沼气脱硫预处理方案电子教案
淮安沼气生物脱硫方案
淮安沼气生物脱硫方案1. 简介淮安地区是沼气资源十分丰富的地区,然而,由于淮安地区沼气中硫化氢(H2S)的含量较高,对环境造成了较大污染。
为了解决这一问题,本文提出了一种淮安沼气生物脱硫方案,通过利用生物技术对沼气中的H2S进行有效去除。
2. 脱硫原理淮安沼气中的H2S主要来自于沼气原料中的有机硫化物的降解产物。
通常情况下,丰度较高的H2S会对环境和设备造成严重的腐蚀,因此需要对其进行去除。
淮安沼气生物脱硫方案采用了硫醇酸化-硫氧化-硫还原的生物转化过程来实现脱硫。
具体步骤如下:•第一步:将沼气通过酸性处理,使硫化氢转化为硫代硫酸盐。
•第二步:将硫代硫酸盐溶液中的硫离子还原为硫化氢,同时产生二氧化硫。
•第三步:将产生的二氧化硫通过吸收剂(如氧化钙溶液)进行捕集,得到稳定的硫。
3. 生物脱硫系统构建淮安沼气生物脱硫方案主要包括脱硫系统和控制系统两个部分。
3.1 脱硫系统脱硫系统主要包括酸性处理单元、还原处理单元和吸收剂处理单元。
•酸性处理单元:通过加入适量的酸性物质(如硫酸)将沼气中的硫化氢转化为硫代硫酸盐。
•还原处理单元:通过添加适量的还原剂(如有机物)将硫代硫酸盐中的硫离子还原为硫化氢,并同时产生二氧化硫。
•吸收剂处理单元:将产生的二氧化硫通过吸收剂进行捕集,得到稳定的硫。
在脱硫系统中,需要合理控制各处理单元的温度、压力和pH等参数,以保证脱硫效果和系统稳定性。
3.2 控制系统控制系统包括监测和调控两个环节。
•监测:通过传感器对脱硫系统的温度、压力、pH和流量等参数进行实时监测,以确保系统运行正常。
•调控:根据监测数据,通过反馈控制算法对脱硫系统中的各处理单元进行调控,以保证系统运行在最佳工况下。
4. 优势和前景4.1 优势淮安沼气生物脱硫方案相比传统的化学脱硫方法具有以下优势:•生物脱硫过程无需使用有害化学品,对环境友好。
•生物脱硫过程具有较低的能耗,经济效益较高。
•生物脱硫过程产生的硫可作为农业肥料等资源得到利用,具有较好的经济价值。
厌氧沼气脱硫改造工程方案
厌氧沼气脱硫改造工程方案一、项目背景厌氧沼气是一种由有机废物经过厌氧发酵而产生的气体,主要成分为甲烷、二氧化碳、硫化氢等,其中硫化氢是一种有害气体,对环境和人身健康都会产生不良影响。
因此,厌氧沼气脱硫是一项非常重要的工程,可以有效地去除硫化氢,净化沼气,保护环境和人身健康。
二、项目目标本次厌氧沼气脱硫改造工程的目标是根据现有的厌氧沼气发酵设备和工艺流程,结合脱硫技术,设计出一套高效、稳定、可靠的厌氧沼气脱硫系统,能够将硫化氢去除到标准排放要求以下,实现厌氧沼气的净化和利用。
三、现状分析1. 厌氧沼气发酵设备存在硫化氢排放超标的问题,需要进行脱硫改造。
2. 目前市场上有许多脱硫技术和脱硫设备,包括化学吸收法、生物脱硫法、活性炭吸附法、干法脱硫法等,需要综合考虑选取最适合项目的脱硫技术。
3. 脱硫系统需要与现有的厌氧沼气发酵设备和工艺流程相匹配,避免改造过程中对设备和工艺产生影响。
四、工程方案1. 技术选择考虑到厌氧沼气的特点和项目的实际情况,决定采用生物脱硫技术。
生物脱硫技术是利用硫氧化细菌将硫化氢氧化成为硫酸,从而实现脱硫的过程,具有脱硫效率高、操作成本低、安全环保等优点。
同时,生物脱硫技术对现有的厌氧沼气发酵设备和工艺流程的影响较小,易于与现有系统相匹配。
2. 设备选型生物脱硫系统主要包括硫化氢气液吸收塔、生物脱硫反应器、氧气供应系统、废水处理设备等。
根据项目的实际需求和技术要求,选用高效、稳定、可靠的脱硫设备和配套设备,确保整个生物脱硫系统的运行效果。
3. 工程设计根据现场实际情况和技术要求,进行生物脱硫系统的工程设计。
包括设备布置、管道连接、控制系统设计等,确保生物脱硫系统与现有厌氧沼气发酵设备和工艺流程相匹配,运行稳定可靠。
4. 安装调试生物脱硫系统的安装调试是工程的重要环节,需要对各个设备进行安装调试,保证各项参数符合要求,并与厌氧沼气发酵系统进行联调,确保整个系统的运行效果。
5. 运行维护生物脱硫系统投入运行后,需要进行定期的检修和维护,保证生物脱硫系统的长期稳定运行。
沼气工程脱硫方案
沼气工程脱硫方案一、背景随着人们对环境保护和可再生能源利用的重视,沼气工程作为一种清洁能源逐渐受到关注。
沼气主要由甲烷(CH4)和二氧化碳(CO2)组成,但同时也含有少量的硫化氢(H2S)、氮气(N2)和其他杂质气体。
其中硫化氢是一种有毒气体,对环境和人体健康都有一定危害。
因此,在沼气工程中,需要对硫化氢进行脱除处理,以提高沼气的利用价值。
本文旨在分析沼气中硫化氢的脱硫原理,并提出一套可行的脱硫方案。
二、硫化氢脱除的原理硫化氢是一种具有刺激性气味的有毒气体,主要来源于有机物质的分解、发酵过程中。
在沼气生产过程中,沼泥中的有机物质通过厌氧发酵产生沼气,而其中的硫化氢则随之产生,成为沼气中的主要有害成分。
因此,脱除沼气中的硫化氢是沼气工程中的一项重要工作。
常见的硫化氢脱除方法主要有化学吸收法、生物法、氧化法和吸附法等。
在实际的沼气工程中,根据工程规模、硫化氢含量、经济成本等因素综合考虑,选择适合的硫化氢脱除方法至关重要。
三、硫化氢脱除方法的选择1. 化学吸收法化学吸收法是一种将硫化氢通过液相吸收剂进行反应,从而将硫化氢脱除的方法。
常见的液相吸收剂有氢氧化钠(NaOH)、氢氧化钙(Ca(OH)2)、氧化铁(Fe2O3)等。
在沼气工程中,常用的化学吸收法是采用氢氧化钠作为吸收剂。
具体操作是将氢氧化钠溶液与沼气进行接触,在一定条件下,硫化氢会与氢氧化钠发生化学反应,生成硫化钠(Na2S)和水(H2O),从而将硫化氢脱除。
化学吸收法对硫化氢的脱除效果较好,可以将硫化氢含量降低到较低水平。
但同时,化学吸收法需要大量的吸收剂和设备投入,成本较高,运行维护成本也较大。
2. 生物法生物法是利用特定的微生物菌群对硫化氢进行生物降解,从而将硫化氢脱除的方法。
生物法对环境友好,无需添加大量化学药剂,操作简便,投资和运行成本较低。
但生物法对硫化氢的脱除效果较化学吸收法要差,难以将硫化氢含量降低到较低水平。
因此,生物法一般适用于硫化氢含量较低的沼气脱硫处理。
沼气项目干法脱硫方案
沼气项目脱硫方案1 沼气项目气源情况沼气流量为300m3/h,含硫量为480mg/Nm3,此含硫量较小,所以采用“C LG04.00”型干式脱硫设备便可以满足脱硫要求。
2、技术参数3、脱硫罐脱硫剂更换周期计算3.1硫化氢含量:480 mg/Nm3;燃气流量Q=300Nm3/h3.2相关设备参数及要求:单罐体积: 4 m3;运行要求:一开一备;压力降(kPa):≤1.53.3原理及成本计算日脱硫量:300×0.000048×24=3.456kg/D;脱硫反应方程式为:Fe2O3·2H2O+3H2S→Fe2S3·2H2O+3H2O (式1)2Fe(OH)3·2H2O+3H2S→Fe2S3·2H2O+6H2O (式2)根据反应方程式以及当前脱硫剂普遍累积硫容为30%,市场平均价2000元/吨计算得出:日氧化铁消耗量:3.456×160÷102÷0.3=12kg/D氧化铁总体积:4×2=8 m3堆积密度:0.9t/ m3氧化铁总量:8×0.9=7.2t=7200 Kg氧化铁更换周期:7200÷12=600天每天消耗成本约:12×2=24(¥/d)每立方气消耗成本约:0.003(¥/m3)4其他要求:4.1脱硫剂为氧化铁;4.2脱硫剂总装填量4立方,装填高度800mm;4.3装填时,不得踩压脱硫剂,保持自然堆积状态;4.4禁止在罐内进行脱硫剂再生;脱硫时温度不得高于50℃;4.5多孔板上表面平铺50mm厚的鹅卵石,鹅卵石均径为φ40~φ50。
胜动集团:胡滨0546-8781832。
沼气脱硫方案
沼气脱硫方案300Nm3/h沼气干法脱硫工程技术与商务文件江苏* *环保科技有限公司第一部分技术文件一、用户原始数据(1)处理气量:300Nm3/h(2)沼气温度:40C(3)沼气组成:沼气(4)进口硫化氢含量:3000mgTNm3二、脱硫要求(1)采用干法氧化铁脱硫(2)要求出口硫化氢:勻50mg /Nm3(3)脱硫剂更换周期为120天二、干法氧化铁脱硫技术1、煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫氧化铁的研究成功及其生产成本的相对降低,氧化铁脱硫技术也开始被广泛应用。
2、氧化铁脱硫技术最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。
现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。
氧化铁脱硫和再生反应过程如下:2.1脱硫过程Fe2O3 H2O+3H 2S= Fe2S3 H 20+3 H 2 O+5.2 千卡2.2再生过程2Fe2S3 H2O +3 O2==2Fe2O3 H2O +6S+94.2 千卡若气体中含02,当O2/H2S〉2.5时,脱硫再生反应可实现连续再生,则上述反应式合并为:Fe2O3 H2O2H2S+ O2========2H 2O+2S氧化铁脱硫剂再生是一个放热过程,如果再生过快,放热剧烈,脱硫剂容易起火燃烧,一定要控制好再生温度。
三、设备占地面积:详见图纸四、氧化铁脱硫工艺简介氧化铁脱硫的主要机理是催化与吸附作用。
当含有H2S的煤气通过氧化铁床层时,在常压下发生放热反应,并在氧化铁表面上被催化氧化成元素硫离子,其生成物被氧化铁吸咐,以达到其脱硫目的。
为满足用户需要,本方案采用双塔串联运行。
当运行一段时间后(约50天),若样1和样2取样化验结果偏差小于50,说明该塔填料已经饱和,失去脱硫能力,需要更换。
沼气脱硫工艺设计说明书
工艺设计说明1、沼气管道与前部接口根据PURAC的总体设计,考虑到二期工程的总沼气量需要,从厌氧罐接出的沼气管汇总后将采用DN450管径的沼气输送管,在进入沼气进化系统前设三通,一端接DN300沼气管至沼气火炬,另一端接手动阀门后至沼气净化系统。
本方案起始位置自此DN450阀门始。
详见场内沼气管网平面布置图及工艺系统图。
2、沼气脱硫工艺设计厌氧发酵罐刚产出的沼气是含饱和水蒸气的混合气体,其组成绝大部分为气体燃料CH4与CO2外,还含有H2S和悬浮的颗粒状杂质。
H2S不仅有毒,而且遇水蒸汽反应后极容易生成有很强腐蚀性的稀硫酸。
因此,沼气中过量的H2S 含量会危及发电机组的寿命,因此需进行脱硫净化处理。
本工艺拟采用生物脱硫法对沼气进行脱硫处理。
生物脱硫法是利用微生物的作用,在微氧条件下将H2S氧化成单质硫或亚硫酸的脱硫过程。
这种脱硫方法已在欧洲广泛使用,在国内某些工程已有采用,其优点是:不需要催化剂、不需处理化学污泥,产生很少生物污泥、耗能低、去除效率高。
脱硫效率稳定,H2S去除率可达90%以上,脱硫成本低,每立方米沼气处理费用小于0.03元,比化学脱硫法成本降低70%以上。
当沼气中进入了一定数量的氧气时,专门的好氧嗜硫细菌(如:丝硫细菌属或硫杆菌属等)可以将沼气中的硫化氢成分氧化成硫元素,并根据环境条件的不同,将其进一步氧化成硫酸。
这种反应需要的条件为:氧气、营养液、温度、湿度与生长区域。
在不同的温度下会产生不同的好氧嗜硫菌群,一般认为,在25℃至35℃的温度环境下,好氧嗜硫菌群的生长与活动是最快的,因而在此温度下脱硫效果最高。
反应方程式如下:2H2S + O2→2H2O +2S2H2S +3O2→2H2SO3氧气进入沼气中的方式有二种,一是将一定数量的压缩空气直接进入沼气管道内与沼气混合,在喷淋反应器内在特定的环境下与沼气中的硫化氢气体反应。
二是将压缩空气通过曝气器进入培养液中,使培养液成为含有饱和氧分子的水,并在喷淋反应塔内与沼气中的硫化氢气体反应。
沼气工程脱硫系统方案
沼气工程脱硫系统方案脱硫系统是沼气工程中的重要组成部分,通过适当的脱硫系统设计和设备配置,可以有效地去除沼气中的硫化氢,降低硫化氢含量,保证沼气的安全和环保。
本文将从脱硫系统的原理和设计要点、技术路线和系统方案等方面展开阐述,以期为沼气工程的脱硫系统提供一些有益的参考。
一、脱硫系统的原理和设计要点1.脱硫原理脱硫技术主要包括化学脱硫、物理脱硫和生物脱硫等方法。
化学脱硫通过化学反应将硫化氢转化为硫酸盐或硫化合物,从而去除硫化氢。
物理脱硫是利用吸附剂或活性炭等材料吸附硫化氢,从而实现脱硫的目的。
生物脱硫则是通过微生物在适宜的环境条件下,将硫化氢转化为硫酸盐或硫化合物,实现脱硫作用。
2.设计要点(1)适应性:脱硫系统应根据沼气的硫化氢含量、气体流量和成分特点等情况,选择合适的脱硫工艺和设备,以确保脱硫效率和稳定性。
(2)安全性:脱硫系统应具有安全可靠的性能,防止硫化氢泄漏和造成人员伤害、环境污染或设备损坏等事故。
(3)经济性:脱硫系统应具有合理的投资和运行成本,并且能够实现能源资源的利用和经济效益。
(4)环保性:脱硫系统应考虑废水处理、固废处理和废气处理等环保问题,减少对环境的污染。
二、脱硫技术路线在沼气工程中,常用的脱硫技术路线包括生物脱硫、化学脱硫和物理脱硫等方法。
这里将分别对这三种脱硫技术路线进行介绍。
1.生物脱硫生物脱硫是利用硫酸还原菌、亚硫酸盐还原菌等微生物,利用它们的新陈代谢过程将硫化氢转化为硫酸盐或硫含化物,从而实现脱硫的目的。
生物脱硫技术具有脱硫效率高、操作简单、投资少等优点,但对环境条件、微生物的适应性等要求较高,需要较长的时间来达到稳定脱硫效果。
2.化学脱硫化学脱硫是利用化学反应将硫化氢转化为硫酸盐或硫化合物,从而去除硫化氢。
常用的脱硫剂有氧化铁、氧化铜、氧化锰、氢氧化钠、氢氧化钙等。
通过适当的反应条件和控制,可以实现高效率的脱硫效果。
但是,化学脱硫需要配套设备和耗材的投入,维护、操作和运行成本较高。
沼气脱硫方案范文
沼气脱硫方案范文常用的沼气脱硫方案包括物理吸收法、化学吸收法和生物脱硫法。
物理吸收法:物理吸收法是指通过物理吸收剂吸收沼气中的硫化氢。
常用的物理吸收剂包括活性炭、聚丙烯腈纤维等。
该方法操作简单,脱硫效果较好,但吸收剂会受到硫化氢的浓度和压力的影响,需要定期更换吸收剂。
化学吸收法:化学吸收法是指将硫化氢溶解在一种溶液中,通过溶解反应将硫化氢从沼气中移除。
常用的溶液包括碱性溶液(如氢氧化钠溶液)和碱性盐溶液(如NaOH、KOH溶液)。
该方法能够实现高效的脱硫效果,但需要考虑后期溶液的处理和再生,因为产生的废液中含有大量的硫化物。
生物脱硫法:生物脱硫法是指利用硫氧化菌或硫还原菌将沼气中的硫化氢通过氧化还原反应转化为硫酸盐或硫粉沉淀的过程。
此方法操作简单,无化学物品投加,对环境友好。
生物脱硫法分为常温生物脱硫和高温生物脱硫两种,常温生物脱硫主要应用于低硫化氢含量的沼气,而高温生物脱硫适用于高硫化氢含量的沼气。
然而,该方法脱硫效率相对较低,并且对反应条件比较敏感。
除了上述的主要脱硫方法,还有一些辅助脱硫技术可以提高脱硫效率。
例如,采用脉冲喷淋技术可以增加气液接触面积,提高物理吸收法和化学吸收法的脱硫效率。
此外,还可以使用活性炭吸附法去除沼气中的硫化氢,以进一步提高脱硫效果。
在实际应用中,根据沼气的硫化氢含量、处理的规模和要求,可以结合以上不同的脱硫方法进行组合使用,以达到更好的脱硫效果。
总之,沼气脱硫是一项重要的环保工作,采用合适的脱硫方案可以减少硫化氢对环境的污染,提高沼气的利用价值。
不同的脱硫方法各有优劣,需要根据具体情况选择适合的方案,并结合其他辅助技术进行脱硫处理。
沼气脱硫原理及故障分析
二、解决该报警处理措施 • 检查氧化还原电位计; • 检查进料沼气中H2S 浓度; • 检查空压机 ;
4、高电导率报警分析及处理措施
一、高电导率报警原因分析 • 电导率仪失灵 ; • 稀释水供应失调 ; 二、解决高电导率报警采取措施 • 清洗并校准电极 ; • 检查水投加系统 ;
5、固体物质低和堵塞分析及处理措施
一、高NaOH消耗原因分析 • 低电导率 ; • 高氧化还原电位 ; • 高碱度 ;
二、解决高NaOH消耗处理措施 • 降低稀释水 ; • 降低氧化还原电位设定值 ; • 少量降低pH设定值 ;
谢 谢 大 家!
营养盐投加
• • • • 营养盐投加量很少,一立方可以使用一至二个月。 关注营养贮罐液位,及时补充。 顺时针旋启计量泵出口多功能阀,观察液体流出,再 旋至原位。 长时间停机,关闭营养盐投加点的球阀,再启动时需 开启。
氧化还原电位与鼓风机
一、氧化还原电位的控制 • 通过鼓风机的频率PID控制 • 氧化还原电位设定过高,存在过氧化,增加碱耗。 • 氧化还原电位设定过高,硫化物积累,影响硫化氢吸收。 二、氧化还原电位趋势曲线 • 调整PID参数,使曲线波动尽量小。 • 曲线变化应灵敏,单位时间内出现尽量多的波峰波谷。 • 正偏差过大,降低鼓风机的最大频率。 • 负偏差过大,提高鼓风机的最低频率。 三、操作注意事项 • 检查氧化还原电位在线分析仪的电解质贮槽的液位,及时补 充。 • 每周校准氧化还原电位在线分析仪。 • 检查风机润滑油,及时补充。
循环泵
一、作用 将反应器内混合液提升并分配。 二、管路出口分配
① ② ③ ④ ⑤ ⑥ ⑦ 洗涤塔主喷淋,DN125,蝶阀全开。 混合液排液,DN25,气动阀程序控制。 混合液至沉淀器,DN25,球阀全开,隔膜阀手动调节。 洗涤塔消泡喷淋,DN40,球阀全开。 反应器消泡喷淋,DN50,球阀全开。 至测量循环回路,DN25。 电导率测定仪。
沼气脱硫技术
沼气脱硫技术报告一、沼气成分介绍沼气是一种混合气体,一般含CH4为 60%-70%,CO2为30%-40%,部分 H2S、水汽、NH3以及少量的SO2、H2、N2、CO、卤代烃等杂质,其中H2S的危害较大,影响了沼气的回收利用。
沼气用途不同,对H2S含量的要求也不同。
相关国家及行业标准规定:若利用沼气发电,则H2S的浓度需小于等于200-300 mg/m3;若将沼气作为车用燃料或并入燃气管网,则H2S浓度需小于等于15 mg/m3。
沼气中H2S的质量浓度一般为1-12 g/m3,远远超过标准中的规定,若不进行预处理,H2S会腐蚀金属管道、仪器仪表,而且产生的SO2等有害气体会污染环境。
因此,沼气在综合利用之前必须进行H2S脱除。
二、沼气脱硫工艺介绍沼气脱硫一般可分为干法、湿法和生物法。
干法和湿法属于传统的化学方法,是目前沼气脱硫的主要手段;生物脱硫是利用微生物的代谢作用将沼气中的H2S转化为单质硫或硫酸盐,可实现环保和低成本脱硫。
1、干法脱硫干法脱硫是用粉状或颗粒脱硫剂来脱除H2S,其反应在完全干燥的状态下进行。
干法脱硫常用于低含硫气体的处理。
一定程度上,该法比较适用于H2S含量较低的沼气净化。
常用的干法脱硫方法为氧化铁气体净化法。
1.1反应原理常压氧化铁法选用经过氧化处理的铸铁屑作脱硫剂,用木屑作为疏松剂,放在脱硫箱中,厚约0.3-0.8m。
气体以0.4-0.6m/min的速度通过。
当沼气中硫化氢含量较低时,气速可适当提高,接触时间一般为2-3min。
硫化氢被铁屑吸收,沼气得以净化,其反应式如下:Fe2O3·3H2O+3H2S→Fe2S3+6H2OFe2O3·3H2O+3H2S2→FeS+S+6H20脱硫剂可以循环使用。
脱硫剂再生的原理是使硫化铁与O2接触,经反应生成单体S和Fe2O3,再生的Fe2O3可继续使用,反应式如下:2Fe2S3+3O2→2Fe2O3+6S4FeS+3O2→2Fe2O3+4S将含有硫化铁的脱硫剂取出,洒上水,接触空气使其氧化,即可再生利用。
沼气脱硫预处理方案
沼气脱硫预处理方案沼气是一种高效的可再生能源,也是一种混合气体,其中主要成分是甲烷(CH4)和二氧化碳(CO2)。
然而,沼气中含有硫化氢(H2S)等有毒气体,通过脱硫预处理工艺可以有效去除硫化氢,提高沼气的质量。
物理吸附法是利用适宜的吸附剂吸附硫化氢,常用的吸附剂有活性炭、分子筛等。
沼气通过吸附器时,硫化氢会被吸附剂表面的微孔、介孔或毛细管道中的活性位点吸附,从而实现脱硫效果。
物理吸附法具有操作简单、不需要添加化学药剂等优点,但吸附剂的再生和拆卸成本较高。
化学吸收法是利用吸收剂与硫化氢发生化学反应,将其转化为其他物质并溶解于溶液中。
常用的吸收剂有氨水、碱液等。
沼气通过吸收器时,硫化氢会与吸收剂反应生成硫酸盐等溶解物质,实现脱硫效果。
化学吸收法具有脱硫效率高、脱硫彻底等优点,但吸收剂的再生成本较高,且吸收剂的选择和操作维护要求较高。
生物脱硫法是利用特定微生物对硫化氢进行降解和氧化,将其转化为硫酸盐等形式。
生物脱硫法主要包括硫酸还原菌脱硫法、反硫酸盐还原菌脱硫法等。
沼气通过生物脱硫系统时,硫化氢会在生物反应器中被微生物耗氧降解和氧化,从而实现脱硫效果。
生物脱硫法具有脱硫效率高、脱硫产物可利用等优点,但对控制操作条件、微生物的选育和培养等要求较高。
根据实际情况,可以综合考虑上述脱硫预处理方案,采用多种方法相结合的方式辅助进行沼气脱硫。
例如,可以先采用物理吸附法去除大部分硫化氢,然后再利用生物脱硫法或化学吸收法进一步降低硫化氢浓度。
总之,沼气脱硫预处理方案应根据资源的实际情况和需求选择合适的方法,综合考虑各种方案的经济性、操作简便性以及处理效果,以确保沼气的质量和利用效率。
沼气脱硫方案
300Nm3/h沼气干法脱硫工程技术与商务文件第一部分技术文件一、用户原始数据(1)处理气量:300Nm3/h(2)沼气温度:40℃(3)沼气组成:沼气(4)进口硫化氢含量:3000mg/Nm3二、脱硫要求(1)采用干法氧化铁脱硫(2)要求出口硫化氢:≤150mg /Nm3(3)脱硫剂更换周期为120天二、干法氧化铁脱硫技术1、煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫氧化铁的研究成功及其生产成本的相对降低,氧化铁脱硫技术也开始被广泛应用。
2、氧化铁脱硫技术最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。
现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。
氧化铁脱硫和再生反应过程如下:2.1脱硫过程Fe2O3·H2O+3H2S= Fe2S3·H2O+3 H2 O+5.2千卡2.2再生过程2Fe2S3·H2O +3 O2==2Fe2O3·H2O +6S+94.2千卡若气体中含O2,当O2/H2S>2.5时,脱硫再生反应可实现连续再生,则上述反应式合并为:Fe2O3·H2O2H2S+ O2========2H2O+2S氧化铁脱硫剂再生是一个放热过程,如果再生过快,放热剧烈,脱硫剂容易起火燃烧,一定要控制好再生温度。
三、设备占地面积:详见图纸四、氧化铁脱硫工艺简介氧化铁脱硫的主要机理是催化与吸附作用。
当含有H2S的煤气通过氧化铁床层时,在常压下发生放热反应,并在氧化铁表面上被催化氧化成元素硫离子,其生成物被氧化铁吸咐,以达到其脱硫目的。
为满足用户需要,本方案采用双塔串联运行。
当运行一段时间后(约50天),若样1和样2取样化验结果偏差小于50,说明该塔填料已经饱和,失去脱硫能力,需要更换。
沼气脱硫说明书
700立方米沼气处理装置说明书一、简介本装置是一种用于沼气净化处理的系统装置,主要功能包括脱硫、除尘和脱水。
其中脱硫工艺采用的是目前国内普遍使用的湿法脱硫工艺。
沼气中主要有害物质为H2S、有机硫等,其中H2S含量大,腐蚀性强,对机组的运行维护都带来很大的危害,在进入发电机组前必须对其净化。
本装置处理气量为700m3/h,可供两台500kw的沼气发电机组使用。
其流程原理如图所示:二、脱硫技术1、工艺操作条件(一)溶液的PH值溶液的PH值要保持在8.2~8.5。
(二)溶液中催化剂浓度一般选用5~20ppm,最好采用连续少量滴加方法。
(三)温度富液再生温度:稳定在35-40℃时脱硫效率较好。
2 、技术特点2.1 脱硫、脱氰效率高,适用范围广:H2S脱除率不小于90%,HCN脱除率不小于85%。
2.2选择性好,环境效益突出:副反应少,不排放废液,脱硫溶液无毒。
2.3 硫泡沫易分离。
三、操作1)、溶液的配制在配液槽内加入清水,按浓度为0.3N NaOH和催化剂浓度为5~20ppm配制后,再加2倍于催化剂的对苯二酚,待其充分混合和溶解,用PH计测其酸碱度在规定的范围,用泵打入再生槽和贫液槽。
2)、脱硫液循环泵的启动,停止和运行a)、启动前应先检查管道、阀门处于正常状态;b)、泵的启动操作:启动泵前,关闭出口阀门,然后向进水管灌水,启动电机。
当水泵转动正常,压力表显示正常压力后,逐渐打开泵出口管路上阀门,直到调好流量;c)、泵的停止操作:首先关小出口管道上的阀门,关闭电源,停泵后,再关闭入口阀门,冬天长时间停车应将泵内存水放掉,以免冻裂泵体。
d)、泵运行:定期(每4个小时)检查泵出口压力在正常范围。
3)、通气运行a)、检查塔的密封性能;b)、水池水封是否已装满水,且燃气压力小于水封压力;c)、启动脱硫泵,并调节循环量,使之符合技术要求;d)、脱硫液循环正常后,开通燃气,调节液位器手柄调节液位高度,以使硫泡沫正常溢出。
沼气脱硫应急处置方案
沼气脱硫应急处置方案引言沼气作为一种可再生能源在农村得到了广泛应用。
然而,沼气生产过程中,氢硫化物等有臭味气体是无法避免的。
硫化氢等有害气体对人体有害,同时当沼气中的硫化氢达到一定浓度时还有爆炸和火灾的风险。
因此,沼气脱硫非常重要。
然而,即使在脱硫系统正常运行的情况下,如果发生意外,需要采取合适的措施进行应急处置。
沼气脱硫常规处理在正常的沼气处理中,常见的脱硫方法包括:•生物法脱硫•肉眼法脱硫•化学法脱硫•微生物法脱硫沼气脱硫应急处置方案当发生意外时,必须采取适当的措施使场所得以安全运转。
具体的应急处置方案如下:1. 疏散人员首先,必须确保所有人员的安全,包括工人和游客。
如果沼气中的硫化氢浓度非常高,那么疏散人员是关乎生命安全的快速措施。
2. 关闭主控制阀关闭沼气主控制阀来防止更多的沼气进入脱硫系统和储存罐。
这可以很好的帮助减少沼气中的硫化氢含量并防止沼气涨压导致的爆炸。
3. 开启通风设备开启通风设备可以让室内空气流通,帮助稀释室内沼气中的硫化氢浓度。
4. 熄灭明火如果存在明火,必须立即熄灭,以防止沼气爆炸的可能性。
5. 防止火花和静电与明火类似,火花和静电也是潜在的引发爆炸的因素。
因此应立即关闭各种制造火花和静电的设备。
6. 废气处理如果脱硫系统崩溃且需要紧急维修,则需要将废气排放到安全区域进行处理。
所需要注意的是,排放废气的地方必须远离民居区域以保证人民安全。
7. 处理泄漏如果在脱硫系统中发现了泄漏,必须立即通知相关的管理人员进行处理。
同时,还需要注意个人安全,并配合消防等应急处理人员(如果需要)进行处理。
8. 恢复操作当应急处理措施完成,操作人员确保现场已经安全之后,可以考虑重新启动沼气脱硫系统,将系统恢复到正常控制状态。
结论本文对应急处置方案进行了全面的阐述。
在应急处理过程中,必须考虑人员安全,并在处理现场上采取必要的步骤,包括关闭排放阀门,防止明火和静电等。
最终目标是确保现场安全的同时保证沼气采集系统能够顺利地恢复正常运行。
16000立方沼气生物脱硫技术方案
日产16000立方沼气生物脱硫技术方案
一、沼气基本情况
1.处理量:16000m3/d;
2.沼气温度:30℃;
3.沼气中H2S浓度:H2S≤1000ppm。
二、处理要求
沼气经处理后H2S≤50ppm。
三、工艺流程与特点
1、工艺流程如下图所示
2、技术特点
➢由化学吸收和微生物催化氧化有机结合构成;
➢吸收效率高,稳定性强,吸收液可循环再生,运行成本低;
➢可实现S单质回收利用;
➢运行维护简单,投资造价低。
四、运行成本
沼气经处理后H2S≤50ppm,以经典氧化铁干法脱硫为例,脱硫成本在0.06元/m3 (沼气),本技术比氧化铁干法脱硫成本降低50%,即0.03元/m3(沼气)。
因此,本技术运行成本非常低。
五、投资估算
本工程具体投资如下表所示,总投资约41.3万元。
沼气脱硫预处理方案
90000m3/d厌氧沼气脱硫预处理及火炬技术文件北京时代桃源环境科技有限公司2015年8月目录1项目概况项目概况本方案是提供并安装全新的、性能完善、低运行成本、使用寿命长、维修方便并通过调试可以投入生产运行的完整设备。
本项目通过处理厨余垃圾发酵产生的沼气,经过前置增压过滤、生物脱硫系统、精脱硫(备用)、脱水、增压处理后综合利用。
本方案的内容为沼气净化工程的成套设备。
表1-1 项目来气参数供货范围本方案的供货范围为3750Nm3/h沼气生物脱硫项目的技术方案,供货范围的界定如下:业主方把沼气管引入沼气净化区界响应位置内一米。
我方将净化后沼气管道引出至沼气净化区界外一米。
我方负责上述范围内的工艺设计、成套设备供货、运输、安装、调试及相关的监测、控制等,以及相关的质量保证及服务。
主电力电缆一个回路进我方主配电柜;业主方提供AC380V电源,并将电缆接至我方配电进线柜进线开关上端。
我方负责全部低压供配电系统以及弱电控制设备的供货及安装,包括配电柜、现场操作箱、接线箱及与所供工艺设备有关的按钮附属电气设备元件;业主方将水、汽等能源管线接到脱硫区相应位置内一米,脱硫区内的水、汽管线由我方负责;我方将废水(含凝结水排放)出脱硫区外1米。
以上界限内的所有管道、阀门以及其他附件、材料均由我方提供;管道系统包括所有供货范围内管线的仪表、阀门、法兰、垫片、螺栓、螺母、管道、管件及安装材料等;本方案将单独建立子项控制室,通过工业以太网中央控制系统通讯。
连接至中央控制系统的线缆及其敷设不属本方案范围。
控制系统所有仪表及控制系统的供货、安装和调试等均在我方供货范围;土建、防雷接地等由业主负责。
业主方提供施工临时用电源(接至净化区内1米),施工、调试期间的水、电、热等由业主方负责。
初次调试所需的营养液、接种物包含在本次方案范围内。
我方保证所供设备为全新的、先进的、成熟的、完整和安全可靠的,且设备符合性能要求,确保安全、可靠、经济的运行。
沼气脱硫方案
300Nm3/h沼气干法脱硫工程技术与商务文件第一部分技术文件一、用户原始数据(1)处理气量:300Nm3/h(2)沼气温度:40℃(3)沼气组成:沼气(4)进口硫化氢含量:3000mg/Nm3二、脱硫要求(1)采用干法氧化铁脱硫(2)要求出口硫化氢:≤150mg /Nm3(3)脱硫剂更换周期为120天二、干法氧化铁脱硫技术1、煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫氧化铁的研究成功及其生产成本的相对降低,氧化铁脱硫技术也开始被广泛应用。
2、氧化铁脱硫技术最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。
现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔再生。
氧化铁脱硫和再生反应过程如下:2.1脱硫过程Fe2O3·H2O+3H2S= Fe2S3·H2O+3 H2O+5.2千卡2.2再生过程2Fe2S3·H2O +3 O2==2Fe2O3·H2O +6S+94.2千卡若气体中含O2,当O2/H2S>2.5时,脱硫再生反应可实现连续再生,则上述反应式合并为:Fe2O3·H2O2H2S+ O2========2H2O+2S氧化铁脱硫剂再生是一个放热过程,如果再生过快,放热剧烈,脱硫剂容易起火燃烧,一定要控制好再生温度。
三、设备占地面积:详见图纸四、氧化铁脱硫工艺简介氧化铁脱硫的主要机理是催化与吸附作用。
当含有H2S的煤气通过氧化铁床层时,在常压下发生放热反应,并在氧化铁表面上被催化氧化成元素硫离子,其生成物被氧化铁吸咐,以达到其脱硫目的。
为满足用户需要,本方案采用双塔串联运行。
当运行一段时间后(约50天),若样1和样2取样化验结果偏差小于50,说明该塔填料已经饱和,失去脱硫能力,需要更换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沼气脱硫预处理方案90000m 3/d厌氧沼气脱硫预处理及火炬技术文件北京时代桃源环境科技有限公司2015年8月目录1 项目概况 (4)1.1 项目概况 (4)1.2 供货范围 (4)1.3 执行规范 (6)2 项目整体工艺描述 (7)3. ...................................................................................................................... 沼气净化系统技术描述 (7)3.1 前置增压、过滤系统 (8)3.2 生物脱硫系统 (8)3.3 干法脱硫系统.......................................... 1..1...3.4 脱水工艺.............................................. 1...2...3.5 增压工艺.............................................. 1...3...3.6 精过滤工艺............................................ 1...3...3.7 火炬系统.............................................. 1...3...3.8 电气及自控系统........................................ 1..4...4. 主要设备一览表............................................ 1...6...5. 运行费用.................................................. 1 (8)6•系统报价1.9…1项目概况1.1项目概况本方案是提供并安装全新的、性能完善、低运行成本、使用寿命长、维修方便并通过调试可以投入生产运行的完整设备。
本项目通过处理厨余垃圾发酵产生的沼气,经过前置增压过滤、生物脱硫系统、精脱硫(备用)、脱水、增压处理后综合利用。
本方案的内容为沼气净化工程的成套设备。
1.2供货范围本方案的供货范围为3750Nm3/h沼气生物脱硫项目的技术方案,供货范围的界定如下:业主方把沼气管引入沼气净化区界响应位置内一米。
我方将净化后沼气管道引出至沼气净化区界外一米。
我方负责上述范围内的工艺设计、成套设备供货、运输、安装、调试及相关的监测、控制等,以及相关的质量保证及服务。
主电力电缆一个回路进我方主配电柜;业主方提供AC380V 电源,并将电缆接至我方配电进线柜进线开关上端。
我方负责全部低压供配电系统以及弱电控制设备的供货及安装,包括配电柜、现场操作箱、接线箱及与所供工艺设备有关的按钮附属电气设备元件;业主方将水、汽等能源管线接到脱硫区相应位置内一米,脱硫区内的水、汽管线由我方负责;我方将废水(含凝结水排放)出脱硫区外1 米。
以上界限内的所有管道、阀门以及其他附件、材料均由我方提供;管道系统包括所有供货范围内管线的仪表、阀门、法兰、垫片、螺栓、螺母、管道、管件及安装材料等;本方案将单独建立子项控制室,通过工业以太网中央控制系统通讯。
连接至中央控制系统的线缆及其敷设不属本方案范围。
控制系统所有仪表及控制系统的供货、安装和调试等均在我方供货范围;土建、防雷接地等由业主负责。
业主方提供施工临时用电源(接至净化区内1 米),施工、调试期间的水、电、热等由业主方负责。
初次调试所需的营养液、接种物包含在本次方案范围内我方保证所供设备为全新的、先进的、成熟的、完整和安全可靠的,且设备符合性能要求,确保安全、可靠、经济的运行。
若在安装和调试运行过程中发现缺项(属正常供货范围内),我方承诺无条件补齐。
1.3 执行规范本项目涉及沼气净化系统的设计、制造、安装、调试标准,采用现行使用的有关国家标准以及部颁标准,这些标准和规范至少包括(不限于):《制冷装置用压力容器》JB/T4750-2003《压力容器无损检测》JB4730-94《压力容器安全技术监察规程》JB/T4750-2003《低压开关设备和控制设备总则》GB/T14048.1-2000《制冷设备通用技术规范》GB 9237-88《制冷设备、空气分离设备安装工程施工及验收规范》GB50274-98《机械设备安装与验收规范》JB23-96《工业金属管道设计规范》GB50316-2000《工业金属管道工程施工及验收规范》GB50235-97《工业设备及管道绝热工程施工及验收规范》GBJ126-89《工业设备及管道绝热工程设计规范》GB50264-97《工业设备及管道绝热工程质量检验评定标准》GB50185-93《采暖通风和空气调节设计规范》GBJ19-87《供配电系统设计规范》GB50052-95低压配电设计规范》GB50054-95《工业企业厂界噪声标准》GB12348-90《沼气工程技术规范》1-5部分NYT 1220.1-2006以及相关行业的国家规范及行业标准2项目整体工艺描述厌氧发酵出来最大沼气量为3750m3/h,结合后期利用方式,兵分两路进行沼气脱硫和预处理;两套系统同样配置,每套系统处理量1875m3/h,首先进入粗过滤、前置增压、生物脱硫塔、干法精脱硫(预留)、制冷脱水、后置增压、精过滤,净化后的沼气满足发电需求,此时沼气中的硫化氢含量从2000ppm 降至小于150ppm ;其中干法脱硫作为预留,当系统沼气利用方式为CNG时,增加或启动干法脱硫,使硫化氢含量从150ppm 降至小于10ppm;当系统产气量大于用气量或系统维护检修时,启动焚烧火炬;工艺流程3. 沼气净化系统技术描述由于两套系统配置项目,以下只描述单套系统。
3.1 前置增压、过滤系统为了保护加压风机及防止厌氧沼气携带粉尘、有机物、液态水、油脂等进入生物脱硫系统,必须采用过滤器对沼气进行过滤处理。
过滤器为大过滤面积设计,具有脱除部分液态水、较大颗粒物的作用,脱水过滤器滤芯采用不锈钢材质制作。
项目设置了前置过滤器1 台,过滤器的处理流量为1875Nm 3/h ,过滤精度为50卩m。
过滤器前后端安装了压差表,当压差大于2kPa时,建议更换滤芯。
过滤后的沼气进入增压风机进行升压,增压风机设计流量为1875 Nm 3/h ,升压能力为10kPa ,适配22kw 电机,1 台,考虑旁路。
3.2 生物脱硫系统3.2.1 生物脱硫工艺原理脱硫塔为气液逆向接触的填料吸收塔。
含硫沼气从填料塔底部进入与从塔顶进入的碱性循环水(贫液)在脱硫塔填料表面充分接触,硫化氢等硫化物与碱液发生化学反应,从而达到脱硫的目的,脱硫效果达到99% 以上。
反应后的循环水(富液)经脱硫塔底部进入到再生池。
富液中的含硫化合物在再生池中经脱硫菌和氧气的作用下转变为单质硫,完成贫液再生。
再生池产生的单质硫混浊液进入沉淀池沉淀,最终通过定期排放排出生物脱硫系统进行回收利用脱硫沼气脱—I硫 1. 加热塔 f W含硫沼气一过滤加压—」L 1 •-____ - I再生池'沉烫施'单贏生物脱硫工艺流程简图本项目生物脱硫主要发生的反应是:填料塔内:H2S + 2NaOH —NS + 2H 2O再生池内:2Na2S + O2 + 2H 2O —2S + 4NaOH这两步对沼气脱硫系统都非常重要。
第一步反应为脱硫过程,H2S等硫化物通过第一步反应得到去除;第二步反应为再生过程,如果没有第二步反应,循环水就不能再生,造成系统脱硫能力下降,无法满足沼气脱硫的需求。
3.2.2各工艺系统介绍3.2.2.1脱硫塔与循环水系统从洗涤塔出来的沼气进入生物脱硫塔。
生物脱硫塔主体由玻璃钢制造。
塔内有防腐格栅及支撑梁,可承受填料的重量。
现场安装由甲方完成。
要求脱硫塔外层有聚胺脂或毡类保温层,保温外面再有彩钢板保护层,彩钢板保护层外再刷UV防护漆。
系统采用碱性溶液来脱除沼气中H2S 。
为了降低碱液的用量,脱硫系统采用循环水再生设计,设有生物再生池。
碱性循环水由循环泵送到脱硫塔上部喷淋,在重力的作用下流经塔内填料表面,增加循环水的停留时间,充分吸收沼气中的H2S ,然后从脱硫塔底部回流到再生池,再生后进入下一次循环。
脱硫塔上下设有压力表,指示脱硫塔压损变化。
3.2.2.2 再生系统从脱硫塔重力流入再生池中。
在再生池底部设有曝气装置。
提供循环水再生所需适当的氧气。
曝气系统设有在线计量检测装置,控制曝气风机的流量,严格控制溶解氧的含量。
在适宜的温度、溶解氧、营养及pH 等环境下,脱硫菌将循环水中的硫化物氧化成单质硫,再生池与沉淀池有连通管路,单质硫随管路进入沉淀池。
沉淀后的循环水经对流泵打入再生池。
沉淀池底部有排污口,可将沉淀下来的硫泥排至集水井。
硫泥是批次出料,每天排一~ 二次。
生物脱硫菌的生长和脱硫过程需要适宜的温度,项目采用热水加热的方式为生物脱硫菌提供适宜的温度环境。
再生池内安装温度传感器,经PLC 自动控制再生池中水的温度。
加热热水来自厌氧发酵加热系统的尾水,进水温度为51 °C,直通式。
流量不超过0.5t/h 。
在夏季时,热水会少用或者不用(用自来水补水),冬季时,热水直通。
3.2.2.3 营养液及碱液系统微生物生长需要一定的营养元素,营养物质添加系统可自动将营养液加到再生池,加药量由计量泵进行精确控制。
本方案营养液系统设置1 套加药计量泵虽然反应条件严格控制,但再生池的反应过程仍有2~3% 左右的单质硫被氧化成硫酸、亚硫酸等,使系统循环水的PH 值下降,必须通过添加一定量的碱液来维持系统的最佳PH 范围。
本技术方案的碱液添加系统可根据循环水PH 值的变化自动增加碱液进行调整,使溶液的PH 值稳定在最佳反应区间。
碱液添加由计量泵控制。
3.2.2.4 废水排及补水系统定期的硫泥排放会导致循环水量减少,每次随着硫泥排出的水约5t 左右。
循环水的减少可以通过自动补水的方式来保持再生池、沉淀池的水位平衡,以达到系统自动补水的目的。
3.3 干法脱硫系统设计采用干法脱硫工艺作为精脱硫的方式,餐厨厌氧沼气通过生物脱硫后硫化氢浓度从5000PPm 降到150PPm ,当系统后端利用为提纯方式时,启动干法脱硫系统。
通过干法脱硫方式将硫化氢浓度降至10PPm 。
干法脱硫工艺采用高效成型脱硫剂塔式结构,待处理的沼气从脱硫塔底部进入,与脱硫剂充分均匀接触,将内部携带的气态硫化氢有效转化为固态硫化物,附着于脱硫剂多孔结构内,从而达到从气体中脱硫的目的。
该工艺的有效化学反应如下:Fe2O3• H2O+H 2S f Fe2O3+H2OFe2S3 • H2O+O 2f Fe2O 3• H2O+S脱硫塔内部采用优化流道设计,确保气体在塔内的流通速度满足脱硫活性最优化要求,空塔线速度介于0.1〜0.3m/s,保证气体与脱硫剂充分接触,脱硫彻底,满足工艺需求。