高中数学竞赛教案讲义立体几何

合集下载

2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2

2024-2025学年高中数学第1章立体几何初步1简单几何体(教师用书)教案北师大版必修2
肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的简单几何体的内容,布置适量的课后作业,巩固学习效果。
提醒学生注意作业要求和时间安排,确保作业质量。
拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料:
- 《几何原本》是古希腊数学家欧几里得的代表作,其中包含了关于立体几何的详细论述,对于理解立体几何的概念和定理非常有帮助。
举例:可以用坐标系表示几何体的顶点或中心点的位置,用向量表示几何体的尺寸和方向。
(3)几何体的表面积和体积计算:如何计算简单几何体的表面积和体积。
举例:正方体的表面积公式为6a²,其中a为边长;正方体的体积公式为a³。
2.教学难点
(1)理解并应用几何体的特征:学生可能对几何体的特征和性质理解不深,难以运用到实际问题中。
互动探究:
设计小组讨论环节,让学生围绕简单几何体的问题展开讨论,培养学生的合作精神和沟通能力。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
技能训练:
设计实践活动或实验,让学生在实践中体验几何体的应用,提高实践能力。
在新课呈现结束后,对简单几何体的知识点进行梳理和总结。
强调重点和难点,帮助学生形成完整的知识体系。
- 学习如何表示和描述简单几何体的尺寸和位置;
- 掌握如何计算简单几何体的表面积和体积。
2.教学目标:
- 学生能准确识别和描述常见简单几何体的特征;
- 学生能运用数学语言和符号表示简单几何体的尺寸和位置;
- 学生能计算简单几何体的表面积和体积,并能解决相关实际问题。
三、教学步骤
1.导入(5分钟):通过展示一些实际生活中的几何体模型,引导学生思考和讨论这些模型的特征和数学关系。

《高中数学立体几何》课件

《高中数学立体几何》课件
立体几何在数学、工程、建筑等领域 有着广泛的应用,是理解和描述现实 世界空间关系的重要工具。
立体几何的重要性
01
02
03
培养空间思维能力
学习立体几何有助于培养 学生的空间想象力和逻辑 思维能力,提高解决实际 问题的能力。
数学学科基础
立体几何是数学学科体系 中的重要组成部分,对于 理解数学概念、掌握数学 方法具有重要意义。
《高中数学立体几何》ppt课 件
目 录
• 立体几何简介 • 立体几何基础知识 • 立体图形的性质与分类 • 立体几何的应用 • 解题技巧与思路 • 立体几何的未来发展
01
立体几何简介
什么是立体几何
立体几何是研究三维空间中图形和物 体性质的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量关系。
角度的计算
角度是描述两条射线或线段之间夹角 的大小的量。在立体几何中,角度可 以通过使用三角函数或几何定理来计 算。
距离的计算
距离是描述两点之间或一点到一条线 段之间的最短路径的大小的量。在立 体几何中,距离可以通过使用勾股定 理或几何定理来计算。
03
立体图形的性质与分类
立体图形的性质
空间性
立体图形存在于三维空间 中,具有空间特性。
近现代发展
随着数学和科学技术的不断进步, 立体几何逐渐与代数学、分析学等 学科交叉融合,形成了更加丰富和 深入的研究领域。
02
立体几何基础知识
点、线、面的基本性质
点的基本性质
面的基本性质
Байду номын сангаас
点是几何学中最基本的元素,没有大 小和形状。在空间中,点的唯一特征 是它的位置。
面是由无数条线组成的,它只有面积 而没有厚度。面的形状和位置由其上 的点和其上的线的分布决定。

数学高中立体几何初步教案

数学高中立体几何初步教案

数学高中立体几何初步教案
教学目标:
1.了解立体几何的基本概念和性质
2.掌握立体几何的基本公式和计算方法
3.培养学生分析和解决问题的能力
教学内容:
1. 立体几何的基本概念
2. 空间的点、直线、面
3. 空间几何体的投影
4. 空间几何体的旋转体
教学过程:
1.导入:通过展示几何体模型或图片引发学生对立体几何的兴趣
2.讲解立体几何的基本概念和性质,如点、直线、面等的定义和特点
3.讲解空间几何体的投影和旋转体的概念,引导学生理解其形成及应用
4.指导学生完成相关练习和作业,巩固所学知识
5.进行课堂讨论和展示,总结重点知识和难点
教学方法:
1.讲授法:通过教师讲解和示范引导学生理解概念和性质
2.讨论法:通过小组讨论和互动,促进学生思考和交流
3.实践法:通过实际练习和应用, 提高学生解决问题的能力
评价与反思:
1.对学生掌握情况进行诊断性评价,及时调整教学步骤和方法
2.反思教学过程中的不足和改进方案,提高教学效果和学生学习质量拓展与应用:
1.鼓励学生积极参与校内外竞赛或活动,提高立体几何能力
2.激发学生对数学的兴趣, 培养其数学建模和解决实际问题的能力教学反馈:
1.及时对学生的学习情况进行反馈,并提供个性化指导和帮助
2.鼓励学生在学习立体几何中发现问题,并主动探索解决方案
教师签名:_________ 日期:_________。

100147_数学竞赛辅导----立体几何_邓爱萍

100147_数学竞赛辅导----立体几何_邓爱萍

1、 截面法
2、隔离法 3、展平法
4、投影法
例2、
分析
在正方体ABCD—A1B1C1D1中,设∆C1 D1 B 所在的 半平面为α ,∆C D1 B所在的半平面为 β,BD1 所在的直线是 α与 β 的交线。求二面角 α—BD1 —β 的度数
因为二面角的平面角的度数是 由相应平面角的来表示的,所以解 题的一个方向是找平面角。 A1 D1 B1 C1
例4、
A
B
C
四、 体 积 法
用两种方法计算同一体积,从而得出未知数的等量关 系,这是平面几何的面积法的直接推广,用这种方法求点 到平面的距离时,可免去找距离线段或论证垂直关系的推 理过程,在种方法多用于四面体和长方体,因为它们对底 G 面的选择有很大的自由度,可以方便地“换底”
例5
如图,已知ABCD是边长 D 为4的正方形,E,F 分别是 AB ,AD 的中点,CG 垂直于 F ABCD 所在的平面,且 CG=2, 求 B 点到平面 GEF 的距离。 A
且由B在A,C 之间知, B2 在A2 ,C2 之间
在 ∆OA2C2中, 有 max{∠OB 2A 2 , ∠OB 2 C2 } ≥ 900 从而 即 OB2 BB1 max{OA2 OC2 } max{AA1 CC1 }.

V=
1 3 a 2
六、



投影是实现平面化思考的一条途径,同时也是处理更广 泛空间问题的一个通法. 例7 设PP1 , QQ1是空间中两条异面直线,A,B,C是直线 QQ1上3点,且点B在A,C之间, P Q A1,B1, C1是由A,B,C向直线, A A1 PP1所引垂线的垂足, B B1 C1 C 证明 A2 B2 BB1 max {AA 1, CC1 } O C2

高中数学教案《立体几何初步》

高中数学教案《立体几何初步》

教学设计:《立体几何初步》一、教学目标1.知识与技能:学生能够理解空间几何体的基本概念,掌握点、线、面的位置关系及基本性质,能够识别并绘制简单的空间图形,理解并计算空间几何体的表面积和体积。

2.过程与方法:通过观察、分析、比较等数学活动,培养学生的空间想象能力和逻辑推理能力;通过小组合作,提高学生解决问题的合作与交流能力。

3.情感态度与价值观:激发学生对立体几何的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解决问题过程中,体验数学的严谨性和美感。

二、教学重点和难点●重点:空间几何体的基本性质,点、线、面的位置关系,空间几何体的表面积和体积计算。

●难点:空间想象能力的培养,复杂空间图形的识别与绘制,以及利用空间几何性质解决实际问题。

三、教学过程1. 导入新课(5分钟)●生活实例引入:展示生活中常见的立体几何体(如建筑、家具、自然物体等),引导学生观察并讨论它们的共同特征,引出立体几何的概念。

●问题驱动:提出一个与立体几何相关的问题,如“如何计算一个房间的体积?”激发学生好奇心,为新课学习做好铺垫。

●明确目标:简要说明本节课的学习目标和任务,让学生有清晰的学习方向。

2. 知识点讲解(15分钟)●基本概念阐述:详细讲解空间几何体的定义、分类及基本性质,包括棱柱、棱锥、圆柱、圆锥等。

●位置关系分析:通过图示和实例,讲解点、线、面在空间中的位置关系,如平行、垂直、相交等,并引导学生理解其性质。

●公式推导:简要推导空间几何体表面积和体积的计算公式,让学生理解公式的来源和适用范围。

3. 直观演示与操作(10分钟)●多媒体演示:利用多媒体课件展示空间几何体的动态形成过程,帮助学生建立直观的空间形象。

●实物模型展示:展示空间几何体的实物模型,让学生亲手触摸、观察,加深对空间图形的认识。

●动手实践:组织学生进行简单的空间图形绘制活动,如用直尺和圆规绘制棱柱的俯视图、左视图等。

4. 问题解决与讨论(15分钟)●例题讲解:选取几道典型例题,讲解如何利用空间几何的性质和公式解决问题。

高中立体几何教案5篇

高中立体几何教案5篇

高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。

高中数学《立体几何》教案设计

高中数学《立体几何》教案设计

高中数学《立体几何》教案设计1一、教学目标1. 学生能够理解立体几何的基本概念,如点、线、面、体等。

2. 掌握空间图形的性质及求解方法,例如空间中直线与平面的位置关系、平面与平面的位置关系等。

3. 培养学生的空间想象能力,使其能够在脑海中构建出各种立体图形。

4. 提升学生的逻辑思维能力,学会运用逻辑推理解决立体几何问题。

二、教学重点与难点1. 教学重点- 立体几何的基本概念和空间图形的性质。

- 空间中直线与平面、平面与平面的位置关系的判断方法。

- 求解空间图形的表面积和体积。

2. 教学难点- 培养学生的空间想象能力。

- 运用逻辑推理解决复杂的立体几何问题。

三、教学方法1. 直观教学法:通过模型展示、多媒体课件等直观手段,帮助学生理解抽象的立体几何概念。

2. 探究式教学法:引导学生分组搭建常见的立体几何模型,自主探究空间图形的性质。

3. 案例教学法:结合生活实例,让学生体会立体几何在实际生活中的应用。

四、教学过程1. 导入(5 分钟)- 教师提问:“同学们,在我们的日常生活中,有很多物体都具有立体的形状。

大家能不能举一些例子呢?”学生们纷纷回答,如足球是球体、魔方是正方体等。

- 教师总结:“同学们说得非常好!这些物体都属于立体几何的研究范畴。

今天,我们就一起来学习立体几何。

”2. 背景介绍(5 分钟)- 教师讲解:“立体几何是数学的一个重要分支,它主要研究空间中的点、线、面、体等几何元素的性质和关系。

早在古代,人们就开始对立体几何进行研究了。

比如,古埃及人在建造金字塔的时候,就运用了立体几何的知识。

”3. 作者介绍(可省略)4. 课本讲解(30 分钟)- 课本原文内容:立体几何的基本概念包括点、线、面、体。

点是空间中的一个位置,没有大小;线是由无数个点组成的,有长度但没有宽度和厚度;面是由线组成的,有长度和宽度但没有厚度;体是由面组成的,有长度、宽度和厚度。

- 分析:- 知识点:让学生理解点、线、面、体的定义和相互关系。

高中数学立体几何教案

高中数学立体几何教案

高中数学立体几何教案1. 教学目标1.1 知识与技能1. 理解立体几何的基本概念,包括点、线、面的位置关系,以及它们的性质和判定。

2. 掌握立体几何的基本图形,如正方体、长方体、棱柱、棱锥等。

3. 学会使用立体几何的基本工具,如直尺、三角板、量角器等。

1.2 过程与方法1. 通过观察和操作,培养学生的空间想象能力。

2. 学会使用几何语言描述立体图形,培养学生的逻辑表达能力。

3. 运用立体几何的性质和判定,解决实际问题。

1.3 情感态度与价值观1. 培养学生对数学的兴趣和自信心。

2. 培养学生合作交流的能力,发展学生的团队精神。

2. 教学内容2.1 基本概念1. 点、线、面的定义及性质。

2. 点、线、面之间的位置关系,如平行、相交、垂直等。

2.2 基本图形1. 正方体、长方体、棱柱、棱锥的定义及性质。

2. 常见立体图形的分类和识别。

2.3 基本工具1. 直尺、三角板、量角器的使用方法。

2. 立体图形的测量和绘制。

3. 教学过程3.1 导入通过实物模型或图片,引导学生观察和描述立体图形,激发学生的兴趣。

3.2 知识讲解1. 讲解基本概念,如点、线、面的定义及性质。

2. 引导学生通过观察和操作,理解点、线、面之间的位置关系。

3. 讲解基本图形,如正方体、长方体、棱柱、棱锥的定义及性质。

4. 教授立体图形的分类和识别方法。

5. 讲解基本工具的使用方法,如直尺、三角板、量角器等。

3.3 实践操作1. 让学生通过观察和操作,巩固所学知识。

2. 引导学生运用立体几何的性质和判定,解决实际问题。

3.4 总结与拓展1. 总结本节课所学内容,强调重点和难点。

2. 提出拓展问题,激发学生的思考。

4. 教学评价通过课堂表现、作业完成情况和考试成绩,全面评价学生的研究效果。

5. 教学资源1. 实物模型或图片。

2. 直尺、三角板、量角器等工具。

3. 作业纸、练册等。

6. 教学建议1. 注重学生的空间想象能力的培养。

2. 鼓励学生运用几何语言描述立体图形,培养学生的逻辑表达能力。

高中数学新课立体几何教案

高中数学新课立体几何教案

高中数学新课立体几何教案一、教学目标1. 让学生理解立体几何的基本概念,如点、线、面、体等。

2. 培养学生空间想象力,能够画出简单的立体图形。

3. 让学生掌握立体几何的基本性质和公理,如平行公理、垂直公理等。

4. 培养学生运用立体几何知识解决实际问题的能力。

二、教学内容1. 立体几何的基本概念:点、线、面、体。

2. 立体图形的画法与识别。

3. 立体几何的基本性质和公理:平行公理、垂直公理等。

4. 立体几何的基本定理:如对角线定理、面积定理等。

5. 立体几何的应用:解决实际问题。

三、教学方法1. 采用直观教学法,利用模型、教具等帮助学生建立空间观念。

2. 采用分组讨论法,让学生合作探究立体几何的基本性质和公理。

3. 采用案例教学法,让学生通过解决实际问题,巩固立体几何知识。

4. 利用多媒体辅助教学,播放立体几何相关视频,提高学生学习兴趣。

四、教学步骤1. 导入新课:通过实物展示,引导学生认识立体几何。

2. 讲解基本概念:点、线、面、体,让学生理解并能够区分。

3. 教授立体图形的画法与识别:以正方体为例,讲解其画法及识别方法。

4. 讲解立体几何的基本性质和公理:如平行公理、垂直公理等。

5. 课堂练习:让学生绘制简单的立体图形,巩固所学知识。

五、课后作业1. 复习立体几何的基本概念,掌握点、线、面、体的特点。

2. 练习画法与识别:绘制给定的立体图形,并写出其特点。

3. 复习立体几何的基本性质和公理,举例说明其应用。

4. 选择一道实际问题,运用立体几何知识进行解答。

六、教学内容1. 立体几何的计算:面积、体积的计算。

2. 立体几何的定理:如对角线定理、面积定理等。

3. 立体几何的性质:如平行性质、垂直性质等。

4. 空间向量与立体几何:向量的基本概念,向量在立体几何中的应用。

七、教学方法1. 采用类比教学法,让学生通过类比平面几何的知识,理解立体几何的计算方法。

2. 采用问题驱动法,引导学生通过解决具体问题,掌握立体几何的定理和性质。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。

掌握空间几何体的结构特征,如表面积、体积等。

1.2 教学内容柱体、锥体、球体的定义及性质。

空间几何体的结构特征的计算方法。

1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。

3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。

1.4 课堂练习完成课本练习题,巩固所学知识。

1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。

第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。

掌握点、线、面的位置关系的判定方法。

2.2 教学内容点、线、面的位置关系的定义及判定方法。

2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。

2.4 课堂练习完成课本练习题,巩固所学知识。

2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。

第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。

掌握空间角的计算方法。

3.2 教学内容空间角的定义及性质。

空间角的计算方法。

3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。

3.4 课堂练习完成课本练习题,巩固所学知识。

3.5 课后作业完成课后作业,加深对空间角的计算的理解。

第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。

掌握空间向量的应用方法。

空间向量的定义及性质。

空间向量的应用方法。

4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。

4.4 课堂练习完成课本练习题,巩固所学知识。

4.5 课后作业完成课后作业,加深对空间向量的应用的理解。

第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。

5.2 教学内容立体几何中的综合问题的解题策略。

5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。

议高中数学竞赛中的立体几何问题

议高中数学竞赛中的立体几何问题

回到点 A可 能是第 2次 , 3次 , 4次 , 5次 , 第 第 第
共 4种情 况.
( ) 只小 虫爬 行 7 m有 3 不 同 的爬 法 , 2这 c 种
其 中 回到点 的情 况有 以下几 种 :

÷ , P是平面 B D上 的 点 c

而 , n ・
比可 , 的小 为 较 得 求最 值吾 所
4 轨 迹 问题 例 4 如 图 7, 方 体 正 A C 1 l D 1 D1的 棱 长 为 C l点 在棱 A ‘ B上 , A = 且

分析
( ) 只虫 子 第 2次 回到点 A, 1次 1这 第

DD 1 C 1 P
证明 O B=O H=O A=O C的 方法求 外 接 圆的体 积. 3 最值 问题 例 3 在直 三棱 柱 A CA B C B - 1 中 , B= C: A B

, 两
于是 =. 4

胎 1 2 /A C= 0 , F分 别 为 lc曰 的 = , B 9 。E, , 11
P R与 A Q B的交 点. Me e u 定理 , 由 nl s a 知
BM DR AN . MD R 0一 = l 一 A NB ’
空题的形式出现. 本文将立体几何在竞赛中出现的 问题作一 简单 归纳 , 旨在抛 砖 引玉.
1 体积 与体 积 比问题
例 1 如 图 1在 四面体 A C 中 , Q分 别 为 , BD P,
原来 的三 棱锥 ( 指三 棱锥 的 3个 面 ) ; ( ) 这 个三棱 锥外 接球 的体 积. 2求
分析 要 解决 此 剪 拼 问题 必 须 弄 清 4个 面 都

高中数学立体空间几何教案

高中数学立体空间几何教案

高中数学立体空间几何教案
一、教学目标:
1. 知识目标:学生能够掌握立体空间的基本概念和相关定理,能够运用立体空间几何知识解决实际问题。

2. 能力目标:培养学生的空间想象能力和逻辑思维能力,提高学生的应用能力和解决问题的能力。

3. 情感目标:激发学生对数学的兴趣,培养学生的数学学习兴趣和探究精神。

二、教学内容:
1. 立体空间的基本概念
2. 立体空间的投影相关定理
3. 立体空间的相交和平行关系
4. 立体空间的角度关系
三、教学过程:
1. 导入:通过展示一些立体空间的实际图像,引导学生了解立体空间的概念,并讨论立体空间在生活中的应用。

2. 学习:介绍立体空间的相关定理和概念,并通过实例分析让学生掌握立体空间的投影、相交及平行关系。

3. 巩固:设计一些练习题目,让学生运用所学知识,巩固立体空间几何的相关概念。

4. 拓展:引导学生继续探索立体空间的角度关系,并引导学生进行拓展思考,解决一些具有挑战性的问题。

5. 总结:总结本节课的重点知识,让学生对立体空间几何的知识有一个清晰的认识。

四、作业布置:
1. 完成课堂练习题
2. 自主拓展思考,设计一个与立体空间相关的问题,并尝试解答
五、教学反思:
本节课程注重学生的主动学习和思维能力的培养,通过实际的例题分析和练习引导学生掌握立体空间几何知识。

同时也通过拓展思考和问题解决,激发学生学习的兴趣,提高学生
的空间想象和推理能力。

在未来的教学中,可以更多地引导学生进行实际问题的拓展与解决,帮助学生深入理解立体空间几何知识。

高中数学讲义 第七章 立体几何初步(超级详细)

高中数学讲义 第七章 立体几何初步(超级详细)
(3)若AB=BC=CD=DA,作出异面直线AC与BD的公垂线段.翰林汇
分析:证明两条直线异面通常采用反证法。
证明:(1)(反证法)假设AC与BD不是异面直线,则AC与BD共面,
所以A、B、C、D四点共面
这与空间四边形ABCD的定义矛盾
所以对角线AC与BD是异面直线
(2)解:∵E,F分别为AB,BC的中点,∴EF//AC,且EF= AC.
(1)求圆锥的母线与底面所成的角;
(2)求圆锥的全面积.
解: (1)设圆锥的底面半径为R,母线长为l,
由题意得: ,
即 ,
所以母线和底面所成的角为
(2)设截面与圆锥侧面的交线为MON,
其中O为截面与AC的交点,则OO1//AB且
在截面MON内,以OO1所在有向直线为y轴,O为原点,建立坐标系,
则O为抛物线的顶点,所以抛物线方程为x2=-2py,
同理HG//AC,且HG= AC.∴EF平行且相等HG,∴EFGH是平行四边形.
又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.
∵AC⊥BD,∴∠EFG=90o.∴EFGH是矩形.
(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.
点评:在空间四边形中我们通常会遇到上述类似的问题,取中点往往是很有效的方法,特别是遇到等腰三角形的时候。
3.抓主线,攻重点。针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心的核心,角与距离的计算已经降低要求。
4.复习中要加强数学思想方法的总结与提炼。立体几何中蕴含着丰富的思想方法,如:将空间问题转化成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空间向量的运算。

高中数学新课立体几何教案

高中数学新课立体几何教案

高中数学新课立体几何教案一、教学目标1. 理解立体几何的基本概念,如点、线、面、体等。

2. 掌握立体图形的性质和判定方法。

3. 培养学生的空间想象能力和逻辑思维能力。

4. 能够运用立体几何知识解决实际问题。

二、教学内容1. 立体几何的基本概念:点、线、面、体、空间等。

2. 立体图形的性质和判定:正方体、长方体、棱柱、棱锥等。

3. 空间想象能力培养:三视图、展开图等。

4. 立体几何在实际问题中的应用。

三、教学方法1. 采用多媒体教学,展示立体图形,帮助学生直观理解。

2. 利用教具模型,让学生亲手操作,增强空间想象能力。

3. 结合实际例子,引导学生运用立体几何知识解决问题。

4. 组织小组讨论,培养学生的合作能力和表达能力。

四、教学步骤1. 引入新课:通过展示立体图形,引导学生思考立体几何的意义。

2. 讲解基本概念:讲解点、线、面、体等基本概念,让学生理解它们之间的关系。

3. 讲解立体图形的性质和判定:通过示例,讲解正方体、长方体、棱柱、棱锥等立体图形的性质和判定方法。

4. 培养空间想象能力:通过三视图、展开图等,培养学生的空间想象能力。

5. 应用练习:结合实际例子,让学生运用立体几何知识解决问题。

五、教学评价1. 课堂问答:检查学生对立体几何基本概念的理解。

2. 练习题:布置有关立体几何的练习题,检查学生的掌握程度。

3. 小组讨论:评价学生在小组讨论中的表现,包括合作能力和表达能力。

4. 课后作业:布置有关立体几何的实际问题,检查学生运用知识解决问题的能力。

六、教学拓展1. 介绍立体几何在现实生活中的应用,如建筑设计、工业制造等。

2. 引入更高维度的几何概念,如四维空间、异面直线等。

3. 引导学生探索立体几何中的趣味性问题,提高学生的学习兴趣。

七、教学难点1. 立体图形的性质和判定方法的理解与运用。

2. 空间想象能力的培养,尤其是对于复杂立体图形的想象。

3. 将立体几何知识应用于实际问题,提高学生的解决问题的能力。

立体几何教案:高中集合的三位空间抽象

立体几何教案:高中集合的三位空间抽象

立体几何教案:高中集合的三位空间抽象。

一、三维空间抽象的含义和基本概念高中数学教学中,三维空间抽象实际上是对三维空间中的点、线、面、体等基本要素进行抽象,建立数学模型的过程。

其基本概念如下:(1)点:三维空间中的单个坐标。

(2)线:三维空间中的两个点以及连接它们的线段。

(3)面:三维空间中的多个点所组成的二维几何图形,比如长方体的六个面。

(4)体:在三维空间中具有一定形状的几何体,例如长方体、正方体、球体等。

在立体几何的教学中,三维空间抽象的基本概念应当是教学的重点,学生需要明确这些概念的意义和作用。

在教学中,可以通过图形展示的方式来让学生更加直观地理解这些概念。

例如,可以通过展示平面上的长方形和立体中的长方体的对比,来让学生理解长方体的本质。

二、三维空间抽象的运用在立体几何的教学中,三维空间抽象不仅是基础概念,同时也是高阶运用的基础。

三维空间抽象的运用,可以分为以下三个方面:(1)计算几何计算几何是立体几何中的一个重要应用,它通过数学模型来解决现实生活中的几何问题。

在计算几何中,三维空间抽象作为其基础,可以用来确定各种形状的几何体的体积、表面积,以及它们之间的相对位置等等。

例如,可以通过计算几何的方法来求解一个球体中的最大长方体。

(2)立体图形的展开在立体几何中,经常需要对各种几何体进行展开,以便于计算表面积等参数。

在三维空间抽象中,可以使用投影的方式对几何体进行展开。

例如,在三维空间中,一个长方体可以展开成六个矩形,而一个球体也可以展开成若干个三角形。

(3)立体几何的实际应用立体几何在实际生活中应用广泛。

在机械制图中、建筑工程中、3D打印等领域中,立体几何都有广泛的应用。

三维空间抽象作为立体几何的基础,在这些领域的应用中也得到了广泛的运用。

三、教学设计在立体几何的教学中,如何设计一个有效的教学方案是关键。

以下是一些教学设计的建议:(1)使用图形展示立体几何中的图形是抽象的,学生要想理解这些图形,一定需要足够的图形展示。

2023年高中数学竞赛教案讲义立体几何

2023年高中数学竞赛教案讲义立体几何

第十二章立体几何一、基础知识公理1 一条直线。

上假如有两个不一样旳点在平面。

内.则这条直线在这个平面内,记作:a a.公理2 两个平面假如有一种公共点,则有且只有一条通过这个点旳公共直线,即若P∈α∩β,则存在唯一旳直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上旳三个点有且只有一种平面。

即不共线旳三点确定一种平面.推论l 直线与直线外一点确定一种平面.推论2 两条相交直线确定一种平面.推论3 两条平行直线确定一种平面.公理4 在空间内,平行于同一直线旳两条直线平行.定义1 异面直线及成角:不一样在任何一种平面内旳两条直线叫做异面直线.过空间任意一点分别作两条异面直线旳平行线,这两条直线所成旳角中,不超过900旳角叫做两条异面直线成角.与两条异面直线都垂直相交旳直线叫做异面直线旳公垂线,公垂线夹在两条异面直线之间旳线段长度叫做两条异面直线之间旳距离.定义2 直线与平面旳位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:假如直线与平面内旳每一条直线都垂直,则直线与这个平面垂直.定理1 假如一条直线与平面内旳两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一种平面,则这两条直线平行.定理3 若两条平行线中旳一条与一种平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面旳垂线段旳长度叫做点到平面旳距离,若一条直线与平面平行,则直线上每一点到平面旳距离都相等,这个距离叫做直线与平面旳距离.定义 5 一条直线与平面相交但不垂直旳直线叫做平面旳斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上旳射影.所有这样旳射影在一条直线上,这条直线叫做斜线在平面内旳射影.斜线与它旳射影所成旳锐角叫做斜线与平面所成旳角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小旳角.定理4 (三垂线定理)若d为平面。

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, αOC BAF EDCBAG其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; (C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin 3α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD 中,设1,AB CD ==直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所ODCBAD 'C 'B ' A 'EDCBA得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+ 当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:22r a =∴3343424V a a π⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:3h a ===,所以,,412R a r ==.ROEDC APr例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 . 分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD ⊥CM 的延长线相交于D ,AF ⊥CM 于F ,并延长到E ,使EF=BD ,连BE . 显然,AF=EF=BD=3EB=DF=2,所以: A E 2=AB 2-EB 2=8-4=4三棱锥A —BCM 的高即点A 到平面BCM 的距离也就是等腰∆AEF 中点A 到边EF 的距离.根据面积相等FF M ME E D D BB C C A A可求得:h ==∴11132V =⋅⋅=例二十、(1995年全国联赛一试)设O 是正三棱锥P —ABC 底面△ABC 的中心,过O 的动平面与P —ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则和式111PQ PR PS++ (A )有最大值而无最小值; (B )有最小值而无最大值; (C )既有最大值又有最小值,且最大值与最小值不等; (D )是一个与平面QRS 位置无关的常量. 分析:借助于分割思想,将三棱锥P —QRS 划分成三个以O 为顶点,以三个侧面为 底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有:()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;OSRQCBAP(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意 两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接AE ,AF ,则平面AEF 为合乎要求的截面.GFMED 'DCBA SH A 1DCBA D 1C 1B 1F E OM D CBAPHG作OH ∥PG ,交AG 于点H ,则:OH=PG .51112BCPD PG GDGD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2425A PEF PEF A PBC PBC V S EF V S BC -∆-∆⎛⎫=== ⎪⎝⎭;于是:421A PEF A EFBC V V --=. 三、求面积这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b 2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3. 分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a aa b b -=⋅--即:2223b a b =-化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.2ababbGEFBCDAACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘CDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种)③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法.5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例 2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例 3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=.求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan aa b b c cαβγ=≥=≥=≥ 以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S SS+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 451 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)教案章节一:绪论——立体几何的概念与意义教学目标:1. 理解立体几何的概念,认识立体几何的研究对象。

2. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。

教学重点:立体几何的概念,空间点、线、面的位置关系。

教学难点:立体几何的概念,空间点、线、面的位置关系的理解与运用。

教学准备:多媒体教学设备,立体几何模型。

教学过程:1. 引入:通过实物展示,让学生感受立体几何的存在,激发学生的学习兴趣。

2. 讲解:讲解立体几何的概念,阐述立体几何的研究对象。

3. 演示:利用多媒体教学设备和立体几何模型,展示空间点、线、面的位置关系。

4. 练习:让学生通过观察模型,判断空间点、线、面的位置关系。

教案章节二:立体图形的性质与分类教学目标:1. 了解立体图形的概念,掌握立体图形的基本性质。

2. 学会立体图形的分类,能够识别常见立体图形。

教学重点:立体图形的基本性质,立体图形的分类。

教学难点:立体图形的基本性质的理解与运用,立体图形的分类的掌握。

教学准备:多媒体教学设备,立体图形模型。

教学过程:1. 引入:通过实物展示,让学生感受立体图形的存在,激发学生的学习兴趣。

2. 讲解:讲解立体图形的基本性质,引导学生理解立体图形的特点。

3. 演示:利用多媒体教学设备和立体图形模型,展示立体图形的分类。

4. 练习:让学生通过观察模型,识别常见立体图形。

教案章节三:空间点、线、面的位置关系教学目标:1. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。

2. 学会运用空间点、线、面的位置关系解决实际问题。

教学重点:空间点、线、面的位置关系,空间中点、线、面的基本性质。

教学难点:空间点、线、面的位置关系的理解与运用。

教学准备:多媒体教学设备,立体几何模型。

教学过程:1. 引入:通过实物展示,让学生感受空间点、线、面的存在,激发学生的学习兴趣。

2. 讲解:讲解空间点、线、面的位置关系,引导学生理解空间点、线、面的基本性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章立体几何一、基础知识公理1 一条直线。

上如果有两个不同的点在平面。

内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。

即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。

的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b.定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行定理6 若直线。

与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b.结论2 若直线。

与平面α和平面β都平行,且平面α与平面β相交于b,则a//b.定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等.定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交.定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β.定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b.定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角.它的取值范围是[0,π].特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α β. 定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直.定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内.定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直.定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)都互相平行,由这些面所围成的几何体叫做棱柱.两个互相平行的面叫做底面.如果底面是平行四边形则叫做平行六面体;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱.底面是矩形的直棱柱叫做长方体.棱长都相等的正四棱柱叫正方体.定义9 有一个面是多边形(这个面称为底面),其余各面是一个有公共顶点的三角形的多面体叫棱锥.底面是正多边形,顶点在底面的射影是底面的中心的棱锥叫正棱锥.定理13 (凸多面体的欧拉定理)设多面体的顶点数为V,棱数为E,面数为F,则V+F-E=2.定义10 空间中到一个定点的距离等于定长的点的轨迹是一个球面.球面所围成的几何体叫做球.定长叫做球的半径,定点叫做球心.定理14 如果球心到平面的距离d小于半径R,那么平面与球相交所得的截面是圆面,圆心与球心的连线与截面垂直.设截面半径为r,则d2+r2=R2.过球心的截面圆周叫做球大圆.经过球面两点的球大圆夹在两点间劣弧的长度叫两点间球面距离.定义11 (经度和纬度)用平行于赤道平面的平面去截地球所得到的截面四周叫做纬线.纬线上任意一点与球心的连线与赤道平面所成的角叫做这点的纬度.用经过南极和北极的平面去截地球所得到的截面半圆周(以两极为端点)叫做经线,经线所在的平面与本初子午线所在的半平面所成的二面角叫做经度,根据位置不同又分东经和西经.定理15 (祖 原理)夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.定理16 (三面角定理)从空间一点出发的不在同一个平面内的三条射线共组成三个角.其中任意两个角之和大于另一个,三个角之和小于3600.定理17 (面积公式)若一个球的半径为R ,则它的表面积为S 球面=4πR 2。

若一个圆锥的母线长为l ,底面半径为r ,则它的侧面积S 侧=πrl.定理18 (体积公式)半径为R 的球的体积为V 球=334R π;若棱柱(或圆柱)的底面积为s ,高h ,则它的体积为V=sh ;若棱锥(或圆锥)的底面积为s ,高为h ,则它的体积为V=.31sh 定理19 四面体ABCD 中,记∠BDC=α,∠ADC=β,∠ADB=γ,∠BAC=A ,∠ABC=B ,∠ACB=C 。

DH ⊥平面ABC 于H 。

(1)射影定理:S ΔABD •cos Ф=S ΔABH ,其中二面角D —AB —H 为Ф。

(2)正弦定理:.sin sin sin sin sin sin CB A γβα== (3)余弦定理:cos α=cos βcos γ+sin βsin γcosA.cosA=-cosBcosC+sinBsinCcos α.(4)四面体的体积公式31=V DH •S ΔABC =γβαγβαcos cos cos 2cos cos cos 161222+---abc ϕsin 611d aa =(其中d 是a 1, a 之间的距离,ϕ是它们的夹角) a32=S ΔABD •S ΔACD •sin θ(其中θ为二面角B —AD —C 的平面角)。

二、方法与例题1.公理的应用。

例1 直线a,b,c 都与直线d 相交,且a//b,c//b ,求证:a,b,c,d 共面。

例2 长方体有一个截面是正六边形是它为正方体的什么条件? 2 异面直线的相关问题。

例3 正方体的12条棱互为异面直线的有多少对?例4 正方体,ABCD—A1B1C1D1棱长为1,求面对角线A1C1与AB1所成的角。

3.平行与垂直的论证。

例5 A,B,C,D是空间四点,且四边形ABCD四个角都是直角,求证:四边形ABCD是矩形。

例6 一个四面体有两个底面上的高线相交。

证明:它的另两条高线也相交。

例7 在矩形ABCD中,AD=2AB,E是AD中点,沿BE将ΔABE折起,并使AC=AD,求证:平面ABE 平面BCDE。

4.直线与平面成角问题。

例8 正方形ABCD中,E,F分别是AB,CD的中点,G为BF的中点,将正方形沿EF折成1200的二面角,求AG和平面EBCF所成的角。

例9 OA是平面α的一条斜角,AB⊥α于B,C在α内,且AC⊥OC,∠AOC=α,∠AOB=β,∠BOC=γ。

证明:cosα=cosβ•cosγ.5.二面角问题。

例10设S为平面ABC外一点,∠ASB=450,∠CSB=600,二面角A—SB—C为直角二面角,求∠ASC的余弦值。

例11 已知直角ΔABC的两条直角边AC=2,BC=3,P为斜边AB上一点,沿CP将此三角形折成直二面角A—CP—B,当AB=7时,求二面角P—AC—B的大小。

6.距离问题。

例12 正方体ABCD—A1B1C1D1的棱长为a,求对角线AC与BC1的距离。

4的正三角形,棱SC的长为2,且垂直于底面,例13在三棱维S—ABC中,底面是边长为2E,D分别是BC,AB的中点,求CD与SE间的距离。

[分析] 取BD中点F,则EF//CD,从而CD//平面SEF,要求CD与SE间的距离就转化为求点C到平面SEF间的距离。

7.凸多面体的欧拉公式。

例14 一个凸多面体有32个面,每个面或是三角形或是五边形,对于V个顶点每个顶点均有T个三角形面和P个五边形面相交,求100P+10T+V。

8.与球有关的问题。

例15 圆柱直径为4R,高为22R,问圆柱内最多能装半径为R的球多少个?9.四面体中的问题。

例16 已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是ΔSBC的垂心,2。

求三棱锥S—ABC的体积。

二面角H—AB—C的平面角等于300,SA=3例17 设d是任意四面体的相对棱间距离的最小值,h是四面体的最小高的长,求证:2d>h.注:在前面例题中除用到教材中的公理、定理外,还用到了向量法、体积法、射影法,请读者在解题中认真总结。

三、基础训练题1.正三角形ABC 的边长为4,到A ,B ,C 的距离都是1的平面有__________个.2.空间中有四个点E ,F ,G ,H ,命题甲:E ,F ,G ,H 不共面;命题乙:直线EF 和GH 不相交,则甲是乙的__________条件。

3.动点P 从棱长为a 的正方体的一个顶点出发,沿棱运动,每条棱至多经过一次,则点P 运动的最大距离为__________。

4.正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是面ADD 1A 1、面ABCD 的中心,G 为棱CC 1中点,直线C 1E ,GF 与AB 所成的角分别是α,β。

则α+β=__________。

5.若a,b 为两条异面直线,过空间一点O 与a,b 都平行的平面有__________个。

6.CD 是直角ΔABC 斜边AB 上的高,BD=2AD ,将ΔACD 绕CD 旋转使二面角A —CD —B 为600,则异面直线AC 与BD 所成的角为__________。

7.已知PA ⊥平面ABC ,AB 是⊙O 的直径,C 是圆周上一点且AC=21AB ,则二面角A —PC —B 的大小为__________。

8.平面α上有一个ΔABC ,∠ABC=1050,AC=)26(2+,平面α两侧各有一点S ,T ,使得SA=SB=SC=41,TA=TB=TC=5,则ST=_____________.9.在三棱锥S —ABC 中,SA ⊥底面ABC ,二面角A —SB —C 为直二面角,若∠BSC=450,SB=a ,则经过A ,B ,C ,S 的球的半径为_____________.10.空间某点到棱长为1的正四面体顶点距离之和的最小值为_____________.11.异面直线a,b 满足a//α,b//β,b//α,a//β,求证:α//β。

相关文档
最新文档