高三物理二轮复习 专题5 第2讲电磁感应规律及应用检测试题

合集下载

高考物理二轮复习练案电磁感应规律及其应用(有答案)

高考物理二轮复习练案电磁感应规律及其应用(有答案)

一、选择题(本题共8小题,其中1~4题为单选,5~8题为多选) 1.(2017•河北省定州中学4月考)如图所示,匀强磁场垂直于圆形线圈指向纸里,a、b、c、d为圆形线圈上等距离的四点,现用外力作用在上述四点,将线圈拉成正方形。

设线圈导线不可伸长,且线圈仍处于原先所在的平面内,则在线圈发生形变的过程中导学号86084260( A )A.线圈中将产生abcd方向的感应电流B.线圈中将产生adcb方向的感应电流C.线圈中产生感应电流的方向先是abcd,后是adcbD.线圈中无感应电流产生[解析] 当由圆形变成正方形时磁通量变小,根据楞次定律知在线圈中将产生abcd方向的感应电流,故选项A正确。

2.(2017•江西省鹰潭市一模)如图所示,在竖直平面内有一金属环,环半径为0.5 m,金属环总电阻为2 Ω,在整个竖直平面内存在垂直纸面向里的匀强磁场,磁感应强度为B=1 T,在环的最高点上方A 点用铰链连接一长度为1.5 m,电阻为3 Ω的导体棒AB,当导体棒AB摆到竖直位置时,导体棒B端的速度为3 m/s。

已知导体棒下摆过程中紧贴环面且与金属环有良好接触,则导体棒AB摆到竖直位置时AB两端的电压大小为导学号86084261( B )A.0.4 V B.0.65 VC.2.25 V D.4.5 V[解析] 当导体棒摆到竖直位置时,由v=ωr可得:C点的速度为:vC=13vB=13×3 m/s=1 m/s。

AC间电压为:UAC=EAC=BLAC•vC2=1×0.5×12=0.25 VCB段产生的感应电动势为:ECB=BLCB•vC+vB2=1×1×1+32=2 V。

圆环两侧并联,电阻为:R=12Ω=0.5 Ω,金属棒CB段的电阻为:r=2 Ω,则CB间电压为:UCB=Rr+RECB=0.50.5+2×2 V =0.4 V故AB两端的电压大小为:UAB=UAC+UCB=0.25+0.4=0.65 V。

高考物理二轮复习:电磁感应规律及应用(含答案解析)

高考物理二轮复习:电磁感应规律及应用(含答案解析)

电磁感应规律及应用热点一电磁感应图象问题命题规律:电磁感应图象问题多以选择题形式出现,有时也与计算题结合,主要考查以下内容:(1)综合应用楞次定律、法拉第电磁感应定律及电路、安培力等相关知识,判断电流(或安培力)随时间t(或位移x)变化的图象.(2)利用动力学观点判断棒(或线圈)的速度随时间变化的图象.(3)在计算题中考查学生的识图能力,由图象获取解题信息的能力.1.(2014·高考新课标全国卷Ⅰ)如图甲,线圈ab、cd绕在同一软铁芯上,在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图乙所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )[解析] 由题图乙可知在cd间不同时间段内产生的电压是恒定的,所以在该时间段内线圈ab中的磁场是均匀变化的,则线圈ab中的电流是均匀变化的,故选项A、B、D错误,选项C正确.[答案] C2.(2014·广元第二次模拟)如图所示,边长为2l的正方形虚线框内有垂直于纸面向里的匀强磁场,一个边长为l的正方形导线框所在平面与磁场方向垂直,导线框的一条对角线和虚线框的一条对角线恰好在同一直线上.从t=0开始,使导线框从图示位置开始以恒定速度沿对角线方向移动进入磁场,直到整个导线框离开磁场区域.用I表示导线框中的感应电流(以逆时针方向为正).则下列表示I-t关系的图线中,正确的是( )[解析] 在线框进入磁场时,切割磁感线的有效长度逐渐增加,当线框即将完全进入磁场时,切割磁感线的有效长度最大,产生的电流最大,此过程电流方向为逆时针方向.整个线框在磁场中运动时,不产生感应电流.当线框离开磁场时,产生电流方向为顺时针方向,且切割磁感线的有效长度逐渐减小,产生的感应电流逐渐减小,所以选项D 正确.[答案] D3.(2014·南昌三模)如图所示,xOy 平面内有一半径为R 的圆形区域,区域内有磁感应强度大小为B 的匀强磁场,左半圆磁场方向垂直于xOy 平面向里,右半圆磁场方向垂直于xOy 平面向外.一平行于y 轴的长导体棒ab 以速度v 沿x 轴正方向做匀速运动,则导体棒两端的电势差U ba 与导体棒位置x 的关系图象是()[解析] 设从y 轴开始沿x 轴正方向运动的长度为x (x ≤2R ),则ab 导体棒在磁场中的切割长度l =2R 2-R -x 2=22Rx -x 2,感应电动势E=Blv =2Bv 2Rx -x 2,可知|U ba |与x 不是正比关系,所以C 、D 错误.由右手定则知在左侧磁场中b 端电势高于a 端电势,由于右侧磁场方向变化,所以在右侧a 端电势高于b 端电势,再结合圆的特点,知选项A 正确.[答案] A [总结提升] 分析电磁感应图象问题要注意以下三点注意初始时刻的特征,如初始时刻感应电流是否为零,感应电流的方向如何.注意看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对应.注意观察图象的变化趋势,看图象斜率的大小、图象的曲直是否和物理过程对应.热点二 电磁感应电路问题命题规律:电磁感应电路问题为每年高考的热点,考查方式既有选择题,也有计算题,主要涉及电流、电压、电功率、电热和电量的计算.1.(多选)(2014·陕西西安质检)如图所示,用同种电阻丝制成的正方形闭合线框1的边长与圆形闭合线框2的直径相等,m 和n 是1线框下边的两个端点,p 和q 是2线框水平直径的两个端点,1和2线框同时由静止开始释放并进入上边界水平、足够大的匀强磁场中,进入过程中m 、n 和p 、q 连线始终保持水平.当两线框完全进入磁场以后,下面说法正确的是( )A .m 、n 和p 、q 电势的关系一定有U m <U n ,U p <U qB .m 、n 和p 、q 间电势差的关系一定有U mn =U pqC .进入磁场过程中流过1和2线框的电荷量Q 1>Q 2D .进入磁场过程中流过1和2线框的电荷量Q 1=Q 2[解析] 当两线框完全进入磁场以后,根据右手定则知U n >U m,U q >U p ,A 正确;两线框完全进入磁场后,由于两线框的速度关系无法确定,故不能确定两点间的电势差的关系,B 错误;设m 、n 间距离为a ,由q =ΔΦR ,R =ρl S 得进入磁场过程中流过1、2线框的电荷量都为BaS 4ρ,C 错误,D 正确.[答案] AD2.(多选)(2013·高考四川卷) 如图所示,边长为L 、不可形变的正方形导线框内有半径为r 的圆形磁场区域,其磁感应强度B 随时间t 的变化关系为B =kt (常量k >0).回路中滑动变阻器R 的最大阻值为R 0,滑动片P 位于滑动变阻器中央,定值电阻R 1=R 0、R 2=R 02.闭合开关S ,电压表的示数为U ,不考虑虚线MN 右侧导体的感应电动势,则( )A .R 2两端的电压为U 7B .电容器的a 极板带正电C .滑动变阻器R 的热功率为电阻R 2的5倍D .正方形导线框中的感应电动势为kL 2[解析] 根据串、并联电路特点,虚线MN 右侧回路的总电阻R =74R 0.回路的总电流I =U R=4U 7R 0,通过R 2的电流I 2=I 2=2U 7R 0,所以R 2两端电压U 2=I 2R 2=2U 7R 0·R 02=17U ,选项A 正确;根据楞次定律知回路中的电流为逆时针方向,即流过R 2的电流方向向左,所以电容器b 极板带正电,选项B 错误;根据P =I 2R ,滑动变阻器R 的热功率P =I 2R 02+⎝ ⎛⎭⎪⎫I 22R 02=58I 2R 0,电阻R 2的热功率P 2=⎝ ⎛⎭⎪⎫I 22R 2=18I 2R 0=15P ,选项C 正确;根据法拉第电磁感应定律得,线框中产生的感应电动势E =ΔΦΔt =B tS =k πr 2,选项D 错误. [答案] AC3.如图甲所示,10匝圆形(半径r 0=0.1 m)线圈的区域内有均匀变化的磁场,滑动变阻器的最大阻值为R 0=22 Ω,与线圈连接后,组成分压器对负载R ′(纯电阻)供电.图乙所示为该电路的路端电压随外电阻变化的关系图线,每匝线圈允许通过的电流不能超过2 A .求:(1)磁场磁感应强度的变化率ΔB Δt和单匝线圈的内阻; (2)接到滑动变阻器a 、b 间的负载电阻R ′的阻值许可范围.[解析] (1)由题图乙知,线圈的感应电动势E =12 V即n πr 20ΔB Δt =E =12 V ,可得ΔB Δt =38 T/s当路端电压U =E 2时,外电路电阻等于内阻,由题图乙知单匝线圈的内阻r =0.2 Ω. (2)单匝线圈允许通过的电流不能超过2 A ,内电压的最大值是4 V ,外电压的最小值为8 V ,所以电路的外电阻必须大于或等于4 Ω当滑动变阻器的滑动触头处在a 端时,负载电阻R ′与R 0并联,应有R 0R ′R 0+R ′≥4 Ω,得负载电阻R ′≥4.9 Ω即接到变阻器a 、b 间的负载电阻不能小于4.9 Ω.[答案] 见解析[总结提升] 解决电磁感应中电路问题的思路源”的分析:用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向感应电流方向是电源内部电流的方向,从而确定电源正负极,明确内阻r .路”的分析:根据“等效电源”和电路中其他各元件的连接方式画出等效电路.根据E =BLv 或E =n ΔΦΔt,结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.)热点三 电磁感应过程中的动力学问题命题规律:电磁感应中的动力学问题为每年高考的热点,考查方式既有选择题,又有计算题,命题规律有以下两点:(1)与牛顿第二定律、运动学知识结合的动态分析问题.(2)电磁感应中的安培力问题、涉及受力分析及功能关系的问题.1.(2014·昆明一模)如图甲所示,MN 左侧有一垂直纸面向里的匀强磁场.现将一边长为l 、质量为m 、电阻为R 的正方形金属线框置于该磁场中,使线框平面与磁场垂直,且bc 边与磁场边界MN 重合.当t =0时,对线框施加一水平拉力F ,使线框由静止开始向右做匀加速直线运动;当t =t 0时,线框的ad 边与磁场边界MN 重合.图乙为拉力F 随时间变化的图线.由以上条件可知,磁场的磁感应强度B 的大小为( )A .B =1l mR t 0 B .B =1l 2mR t 0C .B =1l mR 2t 0D .B =2l mR t 0[解析] 根据题意,可知F 0=ma ,F 安=BIL =B 2l 2v R =B 2l 2at R ,因为F -F 安=ma =常数,所以ΔF Δt=ΔF 安Δt ,即2F 0t 0=B 2l 2a R ,将F 0=ma 代入化简,可得B =1l 2mR t 0.故选项B 正确. [答案] B2.(多选)(2014·云南部分名校统考)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( )A .导体棒的a 端比b 端电势低B .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍[解析] 导体棒下滑切割磁感线,产生感应电动势相当于电源,由右手定则知a 端为正极,b 端为负极,A 项错误.感应电动势E =BLv ,I =E R ,对ab 受力分析有mg sin θ-B 2L 2v R=ma ,则知导体棒做加速度减小的加速运动,当a =0时,mg sin θ=B 2L 2v m R ,得v m =mgR sin θB 2L 2,若B 增大为原来的2倍,稳定状态时速度变为原来的14,所以B 项正确,C 项错误.若质量增大为原来的2倍,导体棒稳定时的速度为原来的2倍,R 的功率P =B 2L 2v 2R,可知功率变为原来的4倍,D 项正确.[答案] BD3.(2014·江苏扬州模拟)如图所示,两根质量同为m 、电阻同为R 、长度同为l 的导体棒a 、b ,用两条等长的、质量和电阻均可忽略的长直导线连接后,放在距地面足够高的光滑绝缘水平桌面上,两根导体棒均与桌边缘平行,一根在桌面上,另一根移动到靠在桌子的光滑绝缘侧面上.整个空间存在水平向右的匀强磁场,磁感应强度为B ,开始时两棒静止,自由释放后开始运动.已知两条导线除桌边缘拐弯处外其余部位均处于伸直状态,导线与桌子侧棱间无摩擦.求:(1)刚释放时,两导体棒的加速度大小;(2)两导体棒运动稳定时的速度大小;(3)若从开始下滑到刚稳定时通过横截面的电荷量为q ,求该过程a 棒下降的高度.[解析] (1)刚释放时,设导线中的拉力为F T对a 棒:mg -F T =ma 对b 棒:F T =ma解得:a =12g . (2)导体棒运动稳定时,设细线中拉力为F T ′对b 棒:F T ′=0对a 棒:mg =F 安又F 安=BIl =B 2l 2v 2R解得:v =2mgR B 2l2. (3)从开始下滑到刚稳定,设a 棒下降的高度为h则通过横截面的电荷量q =I ·Δt =ΔΦ2R =Blh 2R解得:h =2qR Bl. [答案] (1)12g (2)2mgR B 2l 2 (3)2qR Bl[总结提升] 电磁感应中的动力学问题的解题思路找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向. 根据等效电路图,求解回路中电流的大小及方向.分析安培力对导体棒运动速度、加速度的影响,从而推理得出对电路中的电流有什么影响,最后定性分析导体棒的最终运动情况.列牛顿第二定律或平衡方程求解.)用动力学和能量观点解决电磁感应综合问题命题规律:电磁感应综合问题往往涉及法拉第电磁感应定律、楞次定律、闭合电路欧姆定律、动力学问题、能量问题等,综合性较强,常作为压轴计算题,有时也有选择题.[解析] (1)金属棒从离地高h =1.0 m 以上任何地方由静止释放后,在到达水平面之前已经开始匀速运动(1分)设最大速度为v ,则感应电动势E =BLv (1分)感应电流I =ER +r(1分) 安培力F =BIL (1分)匀速运动时,有mg sin θ=F (1分)解得v =1.0 m/s.(1分)(2)在水平面上运动时,金属棒所受滑动摩擦力为F f =μmg (1分)金属棒在摩擦力作用下做匀减速运动,有F f =ma (1分)v 2=2ax (1分)解得μ=0.04(1分)(用动能定理同样可以解答).(3)下滑到底端的过程中,由能量守恒得:Q =mgh -12mv 2(2分) 电阻R 上产生的热量:Q R =RR +r Q (2分)解得Q R =3.8×10-2J .(1分)[答案] (1)1.0 m/s (2)0.04 (3)3.8×10-2 J[总结提升] (1)解决电磁感应综合问题的一般分析思路:(2)求解焦耳热的三个途径①感应电路为纯电阻电路时产生的焦耳热等于克服安培力做的功,即Q =W 克安.②感应电路中电阻产生的焦耳热等于电流通过电阻做的功,即Q =I 2Rt .③感应电路中产生的焦耳热可通过能量守恒定律列方程求解.最新预测1 (2014·山东泰安模拟)如图所示,间距为L ,电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R 的电阻连接,导轨上横跨一根质量为m ,电阻也为R 的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B 的匀强磁场中.现使金属棒以初速度v 0沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q .下列说法正确的是( )A .金属棒在导轨上做匀减速运动B .整个过程中电阻R 上产生的焦耳热为mv 202C .整个过程中金属棒在导轨上发生的位移为qR BLD .整个过程中金属棒克服安培力做功为mv 202解析:选D.设某时刻的速度为v ,则此时的电动势E =BLv ,安培力F 安=B 2L 2v 2R,由牛顿第二定律有F 安=ma ,则金属棒做加速度减小的减速运动,选项A 错误;由能量守恒定律知,整个过程中克服安培力做功等于电阻R 和金属棒上产生的焦耳热之和,即W 安=Q =12mv 20,选项B 错误,D 正确;整个过程中通过金属棒的电荷量q =ΔΦ2R =BS 2R =BLx 2R,得金属棒在导轨上发生的位移x =2qR BL,选项C 错误. 最新预测2 (2014·潍坊一模)如图所示,两条足够长的平行金属导轨相距L ,与水平面的夹角为θ,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度大小均为B ,虚线上方轨道光滑且磁场方向向上,虚线下方轨道粗糙且磁场方向向下.当导体棒EF 以初速度v 0沿导轨上滑至最大高度的过程中,导体棒MN 一直静止在导轨上.若两导体棒质量均为m 、电阻均为R ,导轨电阻不计,重力加速度为g ,在此过程中导体棒EF 上产生的焦耳热为Q ,求:(1)导体棒MN 受到的最大摩擦力;(2)导体棒EF 上升的最大高度.解析:(1)EF 获得向上的初速度v 0时,感应电动势E =BLv 0电路中电流为I ,由闭合电路欧姆定律:I =E2R此时对导体棒MN 受力分析,由平衡条件:F A +mg sin θ=fF A =BIL解得:f =B 2L 2v 02R+mg sin θ. (2)导体棒EF 上升过程MN 一直静止,对系统由能的转化和守恒定律知12mv 20=mgh +2Q 解得:h =mv 20-4Q 2mg. 答案:(1)B 2L 2v 02R +mg sin θ (2)mv 20-4Q 2mg[失分防范] 用动力学和能量观点解决电磁感应综合问题极易从以下几点失分:①不会分析电源和电路结构,求不出电动势、电流等电学量;②错误分析导体或线圈受力情况,尤其是安培力的大小和方向;③不能正确地把机械运动过程、电磁感应过程和能量转化过程相联系;④思维混乱,错用公式,求不出结果. 可以从以下几点进行防范:①从“三个角度”看问题,即力与运动角度动力、阻力、加速度、匀速还是变速,电磁感应角度电动势、电流、磁场强弱和方向、动生电还是电生动,能量转化角度什么力做了什么功、什么能变成什么能;②从“四个分析”理思路,即“源”、“路”、“力”、“能”的分析,以力的分析为核心,力找对了,导体的运动情况和电磁感应过程就基本清楚了;③从“五个定律”搞突破,即电磁感应定律、楞次定律、欧姆定律、牛顿第二定律、能量守恒定律.)A 一、选择题1.(多选)(2014·高考山东卷)如图,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A .F M 向右B .F N 向左C .F M 逐渐增大D .F N 逐渐减小解析:选BCD.根据直线电流产生的磁场的分布情况知,M 区的磁场方向垂直纸面向外,N 区的磁场方向垂直纸面向里,离导线越远,磁感应强度越小.当导体棒匀速通过M 、N 两区时,感应电流的效果总是反抗引起感应电流的原因,故导体棒在M 、N 两区运动时,受到的安培力均向左,故选项A 错误,选项B 正确;导体棒在M 区运动时,磁感应强度B 变大,根据E =Blv ,I =E R及F =BIl 可知,F M 逐渐变大,故选项C 正确;导体棒在N 区运动时,磁感应强度B 变小,同理可知,F N 逐渐变小,故选项D 正确.2.(2014·高考江苏卷)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中. 在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( ) A.Ba 22Δt B.nBa 22ΔtC.nBa 2ΔtD.2nBa 2Δt解析:选B.线圈中产生的感应电动势E =n ΔΦΔt =n ·ΔB Δt ·S =n ·2B -B Δt ·a 22=nBa 22Δt,选项B 正确.3.(2014·孝感一模)如图甲所示,在竖直向上的匀强磁场中,水平放置一个不变形的铜圆环,规定从上向下看时,铜环中的感应电流I 沿顺时针方向为正方向.图乙表示铜环中的感应电流I 随时间t 变化的图象,则磁场B 随时间t 变化的图象可能是图中的( )解析:选B.由题图乙可知,1~3 s 内无感应电流产生,所以穿过圆环的磁通量不变,所以排除C 选项;对于A 选项,0~1 s 内,磁通量不变,感应电流为零,所以排除;对于B 选项,从电流的方向看,0~1 s 内,磁通量增大,由楞次定律可知电流方向是顺时针方向,而D 项,0~1 s 内,电流方向为逆时针方向,故选项B 正确,D 错误.4.(2013·高考新课标全国卷Ⅱ)如图,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d (d >L )的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t =0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( )解析:选D.导线框刚进入磁场时速度设为v 0,此时产生的感应电动势E =BLv 0,感应电流I =E R =BLv 0R ,线框受到的安培力F =BLI =B 2L 2v 0R .由牛顿第二定律F =ma 知,B 2L 2v 0R=ma ,由楞次定律知线框开始减速,随着速度v 减小,其加速度a 减小,故进入磁场时做加速度减小的减速运动.当线框全部进入磁场开始做匀速运动,在出磁场的过程中,仍做加速度减小的减速运动,故只有D 选项正确.5.(2014·烟台一模)如图所示,匀强磁场垂直纸面向里,磁感应强度的大小为B ,磁场在y 轴方向足够宽,在x 轴方向宽度为a .一直角三角形导线框ABC (BC 边的长度为a )从图示位置向右匀速穿过磁场区域,以逆时针方向为电流的正方向,在下图中感应电流i 、BC 两端的电压U BC 与线框移动的距离x 的关系图象正确的是( )解析:选D.由楞次定律可知,线框刚进入磁场时产生的感应电流的磁场方向垂直纸面向外,故线框中的感应电流沿逆时针方向,为正,又因为线框做匀速运动,故感应电流随位移线性增大;同理可知线框离开磁场时,产生的感应电流大小随位移线性增大,方向为负,选项A 、B 错误;BC 两端的电压U BC 跟感应电流成正比,故选项C 错误,D 正确.6.(2014·洛阳统考)如图所示,在一固定水平放置的闭合导体圆环上方,有一条形磁铁,从离地面高h 处,由静止开始下落,最后落在水平地面上.磁铁下落过程中始终保持竖直方向,并从圆环中心穿过圆环,而不与圆环接触.若不计空气阻力,重力加速度为g ,下列说法中正确的是( )A .在磁铁下落的整个过程中,圆环中的感应电流方向先逆时针后顺时针(从上向下看圆环)B .磁铁在整个下落过程中,所受线圈对它的作用力先竖直向上后竖直向下C .磁铁在整个下落过程中,它的机械能不变D .磁铁落地时的速率一定等于2gh解析:选A.当条形磁铁靠近圆环时,穿过圆环的磁通量增加,根据楞次定律可判断圆环中感应电流的方向为逆时针,当条形磁铁远离圆环时,穿过圆环的磁通量减小,根据楞次定律可判断圆环中感应电流的方向为顺时针,A 正确;根据楞次定律的推论“来拒去留”原则,可判断磁铁在整个下落过程中,所受圆环对它的作用力始终竖直向上,B 错误;磁铁在整个下落过程中,由于受到磁场力的作用,磁铁的机械能不守恒,C 错误;若磁铁从高度h 处做自由落体运动,其落地时的速度为v =2gh ,但磁铁穿过圆环的过程中要产生一部分电热,根据能量守恒定律可知,其落地速度一定小于2gh ,D 错误.7.(多选)(2014·桂林二模)均匀导线制成的正方形闭合线框abcd ,线框的匝数为n 、边长为L 、总电阻为R 、总质量为m ,将其置于磁感应强度为B 的水平匀强磁场上方某高度处,如图所示,释放线框,让线框由静止自由下落,线框平面保持与磁场垂直,cd 边始终与水平的磁场边界平行,已知cd 边刚进入磁场时,线框加速度大小恰好为g4,重力加速度为g ,则线框cd 边离磁场边界的高度h 可能为( )A.9m 2R 2g 32n 4B 4L 4B.m 2R 2g 4n 4B 4L4 C.25m 2R 2g 32n 4B 4L 4 D.27m 2R 2g 32n 4B 4L4 解析:选AC.线框cd 边进入磁场时的速度为v =2gh ,若此时加速度方向竖直向下,则mg-nBIL =ma =m g 4,I =nBLv R ,则h =9m 2R 2g32n 4B 4L4,A 正确;若cd 边进入磁场时的加速度方向竖直向上,则nBIL -mg =ma =m g 4,I =nBLv R ,则h =25m 2R 2g32n 4B 4L4,C 正确.8.(多选)(2014·淄博模拟)如图,足够长的“U”形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L .导轨平面与磁感应强度大小为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ) A .a 点的电势高于b 点的电势B .ab 棒中产生的焦耳热小于ab 棒重力势能的减少量C .下滑位移大小为qR BLD .受到的最大安培力大小为B 2L 2vRsin θ解析:选ABC.由右手定则可以判断流过ab 棒的电流方向为b →a ,由于ab 棒相当于电源,故a 点电势高于b 点电势,A 正确;因ab 棒减少的重力势能还有一部分转化为ab 棒的动能,故ab 棒中产生的焦耳热一定小于ab 棒重力势能的减少量,B 正确;由q =ΔΦR =BLxR可得,棒下滑的位移大小为x =qRBL ,C 正确;当棒运动的速度达到最大时棒受到的安培力最大F m =BI m L =B ·BLv R L =B 2L 2vR,D 错误.9.(多选)(2014·河南中原名校联考)如图所示,顶角θ=45°的金属导轨MON 固定在水平面内,导轨处在方向竖直向下、磁感应强度为B 的匀强磁场中.一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向右滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均为r .导体棒与导轨接触点为a 和b ,导体棒在滑动过程中始终保持与导轨良好接触.t =0时导体棒位于顶角O 处,则流过导体棒的电流强度I 、导体棒内产生的焦耳热Q 、导体棒做匀速直线运动时水平外力F 、导体棒的电功率P 各量大小随时间变化的关系正确的是( )解析:选AC.0到t 时间内,导体棒的位移x =v 0t t 时刻,导体棒的有效切割长度l =x 导体棒的电动势E =Blv 0 回路总电阻R =(2x +2x )r电流强度I =E R=Bv 0+2r,可知I 不变电流方向b →a水平外力F =BIl =B 2v 20t+2r,可知F ∝t .t 时刻导体棒的电功率P =I 2R ′=B 2v 30t+22r由于P ∝t ,故Q =Pt /2=B 2v 30t2+22r,即Q ∝t 2.综上可得A 、C 正确.二、计算题10.(2014·石家庄质检)如图甲所示,两根足够长的平行光滑金属导轨MN 、PQ 被固定在水平面上,导轨间距l =0.6 m ,两导轨的左端用导线连接电阻R 1及理想电压表V ,电阻r =2 Ω的金属棒垂直于导轨静止在AB 处;右端用导线连接电阻R 2,已知R 1=2 Ω,R 2=1 Ω,导轨及导线电阻均不计.在矩形区域CDFE 内有竖直向上的磁场,CE =0.2 m ,磁感应强度随时间的变化如图乙所示.开始时电压表有示数,当电压表示数变为零后,对金属棒施加一水平向右的恒力F ,使金属棒刚进入磁场区域时电压表的示数又变为原来的值,金属棒在磁场中运动时电压表的示数始终保持不变.求:(1)t =0.1 s 时电压表的示数; (2)恒力F 的大小;(3)从t =0时刻到金属棒运动出磁场的过程中整个电路产生的热量. 解析:(1)设磁场宽度为d =CE ,在0~0.2 s 的时间内,有E =ΔΦΔt ,E =ΔB Δtld =0.6 V此时,R 1与金属棒r 并联,再与R 2串联 R =R 并+R 2=1+1=2(Ω)。

2020年高考物理二轮复习经典试题: 电磁感应规律及其应用 Word版含解析 Word版含答案

2020年高考物理二轮复习经典试题: 电磁感应规律及其应用 Word版含解析 Word版含答案

2022年高考物理二轮复习经典试题电磁感应规律及其应用一、选择题(本题共8小题,每小题8分,共64分,其中第2、3、4、5、7、8小题为多选题.)1.[2021·湖北七市联考]奥斯特发觉了电流的磁效应,揭示了电现象和磁现象之间存在着某种联系,法拉第发觉了电磁感应定律,使人们对电和磁内在联系的生疏更加完善.关于电磁感应,下列说法中正确的是()A. 运动的磁铁能够使四周静止的线圈中产生电流B. 静止导线中的恒定电流可以使四周静止的线圈中产生电流C. 静止的磁铁不行以使四周运动的线圈中产生电流D. 运动导线上的恒定电流不行以使四周静止的线圈中产生电流解析:依据感应电流产生条件,运动的磁铁能够使四周静止的闭合线圈中产生电流,选项A正确.静止导线中的恒定电流不行以使四周静止的线圈中产生电流,选项B错误.静止的磁铁可以使四周运动的闭合线圈中产生电流,选项C错误.运动导线上的恒定电流可以使四周静止的闭合线圈中产生电流,选项D错误.答案:A2.[2021·武汉调研]如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B,线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A. 闭合开关S时,B中产生图示方向的感应电流B. 闭合开关S时,B中产生与图示方向相反的感应电流C. 断开开关S时,电磁铁会连续吸住衔铁D一小段时间D. 断开开关S时,弹簧K马上将衔铁D拉起解析:闭合开关S时,线圈B的磁通量增大,由楞次定律知,线圈B中产生与图示方向相反的感应电流,选项A错误,B正确;断开开关S时,线圈B中的磁通量减小,线圈B产生感应电流,感应电流的磁场连续吸引衔铁D一小段时间,选项C正确,D错误.答案:BC3.如图,水平的平行虚线间距为d=60 cm,其间有沿水平方向的匀强磁场.一个阻值为R的正方形金属线圈边长l<d,线圈质量m=100 g.线圈在磁场上方某一高度处由静止释放,保持线圈平面与磁场方向垂直,其下边缘刚进入磁场和刚穿出磁场时的速度相等.不计空气阻力,取g =10 m/s 2.则( )A. 线圈下边缘刚进磁场时加速度最小B. 线圈进入磁场过程中产生的电热为0.6 JC. 线圈在进入磁场和穿出磁场的过程中,电流均为逆时针方向D. 线圈在进入磁场和穿出磁场的过程中,通过导线截面的电荷量相等 解析:由于线圈下边缘刚进入磁场和刚穿出磁场时的速度相等,且线圈全部在磁场中运动时有一段加速阶段,则可推断出线圈下边缘刚进入磁场时安培力大于重力,线圈做减速运动,加速度渐渐减小,选项A 错误;线圈进入磁场过程中,由能量守恒定律得Q =ΔE p =mgd =0.1×10×0.6 J =0.6 J ,选项B 正确;线圈进入磁场过程中电流为逆时针方向,线圈离开磁场过程中,电流为顺时针方向,选项C 错误;线圈进入磁场和穿出磁场过程中,通过导线截面的电荷量均为q =Bl 2R ,选项D 正确.答案:BD4.上海磁悬浮列车于2003年10月1日正式运营.如图所示为其磁悬浮原理,B 是用高温超导材料制成的超导圆环,A 是圆柱形磁铁,将超导圆环B 水平放在磁铁A 上,它就能在磁场力作用下悬浮在磁铁A 的上方空中.以下推断正确的是( )A. 在B 放入磁场的过程中,B 中将产生感应电流,当稳定后,感应电流消逝B. 在B 放入磁场的过程中,B 中将产生感应电流,当稳定后,感应电流仍存在C. 在B 放入磁场的过程中,如B 中感应电流方向如图所示,则A 的N 极朝上D. 在B 放入磁场的过程中,如B 中感应电流方向如图所示,则A 的S 极朝上解析:当B 环靠近A 时,穿过B 环中的磁通量增大,在该环中会产生感应电流.由于超导体(电阻率为零)没有电阻,所以B 环中的电流不会变小,永久存在,故选项A 错、B 对;由安培定则可推断出B 环的下面是N 极,因此A 的N 极朝上,故选项C 对、D 错.答案:BC5.如图所示,正方形匀强磁场区域内,有一个正方形导线框abcd ,导线粗细均匀,导线框平面与磁感线垂直,导线框各边分别与磁场边界平行.第一次将导线框垂直磁场边界以速度v 匀速拉出磁场,其次次朝另一个方向垂直磁场边界以速度3v 匀速拉出磁场,则将导线框两次拉出磁场的过程中( )A. 导线框中产生的感应电流方向相同B. 导线框中产生的焦耳热相同C. 导线框ad 边两端电势差相同D. 通过导线横截面的电量相同。

2020届高考物理二轮复习专题练习卷:电磁感应规律及其综合应用

2020届高考物理二轮复习专题练习卷:电磁感应规律及其综合应用

电磁感应规律及其综合应用一、选择题1.(2018·黄冈中学元月月考)如右图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑片P自左向右滑动的过程中,线圈ab将()A.静止不动B.顺时针转动C.逆时针转动D.发生转动,但电源的极性不明,无法确定转动方向2.(2018·乐山二诊)如右图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是()A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大3.(2019·珠海毕业班水平测试)如右图所示,金属杆ab水平放置在某高处,当它被平抛进入方向竖直向上的匀强磁场中时,以下说法中正确的是()A .运动过程中感应电动势大小不变,且φa >φbB .运动过程中感应电动势大小不变,且φa <φbC .由于速率不断增大,所以感应电动势不断变大,且φa >φbD .由于速率不断增大,所以感应电动势不断变大,且φa <φb4.(多选)(2019·德阳高三年级二诊)如图甲所示,质量m =3.0×10-3 kg 的“”形金属细框竖直放置在两水银槽中,“”形框的水平细杆CD 长l =0.20 m ,处于磁感应强度大小B 1=1.0 T 、方向水平向右的匀强磁场中.有一匝数n =300、面积S =0.01 m 2的线圈通过开关K 与两水银槽相连.线圈处于与线圈平面垂直、沿竖直方向的匀强磁场中,其磁感应强度B 2随时间t 变化的关系如图乙所示.t =0.22 s 时闭合开关K 瞬间细框跳起(细框跳起瞬间安培力远大于重力),跳起的最大高度h =0.20 m .不计空气阻力,重力加速度g =10 m/s 2,下列说法正确的是( )A .0~0.10 s 内线圈中的感应电动势大小为3 VB .开关K 闭合瞬间,CD 中的电流方向由C 到D C .磁感应强度B 2的方向竖直向下D .开关K 闭合瞬间,通过细杆CD 的电荷量为0.03 C5.(2018·全国卷Ⅱ)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为32l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线可能是( )6.(2019·江西六校联考)如图所示,两条平行虚线之间存在匀强磁场,磁场方向垂直纸面向里,虚线间的距离为L,金属圆环的直径也为L.自圆环从左边界进入磁场开始计时,以垂直于磁场边界的恒定速度v穿过磁场区域.规定逆时针方向为感应电流i的正方向,则圆环中感应电流i随其移动距离x变化的i-x图像最接近图中的()7.(2019·黑龙江三市调研)如图甲所示,圆形金属线圈与定值电阻组成闭合回路,线圈处于均匀分布的磁场中,磁场方向与线圈平面垂直(取垂直纸面向里为正方向),B-t图像如图乙所示,已知t1为0~t2的中间时刻,则定值电阻中的感应电流I(取通过定值电阻由上往下的方向为正方向)随时间t变化的图线是()8.(2019·石家庄质检二)如图甲所示,导体棒MN 置于水平导轨上,P 、Q 之间有阻值为R 的电阻,PQNM 所围的面积为S ,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( )A .在0~t 0和t 0~2t 0内,导体棒受到导轨的摩擦力方向相同B .在t 0~2t 0内,通过电阻R 的电流方向为P 到QC .在0~t 0内,通过电阻R 的电流大小为2B 0S Rt 0D .在0~2t 0内,通过电阻R 的电荷量为B 0SR9.(多选)(2019·武汉市武昌区高三调研)如图1和图2所示,匀强磁场的磁感应强度大小均为B ,垂直于磁场方向均有一足够长的、间距均为l 的光滑竖直金属导轨,图1和图2的导轨上端分别接有阻值为R 的电阻和电容为C 的电容器(不会被击穿),水平放置的、质量分布均匀的金属棒的质量均为m ,现使金属棒沿导轨由静止开始下滑,金属棒和导轨始终接触良好且它们的电阻均可忽略.以下关于金属棒运动情况的说法正确的是(已知重力加速度为g )( )A.图1中的金属棒先做匀加速直线运动,达到最大速度v m=mgRB2l2后,保持这个速度做匀速直线运动B.图1中的金属棒先做加速度逐渐减小的加速运动,达到最大速度v m=mgRB2l2后,保持这个速度做匀速直线运动C.图2中电容器相当于断路,金属棒做加速度大小为g的匀加速直线运动D.图2中金属棒做匀加速直线运动,且加速度大小为a=mgm+CB2l2二、非选择题10.(2019·天津卷)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好.MN 两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ的质量为m,金属导轨足够长、电阻忽略不计.(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ 的电荷量为q,求该过程安培力做的功W.11.如右图所示,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:(1)电容器极板上积累的电荷量与金属棒速度大小的关系;(2)金属棒的速度大小随时间变化的关系.参考答案1.B2.B3.A4.BD5.D6.A7.D8.D9.BD10.[答案] (1)Bkl 3R 方向水平向右 (2)12mv 2-23kq11.[答案] (1)Q =CBLv (2)v =m (sin θ-μcos θ)m +B 2L 2C gt。

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t 1时刻F N >GB.t 2时刻F N >GC.t 3时刻F N <GD.t 4时刻F N =G 解析:t 1时刻,Q 中电流正在增大,穿过P 的磁通量增大,P 中产生与Q 方向相反的感应电流,反向电流相互排斥,所以F N >G ;t 2时刻Q 中电流稳定,P 中磁通量不变,没有感应电流,F N =G ;t 3时刻Q 中电流为零,P 中产生与Q 在t 3时刻前方向相同的感应电流,而Q 中没有电流,所以无相互作用,F N =G ;t 4时刻,P 中没有感应电流,F N =G .答案:AD6.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是()图12-7A.U a <U b <U c <U dB.U a <U b <U d <U cC.U a =U b <U d =U cD.U b <U a <U d <U c 解析:线框进入磁场后切割磁感线,a 、b 产生的感应电动势是c 、d 电动势的一半.而不同的线框的电阻不同.设a 线框电阻为4r ,b 、c 、d 线框的电阻分别为6r 、8r 、6r ,则4343BLv r r BLv U a =⋅=,,6565BLv r r BLv U b =⋅=,23862BLv r r Lv B U c =⋅= .34642Blv r r Lv B U d =⋅=所以B 正确. 答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动,从槽口右侧射入的带电微粒的速度是v 2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r 和周期T 分别为()图12-8 A.g v g v v 2212,π B.g v g v v 1212,π C.g v g v 112,π D.gv g v 212,π 解析:金属板折成“”形的金属槽放在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11Bv lBlv d U E ===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1g qBv g qE m ==向心力由洛伦兹力提供,所以,222r v m B qv =得gv m qB mv r 212==,周期gv v r T 1222ππ==,故B 项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B nE ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),tn E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv 由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.BlsCQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)

高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t1时刻F N>GB.t2时刻F N>GC.t3时刻F N<GD.t4时刻F N=G解析:t1时刻,Q中电流正在增大,穿过P的磁通量增大,P中产生与Q方向相反的感应电流,反向电流相互排斥,所以F N>G;t2时刻Q中电流稳定,P中磁通量不变,没有感应电流,F N=G;t3时刻Q 中电流为零,P中产生与Q在t3时刻前方向相同的感应电流,而Q中没有电流,所以无相互作用,F N=G;t4时刻,P中没有感应电流,F N=G.答案:AD6.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c 和U d.下列判断正确的是()图12-7A.U a<U b<U c<U dB.U a<U b<U d<U cC.U a=U b<U d=U cD.U b<U a<U d<U c解析:线框进入磁场后切割磁感线,a、b产生的感应电动势是c、d电动势的一半.而不同的线框的电阻不同.设a线框电阻为4r,b、c、d线框的电阻分别为6r、8r、6r,则4343BLvrrBLvUa=⋅=,,6565BLvrrBLvUb=⋅=,23862BLvrrLvBUc=⋅=.34642BlvrrLvBUd=⋅=所以B正确.答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B的匀强磁场中,并以速度v1向右匀速运动,从槽口右侧射入的带电微粒的速度是v2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r和周期T分别为()图12-8A.gvgvv2212,πB.gvgvv1212,πC.gvgv112,πD.gvgv212,π解析:金属板折成“”形的金属槽放在磁感应强度为B的匀强磁场中,并以速度v1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11BvlBlvdUE===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1gqBvgqEm==向心力由洛伦兹力提供,所以,222rvmBqv=得gvmqBmvr212==,周期gvvrT1222ππ==,故B项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B n E ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),t n E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.Bls CQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。

高三物理二轮复习 专题5 第2讲电磁感规律及用检测试题

高三物理二轮复习 专题5 第2讲电磁感规律及用检测试题

咐呼州鸣咏市呢岸学校【走向高考】高三物理二轮复习5 第2讲电磁感规律及用检测试题一、选择题(1~6题只有一个选项正确,7~10小题有多个选项正确)1.(2021·课标Ⅰ)在法拉第时代,以下验证“由磁产生电〞设想的中,能观察到感电流的是( ) A.将绕在磁铁上的线圈与电流表组成一闭合电路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化[答案] D[解析] 该题考查产生感电流的条件。

解题的关键要明确感电流是在“运动〞“变化〞中产生的。

A、B选项中磁通量不发生变化因此不会产生感电流。

C选项中虽然能产生感电流,但到另一房间观察时,又无电流了。

D选项中穿过闭合电路的磁通量发生变化,符合要求,D正确。

该题关键要理解产生感电流的条件。

2.(2021·质检)法拉第创造了上第一台发电机——法拉第圆盘发电机。

如下图,紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路。

转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转。

以下说法正确的选项是( )A.回路中电流大小变化,方向不变B.回路中电流大小不变,方向变化C.回路中电流的大小和方向都周期性变化D.回路中电流方向不变,从b导线流进电流表[答案] D[解析] 圆盘在磁场中切割磁感线产生恒的感电动势E=12BωR2,由右手那么判断得a端为负极、b 端为正极,所以只有D项正确。

3.(2021·)如下图,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中。

在Δt时间内,磁感强度的方向不变,大小由B均匀地增大到2B 。

适用于新高考新教材2024版高考物理二轮复习专题电磁感应规律及综合应用(含答案)

适用于新高考新教材2024版高考物理二轮复习专题电磁感应规律及综合应用(含答案)

适用于新高考新教材高考物理二轮复习专题:专题分层突破练11 电磁感应规律及综合应用A组基础巩固练1.(2023山东烟台一模)智能手表通常采用无线充电方式充电。

如图甲所示,充电基座与交流电源相连,智能手表放置在充电基座旁时未充电,将智能手表压在充电基座上,无需导线连接,智能手表便可以充电(如图乙所示)。

已知充电基座与智能手表都内置了线圈,则()A.智能手表和充电基座无导线连接,所以传输能量时没有损失B.用塑料薄膜将充电基座包裹起来,之后仍能为智能手表充电C.无线充电的原理是利用充电基座内的线圈发射电磁波传输能量D.充电时,充电基座线圈的磁场对智能手表线圈中的电子施加力的作用,驱使电子运动2.(2023山东德州模拟)某课题组要测量某金属材料的电阻率,他们先取适量该金属材料切割成如图所示的长方体,长方体的三条边长分别为a、b、c,长方体上、下表面与电流传感器用导线相连,导线左端紧贴长方体上、下表面。

虚线框左侧有垂直于长方体前、后表面的匀强磁场,磁感应强度大小为B。

使匀强磁场以大小为v的速度向左运动时(长方体全部处于磁场中),电流传感器显示回路中的电流大小为I。

不计电流传感器及导线的电阻,则该金属材料的电阻率为()A.BvabI B.Bvab2IcC.Bvbc2IaD.Bvcb2Ia3.(2023江苏卷)如图所示,圆形区域内有垂直纸面向里的匀强磁场,OC导体棒的O端位于圆心,棒的中点A位于磁场区域的边缘。

现使导体棒绕O点在纸面内逆时针转动。

O、A、C点电势分别为φO、φA、φC,则()A.φO>φCB.φC>φAC.φO=φAD.φO-φA=φA-φC4.(多选)(2023辽宁沈阳模拟)如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里。

有一半径为R的线圈,其单位长度上的电阻为r,线圈平面与磁场方向垂直,线圈直径MN垂直磁场边界于M点。

现以M点为轴在纸面内,线圈沿顺时针方向匀速旋转90°,角速度为ω,则()A.感应电流方向为顺时针方向B.感应电动势的最大值为BR2ωC.感应电流的最大值为2BR 2ωrD.通过线圈任意横截面的电荷量为BR4r5.(2023湖南娄底模拟)轻质细线吊着一质量为m=1 kg、边长为0.2 m、电阻R=1 Ω、匝数n=10的正方形闭合线圈abcd,bd为正方形闭合线圈的对角线,bd下方区域分布着匀强磁场,如图甲所示。

2021届高考二轮复习 电路与电磁感应专题 第2讲 电磁感应规律及其应用 课时练(解析版)

2021届高考二轮复习 电路与电磁感应专题 第2讲 电磁感应规律及其应用 课时练(解析版)

2021届高考二轮复习电路与电磁感应专题第2讲电磁感应规律及其应用课时练(含解析)一、选择题(1~5题为单项选择题,6~10题为多项选择题)1. 有一个本来无电流的固定的金属圆环如图所示,虚线为其轴线,在其右侧有一个条形永磁体,永磁体在圆环的轴线上,当永磁体绕垂直于纸面的水平轴OO′匀速转动时,如果从右往左看,下列情况下,关于圆环中感应电流的方向和大小的说法正确的是() A.当永磁体顺时针开始转动瞬间,感应电流沿顺时针方向,感应电流最大B.当永磁体顺时针开始转动瞬间,感应电流沿逆时针方向,感应电流最大C.当永磁体逆时针开始转动瞬间,感应电流沿顺时针方向,感应电流最小D.当永磁体逆时针开始转动瞬间,感应电流沿逆时针方向,感应电流最小C[根据楞次定律可知,不管永磁体是顺时针转动还是逆时针转动,开始转动瞬间垂直向左穿过圆环的磁感线条数减少,由楞次定律可知感应电流的磁场方向一定向左,根据安培定则可知,感应电流的方向是顺时针方向(从右往左看),此时穿过圆环的磁通量最大,磁通量的变化率最小,所以感应电流最小,选项C 正确。

]2. (2020·安徽蚌埠市第二次质检)同一平面内固定有一长直导线PQ和一带缺口的刚性金属圆环,在圆环的缺口两端引出两根导线,分别与两块垂直于圆环所在平面固定放置的平行金属板M、N连接,如图甲所示。

导线PQ中通有正弦交变电流i,i的变化如图乙所示,规定从Q到P为电流的正方向,则在1~2 s内()A.M板带正电,且电荷量增加B.M板带正电,且电荷量减小C.M板带负电,且电荷量增加D.M板带负电,且电荷量减小A[在1~2 s内,穿过金属圆环的磁场垂直于纸面向里,磁感应强度变小,穿过金属圆环的磁通量变小,磁通量的变化率变大。

假设环闭合,由楞次定律可知感应电流磁场与原磁场方向相同,即感应电流磁场方向垂直于纸面向里,然后由安培定则可知感应电流沿顺时针方向,由法拉第电磁感应定律可知感应电动势增大,由此可知M板电势高,带正电,电荷量增加,故A正确,B、C、D错误。

高考物理二轮复习 专题五 电路与电磁感应 5.12 电磁感

高考物理二轮复习 专题五 电路与电磁感应 5.12 电磁感

电磁感应规律及其应用一、选择题1.如图,倾角为α的斜面上放置着光滑平行导轨,导轨下端连有一定值电阻R,金属棒KN垂直放置于导轨上,在ab左侧存在有界匀强磁场B,磁场方向垂直斜面向上,在cd 左侧的无磁场区域cdPM内有一半径很小的金属圆环L,圆环也放置在斜面上.当金属棒KN 在重力作用下从磁场右边界ab处由静止开始沿导轨向下运动后,下列说法正确的是( )A.圆环有收缩趋势B.圆环有扩张趋势C.圆环内产生的感应电流变大D.圆环内产生的感应电流不变解析:由于金属棒KN在重力的作用下向下运动,则KNMP回路中产生逆时针方向(垂直斜面向下看)的感应电流,则在圆环处产生垂直于斜面向上的磁场,随着金属棒做加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量增大;又由于金属棒沿导轨向下运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小,A正确.答案:A2.2015·新课示全国卷Ⅰ(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,圆盘的半径切割磁感线产生感应电动势和感应电流,选项A正确;圆盘内的涡电流产生的磁场对磁针施加磁场力作用,导致磁针转动,选项B正确;由于圆盘中心正上方悬挂小磁针,在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量不变,选项C错误;圆盘中自由电子随圆盘一起运动形成的电流的磁场,由安培定则可判断出在中心方向竖直向下,其他位置关于中心对称,此磁场不会导致磁针转动,选项D错误.答案:AB3.(多选)如图a所示为放在同一水平面内的两个闭合同心圆形线圈A、B,线圈A中通入如图b所示的电流,t=0时电流方向为顺时针(如图中箭头所示),则下列说法中正确的是( )图(a) 图(b)A .在t 1~t 2时间段内,线圈B 内有顺时针方向的电流,线圈B 有扩张的趋势 B .在t 1~t 2时间段内,线圈B 内感应电流产生的磁场方向垂直纸面向里C .在0~t 1时间段内,线圈B 内有逆时针方向的电流D .在0~t 1时间段内,线圈B 有收缩的趋势解析:在t 1~t 2时间段内,线圈A 中的电流为逆时针方向,产生的磁场垂直纸面向外且是增大的,由此可判定线圈B 中的电流为顺时针方向,产生的磁场方向垂直纸面向里,线圈A 、B 中电流方向相反,相互排斥,线圈B 有扩张趋势,故A 、B 正确;在0~t 1时间段内,线圈A 中的电流为顺时针方向,产生的磁场垂直纸面向里且是减小的,线圈B 内有顺时针方向的感应电流,线圈A 、B 相互吸引,线圈B 有收缩的趋势,C 错误,D 正确.答案:ABD4.2015·福建理综如图,由某种粗细均匀的总电阻为3R 的金属条制成的矩形线框abcd ,固定在水平面内且处于方向竖直向下的匀强磁场B 中.一接入电路电阻为R 的导体棒PQ ,在水平拉力作用下沿ab 、dc 以速度v 匀速滑动,滑动过程PQ 始终与ab 垂直,且与线框接触良好,不计摩擦.在PQ 从靠近ad 处向bc 滑动的过程中( )A .PQ 中电流先增大后减小B .PQ 两端电压先减小后增大C .PQ 上拉力的功率先减小后增大D .线框消耗的电功率先减小后增大解析:PQ 切割磁感线运动产生感应电动势,与线框形成闭合回路,等效电路图如图所示.由题意,PQ 运动过程中,E 不变,r =R .PQ 左侧线框电阻R 1增大,PQ 右侧线框电阻R 2减小,且R 1+R 2=3R .电流I =E r +R 并,R 并=R 1R 2R 1+R 2,在R 1=R 2时,R 并最大,因此电流先减小后增大,A 错误.由U=E -Ir 可知,PQ 两端电压先增大后减小,B 错误.拉力的功率P =Fv =BILv ,先减小后增大,C 正确.R 并最大时R 1=R 2,此时R 并=0.75R <r ,由电源输出功率的规律可知,线框消耗功率先增大后减小,D 错误.答案:C 5.如图所示,在光滑的水平面上,一质量为m ,半径为r ,电阻为R 的均匀金属环,以v 0的初速度向一磁感应强度大小为B 、方向竖直向下的有界匀强磁场滑去(磁场宽度d >2r ).圆环的一半进入磁场历时t 秒,这时圆环上产生的焦耳热为Q ,则t 秒末圆环中感应电流的瞬时功率为( )A.4B 2r 2v 2R B.4B 2r 2v 20-2Q m RC.2B 2r 2v 20-2QmRD.B 2r 2π2v 20-2QmR解析:t 秒末圆环中感应电动势为E =B ·2r ·v ,由能量守恒知,减少的动能全部转化为焦耳热,Q =12mv 20-12mv 2,t 秒末圆环中感应电流的功率为P =EI =E2R =4B 2r 2v 20-2Q m R.答案:B6.2015·海南单科如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v 沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε;将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v 运动时,棒两端的感应电动势大小为ε′,则ε′ε等于( )A.12B.22C .1 D. 2解析:设金属棒长度为l ,匀强磁场的磁感应强度为B ,根据电磁感应定律得ε=Blv .金属棒弯折后,切割磁感线运动的有效长度变为22l ,故ε′=22Blv .因此ε′ε=22,B正确.答案:B7.2015·重庆理综图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A .恒为nSB 2-B 1t 2-t 1B .从0均匀变化到nS B 2-B 1t 2-t 1C .恒为-nS B 2-B 1t 2-t 1D .从0均匀变化到-nS B 2-B 1t 2-t 1解析:根据E =n ΔΦΔt ,ΔΦ=(B 2-B 1)S ,知E =nS B 2-B 1t 2-t 1,根据楞次定律可判断电流由a 流向b ,电源内部由低电势流向高电势,所以φb >φa ,A 、B 错误.磁感应强度均匀增加,产生恒定电动势,C 正确,D 错误.答案:C二、非选择题 8.(2015·天津理综)如图所示,“凸”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l .匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动.在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q .线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g .求(1)线框ab 边将离开磁场时做匀速运动的速度大小是cd 边刚进入磁场时的几倍; (2)磁场上下边界间的距离H .解析:(1)设磁场的磁感应强度大小为B ,cd 边刚进入磁场时,线框做匀速运动的速度为v 1,cd 边上的感应电动势为E 1,由法拉第电磁感应定律,有E 1=2Blv 1 ①设线框总电阻为R ,此时线框中电流为I 1,由闭合电路欧姆定律,有I 1=E 1R②设此时线框所受安培力为F 1,有 F 1=2I 1lB ③由于线框做匀速运动,其受力平衡,有 mg =F 1 ④由①②③④式得v 1=mgR4B 2l2 ⑤ 设ab 边离开磁场之前,线框做匀速运动的速度为v 2,同理可得v 2=mgRB 2l 2 ⑥由⑤⑥式得 v 2=4v 1 ⑦(2)线框自释放直到cd 边进入磁场前,由机械能守恒定律,有2mgl =12mv 21 ⑧线框完全穿过磁场的过程中,由能量守恒定律,有mg (2l +H )=12mv 22-12mv 21+Q ⑨由⑦⑧⑨式得H =Qmg+28l ⑩ 答案:(1)4倍 (2)Q mg+28l9.2015·浙江理综小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10 m/s 2)图1 图2(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10 Ω.不接外电流,两臂平衡.如图2所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg的物体时,天平平衡,求此时磁感应强度的变化率ΔBΔt.。

物理高三复习电磁感应规律及其应用专项练习题(带答案)-教学文档

物理高三复习电磁感应规律及其应用专项练习题(带答案)-教学文档

物理2019-2019高三复习电磁感应规律及其应用专项练习题(带答案)电磁感应现象是指放在变化磁通量中的导体,会产生电动势,下面是电磁感应规律及其应用专项练习题,请考生认真练习。

一、选择题(共8小题,每小题4分,共32分。

在每小题给出的四个选项中,第1~6题只有一项符合题目要求,第7~8题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。

)1.(2019新课标全国卷,15)如图,直角三角形金属框abc放置在匀强磁场中,磁感应强度大小为B,方向平行于ab边向上。

当金属框绕ab边以角速度逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc。

已知bc边的长度为l。

下列判断正确的是()A.UaUc,金属框中无电流B.UbUc,金属框中电流方向沿a-b-c-aC.Ubc=-Bl2,金属框中无电流D.Ubc=Bl2,金属框中电流方向沿a-c-b-a2.(2019重庆理综,4)图为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S。

若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差b(A.恒为B.从0均匀变化到C.恒为-D.从0均匀变化到-3.(2019安徽理综,19)如图所示,abcd为水平放置的平行形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。

已知金属杆MN倾斜放置,与导轨成角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。

则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的发热功率为4.(2019福建理综,18)如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中。

一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦。

高三物理高考二轮复习 第一部分 专题五 第2讲 电磁感应规律及其应用

高三物理高考二轮复习 第一部分 专题五 第2讲 电磁感应规律及其应用

研考向 融会贯通
提能力 强化闯关
限时 规范训练
考向一
试题
解析
考向一 考向二 考向三
由图乙知, 0~ 1 s 内螺线管中电流逐渐增大,穿过圆环向上的磁通量增大, 由楞次定律知圆环中感应电流的磁场向下,圆环面积有缩小的趋势,从上往 下看,0~ 1 s 内圆环中的感应电流沿顺时针方向,选项 A 正确,B 错误;同 理可得 1~ 2 s 内和 2~3 s 内圆环中的感应电流方向相同,选项 D 错误; 3 s 末电流的变化率为 0,螺线管中磁感应强度的变化率为 0,在圆环中不产生 感应电流,圆环对桌面的压力等于圆环的重力,选项 C 错误.
考向四
研考向 融会贯通
提能力 强化闯关
限时 规范训练
考向二
电磁感应中的图象问题
考向一 考向二 考向三
[方法技巧] 1.解答电磁感应图象问题的“ 3 个关注” (1)看初始时刻感应电流是否为零,电流方向是正方向还是负方向. (2)看电磁感应发生的过程分为几个阶段,这几个阶段是否和图象变化相对 应. (3)看图象斜率的大小、图象的曲直是否和物理过程对应,分析大小和方向的 变化趋势.
考向四
2.求感应电动势的两种方法 ΔΦ (1)E=n ,用来计算感应电动势的平均值. Δt (2)E=BLv,主要用来计算感应电动势的瞬时值.
研考向 融会贯通
提能力 强化闯关
限时 规范训练
考向一
3.感应电流方向的判断方法
考向一 考向二 考向三
一是利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判 断; 二是利用楞次定律,即根据穿过回路的磁通量的变化情况进行判断. 4.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”;

2024高考物理二轮复习专题五电路与电磁感应1_5_12电磁感应规律及其应用训练

2024高考物理二轮复习专题五电路与电磁感应1_5_12电磁感应规律及其应用训练

1-5-12 电磁感应规律及其应用课时强化训练1.(2024·江苏单科)(多选)如图所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B 。

质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等。

金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g 。

金属杆( )A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR2B 4L4[解析] 本题考查电磁感应与动力学、能量问题的综合应用。

要使杆进入磁场Ⅰ和Ⅱ时的速度相等,杆刚进入磁场Ⅰ时必需减速运动,加速度方向竖直向上,故A 错误。

杆在Ⅰ区做加速度减小的减速运动,在两磁场之间做a =g 的匀加速运动,运动过程如图所示(其中v 1为杆刚进入Ⅰ时的速度,v 2为杆刚出Ⅰ时的速度),图线与时间轴所围的面积表示位移,两段运动的位移相等,则t 1>t 2-t 1,故B 正确。

对杆从进入磁场Ⅰ至刚穿出磁场Ⅱ的过程应用动能定理得mg ·3d +W 安=12mv 22-12mv 21,对杆穿过两磁场之间的过程应用动能定理得mgd =12mv 21-12mv 22,解得W 安=-4mgd ,由功能关系得Q =-W 安=4mgd ,故C 正确。

若杆刚进入磁场Ⅰ时恰好匀速,则有B 2L 2v 1R =mg ,v 1=mgR B 2L 2,代入h =v 212g 得h =m 2gR 22B 4L 4,因为杆刚进入Ⅰ时必需做减速运动,故肯定有h >m 2gR 22B 4L4,故D 错误。

[答案] BC2.(2024·湖北八校二联)(多选)已知地磁场类似于条形磁铁产生的磁场,地磁N 极位于地理南极旁边。

如图所示,在湖北某中学试验室的水平桌面上,放置边长为L 的正方形闭合导体线框abcd ,线框的ad边沿南北方向,ab边沿东西方向,下列说法正确的是( )A.若使线框向东平移,则a点电势比d点电势低B.若使线框向北平移,则a点电势等于b点电势C.若以ad边为轴,将线框向上翻转90°,则翻转过程线框中电流方向始终为adcba方向D.若以ab边为轴,将线框向上翻转90°,则翻转过程线框中电流方向始终为adcba方向[解析] 地球北半部的磁场方向由南向北斜向下,可分解为水平向北和竖直向下两个重量。

2022年高三二轮专题复习物理专题跟踪检测 电磁感应的规律及综合应用

2022年高三二轮专题复习物理专题跟踪检测 电磁感应的规律及综合应用

专题跟踪检测电磁感应的规律及综合应用A组1.(2021·北京市房山区高三下学期5月二模)磁电式仪表的基本组成部分是磁铁和线圈。

缠绕线圈的骨架常用铝框,铝框、指针固定在同一转轴上。

线圈未通电时,指针竖直指在表盘中央;线圈通电时发生转动,指针随之偏转,由此就能确定电流的大小。

如图所示,线圈通电时指针向右偏转,在此过程中,下列说法正确的是()A.俯视时线圈中通有逆时针方向的电流B.穿过铝框的磁通量减少C.俯视看铝框中产生顺时针方向的感应电流D.使用铝框做线圈骨架能够尽快使表针停在某一刻度处解析:D由左手定则可知,俯视时线圈中通有顺时针方向的电流,选项A错误;因为线圈在水平位置时磁通量为零,则线圈转动时,穿过铝框的磁通量向左增加,根据楞次定律可知,俯视看铝框中产生逆时针方向的感应电流,选项B、C错误;当铝框中产生感应电流时,铝框受到的安培力与运动方向相反,故起到了阻尼作用,则使用铝框做线圈骨架能够尽快使表针停在某一刻度处,故D正确。

2.(2021·广东华南师大附中高三三模)如图所示,水平地面上矩形区域CDEF上方存在竖直向下的匀强磁场,将一水平放置的金属棒ab从矩形区域CD边的正上方以某一速度水平抛出,不计空气阻力,金属棒在运动过程中始终保持水平,最后落在地面EF边上。

下列说法正确的是() A.如果初速度减小,运动时间随之减小B.金属棒运动过程中,a、b两点间电势差保持不变C.单位时间内,金属棒的动量增量增大D.金属棒ab扫过的曲面中的磁通量大小与其抛出的高度相关解析:B ab不受安培力,只受重力作用,运动时间只与高度有关,故如果初速度减小,运动时间不变,故A错误;由E=Bl v,可得水平速度不变,则a、b两点间电势差保持不变,故B正确;由动量定理Δp=mgt,得知重力不变,故单位时间内,动量的增量不变,故C错误;由于金属棒ab扫过的曲面在水平面的投影面积不变,所以磁通量不变,故D错误。

最新高考物理二轮复习题型专题训练: 电磁感应定律及其应用(含解析)

最新高考物理二轮复习题型专题训练:  电磁感应定律及其应用(含解析)

专题电磁感应定律及其应用题型一、电磁感应现象的理解和判断【典例1】.(2019·佛山高三质检)如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心轴线恰和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有()A.使通电螺线管中的电流发生变化B.使螺线管绕垂直于线圈平面且过线圈圆心的轴转动C.使线圈a以MN为轴转动D.使线圈绕垂直于MN的直径转动【答案】:D【解析】:在A、B、C三种情况下,穿过线圈a的磁通量始终为零,因此不产生感应电流,A、B、C错误;选项D中,当线圈绕垂直于MN的直径转动时,穿过线圈的磁通量发生变化,会产生感应电流,故D正确.题型二、对楞次定律和右手定则的理解与应用【典例2】.(2019·江苏扬州一模)航母上飞机弹射起飞是利用电磁驱动来实现的。

电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间()A.两个金属环都向左运动B.两个金属环都向右运动C.铜环受到的安培力小于铝环受到的安培力D.从左侧向右看,铝环中感应电流沿顺时针方向【答案】D【解析】合上开关S的瞬间,穿过两个金属环的磁通量变大,为阻碍磁通量的增大,铝环向左运动,铜环向右运动,A、B错误;由于铜环和铝环的形状、大小相同,铜的电阻率较小,故铜环的电阻较小,两环对称地放在固定线圈两侧,闭合S瞬间,穿过两环的磁通量的变化率相同,两环产生的感应电动势大小相同,铜环电阻较小,则铜环中的感应电流较大,故铜环受到的安培力较大,C错误;由右手螺旋定则可知,闭合S瞬间,穿过铝环的磁通量向左增大,由楞次定律知,从左侧向右看,铝环中感应电流沿顺时针方向,D正确。

题型三、三定则、一定律的综合应用【典例3】.(2019·贵州五校联考)如图所示,在匀强磁场中,放有一与线圈D相连接的平行导轨,要使放在线圈D中的线圈A(A、D两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN的运动情况可能是()A.匀速向右B.加速向左C.加速向右D.减速向左【答案】:BC【解析】:若金属棒MN匀速向右运动,则线圈D与MN组成回路中的电流恒定,故穿过线圈A的磁通量不变,线圈A不受安培力作用,选项A错误;若金属棒MN加速向左运动,则线圈D与MN组成回路中的电流不断增强,故穿过线圈A的磁通量不断增强,根据楞次定律,为阻碍磁通量的增强,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项B正确;同理可得,当金属棒MN加速向右运动时,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项C正确;当金属棒MN减速向左运动时,线圈A有扩张的趋势,受到沿半径方向背离圆心的安培力,选项D错误.题型四、法拉第电磁感应定律的应用【典例4】.(2019·济南高三模拟)在如图甲所示的电路中,螺线管匝数n =1000匝,横截面积S =20 cm 2,螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF 。

2021年高考物理二轮专题复习 第2课 电磁感应规律及其应用课时过关检测试题(B卷)

2021年高考物理二轮专题复习 第2课 电磁感应规律及其应用课时过关检测试题(B卷)

年高考物理二轮专题复习第2课电磁感应规律及其应用课时过关检测试题(B卷)题号 1 2 3 4 5 6 7 8 9答案一、单项选择题1.如图,电阻R、电容C与一线圈连成闭合电路,条形磁铁N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是( )A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电解析:条形磁铁N极向下接近线圈,使线圈中感应电流的磁场方向向上,由安培定则知,流过R的电流从b到a,且电容器下极板带正电,D对.答案:D2.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v0刷卡时,在线圈中产生感应电动势,其Et关系如图所示.如果只将刷卡速度改为v0,线圈中的Et关系图可能是( )2解析:磁卡经过刷卡器时,速度改为原来的12,产生的感应电动势的最大值将减小为原来的12,并且经过相同的位移,所用的时间是原来的2倍,故D 项正确.答案:D3.如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t 1、t 2分别表示线框ab 边和cd 边刚进入磁场的时刻.线框下落过程形状不变,ab 边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气影响,则下列哪一个图象不可能反映线框下落过程中速度v 随时间t 变化的规律( )解析:设线框质量为m ,电阻为R ,线框ab 边长为l ,磁感应强度为B ,线框自由下落刚进入磁场时速度为v ,当v<mgR B 2l 2时,线框做加速度减小的加速运动,C 可能;当v =mgRB 2l 2时,线框做匀速运动,D 可能;当v>mgRB 2l 2时,线框做加速度减小的减速运动直至匀速,B 可能,A不可能,故选A.答案:A4.(xx·孝感一模)如图甲所示,在竖直向上的匀强磁场中,水平放置一个不变形的铜圆环,规定从上向下看时,铜环中的感应电流I 沿顺时针方向为正方向.图乙表示铜环中的感应电流I 随时间t 变化的图象,则磁场B 随时间t 变化的图象可能是图中的( )解析:由图乙可知,1~3 s 内无感应电流产生,所以穿过圆环的磁通量不变,所以排除C 选项;对于A 选项,0~1 s 内,磁通量不变,感应电流为零,所以排除;对于B 选项,从电流的方向看,0~1 s 内,磁通量增大,由楞次定律可知电流方向是顺时针方向,而D 项,0~1 s 内,电流方向为逆时针方向,故选项B 正确.答案:B二、双项选择题5.一个面积S =4×10-2 m 2、匝数n =100匝的线圈,放在匀强磁场中,磁场方向垂直平面,磁感应强度的大小随时间变化规律如图所示,由图可知( )A .在开始2 s 内穿过线圈的磁通量的变化率大小等于0.08 Wb/sB .在开始2 s 内穿过线圈的磁通量的变化量等于零 C.在开始2 s 内线圈中产生的感应电动势等于8 V D .在第3 s 末感应电动势为零解析:在开始的2 s 内穿过线圈的磁通量变化率等于ΔΦΔt =S×ΔBΔt (因面积S 不变,且磁场垂直线圈平面)得ΔΦΔt =4×10-2×[(-2)-2]2 Wb/s =-0.08 Wb/s.A 选项对;在开始的2 s 内穿过线圈的磁通量的变化量是ΔΦ=S×ΔB =4×10-2×[(-2)-2] Wb =-0.16 Wb.选项B 错;在开始的2 s 内线圈中产生的感应电动势是E =n×ΔΦΔt =100×(-0.08)V =-8V(负号是极性问题),选项C 正确;在第3 s 末,由于图中直线的斜率等于ΔBΔt ,显然电动势不为0,选项D 错.故选A 、C.答案:AC6.如图,长为a 、宽为b 的矩形线圈,电阻为r ,处在磁感应强度为B 的匀强磁场边缘,磁场方向垂直于纸面向外,线圈与磁感线垂直.用力F 将线圈向右以速度v 匀速拉出磁场的过程中( )A .线圈中感应电流大小为BavrB .安培力做的功等于FbC .线圈中感应电流方向为逆时针D .线圈所受安培力逐渐减小解析:由法拉第电磁感应定律和欧姆定律得线圈中感应电流大小为Bavr ,由左手定则知线圈中感应电流方向为逆时针;因匀速拉出,安培力恒等于F ,做的功等于-Fa.答案:AC7.如图,垂直纸面向外的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 和3v 的速度匀速拉出磁场,不计导体框重力的影响,则导体框从两个方向移出磁场的两过程中( )A .导体框中产生的感应电流方向相同B .导体框中产生的焦耳热相同C .导体框ad 边两电势差相同D .通过导体框截面的电荷量相同解析:由右手定则知两过程感应电流方向均为abcda ;因切割速度不同,产生感应电动势不同,感应电流不同,故导线框产生的焦耳热不同,ad 边电势差不同;而电量只取决于ΔΦR,与速度无关,故电量相同. 答案:AD8.如图所示,电阻为r 的金属杆ab 以恒定的速率v 在光滑平行导轨上向右滑行(导轨电阻忽略不计),定值电阻R 与金属棒构成闭合回路,整个装置置于垂直纸面向里的匀强磁场中,下列叙述正确的是( )A .ab 杆中的电流强度与速率v 成正比B .磁场作用于ab 杆的安培力与速率v 成正比C .电阻R 上产生的电热功率与速率v 成正比D .外力对ab 杆做功的功率与速率v 成正比解析:ab 杆中的电流强度I =Blv R +r ,即I 与v 成正比,A 对.ab 所受安培力F 安=BBlvR +rl ,故B 对.R 上产生的电热功率P =I 2R =⎝ ⎛⎭⎪⎫Blv R +r 2R ,即P 与v 2成正比,C 错.由于杆匀速运动,则P 外=P 电=(Blv )2R +r,故D 错.答案:AB9.(xx·枣庄一模)如图甲所示,abcd 是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m ,电阻为R ,在金属线框的下方有一匀强磁场区域,MN 和PQ 是匀强磁场区域的水平边界,并与线框的bc 边平行,磁场方向垂直于线框平面向里.现使金属线框从MN 上方某一高度处由静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的vt 图象,图象内数据均为已知量.重力加速度为g ,不计空气阻力.下列说法正确的是( )A .金属线框刚进入磁场时感应电流方向沿adcba 方向B .金属线框的边长为v 1(t 2-t 1)C .磁场的磁感应强度为1v 1(t 2-t 1)mgRv 1D .金属线框在0~t 4的时间内所产生的热量为mgv 1(t 2-t 1)+12m(v 32-v 22)解析:由楞次定律可知金属线框刚进入磁场时感应电流方向沿abcda 方向,A 错误;由图乙可知,金属线框进入磁场过程中是做匀速直线运动,速度为v 1,运动时间为t 2-t 1,所以金属线框的边长:l =v 1(t 2-t 1),B 正确;在金属线框进入磁场的过程中,金属线框所受安培力等于重力:mg =BIl ,I =Blv 1R ,解得:B =1v 1(t 2-t 1)mgRv 1,C 正确;金属线框只在进入和穿出磁场时产生焦耳热,即在t 1~t 2、t 3~t 4两个时间段内产生的热量:Q =2mgl+12m(v 32-v 22)=2mgv 1(t 2-t 1)+12m(v 32-v 22),故D 错误. 答案:BC三、计算题10.如图所示,两根半径为r 光滑的14圆弧轨道间距为L ,电阻不计,在其上端连有一阻值为R 0的电阻,整个装置处于竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L 、质量为m 、电阻为R 的金属棒从轨道的顶端PQ 处开始下滑,到达轨道底端MN 时对轨道的压力为2mg ,求:(1)棒到达最低点时电阻R 0两端的电压; (2)棒下滑过程中R 0产生的热量; (3)棒下滑过程中通过R 0的电量.解析:(1)到达最低点时,设棒的速度为v ,由牛顿第二定律得: 2mg -mg =m v2r 得v =gr ;E =BLv =BL gr ; U =E R +R 0R 0=BLR 0gr R +R 0. (2)由能量转化和守恒得: Q =mgr -12mv 2=12mgr ;Q 0=R 0R 0+R Q =mgR 0r2(R 0+R ).(3)电量q =I Δt =E R +R 0Δt =B ΔS R +R 0=BrLR +R 0.答案:(1)BLR 0gr R +R 0 (2)mgR 0r 2(R 0+R ) (3)BrLR +R 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【走向高考】2015届高三物理二轮复习 专题5 第2讲电磁感应规律及应用检测试题一、选择题(1~6题只有一个选项正确,7~10小题有多个选项正确)1.(2014·新课标Ⅰ)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A .将绕在磁铁上的线圈与电流表组成一闭合电路,然后观察电流表的变化B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D .绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化[答案] D[解析] 该题考查产生感应电流的条件。

解题的关键要明确感应电流是在“运动”“变化”中产生的。

A 、B 选项中磁通量不发生变化因此不会产生感应电流。

C 选项中虽然能产生感应电流,但到另一房间观察时,又无电流了。

D 选项中穿过闭合电路的磁通量发生变化,符合实验要求,D 正确。

该题关键要理解产生感应电流的条件。

2.(2014·河北石家庄质检)法拉第发明了世界上第一台发电机——法拉第圆盘发电机。

如图所示,紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路。

转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转。

下列说法正确的是( )A .回路中电流大小变化,方向不变B .回路中电流大小不变,方向变化C .回路中电流的大小和方向都周期性变化D .回路中电流方向不变,从b 导线流进电流表 [答案] D[解析] 圆盘在磁场中切割磁感线产生恒定的感应电动势E =12BωR 2,由右手定则判断得a 端为负极、b 端为正极,所以只有D 项正确。

3.(2014·江苏)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中。

在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B 。

在此过程中,线圈中产生的感应电动势为( )A .Ba 22Δt B .nBa 22ΔtC .nBa 2ΔtD .2nBa 2Δt[答案] B[解析] 考查电磁感应定律的应用。

解题的关键是求磁通量的变化。

由电磁感应定律得E =n ΔB Δt S =n 2B -B Δt ·a 22=nBa22Δt ,选项B 正确.本题易错点是求解磁通量变化时,误认为线圈面积就是有效面积。

4.(2014·大纲全国)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。

一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。

让条形磁铁从静止开始下落。

条形磁铁在圆筒中的运动速率( )A .均匀增大B .先增大,后减小C .逐渐增大,趋于不变D .先增大,再减小,最后不变[答案] C[解析] 本题考查电磁感应现象中的力学问题。

解题关键要明确合力的变化,磁铁运动过程中受到重力和磁场力,mg -F 磁=ma ,随速度的增大,F 磁增大,a 减小,最后速度趋于不变,C 正确,本题定性考查了磁场力的变化问题,要注意过程分析。

5.(2014·云南第一次检测)如图甲所示,线圈ABCD 固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB 边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是选项中的( )[答案] D[解析] A 图中,磁场均匀增强,由楞次定律判断线圈ABCD 中的感应电流沿顺时针方向,利用左手定则判断AB 边受安培力方向向右,安培力大小由法拉第电磁感应定律有F安=ΔBS R ΔtlB ,则知F 安变大,与题目已知不符,A 错;B 图中,磁场变强,线圈中产生顺时针方向电流,AB 边受安培力方向向右,安培力大小F 安=ΔBSR Δt lB ,则知F 安变大,与题目已知不符,B 错;C 图中,磁场变弱,线圈中产生逆时针方向电流,AB 边受力方向向左,与题目已知不符,C 错;D 图中,磁场变强,线圈中产生顺时针方向电流,AB 边受安培力方向向右,安培力大小F 安=ΔBSR ΔtlB ,可知安培力大小可能恒定,D 对。

6.(2014·河北石家庄质检)如图所示,两根电阻不计的光滑金属导轨竖直放置,导轨上端接电阻R ,宽度相同的水平条形区域Ⅰ和Ⅱ内有方向垂直导轨平面向里的匀强磁场B ,Ⅰ和Ⅱ之间无磁场。

一导体棒两端套在导轨上,并与两导轨始终保持良好接触,导体棒从距区域Ⅰ上边界H 处由静止释放,在穿过两段磁场区域的过程中,流过电阻R 上的电流及其变化情况相同。

下面四个图象能定性描述导体棒速度大小与时间关系的是( )[答案] C[解析] MN 棒先做自由落体,当到Ⅰ区磁场时由四个选项知棒开始减速说明F 安>mg ,由牛顿第二定律得,F 安-mg =ma ,当减速时F 安减小,合力减小,a 也减小,速度图象中图线上各点切线斜率减小,离开Ⅰ区后棒做加速度为g 的匀加速直线运动,随后进入Ⅱ区磁场,因棒在穿过两段磁场区域的过程中,流过电阻R 上的电流变化情况相同,则在Ⅱ区磁场中运动情况与Ⅰ区磁场中完全相同,所以C 项正确。

7.(2014·内蒙古包头测评)如图,在水平桌面上放置两条相距l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连。

质量为m 、电阻为不计的导体棒垂直于导轨放置并可沿导轨自由滑动。

整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。

导体棒的中点系一个不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态。

现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则( )A .电阻R 中的感应电流方向由a 到cB .物块下落的最大加速度为gC .若h 足够大,物块下落的最大速度为mgRB 2l 2D .通过电阻R 的电荷量为Blh R[答案] CD[解析] 题中导体棒向右运动切割磁感线,由右手定则可得回路中产生顺时针方向的感应电流,则电阻R 中的电流方向由c 到a ,A 错误;对导体棒应用牛顿第二定律有:T -F 安=ma ,又F 安=B Blv R l ,再对物块应用牛顿第二定律有:mg -T =ma ,则联立可得:a =g 2-B 2l 2v 2mR,则物块下落的最大加速度a m =g 2,B 错误;当a =0时,速度最大为v m =mgRB 2l 2,C 正确;下落h的过程,回路中的面积变化量ΔS =lh ,则通过电阻R 的电荷量q =ΔΦR =B ΔS R =BlhR,D 正确。

8.(2014·贵州六校联考)水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时,ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和粗糙两种情况比较这个过程( )A .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等 [答案] AC[解析] 导轨光滑时,只有安培力做功,安培力做功等于动能变化量,导轨粗糙时,安培力与摩擦力做功之和等于动能的变化量,又两种情况中动能变化量相等,故A 对、B 错。

两种情况中金属棒的动能最终全部转化为内能,C 对。

通过ab 棒的电荷量Q =ΔΦR =B ΔSR,光滑时比粗糙时ab 棒运动的路程长,故ΔS 大,通过的电荷量Q 多,故D 错。

9.(2014·山西太原一模)如图甲所示,将长方形导线框abcd 垂直磁场方向放入匀强磁场B 中,规定垂直ab 边向右为ab 边所受安培力F 的正方向,F 随时间的变化关系如图乙所示。

选取垂直纸面向里为磁感应强度B 的正方向,不考虑线圈的形变,则B 随时间t 的变化关系可能是选项中的( )[答案] ABD[解析] 在每个整数秒内四个选项中磁感应强度都是均匀变化的,磁通量的变化率为恒定的,产生的电流大小也是恒定的,再由F =BIL 可知,B 均匀变化时,F 也均匀变化,在0~1s 内,F 为向左,根据楞次定律,磁通量均匀减小,与B 的方向无关。

同理1~2s 内,F 为向右,所以磁通量均匀增大,与B 的方向无关,这样周期性的变化的磁场均正确,所以有A 、B 、D 项正确,C 错。

10.(2014·宁夏银川一中一模)如图所示,空间存在着与圆台母线垂直向外的磁场,各处的磁感应强度大小均为B ,圆台母线与竖直方向的夹角为θ,一个质量为m 、半径为r 的匀质金属环位于圆台底部。

当给环通以恒定的电流I ,圆环由静止向上运动,经过时间t 后撤去该恒定电流并保持圆环闭合,圆环全程上升的最大高度为H 。

已知在重力加速度为g ,不计空气阻力,磁场的范围足够大。

在圆环向上运动的过程中,下列说法正确的是( )A .圆环先做加速运动后做减速运动B .在时间t 内安培力对圆环做功为mgHC .圆环运动的最大速度为2πBIrt cos θm-gtD .圆环先有扩张后有收缩的趋势 [答案] AC[解析] 在时间t 内,圆环中通有电流I ,圆环在磁场中受向上的安培力作用,安培力大于重力,所以合力向上,圆环由静止开始向上加速运动,t 时刻撤去电流,圆环继续向上运动,并切割磁感线产生感应电流,则同时又受向下的安培力和重力,合力方向与运动方向相反,所以圆环开始减速运动直至到达最高位置,故A 选项正确。

因安培力在t 时间内对其做正功,t 时刻以后对其做负功,有W 安t 前-W 安t 后=mgH ,则知在t 时间内安培力做功大于mgH ,故B 错。

在t 时间内安培力F =BIL =BI 2πr cos θ,合外力F 合=F -mg =2πBIr cos θ-mg =ma ,v =at =2πBIr cos θmt -gt ,故C 正确。

圆环加速上升过程中有收缩趋势,减速上升过程中有扩张趋势,故D 错误。

二、非选择题11.(2014·江苏)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L ,长为3d ,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d 的薄绝缘涂层。

匀强磁场的磁感应强度大小为B ,方向与导轨平面垂直。

质量为m 的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。

导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R ,其他部分的电阻均不计,重力加速度为g 。

求:(1)导体棒与涂层间的动摩擦因数μ; (2)导体棒匀速运动的速度大小v ; (3)整个运动过程中,电阻产生的焦耳热Q 。

相关文档
最新文档