162MPaσF2 =σF1³YF2³YS2/YF1³YS1=85.4³2.22³1.79/2.53³1.64 =81.8MPa<[σF]2 =146MPa所以齿根弯曲强度校核合格6.2.5.检验齿轮圆周速度V=πd1³n1/60000=3.14³77.5³313.51/60000=1.27 m/s 由【1】表10.22可知选9级精度是合适的7、轴的设计7.1.高速轴的设计7.1.1.选择轴的材料及热处理由已知条件知减速器传递的功率属于小功率对材料无特殊要求故选用45号钢并经调质处理7.1.2.按钮转强度估算直径根据表【1】表14.1得C=107~118 P1=4.99Kw又由式 d1≧C³﹙P1/n1﹚1/3d1≧﹙107~118﹚³﹙4.99/1160﹚1/3=17.5~19.35 mm 考虑到轴的最小直径要连接V带会有键槽存在故将估算直径加大3%~5%取为18.03~20.32mm 由设计手册知标准直径为20mm7.1.3.设计轴的直径及绘制草图确定轴上零件的位置及固定方式此轴为齿轮轴无须对齿轮定位轴承安装于齿轮两侧的轴段采用轴肩定位周向采用过盈配合确定各轴段的直径由整体系统初定各轴直径轴颈最小处连接V带d1=20mmd2=27mm轴段3处安装轴承d3=30mm齿轮轴段d4=38mmd5=d3=30mm确定各轴段的宽度由带轮的宽度确定轴段1的宽度B=(Z-1)e+2f(由【1】表8.5得)B=63mm所以b1=75mm;轴段2安装轴承端盖b2取45mm轴段3、轴段5安装轴承由【2】附表10.2查的选6206标准轴承宽度为16mmb3=b5=16mm;齿轮轴段由整体系统决定初定此段的宽度为b4=175mm按设计结果画出草图如图1-1图1-17.2.中间轴的设计7.2.1.选择轴的材料及热处理由已知条件知减速器传递的功率属于小功率对材料无特殊要求故选用45号钢并经调质处理7.2.2.按钮转强度估算直径根据表【1】表14.1得C=107~118 P2=4.75Kw又由式 d1≧C³﹙P2/n2﹚1/3d1≧﹙107~118﹚³﹙4.75/313.51﹚1/3=26.75~29.5 mm 由设计手册知标准直径为30mm7.2.3.设计轴的直径及绘制草图确定轴上零件的位置及固定方式此轴安装2个齿轮如图2-1所示从两边安装齿轮两边用套筒进行轴向定位周向定位采用平键连接轴承安装于齿轮两侧轴向采用套筒定位周向采用过盈配合固定确定各轴段的直径由整体系统初定各轴直径轴段1、5安装轴承d1=30mm轴段2、4安装齿轮d2=35mm轴段3对两齿轮轴向定位d3=42mmd4=35mmd5=d1=30mm确定各轴段的宽度如图2-1所示由轴承确定轴段1的宽度由【2】附表10.2查的选6206标准轴承宽度为16mm所以b1= b5=33mm;轴段2安装的齿轮轮毂的宽为85mmb2取83mm轴段4安装的齿轮轮毂的宽为50mmb4=48mm按设计结果画出草图如图2-1图2-17.3.低速轴的设计7.3.1.选择轴的材料及热处理由已知条件知减速器传递的功率属于小功率对材料无特殊要求故选用45号钢并经调质处理由【1】表14.7查的强度极限σb=650MP再由表14.2得需用弯曲用力[σ﹣1b]=60MPa7.3.2.按钮转强度估算直径根据【1】表14.1得C=107~118 P3=4.42KwT3=390.53 N.mn3=108.11r/min又由式 d1≧C³﹙P3/n3﹚1/3d1≧﹙107~118﹚³﹙4.42/108.11﹚1/3=37.45~41.3 mm 考虑到轴的最小直径要安装联轴器会有键槽存在故将估算直径加大3%~5%取为38.57~43.37mm由设计手册知标准直径为40mm7.3.3.设计轴的直径及绘制草图确定轴上零件的位置及固定方式如图3-1所示齿轮的左右两边分别用轴肩和套筒对其轴向固定齿轮的周向固定采用平键连接轴承安装于轴段2和轴段6 处分别用轴肩和套筒对其轴向固定周向采用过盈配合固定确定各轴段的直径由整体系统初定各轴直径轴颈最小处连接轴承d1=40mm轴段2轴段6处安装轴承d2=d6=45mmd3=53mm轴段4对齿轮进行轴向定位d4=63mm轴段5安装大齿轮d5= 56mm确定各轴段的宽度由联轴器的宽度确定轴段1的宽度选用HL型弹性柱销联轴器由【2】附表9.4查得选HL3型号所以b1取94mm;轴段2安装轴承端盖和轴承由【2】附表10.2查的选6209标准轴承宽度为b2取65mm由整体系统确定轴段3取65mmb4=12.5mm轴段5安装的齿轮轮毂的宽为80mmb5=78mm轴段6安装轴承和套筒b6=38.5mm按设计结果画出草图如图3-17.3.4.按弯扭合成强度校核轴径画出轴的受力图(如图3-2)做水平面内的弯矩图(如图3-3)圆周力 FT= 2T3/d=390530³2/225=3471.38N径向力 Fr=Fttanα=3471.38³0.364=1263.58N支点反力为 FHA=L2FT/﹙L1+L2﹚=3471.38³126/﹙68+126﹚=2254.61NFHc=L1FT/﹙L1+L2﹚=3471.38³68/﹙68+126﹚=1216.77NB-B截面的弯矩 MHB左=FHA³L1=2254.61³68=153313.48 N.mm MHB右=FHC³L2=1216.77³126=153313.02 N.mm 做垂直面内的弯矩图(如图3-4)支点反力为FVA=L2Fr/﹙L1+L2)=1263.58³126/﹙68+126﹚=820.58 NFVc=L1Fr/﹙L1+L2﹚=1263.58³68/﹙68+126﹚=442.90 NB-B截面的弯矩 MVB左=FVA³L1=820.58³68=55806.24N.mmMVB右=FVC³L2=442.90³126=55805.40N.mm做合成弯矩图(如图3- 5)合弯矩 Me左=[﹙MHB左﹚2+﹙MVB左﹚2 ]1/2=[﹙153313.48﹚2+﹙55806.24﹚2] 1/2= 163154.4 N.mmMe右=[﹙MHB右﹚2+﹙MVB右﹚2 ]1/2=[﹙153313.02﹚2+﹙55805.40﹚2] 1/2=163153.68 N.mm求转矩图(如图3- 6)T3=9550³P3/n3=9550³4.42/108.11=390.53 N.m求当量弯矩修正系数α=0.6Me=[﹙M﹚2+﹙αT﹚2]1/2=285534.21 N.mm确定危险截面及校核强度σ eB=Me/W=285534.21/0.1²(50)3=16.26MPa查【1】表14.2得知满足σ≦[σ﹣1b] =60MPa的条件故设计的轴有足够的强度并有一定的余量图3-18、滚动轴承的选择轴型号d(mm)D(mm)B(mm)高速轴62063016中间轴6206306216低速轴62094585199、键的选择由【1】表14.8查得选用A型普通平键轴轴径(mm)键宽(mm)键高(mm)键长(mm)高速轴206660中间轴35108703510840低速轴401288456166810、联轴器的选择低速轴和滚筒轴用联轴器连接由题意选LT型弹性柱销联轴器由【2】附表9.4查得HL3联轴器型号公称扭矩(N²m)许用转速(r/min)轴径(mm)轴孔长度(mm)D(mm)HL36305000406016011、齿轮的润滑采用浸油润滑由于低速级周向速度低所以浸油高度约为六分之一大齿轮半径取为35mm12、滚动轴承的润滑如果减速器用的是滚动轴承则轴承的润滑方法可以根据齿轮或蜗杆的圆周速度来选择:圆周速度在2m/s~3m/s以上时可以采用飞溅润滑把飞溅到箱盖上的油汇集到箱体剖分面上的油沟中然后流进轴承进行润滑飞溅润滑最简单在减速器中应用最广这时箱内的润滑油粘度完全由齿轮传动决定圆周速度在2m/s~3m/s以下时由于飞溅的油量不能满足轴承的需要所以最好采用刮油润滑或根据轴承转动座圈速度的大小选用脂润滑或滴油润滑利用刮板刮下齿轮或蜗轮端面的油并导入油沟和流入轴承进行润滑的方法称为刮油润滑13、润滑油的选择采用脂润滑时应在轴承内侧设置挡油环或其他内部密封装置以免油池中的油进入轴承稀释润滑脂滴油润滑有间歇滴油润滑和连续滴油润滑两种方式为保证机器起动时轴承能得到一定量的润滑油最好在轴承内侧设置一圆缺形挡板以便轴承能积存少量的油挡板高度不超过最低滚珠(柱)的中心经常运转的减速器可以不设这种挡板转速很高的轴承需要采用压力喷油润滑如果减速器用的是滑动轴承由于传动用油的粘度太高不能在轴承中使用所以轴承润滑就需要采用独自的润滑系统这时应根据轴承的受载情况和滑动速度等工作条件选择合适的润滑方法和油的粘度齿轮与轴承用同种润滑油较为便利考虑到该装置用于小型设备选用L-AN15润滑油14、密封方法的选取选用凸缘式端盖易于调整采用闷盖安装骨架式旋转轴唇型密封圈实现密封密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM(F)B70-90-10-ACM轴承盖结构尺寸按用其定位的轴承的外径决定结论我们的设计是自己独立完成的一项设计任务我们工科生作为祖国的应用型人才将来所从事的工作都是实际的操作及高新技术的应用所以我们应该培养自己市场调查、收集资料、综合应用能力提高计算、绘图、实验这些环节来锻炼自己的技术应用能力本次毕业设计针对"二级圆柱齿轮减速器设计"的要求在满足各种参数要求的前提下拿出一个具体实际可行的方案因此我们从实际出发认真的思考与筛选经过一个多月的努力终于有了现在的收获回想起来在创作过程中真的是酸甜苦辣咸味味俱全有时为了实现一个参数翻上好几本资料然而也不见得如人心愿在制作的过程中遇到了很多的困难通过去图书馆查阅资料上网搜索还有和老师与同学之间的讨论、交流最终实现了这些问题较好的解决由齿轮、轴、轴承及箱体组成的齿轮减速器用于原动机和工作机或执行机构之间起匹配转速和传递转矩的作用在现代机械中应用极为广泛本次设计的是带式运输机用的二级圆柱齿轮减速器首先熟悉题目收集资料理解题目借取一些工具书进行了传动方案的评述选择齿轮减速器作为传动装置然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)然后用AutoCAD进行传统的二维平面设计完成圆柱齿轮减速器的平面零件图和装配图的绘制通过毕业设计树立正确的设计思想培养综合运用机械设计课程和其他先修课程的理论与生产实际知识来分析和解决机械设计问题的能力及学习机械设计的一般方法和步骤掌握机械设计的一般规律进行机械设计基本技能的训练:例如计算、绘图、查阅资料和手册、运用标准和规范进行计算机辅助设计和绘图的训练通过这次毕业设计的学习和研究我们开拓了视野掌握了设计的一般步骤和方法同时这三年来所学的各种专业知识又得到了巩固同时这次毕业设计又涉及到计算、绘图等让我们又学到很多新的知识但毕竟我们所学的知识有限本设计的好多地方还等待更改和完善致谢短暂的毕业设计是紧张而有效的在掌握了三年所业学的专知识后自己能够综合的运用并能完成自己和同学拟订的毕业设计这也是对自己所学专业知识的考察和温习虽然这是第一次全面的从完成由构思到设计完成我从中也学到了很多综合运用了课本知识再加上实际生产所用到的一些设计工艺认真的对自己设计的数据进行计算和核对严格按照设计的步骤和自己已经标出的设计过程来进行计算这些都是自己在设计中所能获得的好处虽然在计算的过程中也遇到了很多在课本中没有遇到过的问题这些都是在实际生产中所要考虑到的细节问题而自己往往都会遗漏这样的设计但在毕业设计指导老师高清冉老师指导下她给出我们在设计中必须及在实际中所要考虑到的细节的讲解使我体会到了理论联系实践的重要性另外在设计的过程中需要用大量的数据而这些数据都是计算得来的因此需要翻阅大量的相关设计的文献所以我在学校图书馆里认真的查阅并记录了数据再进行数次的核对最终有了正确的设计数据毕业设计能够顺利的完成与高老师的指导是分不开的遇到的问题和自己不能设计的步骤都是在高老师的讲解下得到满意的答案从而加快了自己设计的进度和设计的正确性、严谨性对学校要求的设计格式高老师也反复的检查每一个格式和布局的美观这样我们才能设计出符合标准的设计时间就这样在自己认真设计的过程中慢慢的过去了几周的时间过的是有效和充实的到最后看到自己设计的题目完成后心情是非常喜悦的因为这凝结了自己辛苦的劳动和指导老师的指导所以说这次和同学完成设计收获甚多最后在对高老师感激的同时也要对在百忙中认真评阅我们设计的学院领导表示感谢你们丰富的专业知识能给我们提出很多可行的方案所以我由衷的表示谢意!参考文献【1】陈立德机械设计基础.第3版.高等教育出版社出版2007【2】陈立德机械设计课程设计.第3版.高等教育出版社2007【3】杜白石机械设计课程设计.西北农林科技大学机电学院2003【4】龚桂义机械设计课程设计指导书.北京:高等教育出版社1996【5】吴宗泽机械设计课程设计手册.第2版. 北京:高等教育出版社1999【6】朱文坚机械设计课程设计.第2版.华南理工大学出版社2004【7】汪朴澄机械设计基础.第1版.人民教育出版社出版1977????????1济源职业技术学院毕业设计II1济源职业技术学院毕业设计12。
二级圆柱齿轮减速器(CAD图纸6张)
目录概述 (2)设计任务书 (3)第1章传动方案的总体设计 (4)1.1传动方案拟定 (4)1.2电动机的选择 (5)1.3 传动比的计算及分配 (5)1.4 传动装置运动、动力参数的计算 (6)第2章减速器外传动件(三角带)的设计 (7)2.1功率、带型、带轮直径、带速 (7)2.2确定中心距、V带长度、验算包角 (8)2.3确定V带根数、计算初拉力压轴力 (8)2.4带轮结构设计 (9)第3章减速器内传动的设计计算 (10)3.1高速级齿轮传动的设计计算 (10)3.2低速级齿轮传动的设计计算 (14)3.3齿轮上作用力的计算 (18)第4章减速器装配草图的设计 (21)4.1合理布置图面 (21)4.2绘出齿轮的轮廓尺寸 (21)4.3箱体内壁 (21)第5章轴的设计计算 (22)5.1高速轴的设计与计算 (22)5.2中间轴的设计与计算 (28)5.3低速轴的设计计算 (35)第6章减速器箱体的结构尺寸 (41)第7章润滑油的选择与计算 (42)第8章装配图和零件图 (43)1.1附件设计与选择 (43)8.2绘制装配图和零件图 (43)参考文献 (44)致谢 (45)概述毕业设计目的在于培养机械设计能力。
毕业设计是完成机械制造及自动化专业全部课程学习的最后一次较为全面的、重要的、必不可少的实践性教学环节,其目的为:1. 通过毕业设计培养综合运用所学全部专业及专业基础课程的理论知识,解决工程实际问题的能力,并通过实际设计训练,使理论知识得以巩固和提高。
2. 通过毕业设计的实践,掌握一般机械设计的基本方法和程序,培养独立设计能力。
3. 进行机械设计工作基本技能的训练,包括训练、计算、绘图能力、计算机辅助设计能力,熟悉和运用设计资料(手册、图册、标准、规范等)。
设计任务书一、设计题目:带式输送机传动装置输送机连续工作,单项运转,载荷变化不大,使用期限10年,两班制工作,输送带速度允许误差为±0.5%二、原始数据:三、设计内容和要求:本毕业设计选择齿轮减速器为设计课题,设计的主要内容包括以下几方面:(1)拟定、分析传动装置的运动和动力参数;(2)选择电动机,计算传动装置的运动和动力参数;(3)进行传动件带、齿轮、轴的设计计算,校核轴、轴承、联轴器、键等;(4)绘制减速器装配图及典型零件图(有条件可用AutoCAD绘制);(5)编写设计计算说明书。
两级(同轴式)圆柱齿轮减速器设计
目录一、设计任务书 (1)二、传动装置的总体设计 (3)三、传动零件的设计计算 (7)四、轴的设计计算 (13)五、键连接的选择和计算 (21)六、滚动轴承的设计与计算 (23)七、箱体的结构设计 (24)八、设计小结 (27)九、参考文献 (29)一、设计任务书1、设计题目:设计两级(同轴式)圆柱齿轮减速器2、设计要求:设计一用于带式运输机上的同轴式两级圆柱齿轮减速器(如图),连续工作,单向运转;空载启动较平稳。
运输带容许速度误差为5%。
每天8图1-1带式输送机传动系统简图小时,使用期限8年。
设计参数:运输机最大有效拉力2600N,运输带速度v=1.5m/s,卷筒直径D=400㎜。
特点:同轴式两级减速器径向尺寸紧凑,但轴向尺寸较大。
减速器的输入输出轴位于同一轴线两端。
3、设计内容:1)传动方案的分析与拟定2)电动机的选择3)传动装置运动与动力参数计算4)传动零件、轴、滚动轴承及连接键的设计计算5)滚动轴承、键、联轴器的选择与校核6)装配图、零件图的绘制7)编写设计计算说明书4、设计任务:1) 装配图1张(A1/A2)2) 上箱体1 张(A1/A2)3) 下箱体1张( A1/A2)4) 轴1张(A2/A3)5) 齿轮1张(A2/A3)6) 设计说明书1份二、传动装置的总体设计采用二级减速器,瞬时传动比恒定、工作平稳、传动准确可靠,径向尺寸小,结构紧凑,重量轻,节约材料。
轴向尺寸大,要求两级传动中心距相同。
减速器横向尺寸较小,两大吃论浸油深度可以大致相同。
但减速器轴向尺寸及重量较大;高级齿轮的承载能力不能充分利用;中间轴承润滑困难;中间轴较长,刚度差;仅能有一个输入和输出端,限制了传动布置的灵活性。
原动机部分为Y系列三相交流异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
1、 电机的选择w P =1000v F w ⋅ =kW kW 9.310005.12600=⨯ 电动机工作效率∑=ηw0P P电动机到输送机的总效率224联卷齿滚ηηηηη⋅⋅⋅⋅=∑根据《机械设计指导书》表9-6取滚动轴承传递效率8.90=滚η(三对和卷筒轴承),齿轮传动效率7.90=齿η,卷筒传动效率6.90=卷η,联轴器传动效率9.90=联η17.8099.06.907.908.9022424=⨯⨯⨯=⋅⋅⋅=∑联卷齿滚ηηηηη查《机械设计指导书》表2-1选电动机额定动率为5.5kW 确定电动机转速 卷筒轴工作转速min 6.71min 0043.145.1100060 100060r r D v n w =⨯⨯⨯=⋅⨯=π 二级圆柱齿轮减速器传动比60~8=i , 电动机转速可选范围w n i n ⋅'=∑0=(8~40)×71.6 r /min =(560~3200)r /min 符合这一范围的同步转速为750 r /min 、1000 r /min 、1500 r /min 和3000 r/min 四种。
(完整版)二级减速器课程设计说明书
1 设计任务书1。
1设计数据及要求表1-1设计数据1.2传动装置简图图1—1 传动方案简图1.3设计需完成的工作量(1) 减速器装配图1张(A1)(2) 零件工作图1张(减速器箱盖、减速器箱座—A2);2张(输出轴-A3;输出轴齿轮-A3) (3) 设计说明书1份(A4纸)2 传动方案的分析一个好的传动方案,除了首先应满足机器的功能要求外,还应当工作可靠、结构简单、尺寸紧凑、传动效率高、成本低廉以及使用维护方便。
要完全满足这些要求是困难的。
在拟定传动方案和对多种方案进行比较时,应根据机器的具体情况综合考虑,选择能保证主要要求的较合理的传动方案。
现以《课程设计》P3的图2-1所示带式输送机的四种传动方案为例进行分析。
方案a 制造成本低,但宽度尺寸大,带的寿命短,而且不宜在恶劣环境中工作。
方案b 结构紧凑,环境适应性好,但传动效率低,不适于连续长期工作,且制造成本高.方案c 工作可靠、传动效率高、维护方便、环境适应性好,但宽度较大。
方案d 具有方案c 的优点,而且尺寸较小,但制造成本较高。
上诉四种方案各有特点,应当根据带式输送机具体工作条件和要求选定。
若该设备是在一般环境中连续工作,对结构尺寸也无特别要求,则方案c a 、均为可选方案。
对于方案c 若将电动机布置在减速器另一侧,其宽度尺寸得以缩小。
故选c 方案,并将其电动机布置在减速器另一侧。
3 电动机的选择3.1电动机类型和结构型式工业上一般用三相交流电动机,无特殊要求一般选用三相交流异步电动机.最常用的电动机是Y 系列笼型三相异步交流电动机。
其效率高、工作可靠、结构简单、维护方便、价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合.此处根据用途选用Y 系列三相异步电动机3.2选择电动机容量3.2.1工作机所需功率w P 卷筒3轴所需功率:1000Fv P W ==100082.01920⨯=574.1 kw 卷筒轴转速:min /13.5914.326582.0100060100060r D v n w =⨯⨯⨯=⨯=π3。
机械设计二级圆柱齿轮减速器
机械设计减速器设计说明书系别:专业:学生姓名:学号:指导教师:职称:目录第一部分设计任务书 (1)一、初始数据 (1)二. 设计步骤 (1)第二部分传动装置总体设计方案 (2)一、传动方案特点 (2)二、计算传动装置总效率 (2)第三部分电动机的选择 (2)3.1 电动机的选择 (2)3.2 确定传动装置的总传动比和分配传动比 (3)第四部分计算传动装置的运动和动力参数 (4)(1)各轴转速: (4)(2)各轴输入功率: (5)(3)各轴输入转矩: (5)第五部分 V带的设计 (6)5.1 V带的设计与计算 (6)5.2 带轮结构设计 (8)第六部分齿轮的设计 (10)6.1 高速级齿轮的设计计算 (10)6.2 低速级齿轮的设计计算 (18)第七部分传动轴和传动轴承及联轴器的设计 (26)7.1 输入轴的设计 (26)7.2 中间轴的设计 (31)7.3 输出轴的设计 (37)第八部分键联接的选择及校核计算 (43)8.1 输入轴键选择与校核 (43)8.2 中间轴键选择与校核 (44)8.3 输出轴键选择与校核 (44)第九部分轴承的选择及校核计算 (45)9.1 输入轴的轴承计算与校核 (45)9.2 中间轴的轴承计算与校核 (46)9.3 输出轴的轴承计算与校核 (46)第十部分联轴器的选择 (47)第十一部分减速器的润滑和密封 (47)11.1 减速器的润滑 (47)11.2 减速器的密封 (48)第十二部分减速器附件及箱体主要结构尺寸 (49)12.1 减速器附件的设计与选取 (49)12.2 减速器箱体主要结构尺寸 (54)设计小结 (55)参考文献 (55)第一部分设计任务书一、初始数据设计二级展开式斜齿圆柱齿轮减速器,初始数据T = 650Nm,V = 0.85m/s,D = 350mm,设计年限(寿命): 5年,每天工作班制(8小时/班):2班制,每年工作天数:300天,三相交流电源,电压380/220V。
二级圆柱齿轮减速器设计说明书
将以上计算所得数据列入下表: 表三:齿轮参数表 齿轮 参数 齿数 Z 模数 m/(mm) 分度圆直径 d/(mm) 齿宽 b/(mm) 第一对齿轮 齿轮 1 30 1.5 45 55 齿轮 2 83 1.5 124.5 50 第二对齿轮 齿轮 3 31 2 62 70 齿轮 4 109 2 218 65
w
n
960
分配各级传动比: 根据经验公式,i1 = 1.3i2 ,而
材料学院 07-1 班 阿礼 学号 1407ห้องสมุดไป่ตู้485 序号 1 号
3
二级直齿圆柱齿轮减速器设计
i = i1 ∙ i2 = 15.70 所以,可求得i1 = 4.51,i2 = 3.48 3. 计算传动装置的运动和动力参数: 将传动装置各轴由高速到低速依次定为 1 轴、2 轴、3 轴 1. 各轴转速:
3.
设计内容 1) 运动学与动力学计算 2) 计算传动装置的运动和动力参数 3) 传动零件设计计算 4) 轴的设计计算与校核 5) 轴承的选择与校核 6) 键与联轴器的选择与校核 7) 箱体的设计
材料学院 07-1 班 阿礼 学号 14075485
序号 1 号
1
二级直齿圆柱齿轮减速器设计
8) 润滑与密封的选择,润滑剂牌号及容量的计算说明 9) 减速器附件及其说明 4. 设计任务 1) 2) 3) 5. 减速器装配图一张(A1)。 轴、齿轮零件图各一张(A3)。 设计说明书一份。
H H
= 698.77
= 698.77 <
σ H lim 1120 = = 933.33 SH lim 1.2
表明按弯曲疲劳计算结算符合强度设计要求,可取m1 = 2.75 (4) 几何尺寸计算
d1 z1m1 21 2.75 57.75mm d 2 z 2 m1 95 2.75 261.25mm
二级减速器装配图(有立体图)
轴承旁螺栓凸台高度线
C2 B
O
R3 R2 C2
A
R1
C1
R1=da/2,R2=R1+△1,R3=R2+δ,
左外壁圆弧
•
D2
右外壁圆弧
C1 C2
注意:左外壁圆弧的圆心不一定在轴心,主要考虑:
1)高速级大齿轮顶圆; 2)凸台;
3)吊钩位置;
4)窥视孔位置。
§8 减速器装配图设计
•
浸油深度
中心高H
20
15
注意:
H da2低 (30~50) '5
2
浸油深度:高速级一个齿高≥10mm(锥齿(0.5~1)b≥10mm)
低速级≤da2低/6
附件设计
视孔盖、通气器
•
吊环
吊钩
油标
放油螺塞
§8 减速器装配图设计
透盖
•
闷盖
10 14~17 12
轴承脂润滑
图册P85
•
起盖螺钉
•
机加工工艺
加工面与非加工面的区别 减少加工时调整刀具的次数
3)要有可靠密封、足够油量
4)保证剖分面的密封性
又要有足够的
扳手空间,如
一定的壁厚 •
何协调?
加肋板
保证足够刚度 轴承旁螺栓
C2 C1 C2 C1
箱盖
剖分
面 箱座
具体步骤
1)轴承旁螺栓凸台尺寸确定; 2)大、小齿轮端盖外表面圆弧R底确定; 3)箱体螺栓布局(注意:不能布置在剖分面上) 4)油面高度及箱座中心高度H 5)定油沟尺寸(油润滑) 6)油标凸台结构(一般倾斜45°) 7)其它附件设计:作用、位置、大小
1)考虑零件装配方案 2)定轴各段的直径和长度(伸出轴长度) 3)考虑轴向、周向定位 6、(最后一根)轴、轴承、键的强度校核
二级同轴式圆柱齿轮减速器设计(完整版)
1.3 确定电动机转速
已知二级同轴式圆柱齿轮减速器传动比 =8-40,而工作机卷筒轴的转速为
3.电动机转速的选择
nd=i nw=(8-40)x 155r/min=(920-4600)r/min
选为同步转速为1000r/min的电动机
根据电动机类型、容量和转速,选定电动机型号为Y160L-6
2)各段长度的确定
各段长度的确定从左到右分述如下:
a)该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。
b)该段为轴环,宽度不小于7mm,定为11mm。
c)该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。
d)该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
小齿轮:
大齿轮:
所以,
, ,
,
2.按齿面接触疲劳强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
即
a.初选定齿轮参数:
(课本表11-13)
因为斜齿的β取 ,初选β=
b.小齿轮的名义转矩
c.计算载荷系数K
取 (课本表11-10)
初估速度 ,
取 (课本图11-28(b))
(当 时, 取1)
(7)由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98
(8)计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
机械设计课程设计--二级减速器设计(含CAD图纸)
目录1 引言 (2)2 传动装置的总体设计 (3)2.1电动机的选择 (3)2.1.1电动机类型的选择 (3)2.1.2电动机功率的确定 (3)2.1.3确定电动机转速 (3)2.2总传动比的计算和分配各级传动比 (4)2.3传动装置的运动和动力参数计算 (4)3 传动零件的设计计算 (5)3.1第一级齿轮传动的设计计算 (5)3.2第二级齿轮传动的设计计算 (10)4 箱体尺寸计算与说明 (15)5 装配草图的设计 (16)5.1初估轴径 (16)5.2初选联轴器 (17)5.3初选轴承 (17)5.4润滑及密封 (18)6 轴的设计计算及校核 (18)6.1中间轴的设计计算及校核 (18)6.2低速轴的设计计算及校核 (21)7 滚动轴承的选择和计算 (25)7.1高速轴轴承的计算 (25)7.2中间轴轴承的计算 (26)7.3低速轴轴承的计算 (27)8 键连接的选择和计算 (28)8.1 高速轴与联轴器键联接的选择和计算 (28)8.2 中间轴与小齿轮键联接的选择和计算 (28)8.3 中间轴与大齿轮键联接的选择和计算 (28)8.4 低速轴与齿轮键联接的选择和计算 (29)8.5 低速轴与联轴器键联接的选择和计算 (29)9 减速器附件的选择及说明 (29)9.1减速器附件的选择 (29)9.2减速器说明 (30)10 结论 (30)参考文献 (31)带式运输机传动装置的设计王刚西南大学工程技术学院2009级机械设计制造及其自动化2班1 引言机械设计课程是培养学生机械设计能力的技术基础课。
机械设计课程设计是机械设计课程的重要实践教学环节,其基本目的是:1)通过课程设计,综合运用机械设计课程和其他先修课程的理论和实际知识,培养分析和解决实际问题的能力,掌握机械设计的一般规律,树立正确的设计思想;2)学会从机器功能的要求出发,合理选择执行机构和传动机构的类型,制定传动方案,合理选择标准部件的类型和型号,正确计算零件的工作能力,确定其尺寸、形状、结构及材料,并考虑制造工艺、使用、维护、经济和安全等问题,培养机械设计能力;3)通过课程设计,学习运用标准、规范、手册、图册和查阅科技文献资料以及计算机应用等,培养机械设计的基本技能和获取有关信息的能力。
二级减速器机械设计论文
二级减速器机械设计论文减速器是将工作机作用在原动机上,使机械降低本身的转动速度,达到控制的目的。
下文是店铺为大家整理的关于二级减速器机械设计论文的范文,欢迎大家阅读参考!二级减速器机械设计论文篇1减速器设计中虚拟样机技术的应用探讨摘要:减速器设计是众多机械工业中必不可少的程序流程,而虚拟样机技术恰恰可以为减速器设计提供帮助,让减速器的设计更加容易,更加高效。
本文重点分析如何应用虚拟样机技术设计减速器,以期对众多机械工业设计部门有所帮助。
关键词:减速器设计;虚拟样机技术;应用减速器的原理是将工作机作用在原动机上,使机械降低本身的转动速度,达到控制的目的,目前,在众多机械工业中使用减速器,大到航空航天,小到我们的自行车,都离不开减速器的作用。
在传统的减速器设计中,往往技术人员需要事先制作需要试验的减速器,然后再将这些减速器用作设计研究,在这过程中,会浪费很多制作原件的时间,让设计过程放慢脚步,这不利于企业的发展。
所以,采用虚拟样机技术就成为了必然,它能减少设计研发的时间,增加设计的效率,为企业创造更多的价值,还能降低设计成本,对企业来说是非常值得推广的技术。
1 虚拟样机技术虚拟样机技术,最早诞生于上世纪80年代,它是一种以计算机技术为基础的设计手段,在产品设计研发的过程中,它能把零散的、甚至是不存在的零件组合成一个设计人员想要的完成品,在计算机中建立一个模型,以方便设计人员的分析、整理,还能将这个虚拟的完成品进行试验,以此检验它的性能,为以后的改进设计打下基础。
虚拟样机技术采用专业的设计软件进行工作,这些专业的软件非常适合设计人员的需求,上面有数不尽的零件信息,想要什么零件,都能在上面找到,如果实在找不到,还可以自己进行设计,用参数和几何模型就能实现。
设计人员通过在软件上,建立产品的模型、虚拟调配以及后期的仿真试验,就能对产品的设计有一个完整的认识,不需要再浪费时间制作原件,只需要动动手指,就能把设计搞定,这是多么高效率的工作方法。
华南理工大学二级减速器说明书两套2
本科课程设计(论文)说明书减速箱二级圆柱齿轮减速箱设计院(系)机械与汽车工程学院专业学生姓名学生学号指导教师黄平孙建芳提交日期机械设计课程设计任务书一、设计题目运送原料的带式运输机用的圆柱齿轮减速器。
设计内容:根据给定的工况参数,选择适当的电动机、选取联轴器、设计V带传动、设计两级齿轮减速器(所有的轴、齿轮、轴承、减速箱体、箱盖以及其他附件)和与输送带连接的联轴器。
二、传动简图V输送带电动机三、原始数据运输带拉力F= 3551.14(N)运输带速度V= 2.12(m/s)滚筒直径D= 1330(mm)滚筒及运输带效率η=0.94。
工作时,载荷有轻微冲击。
室内工作,水分和颗粒为正常状态,产品生产批量为成批生产,允许总速比误差<±4%,要求齿轮使用寿命为10年,二班工作制,轴承使用寿命不小于15000小时,试设计齿轮减速器(两级)。
四、设计工作量及要求每个同学独立完成总装图一张(一号图纸),高速轴、低速大齿轮各一张(二号或三号图纸)、设计计算说明书一份。
设计内容包括电机和联轴器选用,轴承选用与校核,V带、齿轮、轴、齿轮箱设计(包括V带、轴、齿轮的校核)。
具体内容参见机械设计课程设计一书[1]。
教材:1.朱文坚,黄平.机械设计课程设计.广州: 华南理工大学出版社主要参考文献:2.朱文坚,黄平主编.机械设计. 高等教育出版社,2005,2. 3.机械零件设计手册,北京:冶金工业出版社4.机械零件设计手册,北京:化学工业出版社课程设计(论文)评语:课程设计(论文)总评成绩:因为因为当扭转剪切应力为脉动循环变应力时,取系数=29351.2N*mm[]=30MPa=29351.2/=10.87MPa<因为因为当扭转剪切应力为脉动循环变应力时,取系数[]=30MPa因为因为当扭转剪切应力为脉动循环变应力时,取系数=442665.42N*mm钢,调质处理,查表得=1442665.42/=7.2MPa<十.课程设计小结机械设计是工科机械类专业的一门主要技术基础课,当然是工科生必需要认真修的科目!我在本次课程设计过程中体会到了这门课程对工科生的作用之大。
减速器箱体设计
第八章箱体的整体设计及其附件的选用1、箱体的结构设计1)箱体材料的选择与毛坯种类的确定根据减速器的工作环境,可选箱体材料为灰铸铁HT200。
因为铸造箱体刚性好、外形美观、易于切削加工、能吸收振动和消除噪音,可采用铸造工艺获得毛坯。
2)箱体主要结构尺寸和装配尺寸见下表:单位:mm2、减速器附件(1)窥视孔和视孔盖在传动啮合区上方的箱盖上开设检查孔,用于检查传动件的啮合情况和润滑情况等,还可以由该孔向箱内注入润滑油。
(2)通气器安装在窥视孔板上,用于保证箱内和外气压的平衡,一面润滑油眼相体结合面、轴伸处及其他缝隙渗漏出来。
(3)轴承盖轴向固定轴及轴上零件,调整轴承间隙。
这里使用凸缘式轴承盖,因其密封性能好,易于调节轴向间隙。
(4)定位销为了保证箱体轴承孔的镗削精度和装配精度,在减速器的两端分别设置一个定位销孔。
(5)油面指示装置在箱座高速级端靠上的位置设置油面指示装置,用于观察润滑油的高度是否符合要求。
(6)油塞用于更换润滑油,设在与设置油面指示装置同一个面上,位于最低处。
(7)起盖螺钉设置在箱盖的凸缘上,数量为2个,一边一个。
用于方便开启箱盖。
(8)起吊装置在箱盖的两头分别设置一个吊耳,用于箱盖的起吊;而减速器的整体起吊使用箱座上的吊钩,在箱座的两头分别设置两个吊钩。
3、减速器润滑及密封形式的选择高速轴的dn值为dn5⋅⨯40==⨯626<25043m mrm in105.1096..故减速器所有轴承均采用润滑脂润滑。
高速级大齿轮的圆周速度为s m 12m 7.110006013.391372 100060nd v 2<≈⨯⨯⨯=⨯=ππ故采用油池润滑。
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,箱体内选用SH0357-92中的50号润滑,装至规定高度。
轴承盖处密封采用毛毡圈。
箱盖与箱座之间的密封则采用涂水玻璃密封,涂水玻璃密封的方法能有效地减轻震动起到防震作用。
二级减速器设计说明书
《机械设计》课程设计设计题目:带式输送机传动装置的设计内装:1、设计计算说明书一份2、减速器装配图一张3、轴零件图一张4、齿轮零件图一张目录一课程设计任务书二设计要求三设计步骤1. 传动装置总体设计方案2. 电动机的选择3. 确定传动装置的总传动比和分配传动比4. 计算传动装置的运动和动力参数5. 设计V带和带轮6. 齿轮的设计7. 滚动轴承和传动轴的设计8. 键联接设计9. 箱体结构的设计10.润滑密封设计11.联轴器设计四设计小结五参考资料传动装置总体设计方案传动装置总体设计方案课程设计题目:设计带式运输机传动装置(简图如下)1——V带传动2——运输带3——单级斜齿圆柱齿轮减速器4——联轴器5——电动机6——卷筒已知条件1)工作条件:三班制,连续单向运转,载荷较平稳,室内工作,有粉尘。
2)使用期限:10年,大修期3年。
3)生产批量:10台4)生产条件:中等规模机械厂,可加工7-8级精度的齿轮。
5)动力来源:电力,三相交流(220/380V)设计要求1.减速器装配图一张。
2.绘制轴、齿轮零件图各一张。
3.设计说明书一份。
避免浪费。
(5).结构设计及绘制齿轮零件图首先考虑大齿轮,因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式结构为宜。
绘制大齿轮零件图如下。
其次考虑小齿轮,由于小齿轮齿顶圆直径较小,若采用齿轮结构,不宜与轴进行安装,故采用齿轮轴结构,其零件图见滚动轴承和传动轴的设计部分。
mmm2=251=z1032=z滚动轴承和传动轴(一).轴的设计Ⅰ.输出轴上的功率I I IP、转速I I In和转矩I I IT由上可知kwP56.2=I I I,min2.87rn=I I I,mmNT⋅⨯=I I I51082.2Ⅱ.求作用在齿轮上的力因已知低速大齿轮的分度圆直径mmmmzmd37.21248.14cos1032cos22=︒⨯==βⅣ.轴的结构设计(1).根据轴向定位的要求确定轴的各段直径和长度1).为了满足半联轴器的轴向定位要求,Ⅰ-Ⅱ段右端需制出一轴肩,故取Ⅱ-Ⅲ段的直径mm d 42=-ⅢⅡ;左端用轴端挡圈定位。
二级减速器的设计方法及步骤
.毕业设计(论文)(说明书)题目:对二级减速器的设计姓名:马厅瑞编号:平顶山工业职业技术学院2015年5月27日毕业设计(论文)任务书姓名马厅瑞专业机械设计与制造任务下达日期2014年9月29日设计(论文)开始日期2014年9月29日设计(论文)完成日期2015年5月20日设计(论文)题目:对二级减速器的设计A·编制设计B·设计专题(毕业论文)指导教师徐从清系(部)主任年月日毕业设计(论文)答辩委员会记录机械系机械设计与制造专业,学生马厅瑞于年月日进行了毕业设计(论文)答辩。
设计题目:专题(论文)题目:指导老师:答辩委员会根据学生提交的毕业设计(论文)材料,根据学生答辩情况,经答辩委员会讨论评定,给予学生毕业设计(论文)成绩为。
答辩委员会人,出席人答辩委员会主任(签字):答辩委员会副主任(签字):答辩委员会委员:,,,,,,平顶山工业职业技术学院毕业设计(论文)评语第页共页学生姓名:马厅瑞专业机械设计与制造年级07级毕业设计(论文)题目:评阅人:指导教师:(签字)年月日成绩:系(科)主任:(签字)年月日毕业设计(论文)及答辩评语:摘要本论文主要研究普通二级减速器的设计方法及步骤,减速器被喻为机器的“调度师”。
本文从减速器的分析入手,详细对其设计理念和实效应用进行了全面的研究。
在减速器的设计过程中详细分析了各零件的设计准则和满足的使用极限。
并在检验过程中进行了工程力学的分析使其满足使用条件。
合理的传动方案应满足工作机的工作要求,具有结构简单、尺寸紧凑、便于加工、成本低廉、传动效率高和使用维护方便等特点,以保证工作机的工作质量和可靠性。
要同时满足这些要求是比较困难的,设计时要统筹兼顾,保证重点要求使其尽可能的达到最佳设计方案。
关键词:减速器、一级传动轴、二级传动轴、联轴器、齿轮润滑、箱体、传动比。
SummaryIn t hi s t hesi s, t he d esi gn o f g en er al s eco ndary m eth od s a nd p r o ced ur esred ucer, sp eed r educ er has been h ai l ed as t he m achi ne' s " O per at i onD i v i si on. " T hi s an al ys i s f r om t h e r educ er, a d et ai l ed app l i cat i on of i t sdesi g n an d eff ect i ven ess of a c om pr ehen si v e st u dy.Reduc er d esi gn pr ocess i n a det ai l ed an al ys i s o f th e v ar i ou s p art s of th e desi gn c r i t eri a a nd t he u se t o m eet t h e l i m i t. Te st c ondu cted i n t he c ou r se o f t h e an al ys i s o f en gi n eer i n g m ech an i cs t o sat i sf y t he co ndi ti ons of use.R eason ab l e t ransm i ssi o n sc hem e shou l d m eet t he o perat i o nalr equ i r em ent s o f t he w ork machi ne, h as a si m p l e st r uct ur e, co mp act , easypr ocessi n g, l o w cost , hi g h t ran smi ssi o n eff i c i ency and easy m ai nt enanc e,et c. , t o en su r e w or k qu al i t y and r el i abi l i ty o f t he w or k machi ne. To meet t hese r equi r ement s i s d i ff i c ul t , t he d esi g n s houl d b e b al an ced t o e nsur e t hat k ey r equ i r ement s to ach i ev e t h e best p ossi b l e desi g n.Keywords:redu cer, a trans miss ion shaft, two shafts, couplings, gear lubrication, box, trans mission ratio目录摘要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 Su mmary ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯2第 1章选择电动机⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5第 2章传动装置运动和动力参数的确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6第 3章 V带的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯81、普通 V带传动的设计计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 2、小带轮结构设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 3、大带轮结构设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯10第 4章齿轮传动设计计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯121、齿轮传动设计计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯12 2、直齿圆柱齿轮几何尺寸⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯13 3、大齿轮结构设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯⋯14第 5章轴的设计与校核⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯⋯151、输入轴的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.⋯⋯15 2、输出轴的设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17第 6章键的强度校核⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯201、输出轴齿轮用键联接校核⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.. ⋯⋯20 2、输出轴联轴器用键联接校核⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20第 7章减速器的润滑⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21第 8章减速器壳体尺寸设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22第 9章减速器附件设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯24致谢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26参考书目⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..⋯27课程设计任务书班级:07级机械设计与制造七班姓名:蔡宝学号: 90703426设计题目:带式运输机传动装置的减速器原始数据:驱动卷筒上的驱动卷筒的直运输带的速度使用期限圆周力径3.2380 2.56工作情况:平稳,两班制(连续 16小时),每月工作 20天传动装置简图驱动卷筒运输带联轴器电动机减速机第 1 章选择电动机1.1电动机是常用的原动机电动机是常用的原动机,具有结构简单、工作可靠、控制简便和维护容易等优点。
二级减速器课程设计二级同轴式斜齿圆柱齿轮减速器的设计
二级同轴式斜齿圆柱齿轮减速器的设计每日三班制工作,工作期限为7年。
已知条件:输送带带轮直径d=320mm,输送带运行速度v=0.628m/s,转矩m=600.T⋅N一、传动装置的总体设计1.1传动方案的确定1.2电动机的选择计算项目计算及说明计算结果1、选择电动机的类型根据用途选用Y系列三相异步电动机2、选择电动机的功率输送带所需拉力为NdTF375032.060022=⨯==输送带所需功率为kWFvPw355.21000628.037501000=⨯==查表2-1,取v带传动效率带η=0.96,一对轴承传动效率轴承η=0.99,斜齿圆柱齿轮传动效率齿轮η=0.97,联轴器传动效率联η=0.99,则电动机到工作间的总效率为联齿轮轴承带总ηηηηη24==859.099.097.099.096.024=⨯⨯⨯电机所需工作效率为kWPP w742.2859.0355.2===总η根据表8-2选取电动机的额定功率kwed3=PNF3750=kww355.2=P0.859=总ηkw742.2=Pkwed3=P3、确定电动机的转速输送带带轮的工作转速为min/5.37320628.0100060100060rDvnw=⨯⨯⨯=⨯=ππ由表2-2知v带传动比4~2=带i,二级圆柱齿轮减器传动比40~8=齿i,则传动比的范围为160~1640~84~2=⨯=⋅=)()(齿带总iii电机的转速范围为min/6000600160~165.37rinnw~)(总=⨯=⋅=由表8-2可知,符合这一要求的同步电动机由转速有1000r/min、1500r/min和3000r/min,考虑3000r/min的电动机转速太高,而1000r/min的电动机体积大且贵,故选用转速为1500r/min的电动机进行试算,其满载转速为1420r/min,型号为Y100L2-4min5.37rwn=min1420rmn=1.3传动比的计算与分配 计算项目计算及说明计算结果1、总传动比87.375.371420===w m n n i 总 37.87=总i2、分配传动比根据传动比范围,取带传动比5.2=带i ,减速传动比为15.155.237.87===带总i i i 高级传动比为21892.315.15i i i ====2.5=带i892.321==i i1.4传动装置运动、动力参数的计算 计算项目计算及说明计算结果1、各轴转速电动机轴为0轴,减速器高速轴为Ⅰ轴,中速轴为Ⅱ轴,低速轴为Ⅲ轴,各轴转速为min/498.37min /498.37892.3940.145min /940.145892.3568min /5685.21420min /14203223112010r n n r i n n r i n n r i n n r n n w m =============带min/498.37min /498.37min /940.145min /568min /14203210r n r n r n r n r n w =====2、各轴输入功率按电动机额定功率ed P 计算各轴输入功率,即kWP P P kW P P P kW P P P kW P P P 379.299.099.0427.2427.297.099.0528.2528.297.099.0632.2632.296.0742.23w -33w 23-2231211201001=⨯⨯====⨯⨯====⨯⨯====⨯===--联轴承齿轴承齿轴承带ηηηηηηηηηηηkWP kWP kWP kW P 727.2782.2897.2017.3w321====计算项目计算及说明计算结果3、各轴转矩mN n P T mN n P T mN n P T m N n P T m N n P T w w w⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯==⋅=⨯==884.605498.37379.295509550109.618498.37427.295509550427.165940.145528.295509550253.44568632.295509550441.181420742.295509550333222111000 mN T m N T mN T mN T m N T w ⋅=⋅=⋅=⋅=⋅=884.605109.618427.165253.44441.183210 二、传动件的设计计算 2.1带传动的设计 计算项目计算及说明计算结果1、确定计算功率由于是带式输送机,每天工作三班,查《机械设计》(V 带设计部分未作说明皆查此书)表8-6得, 工作情况系数1.1=A KkW P K P A d 016.3742.21.10=⨯== 1.1=A KkW P d 772.3=2、选择V 带的带型由d P 、0n 由图8-2选用A 型V 带A 型V 带3、确定带轮的基准直径d d 并验算带速带v①初选小带轮的基准直径1d d 。
二级减速器设计 流程
二级减速器设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!二级减速器设计流程如下:1. 确定设计要求:根据实际应用需求,确定减速器的输入功率、输出转速、传动比、工作环境等设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.箱体初步设计
二级齿轮减速器的箱体采用铸铁(HT200)制成,为了保证齿轮啮合的质量,采用剖分式结构,箱体上下部分采用
6
7
is H 配合。
(1)在机体外增加肋条,外轮廓为长方形,增强了轴承座的刚度
(2)考虑到机体内零件的润滑、密封和散热,采用浸油润滑,同时为了避免运行时沉渣溅起,齿顶到油池底面的距离H 大于40mm
(3)为保证机座与机盖连接处密封,联接凸缘应该有足够的宽度,联接表面应精创,其表面粗糙度为 3.6。
(4)为保证机体结构有良好工艺性,铸件壁厚为9mm ,圆角半径R=5。
机体外型较简单,拔模方便。
2.箱体附件设计
(1)检查孔及检查孔盖 在机盖顶部开有检查孔,能看到机体内部传动零件啮合区的未知,并保证有足够的空间,便于伸入进行操作。
检查孔有盖板,用垫片加强密封,盖板用铸铁制成,紧固螺栓选用M6。
(2)油螺塞
放油孔位于油池最底部,并安排在减速器远离其他部件的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应该凸起一块,由机械加工成螺塞头部的支承面,并用封油圈加以密封。
(3) 油标
油标设置在便于观察减速器油面并且油面稳定之处。
油尺安置的位置不能太低,防止油进入油尺座孔从而溢出。
(4)通气孔
由于减速器运转时机体内温度升高,气压增大。
为便于排气,在机盖顶部的检查孔改上安装通气器,以保证箱体内压力平衡。
(5)盖螺钉
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形状,以免破坏螺纹。
(6) 位销
为了保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一个圆锥定位销,用以提高定位精度。
(7)吊钩
在箱座上直接铸出吊钩,用以搬运或起吊较重的物体。
3.箱体的结构尺寸
见《机械设计课程设计手册》表11-1,可知多级传动时,a 取低速级中心距,a=235mm 。
4.减速器的润滑与密封
(1)因为变速器是封闭式齿轮传动,齿轮的圆周速度小于4.5m/s ,所以采用浸油润滑的润滑方式。
轴承利用大齿轮的转动把油溅到箱壁的油槽里输送到轴承进行润滑。
该减速器属于一般减速器,查机械设计手册可选用SH0357-92中的50号润滑油。
而同时为了避免油搅得沉渣溅起, 齿顶到油池底面的距离H 应为50~30mm ,取H=40mm 。
大齿轮在油池中的浸油深度为一个齿高,但不应小于10 mm 。
这样确定出的油面可作为最低油面。
考虑到使用中的油不断蒸发、损耗以及搅油损失等因素,还应确定最高油面,一般不大于传动件半径的1/3,即h=0.3Rmax=70 mm 。
故润滑油的深度为H+h=40+70=110mm 。
(2)密封方式的选择
为保证机盖与机座连接处密封,联接凸缘应该有足够的宽度,联接处表面精创,其表面粗糙度为∀3.6。
由于I ,II ,III 轴与轴承接触处的线速度s m v 10<,所以采用毡圈密封。