2018届高中数学高考二轮复习第8讲立体几何教案含答案(全国通用)

合集下载

2018届高中数学二轮复习教案:立体几何

2018届高中数学二轮复习教案:立体几何

学习过程一、考纲解读立体几何模块内容在目前高考中结构和比重相对稳定,一般为一个客观题加一个解答题的格局,分值在17到22分之间,难度不太高,是得基本分的关键内容之一.立体几何考题侧重考查同学们的空间概念、逻辑思维能力、空间想象能力及运算能力。

在选择、填空题中侧重立体几何中的概念型、空间想象型、简单计算型问题,而解答题侧重立体几何中的逻辑推理型问题,立体几何常考的四类问题(1)三视图及相关的体积、表面积的简单计算.(2)点、直线、平面之间的位置关系.(3)距离、角度的向量计算.(4)存在型、探究型问题.立体几何中的空间想象能力是培养能力是数学学习中重要的一个组成部分,同时该部分内容也是培养逻辑思维能力的重要手段,体现在证明和运算的规范性上,熟练掌握基本定理的文字语言和图形语言和符号语言是学习的基本保证,该模块中涉及到的重要数学思想方法有分类讨论、化归转化和类比等对本部分的考查,三视图是考察重点,几乎年年都考,以选择,填空题为主,当然也可能在大题中由三视图还原为直观图后考查定性及定量问题。

文理对平行、垂直关系的证明依然是考察重点。

符号语言、图形语言、文字语言的相互转化要引起足够的重视(尤其在选择填空题)文科对空间角不再考查,但理科引入了空间向量对其都有要求。

有关球的考查降低了要求,不再考球面距离但球的表面积、体积要熟练掌握。

二、复习预习(1)空间几何体定义体积表面积(2)点、直线、平面之间的位置关系平行垂直距离角度(3)空间向量法向量的求法及其在立体几何中的应用三、知识讲解考点1 (1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.① 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.① 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.① 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).考点2点、直线、平面之间的位置关系① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.① 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.①如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若ααα//,//,,a b a b a 则⊂⊄.①如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行, 即若βαββα//,//,//,,,则b a p b a b a =⊂ .①如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 即若ααα⊥⊥⊥=⊂⊂l n l m l B n m n m 则,,,,, .①如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直, 即若βααβ⊥⊂⊥则,,l l . 理解以下性质定理,并能够证明.①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若b a b a a //,,,//则=⊂βαβα .①两平行平面与同一个平面相交,那么两条交线平行,即若α①β,α∩γ=a ,β∩γ=b ,则b a // ①垂直于同一平面的两直线平行,即若b a b a //,,则αα⊥⊥①如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面, 即若αββαβα⊥⊥⊂=⊥l a l l a 则,,,, . 考点3 空间向量法向量的求法以及法向量在立体几何证明球角度距离中的应用四、例题精析例1 [2014全国2卷] 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某 零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切 削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .31【规范解答】① 毛坯是底面半径为3,高为6的圆柱,体积V 1=9π·6=54π,加工后的零件,左半部为小圆柱,底面半径为2,高4,右半部为大圆柱, 底面半径为3,高2,体积V 2=4π·4+9π·2=34π, ① 削掉部分的体积与原体积的比值=πππ543454-=2710,故选C 【总结与反思】 ① 考查识别三视图所表示的立体模型;① 考查圆柱的体积公式。

(课标通用)2018年高考数学一轮复习 第八章 立体几何大题冲关 理

(课标通用)2018年高考数学一轮复习 第八章 立体几何大题冲关 理

第八章立体几何高考中立体几何问题的热点题型1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一空间点、线、面的位置关系以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制试题,主要考查公理4及线面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.[典题1] 如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)[证明]在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,AB⊂平面ABC,所以BB1⊥AB.又AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)[证明]证法一:如图①,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .又EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .①②证法二:如图②,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点, 所以HF ∥AB .又E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE .又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF . 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)[解] 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.1.证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,若不能直接用公式时,注意进行体积的转化.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需要说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG . (1)解:点F ,G ,H 的位置如图所示.(2)解:平面BEG ∥平面ACH .证明如下: 因为ABCD -EFGH 为正方体, 所以BC ∥FG ,BC =FG .又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH,与EG交于点O,连接BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG,同理DF⊥BG,又EG∩BG=G,所以DF⊥平面BEG.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证.(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.[典题2] [2017·山东济南调研]如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BDBC 1的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,AA 1⊂平面AA 1C 1C . ∴AA 1⊥平面ABC .(2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,∴AB ⊥AC .∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz.A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0,∴取向量n 1=(0,4,3).由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0,∴取向量n 2=(3,4,0). ∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625.由题图可判断二面角A 1-BC 1-B 1为锐角, 故二面角A 1-BC 1-B 1的余弦值为1625.(3)[解] 假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD →=λBC 1→,∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ).又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 解得λ=925,∵925∈[0,1], ∴在线段BC 1上存在点D ,使得AD ⊥A 1B , 此时BD BC 1=925.1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.热点三 空间向量在立体几何中的应用在高考中主要考查通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线、面的平行与垂直关系,计算空间角(特别是二面角),常与空间几何体的结构特征,空间线、面位置关系的判定定理与性质定理等知识综合,以解答题形式出现,难度中等.常见的命题角度有:[考查角度一] 计算线线角、线面角[典题3] 如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.[解] 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量, AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m|AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2), 设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0), 则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP→|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3], 则cos 2〈CQ →,DP →〉=2t25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.解决与线线角、线面角有关的问题,关键是利用垂直关系建立空间直角坐标系,运用向量的坐标运算求解.[考查角度二] 求二面角[典题4] [2016·浙江卷]如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.(1)[证明] 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC , 所以AC ⊥平面BCK ,因此BF ⊥AC . 又EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK ,又AC ∩CK =C , 所以BF ⊥平面ACFD .(2)[解] 解法一:过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B -AD -F 的平面角. 在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313. 在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以二面角B -AD -F 的平面角的余弦值为34.解法二:如图,延长AD ,BE ,CF相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x 轴、z 轴的正方向,建立空间直角坐标系O -xyz .由题意,得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0) ,E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32. 因此,AC →=(0,3,0),AK →=(1,3,3), AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧ AB →·n =0,AK →·n =0,得⎩⎨⎧ 2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是cos 〈m ,n 〉=m·n |m||n |=34. 所以二面角B -AD -F 的平面角的余弦值为34.1.用向量法解决立体几何问题,可使复杂问题简单化,使推理论证变为计算求解,降低思维难度,使立体几何问题“公式”化,训练的关键在于“归类、寻法”.2.求二面角的余弦值,转化为求两个半平面所在平面的法向量,通过两个平面的法向量的夹角求得二面角的大小,但要注意结合实际图形判断所求角的大小.。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)

【通用版】2018年高考理科数学二轮复习:教学案全集(含答案)

[全国卷3年考情分析][题点·考法·全练]1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3}B.{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.2.(2018届高三·安徽名校阶段测试)设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <32B.⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪32<x ≤3 解析:选B A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <32. 3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( )A .147B .140C .130D .117解析:选B 由题意得,y 的取值一共有3种情况,当y =2时,xy 是偶数,与y =3,y =5时,没有相同的元素,当y =3,x =5,15,25,…,95时,与y =5,x =3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140.5.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R},若A ∩B =B ,则所有符合条件的实数m 组成的集合是( )A .{-1,0,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,12解析:选A 因为A ∩B =B ,所以B ⊆A .若B 为∅,则m =0;若B ≠∅,则-m -1=0或12m -1=0,解得m =-1或2.综上,m ∈{-1,0,2}. [准解·快解·悟通][题点·考法·全练] 1.(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1”的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2.∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x ≥0”是“|x -1|≤1”的必要而不充分条件.2.(2017·惠州三调)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C 设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C.3.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.4.已知“x >k ”是“3x +1<1”的充分不必要条件,则k 的取值范围是( ) A .[2,+∞) B .[1,+∞) C .(2,+∞)D .(-∞,-1]解析:选A 由3x +1<1,可得3x +1-1=-x +2x +1<0,所以x <-1或x >2,因为“x >k ”是“3x +1<1”的充分不必要条件,所以k ≥2. 5.已知条件p :x +y ≠-2,条件q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1,因为綈q ⇒綈p 但綈p ⇒/綈q ,所以綈q 是綈p 的充分不必要条件,即p 是q 的充分不必要条件.[准解·快解·悟通][题点·考法·全练]1.下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若tan x =3,则x =π3”的逆否命题解析:选B 对于选项A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故选项A 为假命题;对于选项B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”为假命题,故其逆否命题为假命题,综上可知,选B.2.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( ) A .∀n ∈N ,n 2>2n B .∃n ∈N ,n 2≤2n C .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n ”的否定是“∀n ∈N ,n 2≤2n ”.3.(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:选B 当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.[准解·快解·悟通][专题过关检测]一、选择题1.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1}B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.2.(2017·成都一诊)命题“若a>b,则a+c>b+c”的否命题是()A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”.3.(2017·广西三市第一次联考)设集合A={x|8+2x-x2>0},集合B={x|x=2n-1,n ∈N*},则A∩B等于()A.{-1,1} B.{-1,3}C.{1,3} D.{3,1,-1}解析:选C∵A={x|-2<x<4},B={1,3,5,…},∴A ∩B ={1,3}.4.(2017·郑州第二次质量预测)已知集合A ={x |log 2x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪1x>1,则A ∩(∁R B )=( )A .(-∞,2]B .(0,1]C .[1,2]D .(2,+∞)解析:选C 因为A ={x |0<x ≤2},B ={x |0<x <1},所以A ∩(∁R B )={x |0<x ≤2}∩{x |x ≤0或x ≥1}={x |1≤x ≤2}.5.(2017·北京高考)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线. 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件.6.(2018届高三·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( )A .{2}B .{2,8}C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.7.(2017·石家庄调研)设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅,A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.8.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 9.(2017·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,则0≤a <4,所以命题p 是命题q 的充分不必要条件. 10.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析:选C 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2 时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.而p 的否定为∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0,故选C. 11.已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数y =x 2-a在(0,+∞)上是减函数.若p 且綈q 为真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,2]C .(1,2]D .(-∞,1]∪(2,+∞)解析:选C 由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的范围是(-∞,2].因为p 且綈q 为真命题,所以实数a 的取值范围是(1,2].12.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个. 二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________________________.解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x-a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R},集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}15.已知命题p :不等式xx -1<0的解集为{x |0<x <1};命题q :在△ABC 中,“A >B ”是“sin A >sin B ”成立的必要不充分条件.有下列四个结论:①p 真q 假;②“p ∧q ”为真;③“p ∨q ”为真;④p 假q 真,其中正确结论的序号是________.解析:解不等式知,命题p是真命题,在△ABC中,“A>B”是“sin A>sin B”的充要条件,所以命题q是假命题,所以①③正确.答案:①③16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b送分专题(二)函数的图象与性质[全国卷3年考情分析][题点·考法·全练]1.(2017·广州综合测试)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,1-log 2x ,x >0,则f (f (-3))=( ) A.43B .23C .-43D .3解析:选D 因为f (-3)=2-2=14,所以f (f (-3))=f ⎝⎛⎭⎫14=1-log 214=3. 2.函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 要使函数y =1-x 22x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以该函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1. 3.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞.答案:⎝⎛⎭⎫-14,+∞ 4.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R)是偶函数,且它的值域为(-∞,2],则该函数的解析式为________.解析:由题意知:a ≠0,f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称,所以2a +ab =0,b =-2.所以f (x )=-2x 2+2a 2,因为它的值域为(-∞,2],所以2a 2=2.所以f (x )=-2x 2+2.答案:f (x )=-2x 2+25.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,则实数a 的取值范围是________.解析:当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,y =(1-2a )x +3a 必须取遍(-∞,1]内的所有实数,则⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥1,解得0≤a <12.答案:⎣⎡⎭⎫0,12 [准解·快解·悟通][题点·考法·全练]1.(2018届高三·安徽名校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:选D 易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x+1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D正确,故选D.2.已知函数f (x -1)是定义在R 上的奇函数,且在[0,+∞)上是增函数,则函数f (x )的图象可能是( )解析:选B 函数f (x -1)的图象向左平移1个单位,即可得到函数f (x )的图象,因为函数f (x -1)是定义在R 上的奇函数,所以函数f (x -1)的图象关于原点对称,所以函数f (x )的图象关于点(-1,0)对称,排除A 、C 、D ,选B.3.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∪[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的图象(如图所示),由于函数g (x )是二次函数,值域不会是选项A 、B ,易知,当g (x )的值域是[0,+∞)时,f (g (x ))的值域是[0,+∞).[准解·快解·悟通][题点·考法·全练]1.下列函数中,满足“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)[f(x1)-f(x2)]<0”的是()A.f(x)=1x-x B.f(x)=x3C.f(x)=ln x D.f(x)=2x解析:选A“∀x1,x2∈(0,+∞),且x1≠x2,(x1-x2)·[f(x1)-f(x2)]<0”等价于f(x)在(0,+∞)上为减函数,易判断f(x)=1x-x满足条件.2.(2017·广西三市第一次联考)已知f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,若实数a满足f(2log3a)>f(-2),则a的取值范围是()A.(-∞,3) B.(0,3)C.(3,+∞) D.(1,3)解析:选B∵f(x)是定义在R上的偶函数,且在区间(-∞,0]上单调递增,∴f(x)在区间[0,+∞)上单调递减.根据函数的对称性,可得f(-2)=f(2),∴f(2log3a)>f(2).∵2log 3a >0,f (x )在区间[0,+∞)上单调递减,∴0<2log 3a <2⇒log 3a <12⇒0<a < 3.3.(2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.解析:∵f (x +4)=f (x -2),∴f (x +6)=f (x ), ∴f (x )的周期为6,∵919=153×6+1,∴f (919)=f (1). 又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. 答案:64.(2017·福建普通高中质量检测)已知函数f (x )=x 2(2x -2-x ),则不等式f (2x +1)+f (1)≥0的解集是________.解析:因为f (-x )=(-x )2(2-x -2x )=-x 2(2x -2-x )=-f (x ),所以函数f (x )是奇函数.不等式f (2x +1)+f (1)≥0等价于f (2x +1)≥f (-1).易知,当x >0时,函数f (x )为增函数,所以函数f (x )在R 上为增函数,所以f (2x +1)≥f (-1)等价于2x +1≥-1,解得x ≥-1.答案:{x |x ≥-1}[准解·快解·悟通][专题过关检测]一、选择题 1.函数f (x )=1x -1+x 的定义域为( ) A .[0,+∞) B .(1,+∞) C .[0,1)∪(1,+∞)D .[0,1)解析:选C 由题意知⎩⎪⎨⎪⎧x -1≠0,x ≥0,∴f (x )的定义域为[0,1)∪(1,+∞).2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12|x |解析:选B A 中函数y =1x 不是偶函数且在(0,+∞)上单调递减,故A 错误;B 中函数满足题意,故B 正确;C 中函数不是偶函数,故C 错误;D 中函数不满足在(0,+∞)上单调递增,故选B.3.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( )A .1B .-1C .-12D .14解析:选B 由题意得f (0)=0,∴a =2. ∵g (1)=g (-1),∴ln(e +1)-b =ln ⎝⎛⎭⎫1e +1+b , ∴b =12,∴log 212=-1.4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a (-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1, 故f (-3)=2×(-3)+5=-1.5.已知函数f (x )的定义域为(-∞,+∞),若f (x +2 017)=⎩⎨⎧2sin x ,x ≥0,lg (-x ),x <0,则f ⎝⎛⎭⎫2 017+π4·f (-7 983)=( ) A .2 016 B.14C .4 D.12 016解析:选C 由题意得,f ⎝⎛⎭⎫2 017+π4=2sin π4=1, f (-7 983)=f (2 017-10 000)=lg 10 000=4, ∴f ⎝⎛⎭⎫2 017+π4·f (-7 983)=4. 6.函数y =sin xx ,x ∈(-π,0)∪(0,π)的图象大致是( )解析:选A 函数y =sin xx ,x ∈(-π,0)∪(0,π)为偶函数,所以图象关于y 轴对称,排除B 、C ,又当x 趋近于π时,y =sin xx 趋近于0,故选A.7.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0D .2解析:选D 由题意知,当x >12时,f ⎝⎛⎭⎫x +12=fx -12,则f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.8.如图,动点P 在正方体ABCD -A 1B 1C 1D 1的体对角线BD 1上.过点P 作垂直于平面BB 1D 1D 的直线,与正方体的表面相交于M ,N 两点.设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B 设正方体的棱长为1,显然,当P 移动到体对角线BD 1的中点E 时,函数y =MN =AC =2取得唯一的最大值,所以排除A 、C ;当P 在BE 上时,分别过M ,N ,P 作底面的垂线,垂足分别为M 1,N 1,P 1,则y =MN =M 1N 1=2BP 1=2x cos ∠D 1BD =263x ,是一次函数,所以排除D.故选B.9.(2017·贵阳模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 10.函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0 解析:选C ∵f (x )=ax +b(x +c )2的图象与x 轴,y 轴分别交于N ,M ,且点M 的纵坐标与点N 的横坐标均为正,∴x =-b a >0,y =bc 2>0,故a <0,b >0,又函数图象间断点的横坐标为正,∴-c >0,c <0,故选C.11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,若f (2)=2,则不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞)解析:选C (转化法)由f (x 1)-f (x 2)x 1-x 2<1,可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,且是奇函数,F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x -1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.二、填空题13.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0, 即f (x )=ln1|x |+1的值域为(-∞,0]. 答案:(-∞,0]14.(2018届高三·安徽名校阶段性测试)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1315.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]16.(2017·惠州三调)已知定义在R 上的函数y =f (x )满足条件f ⎝⎛⎭⎫x +32=-f (x ),且函数y =f ⎝⎛⎭⎫x -34为奇函数,给出以下四个命题: ①函数f (x )是周期函数;②函数f (x )的图象关于点⎝⎛⎭⎫-34,0对称; ③函数f (x )为R 上的偶函数; ④函数f (x )为R 上的单调函数. 其中真命题的序号为____________.解析:f (x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f (x ),所以f (x )是周期为3的周期函数,①正确;函数f ⎝⎛⎭⎫x -34是奇函数,其图象关于点(0,0)对称,则f (x )的图象关于点⎝⎛⎭⎫-34,0对称,②正确;因为f (x )的图象关于点⎝⎛⎭⎫-34,0对称,-34=-x +⎝⎛⎭⎫-32+x 2,所以f (-x )=-f ⎝⎛⎭⎫-32+x , 又f ⎝⎛⎭⎫-32+x =-f ⎝⎛⎭⎫-32+x +32=-f (x ), 所以f (-x )=f (x ),③正确;f (x )是周期函数在R 上不可能是单调函数,④错误. 故真命题的序号为①②③. 答案:①②③送分专题(三) 平面向量[全国卷3年考情分析][题点·考法·全练]1.(2017·贵州适应性考试)已知向量e 1与e 2不共线,且向量AB ―→=e 1+me 2,AC ―→=ne 1+e 2,若A ,B ,C 三点共线,则实数m ,n 满足的条件是( )A .mn =1B .mn =-1C .m +n =1D .m +n =-1解析:选A 法一:因为A ,B ,C 三点共线,所以一定存在一个确定的实数λ,使得AB―→=λAC ―→,所以有e 1+me 2=nλe 1+λe 2,由此可得⎩⎪⎨⎪⎧1=nλ,m =λ,所以mn =1.法二:因为A ,B ,C 三点共线,所以必有1n =m1,所以mn =1.2.如图所示,下列结论正确的是( )①PQ ―→=32a +32b ;②PT ―→=32a -b ;③PS ―→=32a -12b ;④PR ―→=32a +b .A .①②B .③④C .①③D .②④解析:选C ①根据向量的加法法则,得PQ ―→=32a +32b ,故①正确;②根据向量的减法法则,得PT ―→=32a -32b ,故②错误;③PS ―→=PQ ―→+QS ―→=32a +32b -2b =32a -12b ,故③正确;④PR ―→=PQ ―→+QR ―→=32a +32b -b =32a +12b ,故④错误.故正确命题的结论为①③.3.已知平面内不共线的四点O ,A ,B ,C ,若OA ―→-3OB ―→+2OC ―→=0,则|AB ―→||BC ―→|=________.解析:由已知得OA ―→-OB ―→=2(OB ―→-OC ―→),即BA ―→=2CB ―→, ∴|BA ―→|=2|CB ―→|,∴|AB ―→||BC ―→|=2.答案:24.已知e 1,e 2是不共线向量,a =me 1+2e 2,b =ne 1-e 2,且mn ≠0,若a ∥b ,则mn 等于________.解析:∵a ∥b ,∴a =λb ,即me 1+2e 2=λ(ne 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,解得m n =-2.答案:-2[准解·快解·悟通][题点·考法·全练]1.已知向量m =(t +1,1),n =(t +2,2),若(m +n )⊥(m -n ),则t =( ) A .0 B .-3 C .3D .-1解析:选B 法一:由(m +n )⊥(m -n )可得(m +n )·(m -n )=0,即m 2=n 2,故(t +1)2+1=(t +2)2+4,解得t =-3.法二:m +n =(2t +3,3),m -n =(-1,-1),∵(m +n )⊥(m -n ),∴-(2t +3)-3=0,解得t =-3.2.(2017·洛阳统考)已知向量a =(1,0),|b |=2,a 与b 的夹角为45°,若c =a +b ,d =a -b ,则c 在d 方向上的投影为( )A.55B .-55C .1D .-1解析:选D 依题意得|a |=1,a ·b =1×2×cos 45°=1,|d |=(a -b )2=a 2+b 2-2a ·b =1,c ·d =a 2-b 2=-1,因此c 在d 方向上的投影等于c ·d|d |=-1. 3.已知向量a =(2,1),b =(1,k ),且a 与b 的夹角为锐角,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-2,12 B.⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞ C .(-2,+∞)D .[-2,+∞)解析:选B 当a ,b 共线时,2k -1=0,k =12,此时a ,b 方向相同,夹角为0,所以要使a 与b 的夹角为锐角,则有a·b >0且a ,b 不共线.由a·b =2+k >0得k >-2,又k ≠12,即实数k 的取值范围是⎝⎛⎭⎫-2,12∪⎝⎛⎭⎫12,+∞,选B. 4.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 解析:法一:易知|a +2b |=|a |2+4a ·b +4|b |2=4+4×2×1×12+4=2 3.法二:(数形结合法)由|a |=|2b |=2,知以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC ―→|.又∠AOB =60°,所以|a +2b |=2 3.答案:2 35.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2,故3-λ21+λ2=12,解得λ=33.答案:33[准解·快解·悟通][题点·考法·全练]1.在△ABC 中,∠ABC =90°,AB =6,点D 在边AC 上,且2AD ―→=DC ―→,则BA ―→·BD ―→的值是( )A .48B .24C .12D .6解析:选B 法一:由题意得,BA ―→·BC ―→=0,BA ―→·CA ―→=BA ―→·(BA ―→-BC ―→)=|BA ―→|2=36,∴BA ―→·BD ―→=BA ―→·(BC ―→+CD ―→)=BA ―→·⎝⎛⎭⎫BC ―→+23 CA ―→ =0+23×36=24. 法二:(特例法)若△ABC 为等腰直角三角形,建立如图所示的平面直角坐标系,则A (6,0),C (0,6).由2AD ―→=DC ―→,得D (4,2).∴BA ―→·BD ―→=(6,0)·(4,2)=24.2.如图所示,已知点G 是△ABC 的重心,过点G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM ―→=x AB ―→,AN ―→=y AC ―→,则x +2y 的最小值为( )A .2 B.13 C.3+223D.34解析:选C 由已知可得AG ―→=23×12(AB ―→+AC ―→)=13AB ―→+13AC ―→=13x AM ―→+13y AN ―→,又M ,G ,N 三点共线,故13x +13y=1,∴1x +1y =3,则x +2y =(x +2y )·⎝⎛⎭⎫1x +1y ·13=13⎝⎛⎭⎫3+2y x +x y ≥3+223(当且仅当x =2y 时取等号).3.(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1解析:选B 如图,以等边三角形ABC 的底边BC 所在直线为x轴,以BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝⎛⎭⎫y -322-32,当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.4.如图,已知△ABC 中,∠BAC =90°,∠B =30°,点P 在线段BC 上运动,且满足CP ―→=λCB ―→,当PA ―→·PC ―→取到最小值时,λ的值为( )A.14 B.15 C.16D.18解析:选D 如图所示,建立平面直角坐标系.不妨设BC =4,P (x,0)(0≤x ≤4),则A (3,3),C (4,0),∴PA ―→·PC ―→=(3-x ,3)·(4-x,0)=(3-x )(4-x )=x 2-7x +12=⎝⎛⎭⎫x -722-14.当x =72时,PA ―→·PC ―→取得最小值-14.∵CP ―→=λCB ―→,∴⎝⎛⎭⎫-12,0=λ(-4,0), ∴-4λ=-12,解得λ=18.故选D.5.如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP ―→=3PD ―→,AP ―→·BP ―→=2,则AB ―→·AD ―→的值是________.解析:因为AP ―→=AD ―→+DP ―→=AD ―→+14AB ―→,BP ―→=BC ―→+CP ―→=AD ―→-34AB ―→,所以AP ―→·BP ―→=⎝⎛⎭⎫AD ―→+14AB ―→·⎝⎛⎭⎫AD ―→-34AB ―→= |AD ―→|2-316|AB ―→|2-12AD ―→·AB ―→=2,将AB =8,AD =5代入解得AB ―→·AD ―→=22. 答案:22[准解·快解·悟通][专题过关检测]一、选择题1.设a =(1,2),b =(1,1),c =a +kb .若b ⊥c ,则实数k 的值等于( ) A .-32B .-53C.53D .32解析:选A 因为c =a +kb =(1+k,2+k ),又b ⊥c ,所以1×(1+k )+1×(2+k )=0,解得k =-32.2.(2017·贵州适应性考试)已知向量a =(2,4),b =(-1,1),c =(2,3),若a +λb 与c 共线,则实数λ=( )A.25 B .-25C.35D .-35解析:选B 法一:a +λb =(2-λ,4+λ),c =(2,3),因为a +λb 与c 共线,所以必定存在唯一实数μ,使得a +λb =μc ,所以⎩⎪⎨⎪⎧2-λ=2μ,4+λ=3μ,解得⎩⎨⎧μ=65,λ=-25.法二:a +λb =(2-λ,4+λ),c =(2,3),由a +λb 与c 共线可知2-λ2=4+λ3,解得λ=-25. 3.(2018届高三·云南11校跨区调研)已知平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30D .34解析:选D 依题意得a 2=2,a ·b =2×2×cos 45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34.4.在等腰梯形ABCD 中,AB ―→=-2CD ―→CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→ C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝⎛⎭⎫AB ―→+AD ―→+12AB ―→=34AB ―→+12AD ―→.5.(2017·成都二诊)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6 B.5π6 C.π4D.3π4解析:选A 法一:因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |=3,又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b|a +2b ||b |=343×12=32, 所以a +2b 与b 的夹角为π6.法二:(特例法)设a =(1,0),b =⎝⎛⎭⎫12cos π3,12sin π3=⎝⎛⎭⎫14,34,则(a +2b )·b =⎝⎛⎭⎫32,32·⎝⎛⎭⎫14,34=34,|a +2b |=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6. 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ―→在CD ―→方向上的投影为( ) A.322B .3152C .-322D .-3152解析:选A 由题意知AB ―→=(2,1),CD ―→=(5,5),则AB ―→在CD ―→方向上的投影为|AB ―→|·cos 〈AB ―→,CD ―→〉=AB ―→·CD ―→|CD ―→|=322.7.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. 法二:如图,建立平面直角坐标系,由正三角形的性质易得A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.8.(2017·东北四市模拟)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为( )A.52B.102C. 5D.10解析:选C 由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3), 则|OC ―→|=(1+2m )2+(4m -3)2=20m 2-20m +10 =20⎝⎛⎭⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.9.已知向量m ,n 的模分别为2,2,且m ,n 的夹角为45°.在△ABC 中,AB ―→=2m +2n ,AC ―→=2m -6n ,BC ―→=2BD ―→,则|AD ―→|=( )A .2B .2 2C .4D .8解析:选B 因为BC ―→=2BD ―→,所以点D 为边BC 的中点,所以AD ―→=12(AB ―→+AC ―→)=2m -2n ,所以|AD ―→|=2|m -n |=2(m -n )2=22+4-2×2×2×22=2 2. 10.(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,C =120°,则实数λ的值为( )A.12 B .-12C .-1D .1解析:选C 设AB 中点为D ,则PA ―→+PB ―→=2PD ―→PD ―→. 因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线. 又P 是△ABC 的外心,所以PA =PB , 所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°, 所以四边形APBC 是菱形, 从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1.11.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA ―→|OA ―→|,b =OB ―→|OB ―→|,OP ―→=a +2b ,则PA ―→·PB ―→的最大值为( )A .1B .2C .3D .4解析:选A 如图,设A (m,0),B (0,n ),∴mn =2,则a =(1,0),b =(0,1),OP ―→=a +2b =(1,2),PA ―→=(m -1,-2),PB ―→=(-1,n -2),PA ―→·PB ―→=5-(m +2n )≤5-22nm =1,当且仅当m =2n ,即m =2,n =1时,等号成立.12.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18 C.14D.118解析:选B 如图所示, AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点, 且DE =2EF ,所以AD ―→=12AB ―→,DF ―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝⎛⎭⎫12AB ―→+34AC ―→·(AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→ =34AC ―→2-12AB ―→2-14AC ―→·AB ―→. 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.二、填空题13.在△ABC 中,点O 在线段BC 的延长线上,且||BO ―→=3||CO―→,当AO ―→=x AB ―→+y AC ―→时,则x -y =________.解析:∵AO ―→=AB ―→+BO ―→=AB ―→+32BC ―→=AB ―→+32(AC ―→-AB ―→)=-12AB ―→+32AC ―→,∴x -y =-2.答案:-214.已知a ,b 是非零向量,f (x )=(ax +b )·(bx -a )的图象是一条直线,|a +b |=2,|a |=1,则f (x )=________.解析:由f (x )=a ·bx 2-(a 2-b 2)x -a ·b 的图象是一条直线,可得a ·b =0.因为|a +b |=2,所以a 2+b 2=4.因为|a |=1,所以a 2=1,b 2=3,所以f (x )=2x . 答案:2x15.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝⎛⎭⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→) =-13AB ―→2+⎝⎛⎭⎫13λ-23AB ―→·AC ―→+23λAC ―→2 =-3+3⎝⎛⎭⎫13λ-23+23λ×4=113λ-5=-4, 解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系,不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝⎛⎭⎫53,233, 由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝⎛⎭⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:31116.定义平面向量的一种运算a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉,其中〈a ,b 〉是a 与b 的夹角,给出下列命题:①若〈a ,b 〉=90°,则a ⊙b =a 2+b 2;②若|a |=|b |,则(a +b )⊙(a -b )=4a ·b ;③若|a |=|b |,则a ⊙b ≤2|a |2;④若a =(1,2),b =(-2,2),则(a +b )⊙b =10.其中真命题的序号是________.解析:①中,因为〈a ,b 〉=90°,则a ⊙b =|a +b |·|a -b |=a 2+b 2,所以①成立;②中,因为|a |=|b |,所以〈(a +b ),(a -b )〉=90°,所以(a +b )⊙(a -b )=|2a |·|2b |=4|a ||b |,所以②不成立;③中,因为|a |=|b |,所以a ⊙b =|a +b |·|a -b |·sin 〈a ,b 〉≤|a +b |·|a -b |≤|a +b |2+|a -b |22=2|a |2,所以③成立;④中,因为a =(1,2),b =(-2,2),所以a +b =(-1,4),sin 〈(a +b ),b 〉=33434,所以(a +b )⊙b =35×5×33434=453434,所以④不成立.故①③正确.答案:①③送分专题(四) 不等式[全国卷3年考情分析][题点·考法·全练]1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( )A .2B .-2C .-12D .12解析:选B 根据一元二次不等式与之对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2. 2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ymB .x -m ≥y -nC.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.(2017·云南第一次统一检测)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x -2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x -2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3;当x <2时,由22-x -2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.4.已知x ∈(-∞,1],不等式1+2x +(a -a 2)·4x >0恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-2,14 B .⎝⎛⎦⎤-∞,14 C.⎝⎛⎭⎫-12,32 D .(-∞,6]解析:选C 根据题意,由于1+2x +(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x =t (0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故只要求解h (t )=-1+tt2(0<t ≤2)的最大值即可,h (t )=-1t 2-1t =-⎝⎛⎭⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a的取值范围为⎝⎛⎭⎫-12,32. [准解·快解·悟通]。

高中数学必修二《第八章 立体几何初步》复习教案及练习

高中数学必修二《第八章 立体几何初步》复习教案及练习

《第八章立体几何初步》复习教案8.1 基本立体图形第1课时棱柱、棱锥、棱台的结构特征【基础知识拓展】1.几类特殊的四棱柱四棱柱是一种非常重要的棱柱,平行六面体(底面是平行四边形的四棱柱)、直平行六面体(侧棱垂直于底面的平行六面体)、长方体、正四棱柱、正方体等都是一些特殊的四棱柱,它们之间的关系如下.2.棱柱、棱锥、棱台之间的关系棱柱、棱锥、棱台之间有着内在的联系:将棱台的上底面慢慢扩大到与下底面相同时,转化为棱柱;将棱台的上底面慢慢缩小为一点时,转化为棱锥.如图所示.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.( )(2)各面都是三角形的多面体是三棱锥.( )(3)棱台的上下底面互相平行,且各侧棱延长线相交于一点.( )答案(1)×(2)×(3)√2.做一做(1)有两个面平行的多面体不可能是( )A.棱柱 B.棱锥C.棱台 D.以上都错(2)面数最少的多面体的面的个数是________.(3)三棱锥的四个面中可以作为底面的有________个.(4)四棱台有________个顶点,________个面,________条边.答案(1)B (2)4 (3)4 (4)8 6 12【核心素养形成】题型一对棱柱、棱锥、棱台概念的理解例1 下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有4个面.[解析] 棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①正确.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②正确.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错误,④正确.⑤显然正确.因而真命题有①②④⑤.[答案] ①②④⑤【解题技巧】关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练】下列关于棱锥、棱柱、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥;④棱柱的侧棱与底面一定垂直.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥;④错误,棱柱的侧棱与底面不一定垂直.题型二对棱柱、棱锥、棱台的识别与判断例2 如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?[解] (1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABFA1-DCED1.[条件探究] 若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.【解题技巧】棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.题型三空间几何体的展开图问题例3 如下图是三个几何体的侧面展开图,请问各是什么几何体?[解] 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.【解题技巧】空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.【课堂达标训练】1.下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个 D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错误;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是( )答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.以上说法正确的序号有________.答案①③解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.已知M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到M的最短路程是多少?解若以BC或DC为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为2 cm,3 cm,故两点之间的距离为13 cm,若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为1 cm,4 cm.故两点之间的距离是17 cm.故沿正方体表面从A到M的最短路程是13 cm.第2课时圆柱、圆锥、圆台、球和简单组合体的结构特征【基础知识拓展】1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.空间几何体的轴截面(1)圆柱、圆锥、圆台可以分别看作以矩形的一条边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在直线为旋转轴,经过旋转而成的曲面所围成的几何体.(2)圆柱、圆锥、圆台的轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题时,一般要画出轴截面.(3)画出轴截面图形,将立体几何的空间问题转化为平面问题来计算,这种把有关立体几何问题转化为平面几何问题的数学思想方法是我们解决立体几何问题的重要思想方法.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.( )(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.( )(3)用平面截球,无论怎么截,截面都是圆面.( )答案(1)×(2)×(3)√2.做一做(1)圆锥的母线有( )A.1条 B.2条C.3条 D.无数条(2)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(3)图②的组合体是由________和________构成.(4)图③中的几何体有________个面.答案(1)D (2)球球心半径直径(3)圆柱圆锥(4)3【核心素养形成】题型一旋转体的概念例1 下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[解析] 根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.[答案] A[条件探究] 若本例中(2)改为“以直角梯形的各边为轴旋转”,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.【解题技巧】平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.题型二简单组合体的结构特征例2 描述下图几何体的结构特征.[解] 图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.【解题技巧】简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.题型三旋转体的计算问题例3 一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A =2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,所以l=20(cm).故截得此圆台的圆锥的母线长为20 cm.【解题技巧】旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R,截面圆的半径为r,球心到截面的距离为d,则R2=d2+r2.(3)用平行于底面的平面去截柱体、锥体、台体等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练】圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解将圆台还原为圆锥,如图所示.O2,O1,O分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2, 设上底面的面积为S 1,半径为r 1, 则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49, 截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.题型四 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且PA =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形.【解题技巧】求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练】国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.【课堂达标训练】1.下列几何体中不是旋转体的是( )答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是( )A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥.故选D.3.下列几何体中是旋转体的是( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤ B.① C.③和④ D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2 cm,5 cm,母线长是310 cm,求其轴截面的面积.解如图,在轴截面内过点A作AB⊥O1A1,垂足为B.由已知OA=2,O1A1=5,AA1=310,∴A1B=3.∴AB=AA21-A1B2=90-9=9.∴S轴截面=12(2OA+2O1A1)·AB=12×(4+10)×9=63(cm2).故圆台轴截面的面积为63 cm2.8.2 立体图形的直观图【基础知识拓展】1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形.两者之间关系为:S 直S 原=24.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)相等的角,在直观图中仍相等.( )(2)长度相等的线段,在直观图中长度仍相等.( )(3)若两条直线垂直,在直观图中对应的直线也互相垂直.( )答案(1)×(2)×(3)×2.做一做(1)利用斜二测画法画边长为3 cm的正方形的直观图,可以是下列选项中的( )(2)在已知图形中平行于x轴的线段AB=6 cm,则在直观图中线段A′B′=______cm;在已知图形中平行于y轴的线段CD=4 cm,则在直观图中线段C′D′=______cm.(3)在空间几何体中,平行于z轴的线段AB=10 cm,则在直观图中对应的线段A′B′=________cm.(4)在用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,则在直观图中,∠A′=________.答案(1)C (2)6 2 (3)10 (4)45°或135°【核心素养形成】题型一平面图形的直观图画法例1 画水平放置的正五边形的直观图.[解] (1)建立如图①所示的直角坐标系xOy,再建立如图②所示的坐标系x′O′y′,使∠x′O′y′=45°.(2)在图①中作BG⊥x轴于G,EH⊥x轴于H,在坐标系x′O′y′中作O′H′=OH,O′G′=OG,O′A′=12OA,O′F′=12OF.过F′作C′D′∥x′轴且C′D′=CD,C′F′=F′D′.(3)在平面x′O′y′中,过G′作G′B′∥y′轴,且G′B′=12GB,过H′作H′E′∥y′轴,且H′E′=12HE.连接A′B′,B′C′,C′D′,D′E′,E′A′,得五边形A′B′C′D′E′为正五边形ABCDE的直观图.【解题技巧】画平面图形直观图的技巧(1)要画好对应平面图形的直观图,首先应在原图形中确定直角坐标系,然后在此基础上画出水平放置的平面坐标系.(2)画水平放置的平面多边形的直观图的关键是确定多边形的顶点位置.顶点位置可以分为两类:一类是在轴上或在与轴平行的线段上,这类顶点比较容易确定;另一类是不在轴上且不在与轴平行的线段上,这类顶点一般通过过此点作与轴平行的线段,将此点转到与轴平行的线段上来确定.【跟踪训练】用斜二测画法画边长为4 cm的水平放置的正三角形的直观图.解(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.题型二空间几何体的直观图画法例2 画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] 画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(或135°),∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内,画出正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.顺次连接PA,PB,PC,PD,并擦去辅助线,将被遮住的部分改为虚线,得四棱锥的直观图如图②.【解题技巧】画空间几何体的直观图应遵循的原则(1)对于一些常见简单几何体(柱体、锥体、台体、球)的直观图,应该记住它们的大致形状,以便可以较快、较准确地画出.(2)画空间几何体的直观图比画平面图形的直观图增加了一个z轴,表示竖直方向.(3)平行于z轴(或在z轴上)的线段,平行性与长度都与原来保持一致.(4)画空间几何体的直观图,可先画出底面的平面图形,坐标系的建立要充分利用几何体的对称性,然后画出竖轴.此题也可以把点A,B,C,D放在坐标轴上,画法实质是各顶点的确定.【跟踪训练】已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O的作法作出上底面⊙O′.(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.题型三直观图还原平面图形例 3 (1)如图,△A′B′C′是水平放置的平面图形的斜二测直观图,将其恢复成原图形;(2)在(1)中若|C′A′|=2,B′D′∥y′轴且|B′D′|=1.5,求原平面图形△ABC的面积.[解] (1)画法:①画直角坐标系xOy,在x轴上取OA=O′A′,即CA=C′A′.②在题图中,过B′作B′D′∥y′轴,交x′轴于D′,在x轴上取OD=O′D′,过D作DB∥y轴,并使DB=2D′B′.③连接AB,BC,则△ABC即为△A′B′C′原来的图形,如图.(2)∵B′D′∥y′,∴BD⊥AC.又|B′D′|=1.5且|A′C′|=2,∴|BD|=3,|AC|=2.∴S△ABC=12·|BD|·|AC|=3.[结论探究] 若设原平面图形的面积为S,则其直观图的面积S′为多少?解设原图形的高为h,则直观图的高为24h.又平行于x轴的线段长度不变,∴S′=24 S.【解题技巧】直观图还原平面图形的策略还原的关键是找与x′轴、y′轴平行的直线或线段,且平行于x′轴的线段还原时长度不变,平行于y′轴的线段还原时放大为斜二测直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.【跟踪训练】如图是四边形ABCD的水平放置的直观图A′B′C′D′,则原四边形ABCD的面积是( )A.14 B.10 2 C.28 D.14 2答案 C解析∵A′D′∥y′轴,A′B′∥C′D′,A′B′≠C′D′,∴原图形是一个直角梯形.又A′D′=4,∴原直角梯形的上、下底及高分别是2,5,8,故其面积为S=12×(2+5)×8=28.题型四直观图与原图间的计算问题例4 已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2 B.38a2 C.68a2 D.616a2[解析] 如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.[答案] D【解题技巧】1.利用斜二测画法画空间图形的直观图应遵循的基本原则(1)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.(2)画图时要紧紧把握一斜——在已知图形中垂直于x轴的线段,在直观图中与x轴成45°或135°;二测——两种度量形式,即在直观图中,平行于x轴的线段长度不变,平行于y轴的线段变为原长度的一半2.若一个平面多边形的面积为S原,斜二测画法得到的直观图的面积为S直,则有S直=24S原.【跟踪训练】如图所示,矩形O′A′B′C′是水平放置的平面图形OABC的斜二测直观图,其中O′A′=6 cm,C′D′=2 cm,则四边形OABC的形状是________.答案菱形解析如图,在四边形OABC中,有OD=2O′D′=2×22=4 2 cm,CD=C′D′=2 cm,∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.【课堂达标训练】1.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的12C.画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同答案 C解析∠x′O′y′也可以是135°.2.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.ACC.BC D.AD答案 B解析由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.3.如图,已知等腰三角形ABC,则如图所示的四个图中,可能是△ABC的直观图的是( )A.①② B.②③ C.②④ D.③④答案D解析根据平面图形直观图的斜二测画法知③④可能是△ABC的直观图.4.如图,一个三角形的斜二测直观图是等腰直角三角形A′B′O′,若O′B′=1,则原△AOB的面积是________.答案 2解析由题意得O′B′=B′A′=1,∴O′A′=2,且∠B′O′A′=45°,∴△AOB是以∠O为直角的三角形,且OB=1,OA=22,∴S△AOB =12OB·OA=12×1×22= 2.5.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解(1)先画出边长为3 cm的正六边形的水平放置的直观图,如图①所示.(2)过正六边形的中心O′建立z′轴,在z′轴上截取O′V′=3 cm,如图②所示.(3)连接V′A′,V′B′,V′C′,V′D′,V′E′,V′F′,如图③所示.(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.。

2018高考数学复习第八章立体几何教师用书理

2018高考数学复习第八章立体几何教师用书理

第八章⎪⎪⎪ 立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图1.空间几何体的结构特征 (1)多面体的结构特征(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1] (1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A.圆柱 B.圆锥C.球体 D.圆柱、圆锥、球体的组合体(2)下列说法正确的是( )A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析] (1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D 错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案] (1)C (2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2] (1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)( )A.①②⑥ B.①②③ C.④⑤⑥ D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )[解析] (1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案] (1)B (2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3] 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )[解析] 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是( )A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B 因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解析:选B 由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )解析:选C 当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为 C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为( )A.4 cm2 B.4 2 cm2C.8 cm2 D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD ­A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P ­BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P ­BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P ­BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl .2.空间几何体的表面积与体积公式[例1] 其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3 D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P ­ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝ ⎛⎭⎪⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选 C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎪⎫4-222=5,所以该正四棱台的表面积S = 2+4 ×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝ ⎛⎭⎪⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. [解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4B .16πC .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P ­ABCD 中AB =2, ∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4. (3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c=2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎪⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′­BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′­BCD的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎪⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( ) A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR26×⎝⎛⎭⎪⎫233R 2=π2.[全国卷5年真题集中演练——明规律]1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+ 23 2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2 C .6π D.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝ ⎛⎭⎪⎫323=9π2.故选B.3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ­ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O ­ABC =V C ­AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O ­ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O ­ABC最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027. 8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A 根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36 C.23 D.22 解析:选A 由于三棱锥S ­ABC 与三棱锥O ­ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S ­ABC 的高是三棱锥O ­ABC 高的2倍,所以三棱锥S ­ABC 的体积也是三棱锥O ­ABC 体积的2倍.在三棱锥O ­ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎪⎫332=63,所以V S ­ABC =2V O ­ABC =2×13×34×63=26.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A 错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3 B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( )A .8πB .12π C.32π D .3π解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝ ⎛⎭⎪⎫233-R 2+⎝ ⎛⎭⎪⎫632,解得R =32,所以外接球的表面积S=4πR 2=3π.5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r = 22 2+ 22 2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P ­ABCD 的三视图如图所示,则四棱锥P ­ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S △PAD =12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P ­ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD ­A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M ­PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13, 即三棱锥P ­MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M ­PBC =V P ­MBC =13×92×1=32.答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆锥,下面是底面圆的半径为1 m 、高为4 m 的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m 3).答案:20π39.如图,正方形O ′A ′B ′C ′的边长为a ,它是一个水平放置的平面图形的直观图,则原图形OABC 的周长是________.解析:由斜二测画法的规则可知,原图形OABC 是一个平行四边形. 在原图形OABC 中OB =22a ,OA =a , 且OA ⊥OB ,∴AB =3a ,∴原图形OABC 的周长为2(a +3a )=8a .答案:8a10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 答案:3 三、解答题11.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,则⎝ ⎛⎭⎪⎫h 22+r 2=R 2, 即h =2R 2-r 2.因为S =2πrh =4πr ·R 2-r 2= 4πr 2· R 2-r 2≤4πr 2+R 2-r 2 24=2πR 2,当且仅当r 2=R 2-r 2, 即r =22R 时,取等号, 即当内接圆柱底面半径为22R ,高为2R 时,其侧面积的值最大,最大值为2πR 2. 12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ; (2)求该几何体的表面积S .。

2018届高考文科数学第8章立体几何8-1

2018届高考文科数学第8章立体几何8-1

高考总复习· 数学文科(RJ)
第八章 立体几何
3.空间几何体的直观图 斜二测 画法,其规则是: 画空间几何体的直观图常用________
(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴 45°(或135°) ,z′轴与x′轴、y′轴所在平面_____ 垂直 . 的夹角为_____________ 平行于 (2)原图形中平行于坐标轴的线段,直观图中仍分别________ 坐标轴.平行于x轴和z轴的线段在直观图中保持原长度_____ 不变 , 原来的一半 . 平行于y轴的线段长度在直观图中变为______________
矩形 直角三角形 直角梯形或等腰梯形 半圆或圆
旋转轴
矩形一边所在的直线 一直角边所在的直线 直角腰所在的直线或等腰
梯形上下底中点连线
直径所在的直线
高考总复习· 数学文科(RJ)
第八章 立体几何
2.空间几何体的三视图
(1)三视图的名称
几何体的三视图包括:_______ 正视图 、________ 侧视图 、_______ 俯视图 . (2)三视图的画法 ①在画三视图时,重叠的线只画一条,挡住的线要画成 虚线 . ______ ②三视图的正视图、侧视图、俯视图分别是从几何体的 正前 方、_____ 正左 方、______ 正上 方观察几何体的正投影图. ______
第八章 立体几何
【解析】 A,B的正视图不符合要求,C的俯视图显然 不符合要求,故选D.
【答案】 D
高考总复习· 数学文科(RJ)
第八章 立体几何
命题点2
由空间几何体的直观图判断三视图
【例3】 (2017· 贵州七校联考)如图所示,四面体ABCD
的四个顶点是长方体的四个顶点 ( 长方体是虚拟图形,起 辅助作用 ) ,则四面体 ABCD 的三视图是 ( 用①②③④⑤⑥ 代表图形)( )

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。

2018年北京市高考数学理 8专题八 立体几何

2018年北京市高考数学理 8专题八 立体几何

第八篇:立体几何一、选择题1.【2018全国一卷7】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .22.【2018全国一卷12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D3.【2018全国二卷9】在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15B C D 4.【2018全国三卷3】3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.【2018全国三卷10】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC 体积的最大值为 A.B.C.D.6.【2018北京卷5】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1B.2C.3D.4俯视图正视图7.【2018浙江卷3】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2B .4C .6D .88.【2018浙江卷8】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4 (B ) 8(C )12 (D )16二、填空题1.【2018全国二卷16】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为__________.2.【2018天津卷11】已知正方体1111ABCD A BC D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.3.【2018江苏卷10】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .三、解答题1.【2018全国一卷18】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.2.【2018全国二卷20】如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.3.【2018全国三卷19】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AM D ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.4.【2018北京卷16】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11AC ,1BB 的中点,AB=BC AC =1AA =2.(Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角B−CD −C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.5.【2018天津卷17】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面;(II )求二面角E BC F --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.参考答案 一、选择题1.B2.A3.C4.A5.B6.C7.C8.D9.D 二、填空题 1.π240 2.121 3.43三、解答题1.解:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE 又PF =1,EF =2,故PE ⊥PF .可得322PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||||||3HP DPHP DP θ⋅===⋅所以DP 与平面ABFD . 2解:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =连结OB .因为AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥. 由,OP OB OP AC ⊥⊥知PO⊥平面ABC .(2)如图,以O 为坐标原点,的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得)0,0,0(O ,)0,0,2(B ,)0,2,0(-A ,)0,2,0(C ,)32,0,0(P ,)32,2,0(=AP 取平面PAC 的法向量)0,0,2(=.设(,2,0)(02)M a a a -<≤,则)0,4,(a a -=. 设平面PAM 的法向量为(,,)x y z=n .由0=⋅n ,0=⋅n 得20(4)0yax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以2223)4(32)4(32,cos aa a a n ++-->=<.由已知可得23,cos =><n OB .4a =-(舍去),43a =.所以4()3=-n . 又)322,0(-=,PC ,所以43,cos >=<n .所以PC 与平面PAM 所成角的正弦值为4. 3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 2sin,5DA =n , 所以面MAB 与面MCD 4.解:(Ⅰ)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF . ∵AB =BC .∴AC ⊥BE ,∴AC ⊥平面BEF . (Ⅱ)由(I )知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).)1,0,2(=∴CD ,)0,2,1(=CB ,设平面BCD 的法向量为()a b c =,,n , ∴⎪⎩⎪⎨⎧=⋅=⋅00n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为)0,2,0(=,∴2121cos -=>=⋅<n . 由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为. (Ⅲ)由(Ⅱ)知平面BCD 的法向量为(214)=--,,n ,∵G (0,2,1),F (0,0,2),∴)1,2,0(-=,∴2-=⋅n ,∴n 与不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.5.解:依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(Ⅰ)证明:依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,, 不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(Ⅱ)解:依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1). 因此有cos<m ,n>=||||⋅=m n m n sin<m ,n.所以,二面角E –BC –F. (Ⅲ)解:设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,.易知,DC =(0,2,0)为平面ADGE 的一个法向量,故 cos BP DC BP DC BP DCh ⋅<⋅>==,h ∈[0,2]. 所以线段DP 6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -, 从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1 8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB AB ==,所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C = 由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB BC AC +=,故111AB B C ⊥. 因此1AB ⊥平面111A B C .(Ⅱ)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC AB AC ==111111cos C A B C A B ∠=∠=所以1C D =111sin C D C AD AC ∠==. 因此,直线1AC 与平面1ABB方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),),A B A B C因此111112),3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(Ⅱ)设直线1AC 与平面1ABB 所成的角为θ.由(Ⅰ)可知11(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(,0)=n .所以111|sin |cos ,||||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |因此,直线1AC 与平面1ABB9.解:(1)依题意可知:圆锥的高度为322422=-=OP ,所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。

2018届高考文科数学第8章立体几何8-2

2018届高考文科数学第8章立体几何8-2
则该几何体的体积为________m3.
高考总复习· 数学文科(RJ)
第八章 立体几何
【解析】 由三视图可知,该几何体由相同底面的两圆锥和 圆柱组成, 底面半径为 1 m, 圆锥的高为 1 m, 圆柱的高为 2 m, 1 8 2 2 所以该几何体的体积 V=2×3π×1 ×1+π×1 ×2=3π(m3).
高考总复习· 数学文科(RJ)
第八章 立体几何
1 【解析】 由三视图知该三棱锥的底面积为2×2 3×1= 3, 1 3 高为 1,故该三棱锥的体积是3× 3×1= 3 .
【答案】 3 3
高考总复习· 数学文科(RJ)
第八章 立体几何
5.(2015· 天津)一个几何体的三视图如图所示(单位:m),
得到几何体的直观图,然后根据条件求解.
高考总复习· 数学文科(RJ)
第八章 立体几何
题型三
与球有关的切、接问题
【例 4】 已知直三棱柱 ABCA1B1C1 的 6 个顶点都在球 O 的 球面上,若 AB=3,AC=4,AB⊥AC,AA1=12,则球 O 的半径 为( ) 3 17 A. 2 13 C. 2 B.2 10 D.3 10
高考总复习· 数学文科(RJ)
第八章 立体几何
VA­A1B1D1 VA­A1B1D1 = VB1C1D1­ABCD VA1B1C1D1­ABCD-VA­A1B1D1 1 1 2 × × 1 ×1 3 2 1 = =5.选 D. 1 1 13-3×2×12×1
【答案】 D
高考总复习· 数学文科(RJ)
第八章 立体几何
【答案】 (1)C 3 (2)2
【方法规律】 空间几何体体积问题的常见类型及解题 策略 (1) 若所给定的几何体是可直接用公式求解的柱体、锥 体或台体,则可直接利用公式进行求解. (2) 若所给定的几何体的体积不能直接利用公式得出, 则常用转换法、分割法、补形法等方法进行求解. (3) 若以三视图的形式给出几何体,则应先根据三视图

2018版高考数学文人教大一轮复习讲义 教师版文档第八

2018版高考数学文人教大一轮复习讲义 教师版文档第八

1.直线与平面垂直 (1)定义如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理2.平面与平面垂直 (1)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理与性质定理【知识拓展】 重要结论:(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × )(2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β⇒a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )1.(教材改编)下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥γ 答案 A解析 根据面面垂直的性质,知A 不正确,直线l 可能平行平面β,也可能在平面β内. 2.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若α⊥β,因为α∩β=m ,b ⊂β,b ⊥m ,所以根据两个平面垂直的性质定理可得b ⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.设m、n是两条不同的直线,α、β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案 C解析A中,由m⊥n, n∥α,可得m⊂α或m∥α或m与α相交,错误;B中,由m∥β,β⊥α,可得m⊂α或m∥α或m与α相交,错误;C中,由m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α,可得m与α相交或m⊂α或m∥α,错误.4.(2016·深圳模拟)在正四面体ABCD中,E,F,G分别是BC,CD,DB的中点,下面的结论不正确的是()A.BC∥平面AGFB.EG⊥平面ABFC.平面AEF⊥平面BCDD.平面ABF⊥平面BCD答案 C解析易知点A在平面BCD上的射影在底面的中心,而中心不在EF上,所以平面AEF⊥平面BCD错误,选C.5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥P A,PB⊥PC,P A∩PB=P,∴PC ⊥平面P AB ,AB ⊂平面P AB ,∴PC ⊥AB , 又AB ⊥PO ,PO ∩PC =P , ∴AB ⊥平面PGC , 又CG ⊂平面PGC ,∴AB ⊥CG ,即CG 为△ABC 边AB 上的高. 同理可证BD ,AH 为△ABC 底边上的高, 即O 为△ABC 的垂心.题型一 直线与平面垂直的判定与性质例1 (2016·全国甲卷改编)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.证明:D ′H ⊥平面ABCD .证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,且OH ,EF ⊂平面ABCD , 所以D ′H ⊥平面ABCD .思维升华 证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(2015·江苏)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.题型二平面与平面垂直的判定与性质例2如图,四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE ∥平面P AD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取P A 的中点H ,连接EH ,DH . 又E 为PB 的中点,所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面P AD ,CE ⊄平面P AD . 所以CE ∥平面P AD . 方法二 连接CF . 因为F 为AB 的中点,所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF ⊄平面P AD ,AD ⊂平面P AD , 所以CF ∥平面P AD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A . 又EF ⊄平面P AD ,P A ⊂平面P AD ,所以EF∥平面P AD.因为CF∩EF=F,故平面CEF∥平面P AD.又CE⊂平面CEF,所以CE∥平面P AD.(2)因为E、F分别为PB、AB的中点,所以EF∥P A.又因为AB⊥P A,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG.所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.引申探究1.在本例条件下,证明:平面EMN⊥平面P AC.证明因为AB⊥P A,AB⊥AC,且P A∩AC=A,所以AB⊥平面P AC.又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面P AC.又MN⊂平面EMN,所以平面EMN⊥平面P AC.2.在本例条件下,证明:平面EFG∥平面P AC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥P A,FG∥AC,又EF⊄平面P AC,P A⊂平面P AC,所以EF∥平面P AC.同理,FG∥平面P AC.又EF∩FG=F,所以平面EFG∥平面P AC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2016·江苏)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.题型三直线、平面垂直的综合应用例3如图所示,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面P AD;(2)求四棱锥P—ABCD的体积.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD 2+BD 2=AB 2,∴AD ⊥BD .又∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD . 又BD ⊂平面MBD , ∴平面MBD ⊥平面P AD . (2)解 过P 作PO ⊥AD ,∵平面P AD ⊥平面ABCD , ∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.又△P AD 是边长为4的等边三角形,∴PO =2 3. 在四边形ABCD 中,AB ∥DC ,AB =2DC , ∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高.∴S 四边形ABCD =25+452×855=24.∴V P —ABCD =13×24×23=16 3.思维升华 垂直关系综合题的类型及解法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. (2)垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.(3)垂直与体积结合问题,在求体积时,可根据线面垂直得到表示高的线段,进而求得体积.(2016·全国乙卷)如图,已知正三棱锥P-ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(1)证明:G 是AB 的中点;(2)作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. (1)证明 因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD .因为D 在平面P AB 内的正投影为E ,所以AB ⊥DE . 因为PD ∩DE =D ,PD ,DE 都在平面PED 内, 所以AB ⊥平面PED ,又PG 在平面PED 内, 故AB ⊥PG .又由已知可得,P A =PB ,从而G 是AB 的中点.(2)解 在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC ,PC ∩P A =P ,PC 与P A 都在平面P AC 中,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面P AB ,DE ⊥平面P AB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中, 可得EF =PF =2,所以四面体PDEF 的体积V =13×12×2×2×2=43.17.立体几何证明问题中的转化思想典例 (12分)如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思想方法指导(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.规范解答证明(1)如图所示,连接NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK.[6分](2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.[10分]∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.[12分]1.已知直线m,n和平面α,β,若α⊥β,α∩β=m,要使n⊥β,则应增加的条件是() A.n⊂α且m∥n B.n∥αC.n⊂α且n⊥m D.n⊥α答案 C解析由面面垂直的性质定理知选C.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故选D.3.(2016·包头模拟)如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE与B1C1是异面直线,且AE⊥B1C1D.A1C1∥平面AB1E答案 C解析A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故选C.4.正方体ABCD-A′B′C′D′中,E为A′C′的中点,则直线CE垂直于()A.A′C′B.BD C.A′D′D.AA′答案 B解析连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.5.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M 为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③答案 B解析对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,OM⊄平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△P AC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.答案AB、BC、AC AB解析∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,∴与AP垂直的直线是AB.7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或BM⊥PC等)解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF ⊥平面PBC ,∴AF ⊥PB ,又AE ⊥PB ,AE ∩AF =A , ∴PB ⊥平面AEF ,∴PB ⊥EF . 故①②③正确.9.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个. 答案 2解析 若α,β换为直线a ,b ,则命题化为“a ∥b ,且a ⊥γ⇒b ⊥γ”,此命题为真命题;若α,γ换为直线a ,b ,则命题化为“a ∥β,且a ⊥b ⇒b ⊥β”,此命题为假命题;若β,γ换为直线a ,b ,则命题化为“a ∥α,且b ⊥α⇒a ⊥b ”,此命题为真命题.10.(2016·四川)如图,在四棱锥P-ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下: 连接BM ,CM .因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面P AB ,CM ⊄平面P AB . 所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,P A ⊥AB ,P A ⊥CD . 因为AD ∥BC ,BC =CD =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD , 从而P A ⊥BD .又BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ⊂平面PBD , 所以平面P AB ⊥平面PBD .11.(2016·北京)如图,在四棱锥P-ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ; (2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由. (1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面P AC ,AC ⊂平面P AC ,∴DC ⊥平面P AC . (2)证明 ∵AB ∥CD ,CD ⊥平面P AC , ∴AB ⊥平面P AC ,又AB ⊂平面P AB , ∴平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又∵E 为AB 的中点,∴EF 为△P AB 的中位线,∴EF ∥P A .又P A ⊄平面CEF ,EF ⊂平面CEF ,∴P A ∥平面CEF .*12.(2016·山东)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC. 证明(1)因为EF∥DB,所以EF与DB确定平面BDEF,如图,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,DB∩BC=B,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.。

2018版数学(理)大复习讲义第八章立体几何与空间向量8

2018版数学(理)大复习讲义第八章立体几何与空间向量8

1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角θa与b的夹角β范围(0,错误!][0,π]求法cos θ=错误!cos β=错误!2。

直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=错误!.3.求二面角的大小(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈错误!,错误!〉.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos<n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角)。

【知识拓展】利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则AB=|错误!|=错误!。

(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为|错误!|=错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角。

(×)(3)两个平面的法向量所成的角是这两个平面所成的角。

(×)(4)两异面直线夹角的范围是(0,错误!],直线与平面所成角的范围是[0,错误!],二面角的范围是[0,π].(√)(5)直线l的方向向量与平面α的法向量夹角为120°,则l和α所成角为30°.(√)(6)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是π-θ。

(×)1.(2016·南通模拟)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.答案45°或135°解析cos<m,n>=错误!=错误!=错误!,即〈m,n>=45°.∴两平面所成的二面角为45°或180°-45°=135°。

2018届高三(新课标)数学(理)大一轮复习教师用书第八章立体几何Word版含解析

2018届高三(新课标)数学(理)大一轮复习教师用书第八章立体几何Word版含解析

第八章⎪⎪⎪立 体 几 何 第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图1.空间几何体的结构特征 (1)多面体的结构特征(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.1.长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C 当正视图为等腰三角形时,则高应为2,且应为虚线,排除A ,D ;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA 形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式[例1]分曲线为半圆弧,则该几何体的表面积为()A.4π+16+4 3 B.5π+16+4 3C.4π+16+2 3 D.5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3. [答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝ ⎛⎭⎪⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π.[答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132. (2)如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3π B.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027. 8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A 根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36 C.23D.22解析:选A 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎫332=63,所以VS -ABC =2V O -ABC =2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A 错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3 B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163 B.203 C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π.5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S △PAD =12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆锥,下面是底面圆的半径为1 m 、高为4 m 的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m 3).答案:20π39.如图,正方形O ′A ′B ′C ′的边长为a ,它是一个水平放置的平面图形的直观图,则原图形OABC 的周长是________.解析:由斜二测画法的规则可知,原图形OABC 是一个平行四边形. 在原图形OABC 中OB =22a ,OA =a , 且OA ⊥OB ,∴AB =3a ,∴原图形OABC 的周长为2(a +3a )=8a . 答案:8a10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V 142π=588π196π=3(寸).答案:3 三、解答题11.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,则⎝⎛⎭⎫h 22+r 2=R 2, 即h =2R 2-r 2.因为S =2πrh =4πr ·R 2-r 2=4πr 2·(R 2-r 2)≤4π(r 2+R 2-r 2)24=2πR 2, 当且仅当r 2=R 2-r 2, 即r =22R 时,取等号, 即当内接圆柱底面半径为22R ,高为2R 时,其侧面积的值最大,最大值为2πR 2. 12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ; (2)求该几何体的表面积S .解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3.所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A 1D ⊥平面ABCD ,CD ⊥平面BCC 1B 1,。

2018届高中数学高考二轮复习数列教案含答案(全国通用)

2018届高中数学高考二轮复习数列教案含答案(全国通用)

教学过程一、考纲解读1.高考对于本节的考查方式:(1)选择填空重点考查等差、等比数列的性质;(2)解答题中重点考查通项公式、求和(重视求和的错位相减法、裂项相消法)(3)递推数列也是考察的重点,只局限于最基本的形式2. 数列在历年高考高考试题中占有重要的地位,近几年更是有所加强.一般情况下都是一至两个考查性质的客观题和一个考察能力的解答题。

文科以等差数列的基础知识、基本解法为主,理科注重概念的理解和运用。

分值在22分左右二、复习预习(1)数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.(3)数列求和,求通项.与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.错位相减法、裂项相消法三、知识讲解考点1 数列的概念和简单表示法①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量为正整数的一类函数.考点2 等差数列、等比数列①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④了解等差数列与一次函数、等比数列与指数函数的关系.考点3 综合问题(1)求数列通项累加法,累乘法,构造法,数学归纳法(2)数列求和裂项相消法,错位相减法, 数学归纳法(3)与函数,不等式等知识的综合题,考查学生对知识的掌握和应用能力.放缩法四、例题精析例1 [2014全国大纲] 等比数列{}n a 中,42a =,55a =,则数列{lg }n a 的前8项和等于( ) (A)6 (B)5 (C)4 (D)3【规范解答】选(C ).(求解对照)由已知有在等比数列{}n a 中,42a =,55a =, 则63728154a a a a a a a a ⋅=⋅=⋅=⋅=10所以410lg )lg(lg lg lg 4821821==⋅⋅⋅=+⋅⋅⋅++a a a a a a 。

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何含答案(最新整理)

2018高考数学立体几何答案1.(本小题14分)如图,在三棱柱ABC −中,平面ABC ,D ,E ,F ,G 分别为111A B C 1CC ⊥,AC ,,的中点,AB=BC,AC ==2.1AA 11A C 1BB 1AA(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B−CD −C 1的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.【解析】(1)在三棱柱111ABC A B C -中,1CC ⊥Q 平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,AC EF ∴⊥,AB BC =Q ,AC BE ∴⊥,AC ∴⊥平面BEF .(2)由(1)知AC EF ⊥,AC BE ⊥,1EF CC ∥.又1CC ⊥平面ABC ,EF ∴⊥平面ABC .BE ⊂Q 平面ABC ,EF BE ∴⊥.如图建立空间直角坐称系E xyz -.由题意得()0,2,0B ,()1,0,0C -,()1,0,1D ,()0,0,2F ,()0,2,1G ,()=2,01CD ∴u u u r ,,()=1,2,0CB u u r ,设平面BCD 的法向量为(),a b c =,n ,00CD CB ⎧⋅=⎪∴⎨⋅=⎪⎩u u u r u u r n n ,2020a c a b +=⎧∴⎨+=⎩,令2a =,则1b =-,4c =-,∴平面BCD 的法向量()2,14=--,,n ,又Q 平面1CDC 的法向量为()=0,2,0EB u u r ,cos =EB EB EB⋅∴<⋅>=-u u r u u r u u r n n n .由图可得二面角1B CD C --为钝角,所以二面角1B CD C --的余弦值为.(3)平面BCD 的法向量为()2,1,4=--n ,()0,2,1G Q ,()0,0,2F ,()=02,1GF ∴-u u u r ,,2GF ∴⋅=-u u u r n ,∴n 与GF u u u r 不垂直,GF ∴与平面BCD 不平行且不在平面BCD 内,GF ∴与平面BCD 相交2.(本小题14分)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E ,F 分别为AD ,PB 的中点.(1)求证:PE BC ⊥;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【解析】(1)PA PD =Q ,且E 为AD 的中点,PE AD ∴⊥,Q 底面ABCD 为矩形,BC AD ∴∥,PE BC ∴⊥.(2)Q 底面ABCD 为矩形,AB AD ∴⊥,Q 平面PAD ⊥平面ABCD ,AB ∴⊥平面PAD ,AB PD ∴⊥.又PA PD ⊥,PD ⊥Q 平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接FG ,GD .F Q ,G 分别为PB 和PC 的中点,FG BC ∴∥,且12FG BC =,Q 四边形ABCD 为矩形,且E 为AD 的中点,ED BC ∴∥,12DE BC =,ED FG ∴∥,且ED FG =,∴四边形EFGD 为平行四边形,EF GD ∴∥,又EF ⊄平面PCD ,GD ⊂平面PCD ,EF ∴∥平面PCD .3.(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.解答:(1),E F 分别为,AD BC 的中点,则//EF AB ,∴EF BF ⊥,又PF BF ⊥,EF PF F ⋂=,∴BF ⊥平面PEF ,BE ⊂平面ABFD ,∴平面PEF ⊥平面ABFD .(2)PF BF ⊥,//BF ED ,∴PF ED ⊥,又PF PD ⊥,ED DP D ⋂=,∴PF ⊥平面PED ,∴PF PE ⊥,设4AB =,则4EF =,2PF =,∴PE =,过P 作PH EF ⊥交EF 于H 点,由平面PEF ⊥平面ABFD ,∴PH ⊥平面ABFD ,连结DH ,则PDH ∠即为直线DP 与平面ABFD 所成的角,由PE PF EF PH ⋅=⋅,∴PH ==,而4PD =,∴sin PH PDH PD ∠==,∴DP 与平面ABFD .4.(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.C【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =,连结OB.因为AB BC ==,所以ABC △为等腰直角三角形,且OB AC ⊥,122OB AC ==,由222OP OB PB +=知PO OB ⊥,由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()0,0,0O ,()2,0,0B ,()0,2,0A -,()0,2,0C,(P,(AP =u u u r ,取平面PAC 的法向量()2,0,0OB =u u u r ,设()(),2,002M a a a -<≤,则(),4,0AM a a =-u u u r ,设平面PAM 的法向量为(),,x y z =n .由0AP ⋅=u u u r n ,0AM ⋅=u u u r n ,得()2040y ax a y ⎧+=⎪⎨+-=⎪⎩,可取))4,a a =--n ,cos ,OB ∴<>=u u u rn ,由已知得cos ,OB <>=u u u r n,,解得4a =-(舍去),43a =,43⎛⎫∴=- ⎪⎪⎝⎭n ,又(0,2,PC =-u uu r Q ,所以cos ,PC <>=u u u r n .所以PC 与平面PAM .5.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧A CD所在平面垂直,M 是A CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M ABC-体积最大时,求面MAB与面MCD所成二面角的正弦值.解答:(1)∵正方形半圆面,ABCD⊥CMD∴半圆面,∴平面.AD⊥CMD AD⊥MCD∵在平面内,∴,又∵是半圆弧上异于的点,∴CM MCD AD CM⊥M CD,C D .又∵,∴平面,∵在平面内,∴平面CM MD⊥AD DM D=I CM⊥ADM CM BCM平面.BCM⊥ADM(2)如图建立坐标系:∵面积恒定,ABCS∆∴,最大.MO CD⊥M ABCV-,,,,,(0,0,1)M(2,1,0)A-(2,1,0)B(0,1,0)C(0,1,0)D-设面的法向量为,设面的法向量为,MAB111(,,)m x y z=u rMCD222(,,)n x y z=r,,(2,1,1)MA=--(2,1,1)MB=-,,(0,1,1)MC=-(0,1,1)MD=--,11111120(1,0,2)20x y zmx y z--=⎧⇒=⎨+-=⎩同理,,(1,0,0)n=∴,∴.cosθ==sinθ=6.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.7.(本小题满分13分)如图,且AD =2BC ,,且EG =AD ,且AD BC ∥AD CD ⊥EG AD ∥CD FG ∥CD =2FG ,,DA =DC =DG =2.DG ABCD ⊥平面(I )若M 为CF 的中点,N 为EG 的中点,求证:;MN CDE ∥平面(II )求二面角的正弦值;E BCF --(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得()0,0,0D ,()2,0,0A ,()1,2,0B ,()0,2,0C ,()2,0,2E ,()0,1,2F ,()0,0,2G ,30,,12M ⎛⎫ ⎪⎝⎭,()1,0,2N .(1)依题意()0,2,0DC = ,()2,0,2DE = .设()0,,x y z =n 为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即20220y x z =+=⎧⎨⎩,不妨令–1z =,可得()01,0,1=-n .又31,,12MN ⎛⎫= ⎪⎝⎭-,可得00MN ⋅= n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得()–1,0,0BC = ,()1,2,2BE =- ,()0,1,2CF =- .设(),,x y z =n 为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0220x x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,1,1=n .设(),,x y z =m 为平面BCF 的法向量,则00BC BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即020x y z -=-+=⎧⎨⎩,不妨令1z =,可得()0,2,1=m .因此有cos ,⋅<>==m n m n m n,于是sin ,m n <>=.所以,二面角––E BC F.(3)设线段DP 的长为[]()0,2h h ∈,则点P 的坐标为()0,0,h ,可得()1,2,BP h =-- .易知,()0,2,0DC = 为平面ADGE 的一个法向量,故cos BP DC BP DC BP DC ⋅<⋅>== ,sin 60=︒=,解得[]0,2h =.所以线段DP.8.(本题满分15分)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.解答:(1)∵,且平面,12AB B B ==1B B ⊥ABC∴,∴.1B B AB ⊥1AB =同理,1AC ===过点作的垂线段交于点,则且,∴.1C 1B B 1B B G 12C G BC ==11B G =11B C =在中,,11AB C ∆2221111AB B C AC +=∴,①111AB B C ⊥过点作的垂线段交于点.1B 1A A 1A A H则,,∴.12B H AB ==12A H =11A B =在中,,11A B A ∆2221111AA AB A B =+∴,②111AB A B ⊥综合①②,∵,平面,平面,11111A B B C B ⋂=11A B ⊂111A B C 11B C ⊂111A B C ∴平面.1AB ⊥111A B C (2)过点作的垂线段交于点,以为原点,以所在直线为轴,B AB AC I B AB x 以所在直线为轴,以所在直线为轴,建立空间直角坐标系.BI y 1B B z B xyz -则,,,,(0,0,0)B (2,0,0)A -1(0,0,2)B 1C 设平面的一个法向量,1ABB (,,)n a b c = 则,令,则,1020200n AB a c n BB ⎧⋅==⎧⎪⇒⎨⎨=⋅=⎩⎪⎩ 1b =(0,1,0)n = 又∵,.1AC =1cos ,n AC <>== 由图形可知,直线与平面所成角为锐角,设与平面夹角为.1AC 1ABB 1AC 1ABB α∴.sin α=9.(本小题满分14分)在平行六面体中,.1111ABCD A B C D -1111,AA AB AB B C =⊥求证:(1);11AB A B C 平面∥(2).111ABB A A BC ⊥平面平面【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形.又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥.又因为1A B BC B = ,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A ,所以平面11ABB A ⊥平面1A BC .。

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习过程
一、考纲解读
立体几何模块内容在目前高考中结构和比重相对稳定,一般为一个客观题加一个解答题的格局,分值在17到22分之间,难度不太高,是得基本分的关键内容之一.
立体几何考题侧重考查同学们的空间概念、逻辑思维能力、空间想象能力及运算能力。

在选择、填空题中侧重立体几何中的概念型、空间想象型、简单计算型问题,而解答题侧重立体几何中的逻辑推理型问题,立体几何常考的四类问题(1)三视图及相关的体积、表面积的简单计算.(2)点、直线、平面之间的位置关系.(3)距离、角度的向量计算.(4)存在型、探究型问题.
立体几何中的空间想象能力是培养能力是数学学习中重要的一个组成部分,同时该部分内容也是培养逻辑思维能力的重要手段,体现在证明和运算的规范性上,熟练掌握基本定理的文字语言和图形语言和符号语言是学习的基本保证,该模块中涉及到的重要数学思想方法有分类讨论、化归转化和类比等对本部分的考查,三视图是考察重点,几乎年年都考,以选择,填空题为主,当然也可能在大题中由三视图还原为直观图后考查定性及定量问题。

文理对平行、垂直关系的证明依然是考察重点。

符号语言、图形语言、文字语言的相互转化要引起足够的重视(尤其在选择填空题)
文科对空间角不再考查,但理科引入了空间向量对其都有要求。

有关球的考查降低了要求,不再考球面距离但球的表面积、体积要熟练掌握。

二、复习预习
(1)空间几何体
定义
体积表面积
(2)点、直线、平面之间的位置关系
平行
垂直
距离
角度
(3)空间向量
法向量的求法及其在立体几何中的应用
三、知识讲解
考点1 (1)空间几何体
①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
④了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
考点2点、直线、平面之间的位置关系
①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
公理2:过不在同一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理.
◆如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行. 即若ααα//,//,,a b a b a 则⊂⊄.
◆如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行, 即若βαββα//,//,//,,,则b a p b a b a =⊂ .
◆如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 即若ααα⊥⊥⊥=⊂⊂l n l m l B n m n m 则,,,,, .
◆如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直, 即若βααβ⊥⊂⊥则,,l l . 理解以下性质定理,并能够证明.
◆如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若b a b a a //,,,//则=⊂βαβα .
◆两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ=a ,β∩γ=b ,则b a // ◆垂直于同一平面的两直线平行,即若b a b a //,,则αα⊥⊥
◆如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面, 即若αββαβα⊥⊥⊂=⊥l a l l a 则,,,, . 考点3 空间向量
法向量的求法以及法向量在立体几何证明球角度距离中的应用
四、例题精析
例1 [2014全国2卷] 如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某 零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切 削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .27
17 B .95 C .2710 D .31
【规范解答】∵ 毛坯是底面半径为3,高为6的圆柱,体积V 1=9π·6=54π,
加工后的零件,左半部为小圆柱,底面半径为2,高4,右半部为大圆柱, 底面半径为3,高2,体积V 2=4π·4+9π·2=34π, ∴ 削掉部分的体积与原体积的比值=
π
π
π543454-=2710,故选C 【总结与反思】 ⑴ 考查识别三视图所表示的立体模型;⑵ 考查圆柱的体积公式。

例2 [2014全国大纲卷] 已知二面角l αβ--为60
,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,
135ACD ∠= ,则异面直线AB 与CD 所成角的余弦值为( )
(A)
14
(B)4
(D)12 【规范解答】解法:选(B ).(求解对照)如图,
00045135180,60,,.,,E ,=-=∠=∠⊥⊥∠ ⊥EAF BAE ABE EF ABE l CD AB BAF BF 。

F l CD A 、E BE 且平面从而平面易知所成的角和或其补角是异面直线则连结二者相交于点的平行线和分别作过点于作α .
,42
2
222)2(22cos ,,2,21,3,2222222B AB AF BF AF AB BAF BAF BF AF EF AE BE AB 选由余弦定理得
中在则设=⨯⨯-+= ⋅-+=∠ ∆==⇒==== 【总结与反思】 本题考查异面直线所成的角,关键是如何找异面直线所成的角的平面角,再通过解三角方式把角的余弦值求出来。

B E D
A
F
C
l α
β
例3 [2014北京卷]
在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C
,(D ,
若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( ) (A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【规范解答】答案D (23S S =且13S S ≠)
D ABC -在xOy 平面上的投影为ABC △,故12S =,
设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △
.∵(201D ,
,(310D ,.
故23S S ==D 正确.
【总结与反思】 本题结合空间直角坐标系考查空间想象能力以及三视图,是一道非常好的考题.
例4[2014全国大纲卷] 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )
(A)
814π (B)16π (C)9π (D)274
π
【规范解答】解法一:选(A ).(求解对照)
设正四棱锥为P-ABCD ,作PH ⊥底面ABCD 于H ,又设O 为球心,则O 在PH 上,PH=4,令球的半径为R ,则222)2()4(+-=R R 解得R=49,所以球的表面积为:4
81)49(4422
πππ=⨯=R . 选(A ).
解法二:选(A ).(求解对照)
如图,延长PH 交球于另一点Q ,则PQ 为球的直径,连结AQ ,则PA ⊥AQ ,显然
.184,22
1
222=+=⇒===
AH PH PA PH AC AH 设球的半径为R ,则 .481)49(44,492418222π
ππ=⋅===⇒⋅=⇔⋅=R S R R PQ PH PA 球所以选(A ).
【总结与反思】 本题考查学生的空间想象能力,重点在考查正四棱锥的性质以及球的性质。

着重求出球的半径来解决问题。

例5 [2014全国1卷] 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为 (
)
A
. B
. C .6 1 D .4
【规范解答】
解法 选C (构造法)如图所示,原几何体为三棱锥D ABC -,
其中4,AB BC AC DB DC =====
6DA ==,故最长的棱的长度为6DA =,
选C
A
P
H
D
B
Q
C。

相关文档
最新文档