最小二乘法线性详细说明

合集下载

最小二乘法线性拟合

最小二乘法线性拟合

—26 n 基本概念与数据处理4.最小二乘法线性拟合(非常好)我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分 散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据 处理方法,求出的a 和b 误差较大。

用最小二乘法拟合直线处理数据时 ,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。

最小二乘法就是将一组符合 Y=a+bX 关系的测量数据,用计算的方法求出最佳的a和b 。

显然,关键是如何求出最佳的a 和b 。

(1)求回归直线设直线方程的表达式为: y 二 a bx(2-6-1)要根据测量数据求出最佳的 a 和b o 对满足线性关系的一组等精度测量数据 (X i ,y i ), 假定自变量X i 的误差可以忽略,则在同一 X i 下,测量点y i 和直线上的点 a+bx i 的偏差d i 如下:d i = y i - a - bx-id^ — y 2~ a - bx 2d n = yn ~a ~ bx n显然最好测量点都在直线上(即 d i =d 2=,, =d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上, 这样只有考虑d i 、d 2、”、 d n 为最小,也就是考虑d i +d 2+,, +d n 为最小,但因d i 、d 2、,,、d n 有正有负,加起来可能相互抵消,因此不可取;而|d i | + |d 2|+ ,,+ |d n |又不好解方程,因而不可行。

现在米取一种等效方法:当d^+d/ + ,,+d n 2222对a 和b 为最小时,d i 、d 2、,,、 d n 也为最小。

取(d i +d 2 +,, +d n )为最小值,求 a和b 的方法叫最小二乘法。

nD 八 d i 2i JD 对a 和b 分别求一阶偏导数为:n-na -b ' X i ]i T nnD 八 d i 2 = i ±(2-6-2)-=D-=b:D-a n 一2「y ii 3 n一2[、X i y i i 』n基本概念与数据处理—27 - -b' X j2]i d—28 - n 基本概念与数据处理2 ' x -x将a 、b 值带入线性方程y = a bx ,即得到回归直线方程。

最小二乘法公式计算公式

最小二乘法公式计算公式

最小二乘法公式计算公式最小二乘法是一种常用的数据拟合方法,它通过最小化观测数据与拟合曲线之间的残差平方和,来确定拟合曲线的参数。

在数学领域中,最小二乘法通过求解线性方程组来确定问题的最优解。

本文将详细介绍最小二乘法的计算公式,并给出应用示例。

1. 最小二乘法的一般形式假设我们有一组观测数据,包括自变量x和因变量y。

我们希望找到一个拟合曲线,使得观测数据与该曲线的残差平方和最小。

拟合曲线的一般形式可以表示为:y = f(x, β) + ε其中,f(x, β)是关于自变量x和参数向量β的函数,ε是误差项。

根据最小二乘法的原理,我们需要最小化残差平方和:RSS(β) = Σ(y - f(x, β))^22. 最小二乘法的求解过程为了找到使得残差平方和最小的参数向量β,我们需要对该函数进行求导,并令导数为零。

首先,我们定义一个矩阵X,该矩阵的每一行表示一个观测数据的自变量,每一列表示一个参数。

类似地,我们定义一个向量y,其中每个元素对应一个观测数据的因变量。

拟合曲线可表示为:y = Xβ + ε将这个表达式代入残差平方和的公式中,得到:RSS(β) = (y - Xβ)T(y - Xβ)我们的目标是找到一个参数向量β,使得RSS最小化。

使用微积分的方法,我们可以对RSS进行求导,得到:∂RSS(β) / ∂β = -2X^T(y - Xβ) = 0通过上述求导结果,我们可以解得最小二乘法的估计量β的闭式解为:β = (X^TX)^(-1)X^Ty3. 应用示例让我们通过一个简单的线性回归示例来演示最小二乘法的应用。

假设我们有以下观测数据:x = [1, 2, 3, 4, 5]y = [2, 4, 5, 4, 5]我们希望通过最小二乘法来拟合一个线性模型y = β0 + β1x。

首先,我们将数据转换为矩阵形式:X = [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5]]y = [[2], [4], [5], [4], [5]]接下来,我们可以计算参数向量β:β = (X^TX)^(-1)X^Ty计算过程如下:X^TX = [[5, 15], [15, 55]](X^TX)^(-1) = [[11, -3], [-3, 1]]X^Ty = [[20], [70]]将上述结果代入β的公式,即可计算得到具体的参数值:β = [[11, -3], [-3, 1]] * [[20], [70]] = [[1.1818], [3.2727]]因此,最小二乘法拟合出的线性模型为:y = 1.1818 + 3.2727x通过该模型,我们可以预测其他自变量对应的因变量的值。

最小二乘法的原理及其应用

最小二乘法的原理及其应用

最小二乘法的原理及其应用1. 最小二乘法的原理最小二乘法是一种常用的数学优化方法,其原理是通过最小化残差平方和来寻找数据的最佳拟合线或曲线。

当数据存在随机误差时,最小二乘法可以有效地估计模型参数。

最小二乘法的基本原理可以概括为以下几个步骤:1.首先,假设模型的形式,如线性模型:y=mx+b。

2.然后,定义一个衡量模型拟合程度的误差函数,通常采用残差的平方和:$E(m, b) = \\sum_{i=1}^{n} (y_i - (mx_i + b))^2$。

3.接下来,根据最小二乘法的原理,我们需要通过对误差函数求偏导数,得出使误差函数最小化的模型参数。

4.最后,通过优化算法,如梯度下降法等,迭代地调整模型参数,使误差函数达到最小值,从而获得最佳拟合模型。

最小二乘法的原理非常简单和直观,因此被广泛应用于各个领域,如统计学、经济学、工程学等。

2. 最小二乘法的应用最小二乘法在实际问题中有着广泛的应用,下面将介绍其中的几个应用场景。

2.1 线性回归线性回归是最小二乘法最常见的应用之一。

在线性回归中,最小二乘法用于估计自变量与因变量之间的线性关系。

通过最小化残差平方和,我们可以找到一条最佳拟合直线,从而对未知的因变量进行预测。

线性回归广泛应用于经济学、社会学等领域,帮助研究者探索变量之间的相互关系。

2.2 曲线拟合最小二乘法还可以用于曲线拟合。

当我们需要拟合一个非线性模型时,可以通过最小二乘法来估计参数。

通过选择适当的模型形式和误差函数,可以得到最佳拟合曲线,从而准确地描述数据的变化趋势。

曲线拟合在信号处理、图像处理等领域具有重要的应用。

2.3 数据降维数据降维是指将高维度的数据转化为低维度表示,以便于可视化和分析。

最小二乘法可以用于主成分分析(PCA)等降维方法中。

通过寻找投影方向,使得在低维度空间中的数据点到其投影点的平均距离最小化,可以实现数据的有效降维。

2.4 系统辨识在控制工程中,最小二乘法经常被用于系统辨识。

最小二乘法 线性与非线性拟合

最小二乘法 线性与非线性拟合

最小二乘法线性与非线性拟合最小二乘法实现数据拟合最小二乘法原理函数插值是差值函数p(x)与被插函数f(x)在节点处函数值相同,即p( )=f( ) (i=0,1,2,3……,n),而曲线拟合函数不要求严格地通过所有数据点( ),也就是说拟合函数在处的偏差=不都严格地等于零。

但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求| |按某种度量标准最小。

即=为最小。

这种要求误差平方和最小的拟合称为曲线拟合的最小二乘法。

(一)线性最小二乘拟合根据线性最小二乘拟合理论,我们得知关于系数矩阵A的解法为A=R\Y。

例题假设测出了一组,由下面的表格给出,且已知函数原型为y(x)=c1+c2*e^(-3*x)+c3*cos(-2*x)*exp(-4*x)+c4*x^2试用已知数据求出待定系数的值。

在Matlab中输入以下程序x=[0,0.2,0.4,0.7,0.9,0.92,0.99,1.2,1.4,1.48,1.5]';y=[2.88;2.2576;1.9683;1.9258;2.0862;2.109;2.1979;2.5409;2.9627;3.155;3.2052];A=[ones(size(x)) exp(-3*x),cos(-2*x).*exp(-4*x) x.^2];c=A\y;c'运行结果为ans =1.22002.3397 -0.6797 0.8700下面画出由拟合得到的曲线及已知的数据散点图x1=[0:0.01:1.5]';A1=[ones(size(x1)) exp(-3*x1),cos(-2*x1).*exp(-4*x1) x1.^2];y1=A1*c;plot(x1,y1,x,y,'o')事实上,上面给出的数据就是由已知曲线y(x)= 0.8700-0.6797*e^(-3*x)+ 2.3397*cos(-2*x)*exp(-4*x)+ 1.2200*x^2产生的,由上图可见拟合效果较好。

最小二乘法的线性拟合

最小二乘法的线性拟合
ST在+1~-1之间取不同的值时,就可以获得区域图 中任意位置上的极限应力值。
8
4.3 数表与线图的公式化处理
前面介绍的数表与线图的程序化处理方法,这种方法虽然 解决了数表和线图在CAD作业中的存储和检索问题,但还存 在下述一些缺点:
1)占用大量计算机内存。数表和线图的程序化处理,要将 数表中的全部数据编进计算程序中,实现数据的自动检索。 当数表很庞大时,所占内存很大。一般情况下,一个设计计 算程序常常需要使用多个数表,则所占内存更加庞大,严重 时甚至会影响程序的正常运行。
4
4.2.2 直线图的公式化处理
1、直角坐标直线图的公式化处理
(a)直齿轮
(b)斜齿轮
5
2、对数坐标直线图的公式化处理
对数坐标中的直线方程可写为:
注意:一般程序语言中,只有lnx (自然对数)无十进制对数 lgx ,所以编程时,要进行换底运算。
lg x ln x ln10
6
3、区域图的公式化处理
2)效率低,占机时间长。通常设计所使用到的仅是数表中 的一小部分数据,有时甚至只是其中的一、二个。但数表程 序化处理对数表中的每个数据,无论在当时的计算程序中
是否被用到,都必须顺序地将全部数据读入内存。
检索时,一般又得顺序地从头检索至所需的那个
9
数据为止。
4.3.1 曲线拟合
数表程序化处理一般只适用于数表较小(数据 量较小)、计算程序使用数表个数不多的情况。对 于比较大型的计算程序,常常需使用很多的数表, 数据量很大,在这种情况下数表的处理就要采用其 它的方法。其中一种方法就是本节所要介绍的曲线 拟合。
常用的处理方法有三种:
1
(1)线图所表示的各参数之间本来就有计算公 式,只是由于计算公式复杂.为了便于手工计算 将公式绘成线图,以供设计时查用。对于这类线 图处理的方法为:找到线图原有公式,将公式编 写成程序。这是最精确的程序化处理方法,但难 以找到。

线性回归之最小二乘法

线性回归之最小二乘法

1.最小二乘法的原理最小二乘法的主要思想是通过确定未知参数(通常是一个参数矩阵),来使得真实值和预测值的误差(也称残差)平方和最小,其计算公式为E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i})^2 ,其中 y_i 是真实值,\hat y_i 是对应的预测值。

如下图所示(来源于维基百科,Krishnavedala 的作品),就是最小二乘法的一个示例,其中红色为数据点,蓝色为最小二乘法求得的最佳解,绿色即为误差。

图1图中有四个数据点分别为:(1, 6), (2, 5), (3, 7), (4, 10)。

在线性回归中,通常我们使用均方误差来作为损失函数,均方误差可以看作是最小二乘法中的 E 除以m(m 为样本个数),所以最小二乘法求出来的最优解就是将均方误差作为损失函数求出来的最优解。

对于图中这些一维特征的样本,我们的拟合函数为h_\theta(x)=\theta_0+\theta_1x ,所以损失函数为J(\theta_0,\theta_1)=\sum_\limits{i=0}^m(y^{(i)}-h_\theta(x^{(i)}))^2=\sum_\limits{i=0}^m(y^{(i)}-\theta_0-\theta_1x^{(i)})^2 (这里损失函数使用最小二乘法,并非均方误差),其中上标(i)表示第 i 个样本。

2.最小二乘法求解要使损失函数最小,可以将损失函数当作多元函数来处理,采用多元函数求偏导的方法来计算函数的极小值。

例如对于一维特征的最小二乘法, J(\theta_0,\theta_1) 分别对 \theta_0 , \theta_1 求偏导,令偏导等于 0 ,得:\frac{\partial J(\theta_0,\theta_1)}{\partial\theta_0}=-2\sum_\limits{i=1}^{m}(y^{(i)}-\theta_0-\theta_1x^{(i)}) =0\tag{2.1}\frac{\partial J(\theta_0,\theta_1)}{\partial\theta_1}=-2\sum_\limits{i=1}^{m}(y^{(i)}-\theta_0-\theta_1x^{(i)})x^{(i)} = 0\tag{2.2}联立两式,求解可得:\theta_0=\frac{\sum_\limits{i=1}^m(x^{(i)})^2\sum_\limits{i=1}^my^{(i)}-\sum_\limits{i=1}^mx^{(i)}\sum_\limits{i=1}^mx^{(i)}y^{(i)}}{m\sum_\limits{i=1}^m(x^{(i)})^2-(\sum_\limits{i=1}^mx^{(i)})^2} \tag{2.3}\theta_1=\frac{m\sum_\limits{i=1}^mx^{(i)}y^{(i)}-\sum_\limits{i=1}^mx^{(i)}\sum_\limits{i=1}^my^{(i)}}{m\sum_\limits{i=1}^m(x^{(i)})^2-(\sum_\limits{i=1}^mx^{(i)})^2} \tag{2.4}对于图 1 中的例子,代入公式进行计算,得: \theta_0 = 3.5, \theta_1=1.4,J(\theta) = 4.2 。

最小二乘法公式详细步骤

最小二乘法公式详细步骤

最小二乘法公式详细步骤1.建立线性回归模型在最小二乘法中,我们首先假设所要拟合的数据具有线性关系。

线性回归模型可以表示为:Y=α+βX+ε,其中Y是因变量,X是自变量,α和β是模型的参数,ε是误差项。

2.构建残差平方和残差是预测值与观测值之间的差异,我们用误差的平方和来表示数据的整体拟合度。

求解残差平方和的目的是找到最小的误差,来获取最佳的拟合数据集。

残差平方和的计算公式:RSS = Σ(yi - (α + βxi))^2,其中yi 是观测值,(α + βxi)是对应的预测值,Σ表示求和。

3.求解参数α和β的最优值通过最小化残差平方和,可以求解得到参数α和β的最优值。

将残差平方和对参数α和β分别求偏导数,并令偏导数等于0,可以得到如下两个方程:∂RSS/∂α = -2Σ(yi - (α + βxi)) = 0 -> Σyi - nα - βΣxi = 0∂RSS/∂β = -2Σ(yi - (α + βxi))xi = 0 -> Σxiyi -αΣxi - βΣxi^2 = 0其中n表示数据集的大小。

将上述两个方程联立解得α和β的最优值:α = (Σyi - βΣxi) / nβ = (Σxiyi - αΣxi) / Σxi^24.求解回归直线方程通过求解参数α和β的最优值,可以得到回归直线的方程。

将最优值代入线性回归模型的公式中,得到:Y=α+βX5.进行模型评估在最小二乘法中,我们需要对拟合模型进行评估,以确定模型的可靠性和拟合优度。

常用的评估指标包括:决定系数(R^2)、均方根误差(RMSE)和平均绝对误差(MAE)等。

决定系数用来衡量模型对数据的解释程度,其计算公式为:R^2 = 1 - (Σ(yi - ŷi)^2 / Σ(yi - ȳ)^2)其中,yi表示观测值,ŷi表示模型预测值,ȳ表示观测值的平均值。

通过以上步骤,我们可以得到最小二乘法的公式和对应的求解步骤。

这个方法用于参数估计和数据拟合,尤其在拟合回归模型时非常常用。

第五章线性参数最小二乘法

第五章线性参数最小二乘法

v 1
v2
v
n
v2
最小
v
n
V T V 最小
或:
(L A X ˆ)T(L A X ˆ) 最小
第五章线性参数最小二乘法
§5-2 正 规 方 程
线性参数的最小二乘法处理程序:
1. 根据具体问题列出误差方程式; 2. 按最小二乘法原理,利用极值的方法
将误差方 程转换为正规方程; 3. 求解正规方程,得到待求的估计量; 4. 精度估计
可知,要使P最大,应满足:
12 1222 22n2 n2最小
第五章线性参数最小二乘法
引入权的符号 p,即:
p 1 v 1 2p 2 v22 p n vn2 最小
等精度测量中:ຫໍສະໝຸດ v12v22 vn2最小二、以矩阵方式表示:
l1
L
l
2
l
n
x1

x
2
V
v1
v
2
x
t
v
n
测量结果 估计值 第五章线性参数最小二乘法
1 45
估计值: Xˆ
a
b
X ˆ a b 第五 章线性参数(最小A 二乘法 TA)1ATL
X ˆ
a b
1 0.9 09 3.9 65 74
y0a19.9m 9 7 m
b0.036504.0000/℃18
a 199.997
第五章线性参数最小二乘法
例:为研究 20mm轴的几何形状误差,
则等精度测量的线性参数最小二乘法 处理的正规方程为:
a1a1x1a1a2x2a1atxt a1l
a2a1x1a2a2x2
a2at xt
a2l
ata1x1ata2x2atatxt atl
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
最小二乘法产生的历史
最小二乘法最早称为回归分析法。由著名的英 国生物学家、统计学家道尔顿(F.Gallton)— —达尔文的表弟所创。 早年,道尔顿致力于化学和遗传学领域的研究。 他研究父亲们的身高与儿子们的身高之间的关 系时,建立了回归分析法。
5
父亲的身高与儿子的身高之间关系的研究
1889年F.Gallton和他的朋友K.Pearson收集了 上千个家庭的身高、臂长和腿长的记录 企图寻找出儿子们身高与父亲们身高之间关系 的具体表现形式 下图是根据1078个家庭的调查所作的散点图 (略图)
vi = ∆yi = [ yi − (a + bxi )]

12
我们的目的是根据数据点确定回归常数a和b, 并且希望确定的a和b能使数据点尽量靠近直线 能使v尽量的小。由于偏差v大小不一,有正有 负,所以实际上只能希望总的偏差(∑ vi)最小。
2
所谓最小二乘法就是这样一个法则,按照这个 法则,最好地拟合于各数据点的最佳曲线应使 各数据点与曲线偏差的平方和为最小。
解方程,得:
sxy b=

sxx a = y − bx

16
公式⑥⑦式中:
sxy
xx
(∑ x ∑ y ) = ∑xy −
i i i i 2 i
2
(∑ x ) s = ∑x − x = ∑x n
i i
n
n
从④不难求出对a, b的二阶偏导数为: a, b
∂ ∑ vi 2 = 2n 2 ∂a ∂ ∑ vi 2 = 2∑ xi 2 2 ∂b ∂ ∑ vi 2 = 2∑ xi ∂a∂b
2
已经确定, 一 是物理量y与x间的函数关系已经确定 已经确定 只有其中的常数未定(及具体形式未定) 时,根据数据点拟合出各常数的最佳值。 未知时,从 二 是在物理量y与x间函数关系未知时 未知时 函数点拟合出y与x函数关系的经验公式以 及求出各个常数的最佳值。
3
解决问题的办法
寻找变量之间直线关系的方法很多。于是,再接下 来则是从众多方法中,寻找一种优良的方法,运用 方法去求出线性模型—y=a+bx+u中的截距a= ?; 直线的斜率b= ? 正是是本章介绍的最小二乘法。 所得直线可靠吗?怎样衡量所得直线的可靠性? 最后才是如何运用所得规律——变量的线性关系?
b = s xy
s xx a = y − b x = − 0 . 0459
(1 − R ) syy
2
= 1 . 9955 ≈ 1 . 996
其次为了检查粗差,先计算剩余标准偏差:
( n − 2) = 0.086395 ≈ 0.087
取 σs =0.087
30
利用肖维湟准则剔除粗差,从§2(p12)表2-1可查的n=11 时,k=2.00, 即位标准差的极限值。表三给出了此极限值下 测量值y(I)的上下限。由表二,表三可知u=5.00v组数据的I 值有粗差的坏值,应予剔除。剔除后重新计算,并经过检 查,得:
6
从图上虽可看出,个子高的父亲确有生出个子高的 儿子的倾向,同样地,个子低的父亲确有生出个子 低的儿子的倾向。得到的具体规律如下:
y = a + bx + u ˆ y = 84.33 + 0.516 x
如此以来,高的伸进了天,低的缩入了地。他百思 不得其解,同时又发现某人种的平均身高是相当稳 定的。最后得到结论:儿子们的身高回复于全体男 子的平均身高,即“回归”——见1889年F.Gallton 的论文《普用回归定律》。 后人将此种方法普遍用于寻找变量之间的规律
13
由最小二乘法确定a和b
首先,求偏差平方和,将②式两边平方后相加, 得:
∂ ∑ vi 2 = ∑ ( yi − a − bxi ) i =1 i =1
2
n
n
2

∑ 显然, vi 是a, b的函数。按最小二乘法,当a,
b选择适当,能使为最小时y=a&数求极值法,把③式对a和b分 二元函数求极值法 别求出偏导数。得:
20
剩余标准差 s
σ
σs =
公式中:
∑ vi = (1− R ) syy n−2 n −2
2 2
(∑ yi ) 2 syy = ∑ yi − n
2
R=
sxy sxxsyy
21
R称为相关系数。其值可正可负,一般有:
0 ≤ R ≤1
σ a:当R=±1时,s=∑ vi = 0 ,即各数据点与最佳直线完全重合。 b:0<R<1时,各数据点与最佳直线不完全重合。有两种 情况: 一种可能是各数据点与该线偏差较小,一种可能是各数据 点与该线偏差较大。 当R → 1时, s 减小,一般的数据点越靠近最佳值两旁。两 σ 变量间的关系线性相关,可以认为是线性关系,最佳直线 所反应的函数关系也越接近两变量间的客观关系。同时还 说明了测量的精密度高。 当 R << 1时, s 增大,根据数据点的分布,也许能得到一 σ 条“最佳”直线。然而,数据点与“最佳”直线的偏差过 大。
11
由于实验数据总是存在着误差,所以,把各组数据 代入(1)式中,两边并不相等。相应的作图时,数据 点也并不能准确地落在公式对应的直线上,如图所 示。由图一还可以看出第i个数据点与直线的偏差为:
vi = ∆yi + ∆xi
2
2
(1)
如果测量时,使x较之y的偏差很小,以致可以忽略 (即∆xi很小 )时,我们可以认为x的测量是准确的, 而数据的偏差,主要是y的偏差,因而有:
24
起码相关系数 -- R0
R 0 的值与数据点的个数n有关。书中P40表5-3 中给出了起码相关系数 R0的值。 如果有一组数据点初步观测为线性分布。那么, 为多大时,就可以用一条最佳直线来表示其分 R 布呢? 只有相关系数 R≥ R时,才能用线性回归方程 0 y=a+bx来描述数据的的分布规律。否则毫无 意义。
σ
27
〔例题〕
用伏安法测电阻,测量数据如表。问能否拟 合成线性关系曲线?若可以,试判断有无粗 差并计算出b, a, σa , σb . 表一
Xu(V) YI(mA) Xu(V) YI(mA) 0.00 0.00 6.00 11.83 1.00 2.00 7.00 13.75 2.00 4.01 8.00 16.02 3.00 6.05 9.00 18.10 4.00 7.85 10.00 19.94 5.00 9.60
2
22
23
这时“最佳”二字只能说明数据点距这直线的总偏差 较小,但不能反映出数据点的分布规律。或者说,我 们事先的初步判断是错误的。数据点的分布规律不是 线形的,根本就不能用一条直线表示。 为了帮助我们理解这一点,我们再讨论极限情况。 s 当 R=0时(σs 最大)xy = 0 , syy ≠ 0 ,sxx ≠ 0,所以 b=0,a= y , 从而得到y= y 的错误结论。这说明数据点 的分布不是线性,不能拟合为线性关系曲线。
18
2. 经验公式的线性回归—函数形式未知
由于经验公式的函数形式是未知的,因而恰 当地选择经验公式的函数形式就成了曲线拟 合中的重要问题。 在进行经验公式的回归时,必须先确定函数 的形式。确定函数形式一般是根据理论的推 断或者从实验数据的变化趋势来推测判断。 如根据实验得到的一组数据 (xi, yi ) (或其在x y 坐标上的数据点)初步判断经验公式为线性 关系时,即可用最小二乘法按⑤,⑥式求出 b, a值,并进而拟合出直线的线性关系式: y=a+bx 回归方程。
i i 2 i
2
2
i
2
3
i
i
2
i
i
xy
i i
2
xx
s yy = ∑ R = s xy
n ( ∑ xi ) 2 yi 2 − = 1523 .26 = 1 .523 × 10 2 n = 0 .9998 > 0 .735 = R 0
i
2
i
2
2
s xx s yy
29
式中的0.735是n=11时的起码相关系数R。所以 x,y(即u,I)间是线性关系,可用y=a+bx表示。且:
19
3. 回归方程的精度和相关系数
用最小二乘法确定a, b存在误差。 总结经验公式时,我们初步分析判断所假定 的函数关系是正确,为了解决这些问题,就 需要讨论回归方程的精度 相关性 精度和相关性 精度 相关性。 为了估计回归方程的精度,进一步计算数据 点 (xi, yi ) 偏离最佳直线y=a+bx的大小,我们 引入概念——剩余标准差 σs ,它反映着回 剩余标准差 归方程与各数据点的拟合程度。
∂ ∑ vi i =1 = −2 ( yi − a − bxi ) ∑ ∂a (4 ) n ∂ ∑ vi 2 i =1 = −2 ( yi − a − bxi ) ⋅ xi ∑ ∂b
2
n
15
令④等于零,得:
∑ yi − na − b ∑ xi = 0 i =1 i =1 (5) n n n yixi − a ∑ xi − b ∑ xi 2 = 0 ∑ i =1 i =1 i =1 n n
28
解:已知n=11,首先计算下列量 ∑ x = 55 = 5 . 50 × 10 ∑ y = 109 . 25 = 1 . 09 × 10 ∑ x = 385 = 3 . 85 × 10 ∑ y = 1523 . 26 = 1 . 523 × 10 ∑ x y = 765 . 76 = 7 . 658 × 10 可以得到: x y s = ∑ x y − ∑ ∑ = 219 .51 = 2 .159 × 10 n (∑ x ) s =∑x − = 110 = 1 .10 × 10
7
最小二乘法的地位与作用
相关文档
最新文档