带电粒子在磁场中的运动
带电粒子在有界磁场磁场中的运动
d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电
带电粒子在磁场中的运动(磁聚焦和磁扩散)
θR O/
OM
x
图 (b)
(3)带电微粒在y轴右方(X> O)的区域离开磁场并做 匀速直线运动.靠近上端发射出来的带电微粒在穿出 磁场后会射向X轴正方向的无穷远处,靠近下端发射 出来的带电微粒会在靠近原点之处穿出磁场.所以, 这束带电微粒与X轴相交的区域范围是X> 0.
装带 置点
微 粒 发 射
Pv Cr
(2)这束带电微粒都通过坐标原点。 如图(b)所示,从任一点P水平进入磁场的 带电微粒在磁场中做半径为R 的匀速圆周运动,圆 心位于其正下方的Q点,设微粒从M 点离开磁 场.可证明四边形PO’ MQ是菱形,则M 点就是坐 标原点,故这束带电微粒都通过坐标原点0.
y
v AC
R O/
O
x
图 (a)
y
Pv R
y
D
C
v0
O
x
A
B
S=2(πa2/4-a2/2) =(π-2)a2/2
解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于 BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上, 故B点即为圆心,圆半径为a,按照牛顿定律有 ev0B= mv02/a,得B= mv0/ea。 (2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧 AEC是所求的最小磁场区域的一个边界。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区
域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感
应强度的大小与方向。
y
(2)请指出这束带电微粒与x轴相 带
交的区域,并说明理由。
点 微
粒
(3)在这束带电磁微粒初速度变为
发 射
带电粒子在匀强磁场中的运动
即 eUd2=evB1,代入 v 值得 U2=B1d
2eU1 m
(3)在 c 中,e 受洛伦兹力作用而做圆周运动,回
转半径 R=Bm2ve,代入 v 值得 R=B12
2U1m e
答案:(1)
2eU1 m
(2)B1d
2eU1 m
1 (3)B2
2U1m e
点评:解答此类问题要做到: (1)对带电粒子进行正确的受力分析和运动过程 分析. (2)选取合适的规律,建立方程求解.
[错误解法]由 Bqv0=mvR02,得 B=
mqvR0. 则
B
=
3×10-20×105 10-13× 3×10-1
T≈0.17T.
[错因点评]对公式中有关物理量不甚明了,在套
用公式 Bqv0=mRv20时,误将 R 的值代为磁场区域半径 之值了.
[正确解答]作进、出磁场点处 速度的垂线 PO、QO 得交点 O,O 点即粒子做圆周运动的圆心.据此
A.增大匀强电场间的加速电压 B.增大磁场的磁感应强度 C.增加周期性变化的电场的频率 D.增大 D 形金属盒的半径 答案:BD
解析:粒子最后射出时的旋转半径为 D 形盒的最 大半径 R,R=mqBv,Ek=12mv2=q22Bm2R2.可见,要增大 粒子的动能,应增大磁感应强度 B 和增大 D 形盒的 半径 R,故正确答案为 B、D.
︵ 作出运动轨迹如图中的PQ.此圆半 径为 PO,记为 r.
易知∠POQ=60°,则 r=PQ= 3R=0.3m. 由 Bqv0=mvr20得 B=mqvr0.则 B=3×101-01-3 ×20×0.1305T =0.1T.
[正确答案]0.1T
[感悟心语]像这种不太复杂的带电粒子在匀强磁 场中的圆周运动问题,解题要点在于作出带电粒子实 际运动的轨迹.方法有两种:
1.3带电粒子在匀强磁场中的运动
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2
.
55
10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7
5
.
6875
洛伦兹力提供向心力
v2
qvB m
r
圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间
t
T
带电粒子在匀强磁场中运动轨迹
带电粒子在匀强磁场中运动轨迹带电粒子在匀强磁场中运动轨迹一、带电粒子在匀强磁场中运动轨迹带电粒子只受洛伦兹力作用的条件下,在匀强磁场中的运动有:1.粒子初速度方向平行磁场方向(V ∥B ):运动轨迹:匀速直线运动2.粒子初速度方向垂直磁场方向(V ⊥B ):(1)动力学角度:洛伦兹力提供了带电粒子做匀速圆周运动所需的向心力(2)运动学角度:加速度方向始终和运动方向垂直,而且加速度大小不变。
运动轨迹:匀速圆周运动二、轨道半径和运动周期1.轨道半径r :qBm v r = 在匀强磁场中做匀速圆周运动的带电粒子,轨道半径跟运动速率成正比。
2.运动周期T :qBm T π2= (1)周期跟轨道半径和运动速率均无关(2)粒子运动不满一个圆周的运动时间:qB m t θ=,θ为带电粒子运动所通过的圆弧所对的圆心角三、有界磁场专题:(三个确定)1、圆心的确定已知进出磁场速度方向已知进出磁场位置和一个速度方向2. 半径的确定:半径一般都在确定圆心的基础上用平面几何知识求解,常常要解三角形带电粒子在匀强磁场中运动轨迹3、时间的确定(由圆心角确定时间)粒子速度的偏转角(?)等于回旋角(α),并等于AB 弦与切线的夹角(弦切角θ)的2倍即.θα?2==粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间可由下式表示:T t πα2= (1)直界磁场区: 如图,虚线上方存在无穷大的磁场B ,一带正电的粒子质量m 、电量q 、若它以速度v 沿与虚线成o o o o o o*****6030、、、、、角分别射入,请你作出上述几种情况下粒子的轨迹、并求其在磁场中运动的半径和时间。
粒子在直界磁场(足够大)的对称规律:从同一边界射入的粒子,从同一边界射出时,速度与边界的夹角相等。
(2)、圆界磁场带电粒子在匀强磁场中运动轨迹偏转角:rR =2tan θR :磁场半径r:圆周运动半径经历时间:qBmt θ= 圆运动的半径:qBm v r = 圆界磁场对称规律:在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。
带电粒子在磁场中的运动
带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。
带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。
无论何种情况,其关键均在圆心、半径的确定上。
1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。
方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。
2. 求半径圆心确定下来后,半径也随之确定。
一般可运用平面几何知识来求半径的长度。
3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。
4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。
临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。
一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。
做a、b点速度的垂线,交点O1即为轨迹圆的圆心。
图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。
带电粒子在匀强磁场中的运动
〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
带电粒子在有界磁场中的运动
简单回顾
一、带电粒子在匀强 磁场中的运动规律
1.带电粒子在匀强磁场中 运动( v B),只受洛伦兹
F v
o
力作用,做 匀速圆周运动 .
2.洛伦兹力提供向心力:
v2 m q v B R
半径:
2R T v
周期:
T
mv R qB 2m
qB
二、 r(1 cos ) cot
mv0 x1 b L a (1 cos ) cot eB eBL (其中 arcsin ) ⑤ mv0
④
P
v0
θ θ
0
图1
x
Q
②当 r<L 时,磁场区域及电子运动轨迹如图 2 所示,
( 1 )粒子沿环状的半径方向射入磁场,不能穿越磁场的最大 速度。
(2)所有粒子不能穿越磁场的最大速度。
解析:( 1)要粒子沿环状的半径方向射入磁场,不能穿越磁 场,则粒子的临界轨迹必须要与外圆相切,轨迹如图所示。
2 2 2 r R ( R r ) 由图中知, 1 1 2 1
解得
r1 0.375m
v v
v v v
v
一.带电粒子在平行直线边界磁场中的运动
Q P B P Q
P
Q
v
S
垂直磁场边界射入
①速度较小时,作半圆 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
v
S
①速度较小时,作圆 周运动通过射入点; ②速度增加为某临界 值时,粒子作圆周运 动其轨迹与另一边界 相切;③速度较大时 粒子作部分圆周运动 后从另一边界飞出
带电粒子在磁场中的运动
θ O
B
R
比较学习: 这点与带电粒子在匀强电场中的偏转情况一 样吗?
◆带电粒子在矩形磁场区域中的运动
B v
d o
圆心在磁场原边界上 B
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。 量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
Bx
z
Vz
由于磁场的不均匀, 洛仑兹力的大小要变 化,所以不是匀速圆 周运动。且半径逐渐 变小。
极光
带电粒子(如宇宙射线的 带电粒子)被地磁场捕获, 绕地磁感应线作螺旋线运 动,当太阳黑子活动引起空间 磁场的变化,使粒子在两 极处的磁力线引导下,在 两极附近进入大气层,能 引起美妙的极光。
地轴
带电粒子在匀强磁场中的匀速圆周运动解决思路
带电粒子在磁场中的螺旋线运动
2m 螺距 h V//T V sin qB V和 V//分别是速度在平行于磁场方向
的分量和垂直于磁场的分量。 匀速圆周运动的半径仅与速度的垂直分量有关。
* 磁聚焦magnetic focusing
一束发散角不大的带电粒子 束,若这些粒子沿磁场方向 的分速度大小又一样,它们 有相同的螺距,经过一个周 期它们将重新会聚在另一点 这种发散粒子束会聚到一点 的现象叫磁聚焦。
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
量变积累到一定程度发生质变,出现临界状态.
(1)偏向角(回旋角)θ
v
B
d sin r
(2)侧移距离y
r
带电粒子在匀强磁场中的运动(知识小结)
带电粒子在匀强磁场中的运动(知识小结)一.带电粒子在磁场中的运动(1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。
② 则粒子做匀速直线运动。
(2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。
(3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。
二、带电粒子在匀强磁场中的圆周运动1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动.(4)运动时间: (Θ 用弧度作单位 )1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动.2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关.三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题)(一)边界举例:1、直线边界(进出磁场有对称性)规律:如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。
速度与边界的夹角等于圆弧所对圆心角的一半,并且如果把两个速度移到共点时,关于直线轴对称。
2、平行边界(往往有临界和极值问题)(在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界)3、矩形边界磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场:若从c 点射出,则圆心在d 处若从d 点射出,则圆心在ad 连线中点处4.圆形边界(从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。
)特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出一般情形:磁场圆心O 和运动轨迹圆心O ′都在入射点和出射点连线AB 的中垂线上。
或者说两圆心连线OO ′与两个交点的连线AB 垂直。
(二)求解步骤:(1)定圆心、(2)连半径、(3)画轨迹、(4)作三角形.(5)据半径公式求半径,2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==⨯=⨯v L =t再解三角形求其它量;或据三角形求半径,再据半径公式求其它量(6)求时间1、确定圆心的常用方法:(1)已知入射方向和出射方向(两点两方向)时,可以作通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图3-6-6甲所示,P 为入射点,M 为出射点,O 为轨道圆心.(2)已知入射方向和出射点的位置时(两点一方向),可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图3-6-6乙所示,P 为入射点,M 为出射点,O 为轨道圆心.(3)两条弦的中垂线(三点):如图3-6-7所示,带电粒子在匀强磁场中分别经过O 、A 、B 三点时,其圆心O ′在OA 、OB 的中垂线的交点上.(4)已知入射点、入射方向和圆周的一条切线:如图3-6-8所示,过入射点A 做v 垂线AO , 延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交AO 于O 点,O 点即为圆心,求解临界问题常用到此法.(5)已知入射点,入射速度方向和半径大小2.求半径的常用方法 :由于已知条件的不同,求半径有两种方法:一是:利用向心力公式求半径;二是:利用平面几何知识求半径。
带电粒子在磁场中的运动
洛伦兹力,带电粒子在磁场中的运动一、洛伦兹力:磁场对运动电荷的作用力1.洛伦兹力的公式:F=qvb2.当带电粒子的运动方向与磁场方向互相平行时,F=03.当带电粒子的运动方向与磁场方向互相垂直时,F=qvb4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷磁场中受到的磁场对电荷的作用力一定为0。
二、洛伦兹力的方向1.运动电荷在磁场中受力方向要用左手定则来判定.2.洛伦兹力F的方向既垂直磁场B的方向,又垂直运动电荷v的方向,即F总是垂直B和v的所在平面.3.使用左手定则判定洛伦兹力方向时,若粒子带正电时,四个手指的指向与正电荷的运动方向相同.若粒子带负电时,四个手指的指向与负电荷的运动方向相反.4.安培力的本质是磁场对运动电荷的作用力的宏观表现.三、洛伦兹力的特征洛伦兹力与电荷运动状态有关:当v=0时,F=0;v≠0,但v∥B时,F=0。
1洛伦兹力对运动电荷不做功.注意:由于洛伦兹力的方向总与带电粒子在磁场中的运动方向垂直,所以洛伦兹力对运动电荷不做功,不能改变运动电荷的速度大小和电荷的大小,但洛伦兹力可以改变运动电荷的速度方向和运动电荷的运动状态.四、带电粒子在匀强磁场中的运动1.不计重力的带电粒子在匀强磁场中的运动可分为三种情况:一是匀速直线运动;二是匀速圆周运动;三是螺旋运动.2.不计重力的带电粒子在匀强磁场中做匀速圆周运动的几个基本公式: (1)向心力公式_qvB=m错误!(2)轨道半径公式R=错误!;(3)周期、频率公式T=2πRv=错误!.3.不计重力的带电粒子垂直进入匀强电场和垂直进入匀强磁场时都做曲线运动,但有区别:带电粒子垂直进入匀强电场,在电场中做类平抛运动曲线运;垂直进入匀强磁场,则做匀速圆周运动曲线运动.一、在研究带电粒子在匀强磁场中做匀速圆周运动规律时,着重把握“一找圆心,二找半径错误!,三找周期错误!或时间”的分析方法.1.圆心的确定因为洛伦兹力F洛指向圆心,根据F洛⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点)的F洛的方向,沿两个洛伦兹力F洛画其延长线的交点即为圆心,另外,圆心位置必定在圆中一根弦的中垂线上(见图).2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点.(1)粒子速度的偏向角(φ)等于同心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍(如图所示),即φ=α=2θ=ωt。
高中物理 3.6带电粒子在匀强磁场中的运动
提出问题
沿着与磁场垂直的方向射入磁场的带电 粒子,在匀强磁场中做什么运动?
V - F洛
一、带电粒子在匀强磁场中的运动
1、垂直射入匀强磁场的带电 粒子,它的初速度和所受洛伦 兹力的方向都在跟磁场方向垂 直的平面内,没有任何作用使 粒子离开这个平面,所以粒子 只能在这个平面内运动。
ev θ
B
d
1.圆心在哪里? A
2.轨迹半径是多少?
F
3、圆心角θ =?
d
v
B
30°
4.穿透磁场的时间如何求?
Fv
qvB=mv2/r r=mv/qB
θ =30°r
r=d/sin 30o =2d
O
m=qBr/v=2qdB/v
t/T= 30o /360o
小结:
t=( 30o /360o)T= T/12 1、两洛伦兹力的交点即圆心
气泡室
气泡室是由一密闭容 器组成,容器中盛有 工作液体,当其处于 过热状态时,带电粒 子所经轨迹上不断与 液体原子发生碰撞 , 而以这些离子为核心 形成气泡 。
二、质谱仪
s1
s2
照相底片
. . . . ... . .. . . . . .. . s3 ................ .............
例3、一带电粒子在磁感强度为B的匀强磁场中做 匀速圆周运动,如它又顺利进入另一磁感强度为 2B的匀强磁场中仍做匀速圆周运动,则( )
A.粒子的速率加倍,周期减半 B.粒子的速率不变,轨道半径减半 C.粒子的速率减半,轨道半径变为原来的 1/4 D.粒子速率不变,周期减半
例4、一个带电粒子沿垂直于磁场的方向射入一 个匀强磁场,粒子后段轨迹如图所示,轨迹上的 每一小段都可近似看成是圆弧.由于带电粒子使 沿途的空气电离,粒子的能量逐渐减少(带电量 不变).从图中情况可以确定( )
带电粒子在磁场中运动轨迹的确定
M
O
v1 v2
N θ θ
M
O1
2 θ 2 θ
O2
Q1
P
Q2
N
△t=t1 -t2=2Tθ/π=
4m .arccos(LBq ) 2mv Bq
思 考 题
3、如图所示,在xoy平面内有垂直坐标平面且范围足够大 的匀强磁场,磁感应强度为B,一带正电荷量q的粒子,质 量为m,从O点以某一初速度射入磁场,其轨迹与x、y轴的 交点A、B到O点的距离分别为a、b,试求:粒子的初速度。
一、带电粒子在匀强磁场中的运动规律
1、带电粒子在磁场中( v⊥B)只受洛仑兹力, 粒子 做 匀速圆周 运动 。 2、轨道半径:R=mv/qB 3、周期:T=2πm/qB
二、确定带电粒子在磁场中运动轨迹的方法
1、物理方法:
1、物理方法 例1:如图所示,一束电子(电量为e)以速度v垂 直射入磁感应强度为B、宽度为d的匀强磁场中, 穿透磁场时速度方向与电子原来入射方向的夹角 是30o,则电子的质量是多少?穿透磁场的时间又 是多少? 解: 作出电子运动轨迹如右图所示。 电子的运动半径:r=mv/eB 由几何知识: 电子的运动半径:r=d/sin30o=2d 由上两式可得电子质量:m=2Bed/v 电子穿透磁场的时间为: t=T/12=2πm/12eB=πd/3v
思 考 题 2、如图所示,虚线MN是一垂直 M 纸面的平面与纸面的交线,在平 面右侧的半空间存在一磁感应强 O 度为B、方向垂直纸面向外的匀 强磁场。O是MN上的一点,从O点 可以向磁场区域发射电荷量为+q、 P 质量为m、速率为v的粒子,粒子 射入磁场时的速度可在纸面内各 N 个方向,已知先后射入的两 个粒子恰好在磁场中给定的P点相遇,P到O的距离 为L,不计重力和粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O点射入磁场的时间间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二单元洛仑兹力带电粒子在磁场中的运动考点解读典型例题知识要点一、洛仑兹力1.定义:洛仑兹力是磁场对运动电荷的作用力.2.大小:F=qvB(此式只适用于电荷运动方向与磁场方向垂直的情况.若两方向成θ角,洛仑兹力大小为F=qvBsinθ,当θ=00时,F=0;当θ=900时,F=qvB)3.方向:由左手定则判定(注意正、负电荷的不同).F一定垂直B与v所决定的平面,但B与v不一定垂直.4.特点:(1)不论带电粒子在磁场中做何种运动,因为F⊥v,故F一定不做功.只改变速度的方向,因而不改变速度的大小,所以运动电荷垂直磁感线进入匀强磁场仅受洛仑兹力时,一定做匀速圆周运动.(2)F与运动状态有关.速度变化会引起F的变化,对电荷进行受力分析和运动状态分析时应注意.(例1)二、带电粒子在匀强磁场中运动(不计其它力的作用).1.若带电粒子初速方向与磁场方向共线,则做匀速直线运动.2.若带电粒子垂直进入匀强磁场,则做匀速圆周运动.(1)向心力由洛仑兹力提供:Bqv=m2vR;(2)轨道半径R=mvqB,周期T=22R mv qBππ=等.(例2针对1)三、带电粒子在复合场中的运动1.复合场是指磁场与电场共存的场,或电场与重力场共存的场,或磁场与重力场共存的场,或磁场、电场、重力场共存的场.2.基本运动性质:若带电粒子受合外力为零,它将处于静止或匀速直线运动状态;若带电粒子受合外力只充当向心力,它将做匀速圆周运动;若带电粒子受合外力恒定,它将做匀变速运动;若带电粒子合外力不恒定,它将做非匀变速运动.3.复合场的重要应用:速度选择器、质谱仪、回旋加速器、霍尔效应、磁流体发电机、电磁流【例1】一个质量m=0.1g的小滑块,带有q=5×10-4c的电荷,放置在倾角a=300光滑斜面上(绝缘),斜面置于B=0.5T的匀强磁场中,磁场方向垂直纸面向里,如图9-2-2所示,小滑块由静止开始沿斜面滑下,其斜面足够长,小滑块滑至某一位置时,要离开斜面.求:(1)小滑块带何种电荷?(2)小滑块离开斜面的瞬时速度多大?(3)该斜面的长度至少多长?(g=10m/s2)【例2】一细束相同粒子构成的粒子流,重力不计,每个粒子均带正电,电荷量为q,其粒子流的定向运动形成的电流强度为I,当这束粒子流从坐标(0,L)的a 点平行x轴射人磁感应强度为B的匀强磁场区域又从x 轴上b点射出磁场,速度方向与x轴夹角为600,最后打在靶上,如图8-2-3所示,并把动能全部传给靶,测得靶每秒钟获得能量为E,试求每个粒子的质量..图8-2-3图8-2-2量计等.(例3、4针对2、3)疑难探究四、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定.1.圆心的确定一般有以下四种情况: ①已知粒子运动轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心.③已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心.④已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心.2.半径的确定和计算.圆心找到以后,自然就有了半径,半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识.3.在磁场中运动时间的确定.利用圆心角和与弦切角的关系,或者是四边形内角和等于3600计算出圆心角θ的大小,由公式t=360×T可求出运动时间.有时也用弧长与线速度的比t=vs.如图8-2-1所示,在上述问题中经常用到以下关系:①速度的偏向角φ等于AB 所对的圆心角θ.②偏向角φ与弦切角α的关系为:φ<1800,φ=2α ;φ>1800,φ=3600一2α③圆周运动中有关对称规律:如从同一直线【例3】如图8-2-4所示为质谱仪的示意图.速度选择器部分的匀强电场场强E=1.2×105v /m ,匀强磁场的磁感强度为B 1=0.6 T .偏转分离器的磁感强度为B 2=0.8T .求:(1)能通过速度选择器的粒子速度多大?(2)质子和氘核进入偏转分离器后打在照相底片上的条纹之间的距离d 为多少?【例4】.20世纪40年代,我国物理家朱洪元先生提出电子在加速器中做匀速圆周运动时会发“同步辐射光”,光的频率是电子的回转频率的n 倍,现在“同步辐射光”已被应用于大规模的集成电路工艺中,设同步辐射光频率为f ,电子质量为m ,电荷量为e ,则: 1.加速器磁场感应强度B 为多少?2.若电子回转半径为R ,则它的速率是多少?【例5】如图8-2-5所示,一束电子(电量为e)以速度v 垂直射入磁感应强度为B ,宽度为d 的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量是________,穿过磁场的时间是____________.图8-2-4 图8-2-1边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.4.带电粒子在有界磁场中运动问题如何处理?(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长.(例5.例6针对7)五、电场和磁场对电荷作用的区别1.电荷在电场中一定要受到电场力的作用,而电荷在磁场中不一定受磁场力作用.只有相对于磁场运动且运动方向与磁场不平行的电荷才受磁场力的作用,而相对磁场静止的电荷或虽运动但运动方向与磁场方向平行的电荷则不受磁场力作用.2.电场对电荷作用力的大小仅决定于场强E 和电荷量q,即F=qE,而磁场对电荷的作用力大小不仅与磁感应强度B和电荷量q有关,还与电荷运动速度的大小v及速度方向与磁场方向的夹角θ有关,即F=qvBsinθ.3.电荷所受电场力的方向总是沿着电场线的切线(与电场方向相同或相反),而电荷所受磁场力的方向总是既垂直于磁场方向,又垂直于运动方向(即垂直于磁场方向和运动方向所决定的平面).4.电荷在电场中运动时,电场力要对运动电荷做功(电荷在等势面上运动除外),而电荷在磁场中运动时,磁场力一定不会对电荷做功.(针对4、5、6)六、带电粒子在洛仑兹力作用下做匀速圆周运动的多解问题.由于多种因素的影响,使问题形成多解.多解形成的原因一般包含下述几个方面:1.带电粒子电性不确定形成多解.受洛仑兹力作用的带电粒子,可能带正电荷,也可能带负电荷,在相同的初速度下,正、负粒子在磁场中运动轨迹不同,导致形成双解.2.磁场的方向不确定形成多解.有些题目只告诉了磁感应强度的大小,而未指出磁感应强度的方向,有时必须要考虑因磁感应强度方向不确定而形成的双解.3.临界状态不唯一形成多解.带电粒子在洛【例6】在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外,一电荷量为q,质量为m的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v0,方向与AC 成α 角,若此粒子恰能打在磁场区域圆周的D 点,AD与AC 的夹角为β ,如图8-2-6所示。
求该磁场的磁感应强度B 的大小。
s图8-2-5图8-2-6仑兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过1800从入射界面这边反向飞出,于是形成多解.4.运动的重复性形成多解.带电粒子在磁场中运动时,由于某些因素的变化,例如磁场方向反向或者速度方向突然反向等,往往运动具有往复性,因而形成多解.七、带电粒子在复合场中运动问题如何处理?1.首先要弄清是一个怎样的复合场,是磁场与电场的复合,还是磁场与重力场的复合,还是磁场、电场、重力场的复合;其次,要正确地对带电粒子进行受力分析和运动过程分析.在进行受力分析时要注意洛伦兹力方向的判定方法——左手定则.在运动过程分析时,要特别注意洛伦兹力特点——始终和运动方向垂直,不做功;最后,选择合适的动力学方程进行求解.2.带电粒子在复合场中的运动问题是电磁学知识和力学知识的结合,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和洛仑兹力.因此,带电粒子在复合场中的运动问题要注意电场和磁场对带电粒子的作用特点,如电场力做功与路径无关,洛伦兹力方向始终和运动速度方向垂直,永不做功等.3.电子、质子、离子等微观粒子无特殊说明一般不计重力;带电小球、尘埃、油滴、液滴等带电颗粒无特殊说明一般计重力;如果有具体数据,可通过比较确定是否考虑重力.(例7针对8)【例7】如图8-2-7所示,足够长的绝缘斜面与水平面间的夹角为α(sinα=0.6),放在水平方向的匀强磁场和匀强电场中,电场强度E=50V/m,方向水平向左,磁场方向垂直于纸面向外。
一个带电量q=+4.0×10-2C,质量m=0.40kg的光滑小球,以初速v0=20m/s从斜面底端A冲上斜面,经过3s离开斜面,求磁场的磁感应强度。
(取g=10m/s2)。
图8-2-7针对练习1. 电子在通电直导线下方以速度v 通过A 点运动如图8-2-10其运动轨迹应当是___________.2.如图8-2-11所示,厚度为h ,宽度为d 的导体板放在垂直于它的磁感强度为B 的均匀磁场中,当电流通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象称为霍尔效应,实验表明,当磁场不太强时,电势差U 、电流I 和B 的关系为U =K ·IB/d ,式中的比例系数K 称为霍尔系数.霍尔效应可解释如下:外部磁场的洛仑兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧出现多余的正电荷,从而形成横向电场.横向电场对电子施加与洛仑兹力方向相反的静电力,当静电力与洛仑兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差.设电流I 是电子的定向流动形成的,电子的平均定向速度为v ,电量为e ,回答下列问题:(1)达到稳定状态时,导体板上侧面A 的电势________下侧面A ′的电势(填高于、低于或等于).(2)电子所受洛仑兹力的大小为________. (3)当导体板上下两侧之间的电势差为U 时,电子所受静电力的大小为________.(4)由静电力和洛仑兹力平衡的条件,证明霍尔系数为K =1/ne ,其中n 代表导体板单位体积中电子的个数.3.设空间存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图8-2-12所示.已知一离子在电场力和洛伦兹力的作用下,从静止开始自a 点沿曲线acb 运动,到达b 时速度恰为零,c 点是运动轨迹的最低点,不计重力,以下说法正确的是( )A .离子必带正电荷B .a 点和b 点位于同一高度C .离子经c 点时速度最大D .离子到b 点后,将沿原路返回a 点4.如图8-2-13所示,质量为m ,电量为q 的带电粒子从平行板电容器左侧一端的中点处以速度v 0沿垂直于电场线方向进入电容器,恰能从下边缘处飞出,飞出时速度大小为v 1,若其他条件不变,而在电容器内加上垂直纸面向里的匀强磁场,则带电粒子恰能从上极板边缘处飞出,飞出时速度为v 2,不计粒子的重力,则以下速度关系正确的是( )A2v o =v 1+v 2 B .v 0=2/)(2221v vC .v 0=21v v D .v 0<v 1=v 2图8-2-11图8-2-10图8-2-125.如图8-2-14所示,空间分布着图示的匀强电场E(宽为L)和匀强磁场B,一带电粒子质量为m,电量为q,(不计重力)从A点由静止释放后经电场加速后进入磁场,穿过中间磁场进入右边磁场后能按某一路径再返回A点而重复前述过程.求中间磁场的宽度d和粒子的运动周期(虚线为磁场分界线,并不表示有什么障碍物)6.如图8-2-15所示,绝缘细线拴住一带负电的小球,在方向竖直向下的匀强电场中的竖直平面内做圆周运动。