九年级数学下册 28 锐角三角函数 281 第1课时 正弦函数作业课件 新版新人教版

合集下载

初中数学 九年级下册 28-1 锐角三角函数(教学课件)

初中数学 九年级下册 28-1 锐角三角函数(教学课件)

∵ ∠C=90°,∠A=45°∴ BC=AC=2
由勾股定理得AB=
+ =2 ∴cos A=


=


=



变式2-2 Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于_____.
在 △ 中,∵ =



=





A.
B.
C.

D.
【详解】作AB⊥x轴交x轴于点B,
∵A(3,4),∴AB=4,BO=3,∴AO= AB 2 + BO2 = 42 + 32 =5,
B
AB 4
= .故选C.
AO 5
∴sinα =
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变
B.缩小为原来的
在直角三角形中,当锐角 A 的度数一定时,
不管三角形的大小如何,它的对边与斜边的比是一个固定值.
′′


′′
01
锐角三角函数-正弦
在 Rt△ABC 中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作:sinA.
即 sin A=
∠所对的边
斜边
=
B


斜边
c
a 对边
∠所邻的边
斜边
B
=


斜边
c
A
正弦和余弦的注意事项:
b
邻边
a 对边
C
1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA是一个比值(数值,无单位)。

人教新课标版初中九下28.1锐角三角函数(2)ppt课件

人教新课标版初中九下28.1锐角三角函数(2)ppt课件

1+ 3 2
B.
1+ 2 2
C.
2+ 3 2
D. D.
2
3 . 如 图 2 所 示 , AB 是 斜 靠 在 墙 上 的 长 梯 , AB 与 地 面 的 夹 角 为 α , 当 梯 顶 A 下 滑 1m 至 A ′ 时 , 梯 脚 B 滑 至 B′ , A′ B′ 与 地 面 的 夹 角 为 β , 若 tanα = tan α A. A . 4m
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业
1.我们是怎样定义直角三角形中一个锐角的正 1.我们是怎样定义直角三角形中一个锐角的正 弦的?为什么可以这样定义它? 弦的?为什么可以这样定义它? 在上一节课中我们知道,如图所示, 2. 在上一节课中我们知道,如图所示,在 Rt△ABC中 C=90° 当锐角A确定时, Rt△ABC中,∠C=90°,当锐角A确定时, 的对边与斜边的比就随之确定了, ∠A的对边与斜边的比就随之确定了,现在要 其他边之间的比是否也确定了呢? 问:其他边之间的比是否也确现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业 范例
例 1: 如 图 , 在 Rt△ ABC 中 , ∠ C=90° , BC= 6, sinA= : △ ° , 求 cosA、 tanB 的 值 . 、
B 斜的c A ∠A的的的b ∠A的的的a C
电 子 教 案 目 标 呈 现 教 材 分 析 教 学 流 程 同 步 演 练 课 后 练 习
复习引入 探索新知 反馈练习 拓展提高 小结作业 探究

人教版九年级数学下册:28.1《锐角三角函数》说课稿4

人教版九年级数学下册:28.1《锐角三角函数》说课稿4

人教版九年级数学下册: 28.1 《锐角三角函数》说课稿4一. 教材分析人教版九年级数学下册第28.1节《锐角三角函数》是整个初中数学阶段的重要内容,旨在让学生理解并掌握锐角三角函数的概念、性质和应用。

通过本节课的学习,学生能够了解锐角三角函数的定义,理解正弦、余弦、正切函数的图像和性质,并能运用锐角三角函数解决一些实际问题。

在教材中,首先介绍了锐角三角函数的概念,然后通过实例让学生了解正弦、余弦、正切函数的图像和性质,最后通过一些应用题,让学生巩固所学知识,提高解题能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数的概念和性质有一定的了解。

但是,对于锐角三角函数的理解和应用,学生可能还存在一些困难。

因此,在教学过程中,我们需要关注学生的学习情况,针对学生的实际情况进行教学设计和调整。

三. 说教学目标1.知识与技能:让学生掌握锐角三角函数的概念,了解正弦、余弦、正切函数的图像和性质。

2.过程与方法:通过观察实例,引导学生发现并总结锐角三角函数的性质,培养学生的观察能力和归纳能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的探究精神和合作精神。

四. 说教学重难点1.教学重点:锐角三角函数的概念,正弦、余弦、正切函数的图像和性质。

2.教学难点:正弦、余弦、正切函数的图像和性质的理解和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,培养学生的数学素养。

2.教学手段:利用多媒体课件、数学软件、模型等辅助教学,提高教学效果。

六. 说教学过程1.导入:通过一个实际问题,引入锐角三角函数的概念,激发学生的兴趣。

2.探究:引导学生观察实例,发现并总结锐角三角函数的性质。

3.讲解:对锐角三角函数的概念和性质进行讲解,让学生理解并掌握。

4.应用:通过一些应用题,让学生运用所学知识解决问题,提高解题能力。

5.总结:对本节课的内容进行总结,强化学生的记忆。

正弦函数PPT课件

正弦函数PPT课件
第二十四章 解直角三角形
24.3 锐角三角函数
第1课时 正弦函数
1 课堂讲解 正弦函数的定义 正弦函数的应用
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
如图是两个自动扶梯,甲、乙两人分别从1、2号自动 扶梯上楼,谁先到达楼顶?如果AB和A′B′相等而∠α和 ∠β大小不同,那么它们的高度AC和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有 什么关系呢?
必做:
1.完成教材P107练习T1 2.补充: 请完成《XXXXX》剩余部分习题
感谢
聆听
授课老师:xxx
C
A
பைடு நூலகம்
B
解:∵∠B=90°,AC=200, ∴BC=AC×sinA=200×0.6=120.
知2-练
1.如图,∠α的顶点为O,它的一边在x轴的正半轴上, 另一边OA上有一点P(b,4),若sin α= 4 ,则b= 5 ________.
2.在Rt△ABC中,∠C=90°,AC=9,sin B=
3 5

则AB等于( )
A.15 B.12 C.9 D.6
知2-练
3.(中考·杭州)在Rt△ABC中,∠C=90°,若AB=4, sin A= 3 ,则斜边上的高等于( ) 5
A. 64 25
B. 48 25
C. 16 5
D. 12 5
知2-练
4.如图,将∠AOB放置在5×5的正方形网格中,则
sin ∠AOB的值是( )
∴AB= 122 52 =13,
∴sin A= BC = 5 . AB 13
知1-练
1 把Rt△ABC三边的长度都扩大为原来的3倍,则锐

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例

人教版九年级数学下第28章28.1《锐角三角函数》优秀教学案例
4.定期对学生的学习成果进行评价和总结,激发学生的学习动力,提高学生的数学素养。
四、教学评价
1.评价学生的知识掌握程度:通过课堂提问、作业批改等方式,了解学生对锐角三角函数知识的掌握情况;
2.评价学生的实践操作能力:通过实际问题解决,评价学生运用锐角三角函数解决实际问题的能力;
3.评价学生的合作交流能力:通过小组讨论、互动交流等方式,评价学生在团队合作中的表现;
3.讲练结合:在课堂中及时进行练习,巩固所学知识,提高学生的实际操作能力;
4.反馈调整:根据学生的学习情况,及时调整教学方法,以提高教学效果。
五、教学过程
1.创设情境,引入新课:通过生活实例,引导学生思考并引入锐角三角函数的概念;
2.自主探究,小组合作:让学生在小组内讨论交流,共同探究锐角三角函数的定义及应用;
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生学习数学的内在动力;
2.培养学生合作交流的意识,提高学生团队协作的能力;
3.让学生感受数学与生活的紧密联系,培养学生的应用意识;
4.通过对本节课的学习,使学生树立正确的数学学习观念,相信自己通过努力可以掌握并运用好数学知识。
三、教学重难点
4.评价学生的情感态度与价值观:通过观察学生的学习态度、课堂表现等,评价学生对数学学科的兴趣和热爱。
五、教学拓展
1.利用多媒体技术,展示锐角三角函数在实际生活中的应用,激发学生的学习兴趣;
2.推荐相关的数学读物和网站,让学生课后进行拓展学习,提高学生的数学素养;
3.结合学校或社区的活动,让学生运用所学知识解决实际问题,提高学生的实践能力。
六、教学反思
在教学过程中,教师应不断反思自己的教学方法、教学内容等方面,以确保教学的质量和效果。同时,关注学生的学习反馈,根据学生的需求调整教学策略,以提高教学效果。通过不断的反思和调整,使教学更加符合学生的实际情况,提高学生的数学素养。

人教版九年级下册数学教学课件锐角三角函数第一课时

人教版九年级下册数学教学课件锐角三角函数第一课时
人教版·九年级下册
导入新课
意大利比萨斜塔1350年落成时就已倾斜,其塔顶 中心点偏离垂直中心点2.1 m.1972年比萨地区发生 地震,这座高54.5 m的斜塔在大幅度摇摆后仍魏然屹 立,但塔顶中心点偏离垂直中心线5.2 m,而且还在 继续倾斜,有倒塌的危险.当地从1990年对斜塔进行 维修纠偏,2001年竣工,此时塔顶中心点偏离垂直中 心的距离减少了43.8 cm.
28.1 锐角三角函数(1) ∠A的正弦、余弦、正切都是∠A的锐角三角函数(trigonometric function of acute angle).
答:我们前面研究了直角三角形中角与角之间的关系(两锐角互余)、三边之间的关系(勾股定理),还可以研究边与角之间的关系 . 2.锐角三角函数的定义 2.在Rt△ABC中,∠C=90°,a=3,c=5,求sin A和tan A的值. 1 锐角三角函数(1)
13
巩固练习
2.在Rt△ABC中,∠C=90°,a=3,c=5,求sin A和
tan A的值.
解:在Rt△ABC中,∵a=3,c=5,
∴ b c2 a2 52 32 4 .
∴sin A= a 3 ,tan A= a 3 .
c5
b4
课堂小结
1.正弦、余弦、正切的定义
如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C 当∠A=45°时,∠A的对边与斜边的比都等于 ,它也是一个固定值.由此你能猜想出什么一般的结论呢?
1.在△ABC中,若三边BC、CA、AB满足BC︰CA︰AB=5︰12︰13,则cos B=( ).
解:在理Rt△)ABC,中,∵还a=3,可c=5以, 研究边与角之间的关系.
导入新课
从实际需要看,要描述比萨斜塔的倾斜程度,我 们需要研究直角三角形中边与角之间的关系:从数学 内部看,我们已经研究了直角三角形的边与边的关 系、角与角的关系,边与角之间有什么关系呢?本节 课我们一起来学习“锐角三角函数”——锐角的正弦、 余弦、正切.

九年级数学下册28.1锐角三角函数余弦正切导学案(新人教版)

九年级数学下册28.1锐角三角函数余弦正切导学案(新人教版)

28.1锐角三角函数(余弦,正切)【学习目标】1.我能感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。

2.我能根据余弦、正切的概念,正确进行计算。

学习重点:理解余弦、正切的概念。

学习难点:熟练运用锐角三角函数的概念进行有关计算。

导学过程: 一、自主学习1、我们是怎样定义直角三角形中一个锐角的正弦的?如图1,在Rt △ABC 中,∠C =90°,锐角A________________叫 做∠A 的正弦,记作________。

即SinA=________=________。

2、(1)如图2,在Rt △ABC 中,∠C=90°,求sinA= ,sinB = 。

(2)如图3,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且 AB =5,BC =3,则sin ∠BAC=_______;sin ∠ADC=_______。

二、合作交流探究与展示 问题11)一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图,任意画R t △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么B A C A AB AC ''''与有什么关系?你能解释一下吗?2)如图在Rt △ABC 中,∠C=90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是确定的。

我们把 叫做∠A 的余弦,记作 ,即 ; 把 叫做∠A 的正切,记作 ,即 。

3)锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数。

问题2如图,在Rt △ABC 中,∠C=90°,AB=8,BC=6,求sinA,cosA ,tanA 的值。

∠A的邻边b∠A的对边a 斜边c CBAB CAB610图1图2图3三、课堂检测(1、2、3题为必做题;4、5题为选做题。

人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数

人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数
3 4. tan30°= 3 ,tan60°= 3.
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .

人教版九年级数学下册第二十八章《28.1 锐角三角函数(第2课时)》课件

人教版九年级数学下册第二十八章《28.1 锐角三角函数(第2课时)》课件

在图中 ∠A的对边记作a ∠B的对边记作b ∠C的对边记作c
探究 情 境 探 究
如图,在Rt△ABC中,∠C
=90°,当锐角A确定时,
∠A的对边与斜边的比就随
之确定,此时,其他边之
间的比是否也确定了呢?
为什么?
A
斜边c 邻边b
B 对边a
C
当锐角A的大小确定时,∠A的邻边与斜边的比、∠A的对边与邻边的
B
cosA、tanB的值.
解:∵ sin A BC AB
6
AB BC6510 sinA 3
A
C
又 A C A2 B B2 C12 0 6 2 8
coAsAC4, tanB AC4
AB 5
BC 3
例题示范
变题: 如图,在Rt△ABC中,∠C=90°,cosA= 1 5 ,求
17
B
sinA、tanA的值.
28.1 锐角三角函数(第2课时)
复习回顾:
如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比
叫做∠A的正弦(sine),记住sinA 即
sinAA斜 的边 对边 ac
例如,当∠A=30°时,我们有
c 斜边
A
b
B
a 对边 C
sinAsin30 1 2
当∠A=45°时,我们有
sinAsin45 2 2
谢谢观赏
You made my day!
我们,还在路上……
0<cos α <1,
A
tan α >0, sin2cos21
sin A co s B co s A sin B tan A 1
tan B
B
C
▪不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月3日星期日2022/4/32022/4/32022/4/3 ▪书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/32022/4/32022/4/34/3/2022 ▪正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/32022/4/3April 3, 2022 ▪书籍是屹立在时间的汪洋大海中的灯塔。

人教版九年级数学下册第二十八章28.1.1锐角三角函数说课稿

人教版九年级数学下册第二十八章28.1.1锐角三角函数说课稿
3.分组合作学习:通过小组合作,学生可以相互交流、讨论,共同解决问题。这种教学策略有助于提高学生的团队协作能力,促进学生的全面发展。
(二)媒体资源
我将使用以下教具、多媒体资源和技术工具来辅助教学:
1.教具:三角板、量角器等,用于帮助学生直观地理解锐角三角函数的定义和性质。
2.多媒体资源:PPT、教学视频、数学软件等,展示锐角三角函数的图像、性质和实际应用,提高学生的学习兴趣。
(2)理解锐角三角函数之间的基本关系,并能够灵活运用;
(3)掌握锐角三角函数的图像和性质,为求解实际问题提供依据。
2.过程与方法目标
(1)通过观察、分析、归纳等数学活动,培养学生发现问题和解决问题的能力;
(2)通过小组合作学习,培养学生的团队协作能力;
(3)通过课堂讲解、练习、巩固等环节,使学生掌握数学学习方法。
反思和改进措施包括:
1.根据学生的反馈,调整教学方法和进度。
2.针对学生的共性问题,进行针对性的复习和讲解。
3.不断更新和优化教学资源,提高教学质量。
(三)巩固练习
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.例题讲解:选取具有代表性的例题,讲解解题思路和方法,让学生学会运用锐角三角函数解决实际问题。
2.小组讨论:组织学生进行小组讨论,共同解决练习题,培养学生的团队协作能力。
3.课堂练习:设计不同难度的练习题,让学生在课堂上实时巩固所学知识。
教学难点主要体现在以下几个方面:
1.学生对于锐角三角函数定义的理解,尤其是正弦、余弦、正切三个函数在实际问题中的应用;
2.锐角三角函数之间的基本关系,学生需要通过观察、分析、归纳等过程来掌握;
3.锐角三角函数的图像和性质,这部分内容需要学生具备较强的几何直观和空间想象能力。

人教版九年级数学下册《28章 锐角三角函数 28.1特殊角的三角函数值及用计算器求角的三角函数值》教案_4

人教版九年级数学下册《28章 锐角三角函数 28.1特殊角的三角函数值及用计算器求角的三角函数值》教案_4

《特殊角的三角函数值及用计算器求三角函数值》教材内容分析:《特殊角的三角函数值》选自新人教版九年级数学下册第二十八章《锐角三角函数》。

这一课时是在学生学习了正弦函数,余弦函数和正切函数的概念后,转入对30°,45°,60°这几个特殊角的三角函数值的研究,是根据锐角三角函数的概念求几个特殊角的三角函数值,运用特殊角的三角函数值进行加、减、乘、除运算;并能根据函数值说出对应的锐角度数。

学好本节内容能使学生灵活运用锐角三角函数解决实际生活中的问题。

学生特征分析:九年级的学生已经学习了正弦的概念、勾股定理的知识,且能自觉学习、能较好地完成30°、45°、60°角的三角函数值的得出。

本节课从创设问题情境出发,让学生从简单问题入手,通过复习、自主探究、得出特殊角的三角函数值,并得到应用。

教学目标:知识与技能:(1)会推导30°、45°、60°角的三角函数值;(2)熟记30°、45°、60°角的各个三角函数值;(3)会计算含有这三个特殊锐角的三角函数值的式子;(4)会由一个特殊锐角的三角函数值说出这个角的度数。

过程与方法:(1)、通过对特殊角三角函数的探究加深学生对锐角三角函数的认识,了解特殊与一般的关系,并对学生进行逆向思维的训练。

(2)会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。

情感态度与价值观:引导学生积极参加数学活动,增强学习数学的好奇心。

教学重点:会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数。

教学难点:30°、45°、60°角的三角函数值的推导过程。

教法与学法分析:本节课采用问题引领,自主探究,合作交流的教学方法,以高质量的问题启发引导学生进行自主探究,将学生的独立思考,小组交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用,变被动学习为主动学习,从而达到最佳教学的效果。

秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学

秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学

第二十八章 锐角三角函数28.1 锐角三角函数第1课时 正弦01基础题知识点1 已知直角三角形的边长求锐角的正弦值如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.1.(某某中考)在Rt △ABC 中,∠C=90°,AC =12,BC =5,则sin A 的值为(D )A.512B.125 C.1213D.5132.已知△ABC 中,AC =4,BC =3,AB =5,则sin A =(A )A.35B.45C.53D.343.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是(A )A.35B.45C.34D.43第3题图 第4题图4. 如图,网格中的每一个正方形的边长都是1,△ABC 的每一个顶点都在网格的交点处,则sin A =35.5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sin B 的值是34.6.根据图中数据,求sin C 和sin B 的值.解:在Rt△ABC 中,BC =AB 2+AC 2=34, ∴sinC =AB BC =53434,sinB =AC BC =33434.7.如图所示,在Rt △ABC 中,∠ACB=90°,a∶c=2∶3,求sin A 和sin B 的值.解:在Rt△ABC 中,∠ACB =90°,a∶c =2∶3,设a =2k ,c =3k.(k>0)∴b =c 2-a 2=5k. ∴sinA =a c =2k 3k =23,sinB =b c =5k 3k =53.知识点2 已知锐角的正弦值,求直角三角形的边长8.(来宾中考)在△ABC 中,∠C=90°,BC =6,sin A =23,则AB 边的长是9.9.(某某中考)在△ABC 中,AB =AC =5,sin ∠ABC=0.8,则BC =6.易错点 对正弦的概念理解不清10.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值(A )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定02中档题11.已知Rt △ABC∽Rt △A′B′C′,∠C=∠C′=90°,且AB =2A′B′,则sin A 与sin A′的关系为(B )A .sin A =2sin A ′ B.sin A =sin A ′ C .2sin A =sin A ′ D.不确定12.如图,在Rt △ABC 中,∠C=90°,AB =2BC ,则sin B 的值为(C )A.12B.22C.32D .1 13.在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a ,b ,c ,c =3a ,则sin A 的值是(A )A.13B.233 C .3 D .以上都不对14.如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB,垂足为点 D.若AC =5,BC =2,则sin ∠ACD 的值为(A )A.53 B.255 C.52 D.23第14题图 第16题图15.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A =12.16.(某某中考)如图,⊙O 的直径CD =10 cm ,且AB⊥CD,垂足为P ,AB =8 cm ,则sin ∠OAP=35.17.如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧OC 上一点,求∠OBC 的正弦值.解:连接OA 并延长交⊙A 于点D ,连接CD.∴∠OBC =∠ODC, ∠OCD =90°.∴sin∠OBC =sin∠ODC =OC OD =510=12.03综合题18.(某某中考)如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1=1;sin 2A 2+sin 2B 2=1;sin 2A 3+sin 2B 3=1.(1)观察上述等式,猜想:在Rt△ABC 中,∠C =90°,都有sin 2A +sin 2B =1;(2)如图4,在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,利用三角函数的定义和勾股定理,证明你的猜想;(3)已知:∠A +∠B =90°,且sin A =513,求sin B .解:(2)∵在Rt△ABC 中,∠C =90°,sinA =a c ,sinB =b c ,∴sin 2A +sin 2B =a 2+b 2c2.∵∠C =90°, ∴a 2+b 2=c 2. ∴sin 2A +sin 2B =1.(3)∵sinA =513,sin 2A +sin 2B =1,且sinB >0,∴sinB =1-(513)2=1213.第2课时 锐角三角函数01基础题 知识点1 余弦如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.1.(某某中考)如图,在Rt △ABC 中,∠C=90°,AB =5,BC =3,则cos B 的值是(A )A.35B.45C.34D.432.在Rt △ABC 中,∠C=90°,cos A =35,AC =6 cm ,那么BC 等于(A )A .8 cm B.245 cmC.185 cm D.65cm 3.在△ABC 中,∠C=90°,AC =2,BC =1,求cos A 和cos B 的值.解:∵∠C =90°,AC =2,BC =1,∴AB =AC 2+BC 2=22+12= 5.cosA =AC AB =25=255,cosB =BC AB =15=55.知识点2 正切如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=a b.4.(某某中考)在Rt △ABC 中,∠C=90°,AB =5,BC =3,则tan A 的值是(A )A.34B.43C.35D.455.在4×4的正方形的网格中画出了如图所示的格点△ABC,则tan ∠ABC 的值为(D )A.31313 B.21313 C.32 D.23第5题图 第6题图6.(某某中考)如图,在△ABC 中,∠C=90°,AC =2,BC =1,则tan A 的值是12.7.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,则底角的正切值为115.知识点3 锐角三角函数∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.8.(某某中考)如图,在Rt △ABC 中,∠C=90°,BC =15,tan A =158,则AB =17.第8题图 第9题图9.(崇左中考)如图,在Rt △ABC 中,∠C=90°,AB =13,BC =12,则下列三角函数表示正确的是(A )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =12510.在Rt △ABC 中,∠C=90°,AC =7,BC =24.(1)求AB 的长;(2)求sin A ,cos A ,tan A 的值. 解:(1)由勾股定理,得AB =AC 2+BC 2=72+242=25.(2)sinA =BC AB =2425,cosA =AC AB =725,tanA =BC AC =247.02中档题11.在△ABC 中,若三边BC ,CA ,AB 满足BC∶CA∶AB=5∶12∶13,则cos B =(C )A.512 B.125C.513 D.121312.(某某中考)在Rt △ABC 中,∠C=90°,若sin A =35,则cos B 的值是(B )A.45B.35C.34D.4313.将△AOB 按如图所示放置,然后绕点O 逆时针旋转90°至△A′OB′的位置,点A 的坐标为(2,1),则tan ∠A′OB′的值为(A )A.12B .2 C.55 D.255第13题图 第14题图14.(某某中考)如图,在Rt △ABC 中,∠ACB=90°,AC =8,BC =6,CD⊥AB ,垂足为D ,则tan ∠BCD 的值是34.15.(某某中考)如图,在半径为3的⊙O 中,直径AB 与弦CD 交于点E ,连接AC ,B D.若AC =2,则cos D =13.16.(某某中考)如图,在△ABC 中,CD⊥AB,垂足为D.若AB =12,CD =6,tan A =32,求sin B +cos B 的值.解:在Rt△ACD 中,CD =6,tanA =32,∴CD AD =6AD =32,即AD =4. 又AB =12,∴BD =AB -AD =8.在Rt△BCD 中,BC =CD 2+BD 2=10.∴sinB =CD BC =610=35,cosB =BD BC =810=45.∴sinB +cosB =35+45=75.17.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan ∠DCF 的值.解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°. ∵AB BC =23,且由折叠知CF =BC , ∴CD CF =23.设CD =2x ,CF =3x (x>0),∴DF =CF 2-CD 2=5x. ∴tan∠DCF =DF CD =5x 2x =52.03综合题18.如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作c tan α,即c tan α=角α的邻边角α的对边=ACBC,根据上述角的余切定义,解下列问题:(1)c tan 30°=3;(2)如图,已知tan A =34,其中∠A 为锐角,试求c tan A 的值.解:∵tanA =34,且tanA =BC AC,∴设BC =3x ,AC =4x. ∴ctanA =AC BC =4x 3x =43.第3课时 特殊角的三角函数值01基础题知识点1 特殊角的三角函数值填写下表:30° 45° 60° sin α 12 22 32 cosα 32 22 12 tanα33131.已知∠A=30°,下列判断正确的是(A )A .sin A =12B .cos A =12C .tan A =12D .cot A =122.计算:cos 230°=(D )A.12B.14C.32D.34 3.(某某中考)计算:cos 245°+sin 245°=(B )A.12B .1 C.14 D.224.计算:tan 45°+2cos 45°=2. 5.计算:(1)sin 30°+cos 45°; 解:原式=12+22=1+22.(2)cos30°·tan30°-tan 245°; 解:原式=32×33-12=12-1=-12. (3)22sin45°+sin60°·cos45°. 解:原式=22×22+32×22=2+64.知识点2 由三角函数值求特殊角6.(某某中考)在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是(D )A .30° B.45° C.60° D.90° 7.如果在△ABC 中,sin A =cosB =22,那么下列最确切的结论是(C ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形8.已知α为锐角,且cos (90°-α)=12,则α=30°.9.在△ABC 中,∠C=90°,AC =2,BC =23,则∠A=60°.知识点3 用计算器计算三角函数值10.用计算器计算cos 44°的结果(精确到0.01)是(B )A .0.90B .0.72C .0.6911.如图,在△ABC 中,∠ACB=90°,∠ABC=26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是(D )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=12.利用计算器求∠A =18°36′的三个锐角三角函数值.解:sinA =sin18°36′≈0.319 0,cosA =cos18°36′≈0.947 8, tanA =tan18°36′≈0.336 5.13.已知下列正(余)弦值,用计算器求对应的锐角(精确到0.1°).(1)sin α=0.822 1; 解:α≈55.3°.(2)cos β=0.843 4. 解:β≈32.5°.02中档题14.点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是(B )A.(32,12) B.(-32,-12)C.(-32,12) D.(-12,-32)15.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是(D)A.40° B.30° C.20° D.10°16.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为(D)A.12B.33C.22D.3217.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=2,则点B的坐标为(C) A.(2,1) B.(1,2)C.(2+1,1) D.(1,2+1)第17题图第18题图18.(某某中考)如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接C B.若⊙O的半径为2,∠ABC=60°,则BC=8.19.计算:(1)(某某中考改编)2 0180+(-1)2-2tan45°+4;解:原式=1+1-2×1+2=2.(2)(-1)-2+|2-3|+(π-3.14)0-tan60°+8.解:原式=1+(3-2)+1-3+2 2=2+ 2.20.若tan A 的值是方程x 2-(1+3)x +3=0的一个根,求锐角A 的度数.解:解方程x 2-(1+3)x +3=0, 得x 1=1,x 2= 3.由题意知tanA =1或tanA = 3.∴∠A =45°或60°.21.(原创题)如图,在等腰△ABC 中,AB =AC =1.(1)若BC =2,求△ABC 三个内角的度数; (2)若BC =3,求△ABC 三个内角的度数.解:(1)∵AB =AC =1,BC =2,∴AB 2+AC 2=BC 2.∴∠BAC =90°,∠B =∠C =45°.(2)过点A 作AD⊥BC,垂足为D.∵AB =AC =1,AD⊥BC, ∴BD =12BC =32.∴cosB =BD AB =321=32.∴∠B =30°.∴∠C =30°,∠BAC =120°.03综合题22.(某某中考)一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如:sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是6-24. 解直角三角形及其应用 28. 解直角三角形01基础题知识点1 已知两边解直角三角形如图,已知两边:(1)已知a ,b ,则c =a 2+b 2,sin A =cos B =a c,sin B =cos A =bc ,tan A =a b ,tan B =b a;(2)已知a ,c ,则b =c 2-a 2,sin A =cos B =a c ,sin B =cos A =b c ,tan A =a b ,tan B =b a. 1.在△ABC 中,∠C=90°,AC =3,AB =4,欲求∠A 的值,最适宜的做法是(C )A .计算tan A 的值求出B .计算sin A 的值求出C .计算cos A 的值求出D .先根据sin B 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cos A 的值是(A )A.35B.45C.43D.543.在Rt △ABC 中,∠C=90°,a =20,c =202,则∠A=45°,∠B =45°,b =20. 4.如图,在Rt △ABC 中,∠C=90°,已知BC =26,AC =62,解此直角三角形.解:∵tanA =BC AC =2662=33,∴∠A =30°.∴∠B =90°-∠A =90°-30°=60°,AB =2BC =4 6.知识点2 已知一边一锐角解直角三角形如图,已知一边一角:(1)已知a ,∠A ,则∠B =90°-∠A ,c =a sinA ,b =a tanA; (2)已知c ,∠A ,则∠B =90°-∠A ,a =c·sinA .5.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB =8,则BC 的长是(D )A.433B .4C .8 3D .4 36.在Rt △ABC 中,∠C=90°,tan A =43,BC =8,则△ABC 的面积为(C )A .12B .18C .24D .487.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC =32,则AC =24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)8.(教材9下P 73例2变式)如图,在Rt △ABC 中,∠C=90°,∠B=55°,AC =4,解此直角三角形.(结果保留小数点后一位)解:根据题意,∠A =90°-∠B =90°-55°=35°. 根据正弦定义,sinB =AC AB,则AB =AC sinB =4sin55°≈4.9.根据正切的定义,tanB =AC BC,则BC =AC tanB =4sin55°≈2.8.所以△ABC 的另一个锐角度数为35°,另一条直角边长为2.8,斜边长为4.9. 易错点 忽视钝角三角形而致错9.在△ABC 中,AB =23,AC =2,∠B=30°,则BC 的长为2或4.02中档题10. 如图,在△AB C 中,∠C=90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC的长是(A )A .4 cmB .6 cmC .8 cmD .10 cm11.(某某中考)在△ABC 中,AB =122,AC =13,cos B =22,则BC 边长为(D )A .7B .8C .8或17D .7或1712.(某某中考)如图,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =43.第12题图 第13题图13.(某某中考)如图,在菱形ABCD 中,DE⊥AB 于点E ,cos A =35,BE =4,则tan ∠DBE 的值是2.14.(某某中考)如图,在△ABC 中,BD⊥AC,AB =6,AC =53,∠A=30°.(1)求BD 和AD 的长; (2)求tan C 的值.解:(1)∵BD⊥AC,∴∠ADB =∠BDC =90°.在Rt△ADB 中,AB =6,∠A =30°,∴BD =12AB =3.∴AD =3BD =3 3.(2)CD =AC -AD =53-33=23, 在Rt△BDC 中,tanC =BD CD =323=32.15.(某某中考)如图,在四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB =6,CD =4,BC 的延长线与AD 的延长线交于点E.(1)若∠A=60°,求BC 的长; (2)若sin A =45,求AD 的长.解:(1)∵在Rt△ABE 中,∠ABE =90°,∠A =60°,AB =6,tanA =BE AB,∴BE =6·tan60°=6 3.∵在Rt△CDE 中,∠CDE =90°,∠E =90°-60°=30°, CD =4, ∴CE =2CD =8.∴BC =BE -CE =63-8.(2) ∵在Rt△ABE 中,∠ABE =90°,sinA =45,∴BE AE =45. 设BE =4x ,则AE =5x (x >0).∵AE 2-BE 2=AB 2,∴(5x )2-(4x )2=62.∴x =2. ∴BE =8,AE =10.∵在Rt△CDE 中,∠CDE =90°,CD =4,tanE =CD ED ,而在Rt△ABE 中,tanE =AB BE =68=34,∴CD ED =34. ∴ED =43CD =163.∴AD =AE -ED =143.03综合题16. 如图,在△ABC 中,CD 是边AB 上的中线,∠B 是锐角,且sin B =22,tan A =12,AC =3 5. (1)求∠B 的度数与AB 的长; (2)求tan ∠CDB 的值.解:(1)作CE⊥AB 于E ,设CE =x , 在Rt△ACE 中,∵tanA =CE AE =12,∴AE =2x.∴AC =x 2+(2x )2=5x. ∴5x =35,解得x =3. ∴CE =3,AE =6.在Rt△BCE 中,∵sinB =22, ∴∠B =45°.∴△BCE 为等腰直角三角形. ∴BE =CE =3. ∴AB =AE +BE =9.(2)∵CD 是边AB 上的中线,∴BD =12AB =4.5.∴DE =BD -BE =-3=1.5. ∴tan∠CDE =CEDE=错误!=2,即tan∠CDB 的值为2.28.2.2 应用举例第1课时 与视角有关的解直角三角形应用题01基础题知识点1 利用解直角三角形解决简单问题1. 如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10米,∠B=36°,则中柱AD(D 为底边中点)的长是(C )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米第1题图 第2题图2.(教材9下P 74例3变式)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q.若∠QAP=α,地球半径为R ,则航天飞船距离地球表面最近距离AP =Rsinα-R. 3.(某某中考)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).如图,在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)解:过点C 作CD⊥AB,垂足为D.∵∠CAB =30°, ∴AD =3CD. ∵∠CBA =60°,∴DB =33CD. ∵AB =AD +DB =30,∴3CD +33CD =30. ∴CD =1523=152×1.73≈13(米).答:河的宽度约为13米.知识点2 解与视角有关的实际问题4.(教材9下P 75例4变式)(某某中考)如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为(A )A .160 3 mB .120 3 mC .300 mD .160 2 m5.(某某中考)如图,两幢建筑物AB 和CD ,AB⊥BD,CD⊥BD,AB =15 m ,CD =20 m ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B ,E ,D 在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1 m ,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)解:由题意,得∠AEB =42°,∠DEC =45°.∵AB⊥BD,CD⊥BD,∴在Rt△ABE 中,∠ABE =90°. ∵AB =15,∠AEB =42°, tan∠AEB =ABBE ,∴BE =15tan42°=503.在Rt△DEC 中,∠CDE =90°,∠DEC =45°,CD =20.∴ED =CD =20.∴BD =BE +ED =503+(m ).答:两幢建筑物之间的距离BD 约为36.7 m.易错点 混淆三点函数的数量关系而导致错误6.(某某中考)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为(C )A.30tanα米 B .30sinα米 C .30tanα米 D .30cosα米 02中档题7. (某某中考)某某市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=CE AE ,∴CE=AE·tan60°=153米.在Rt△ABE中,tan∠BAE=BEAE=17+15315,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.8.(某某中考)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)解:(1)由题意知∠ABP=30°,AP=97,∴AB=APtan∠ABP =97tan30°=9733=973≈168.答:主桥AB的长度约为168 m.(2)∵∠ABP=30°,AP=97,∴PB=2PA=194.又∵∠DBC=∠DBA=90°,∠PB A=30°,∴∠DBP=∠DPB=60°.∴△PBD是等边三角形.∴DB=PB=194.在Rt△BCD中,∵∠C=80°36′,∴BC=DBtanC =194tan80°36′≈32.答:引桥BC的长约为32 m.03综合题9.(六盘水中考)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5米;②小明的影长CE=1.7米;③小明的脚到旗杆底部的距离BC=9米;④旗杆的影长BF=7.6米;⑤从D点看A点的仰角为30°.请你选择需要的数据,求出旗杆的高度.(计算结果精确到0.1米,参考数据:2≈1.414,3≈1.732)情况一:选用①,②,④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.则△ABF∽△DCE.∴ABDC=FBEC.又∵DC =1.5 m ,FB =7.6 m ,EC =1.7 m ,∴AB≈6.7 m.即旗杆高度约为6.7 m. 情况二: 选用①,③,⑤. 过D 点作DG⊥AB 于G 点, ∵AB⊥FC,DC⊥FC,∴四边形BCDG 为矩形. ∴CD =BG =1.5 m ,DG =BC =9 m.在Rt△AGD 中,∠ADG =30°,tan30°=AG DG,∴AG =3 3 m.又AB =AG +GB ,∴AB =33+(m).∴旗杆高度约为6.7 m.第2课时 与方位角、棱角有关的解直角三角形应用问题01基础题知识点1 解与方位角有关的实际问题1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是(A )A .250米B .2503米 C.50033米 D .5002米第1题图 第2题图2.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.则船继续航行50海里与钓鱼岛A的距离最近.3.(某某中考)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)解:过P作PC⊥AB于C,在Rt△APC中,AP = 200 m,∠ACP =90°,∠PAC =60°.∴PC= 200×sin60°=200 ×32=1003(m).∵在Rt△PBC中,sin37°=PCPB ,∴PB=PCsin37°=错误!≈288(m).答:小亮与妈妈相距约288米.知识点2解与坡角有关的实际问题4.(聊城中考)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶3,则AB的长为(A) A.12米 B.43米C.53米 D.63米第4题图第5题图5.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是35米.6.(教材9下P77练习T2变式)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形.由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BEAE=错误!,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=3CF=203米.∴AD=AE+EF+FD=50+6+203(米).答:坝底AD的长度约为米.02中档题7.(某某中考)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.已知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(3≈1.732)解:该轮船不改变航向继续前行,没有触礁危险.理由如下:由题意,得∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD.∴BC =AC =200海里.在Rt△ACD 中,设CD =x ,则AC =2x ,AD =AC 2-CD 2=(2x )2-x 2=3x. 在Rt△ABD 中,AB =2AD =23x ,BD =AB 2-AD 2=(23x )2-(3x )2=3x.又∵BD =BC +CD ,∴3x =200+x ,解得x =100.∴AD =3x =1003≈173.2.海里>170海里,且D 处距离A 处最近,∴轮船不改变航向继续向前行驶,轮船无触礁的危险.8.(某某中考)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡角为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1 790 m .如图,DE∥BC,BD =1 700 m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1 m )解:过点D 作DF⊥BC 于点F ,延长DE 交AC 于点M. 由题意,得EM ⊥AC,DF =CM ,∠AEM =29°, 在Rt△DFB 中,sin80°=DFBD,∴DF =BDsin80°.AM =AC -CM =1 790-1 700sin80°.在Rt△AME 中,sin29°=AM AE,∴AE =AM sin29°=1 790-1 700sin80°sin29°(m ),答:斜坡的长度约为238.9 m. 03综合题9.(黔东南中考)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学测量学校附近一电线杆的高,如图,已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30°,在C 处测得电线杆顶端A 的仰角为45°,斜坡与地面成60°角,CD =4 m ,请你根据这些数据求电线杆的高(AB).(结果精确到1 m ,参考数据:2≈1.4,3≈1.7)解:延长AD交BC的延长线于点G,过点D作DH⊥BG,垂足为点H,则∠G=30°.∵在Rt△DHC中,∠DCH=60°,CD=4,∴C H=CD·cos∠DCH=4×cos60°=2.DH=CD·sin∠DCH=4×sin60°=2 3.又∵DH⊥BG,∠G=30°,∴HG=DHtanG =23tan30°=6.∴CG=CH+HG=2+6=8.设AB=x m.又∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x.∴BG=ABtanG =xtan30°=3x.∵BG-BC=CG,∴3x-x=8.解得x≈11 m.答:电线杆的高(AB)约为11 m.小专题17解直角三角形的实际应用1.(某某月考)如图,在一次测量活动中,小华站在离旗杆底部(B)处6 m的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5 m.试帮助小华求出旗杆AB的高度.(结果精确到0.1 m,3≈1.732)解:过点E作EC⊥AB于C.∵CE=BD=6 m,∠AEC=60°,∴AC=CE·tan60°=6×3=63(m).∴AB=AC+DE=+=(m).答:旗杆AB的高度约为11.9 m.2.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我国海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).解:(1)如图.(2)AB=30×=15(海里).在Rt△ABC中,tan∠BAC=BC AB ,∴BC=AB·tan∠BAC=AB·tan30° =15×33=53(海里).答:钓鱼岛C 到B 处距离为53海里.3.(某某中考)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道A B.如图,在山外一点C 测得BC 距离为200 m ,∠CAB =54°,∠CBA =30°,求隧道AB 的长.(参考数据: sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,结果精确到个位)解:过点C 作CD⊥AB 于D ,在Rt△BCD 中,∵∠B =30°,BC =200,∴CD =12BC =100,BD =1003≈173.在Rt△ACD 中,∵tan∠CAB =CD AD ,∴AD =100tan54°≈72.∴AB =AD +BD≈245.答:隧道AB 的长约为245米.4.(黔东南中考)如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,2,3≈1.73,4≈2.24)解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD =12米,∠DCE =60°, ∴DE =CD·sin60°=12×32=63(米), CE =CD·cos60°=12×12=6(米).易知:四边形DEE′D′是矩形.∴DE =D′E′=63米. ∵∠D′CE′=39°,∴CE′=D′E′tan39°≈错误!≈12.8,∴EE′=CE′-CE =-6=(米). ∴DD′=EE′=米.答:学校至少要把坡顶D 向后水平移动米才能保证教学楼的安全.5.(某某中考)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF⊥BC 于F ,∠CDF=45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)解:设BM =x 米.∵∠CDF =45°,∠CFD =90°, ∴CF =DF =x 米.∴BF =BC -CF =(4-x )米. ∴EN =DM =BF =(4-x )米.∵AB =6米,DE =MN =1米,BM =x 米, ∴AN =AB -MN -BM =(5-x )米.在△AEN 中,∠ANE =90°,∠EAN =31°,∴EN =AN·tan31°,即4-x =(5-x ). ∴x =2.5.答:DM 和BC 的水平距离BM 的长度约为米.6.(某某中考)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3 m ,静止时,踏板到地面距离BD 的长为0.6 m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为h m ,成人的“安全高度”为2 m .(计算结果精确到0.1 m ,参考数据:2≈1.41,sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h =m ; (2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,问此人是否安全?解:过C 点作CM⊥DF,CE⊥OD,垂足分别为M ,E ,∵在Rt△CEO 中,∠CEO =90°, ∠COE =55°, ∴cos∠COE =OEOC.∴OE =OC·cos∠COE =3·cos55°≈1.7 m. ∴ED =3+-=(m ).∴CM =ED =1.9 m <2 m.∴此人是安全的.章末复习(八) 锐角三角函数01分点突破知识点1 求锐角三角函数值1.如图,在Rt △ABC 中,∠BAC=90°,AD⊥BC 于点D ,则下列结论不正确的是(C )A .sinB =AD AB B .sin B =AC BC C .sin B =AD ACD .sin B =CD AC第1题图第3题图2.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是(D )A.13B .3 C.24D .2 2 3.如图,在△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cos C =23.知识点2 特殊角的三角函数值(某某2016T19、2015T19、2014T19) 4.在△ABC 中,若(3tan A -3)2+|2cos B -3|=0,则△ABC 为(A )A .直角三角形B .含60°角的任意三角形C .等边三角形D .顶角为钝角的等腰三角形5.(某某中考改编)计算:(π-2 016)0+|1-2|+2-1-2sin 45°=12.知识点3 解直角三角形及其应用(某某2017T22、2016T21、2015T21、2014T21、2013T21) 6.在△ABC 中,∠C =90°,AB =2,BC =3,则tan A 2=33.7.如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)解:过点A 作AH⊥CD,垂足为H. 则AB =DH =米,BD =AH =6米.在Rt△ACH 中,∵∠CAH =30°,tan∠CAH =CH AH,∴CH =AH·tan∠CAH =6·tan30°=23(米). ∴CD =CH +HD =(23+)米.在Rt△CDE 中,∵∠CED =60°,sin∠CED =CD CE,∴CE =CDsin60°=4+3(米).答:拉线CE 的长约为米.02中考题型演练8.(某某中考)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是(A )A .5米B .6米C .6.5米D .12米第8题图 第9题图9.(某某中考) △ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列四个选项中,错误的是(C )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=110.(某某中考)如图,⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的半径为33.第10题图 第12题图11.(某某中考) △ABC 中,AB =12,AC =39,∠B=30°,则△ABC 的面积是213或153.12.(某某中考)如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为1002米.(结果保留根号)13.(某某中考)如图,一楼房AB 后有一座假山,其坡度为i =1∶3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)解:过点E 作EF⊥BC 的延长线于点F ,EH⊥AB 于点H , 在Rt△CEF 中,∵i =EFCF=13=tan∠ECF, ∴∠ECF =30°.∴EF =12CE =10米,CF =103米.∴BH =EF =10米,HE =BF =BC +CF =(25+103)米.在Rt△AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米. ∴AB =AH +HB =(35+103)米.答:楼房AB 的高为(35+103)米.14.(某某中考)今年,我国海关总署严厉打击“洋垃圾”某某行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)解:(1)过点B作BH⊥CA,交CA的延长线于点H.∵∠MBC=60°.∴∠CBA=30°.∵∠NAD=30°,∴∠BAC=120°.∴∠C=180°-∠BAC-∠CBA=30°.∴BH=BC·sin∠BCA=150×12=75海里.答:B点到直线CA的距离是75海里.(2)∵在Rt△BDH中,BD=752海里,BH=75海里,∴DH=BD2-BH2=75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan∠BAH=BHAH=3,∴AH=253海里.∴AD=DH-AH=(75-253)海里.答:执法船从A到D航行了(75-253)海里.。

九年级下册数学28.1特殊角的锐角三角函数值

九年级下册数学28.1特殊角的锐角三角函数值

推进新课 知识点1 特殊角的三角函数值
探究
60°
30°
45°
45°
1 这两块三角尺的锐角分别等于多少度?
探究
2 每块三角尺的三边之间有怎样的特殊关系? (设最短的边为a)
2a
30° 3a
60°
a
a
a
45°
45°
2a
思考 你能根据前面的计算填出下表吗?
锐角 锐角A 三角函数
sin A
cos A
tan A
以求tan30°36'为例.
tan键 输入角度值30°36'或将其化为30.6°
得到tan30°36'结果
提问
若已知某锐角的三角函数值,能否用计算器求 出该锐角的度数呢?
若sin A=0.5018.
2nd F
sin键 °′″
输入函数值0.5018 得到结果
练习 3.用计算器求下列锐角三角函数值:
2
(2)3tan30° - tan45°+2sin60°;2 3 1
(3)(cos230°+sin230°)×tan60°. 3
2.在Rt△ABC中,∠C=90°,BC= 7,
AC= 21 ,试求∠A,∠B的度数。
A
解:tanA

BC AC

7 21
1 3
3 3
tanB

AC BC

3
21
∴∠A=30°,∠B=60°. C
解:sin120°=sin(180°-120°)=sin60°= 3,
2
cos120°=-cos(180°-120°)=-cos60°= 1 .
sin150°=sin(180°-150°)=sin30°=

初中人教版数学九年级下册28.1【教学课件】《锐角三角函数》

初中人教版数学九年级下册28.1【教学课件】《锐角三角函数》

人民教育出版社 九年级 | 下册
应用新知ቤተ መጻሕፍቲ ባይዱ
例1:如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值。
人民教育出版社 九年级 | 下册
应用新知
人民教育出版社 九年级 | 下册
应用新知
例3:求下列各式的值:
2 2
cos 45 tan 45。 (1)cos 60 sin 60 ;(2) sin 45
在Rt△ABC中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与 斜边的比也是一个固定值。
人民教育出版社 九年级 | 下册
探究新知
正弦函数概念:
如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正 弦(sine),记住sinA,即
人民教育出版社 九年级 | 下册
人民教育出版社 九年级 | 下册
第二十八章●第一节
锐角三角函数
人民教育出版社 九年级 | 下册
问题引入
问题1 ⑴相似三角形的对应边之间有什么关系?
⑵在直角三角形中,30°角所对的直角边与斜边有什么关系? ⑶在直角三角形中,斜边与两条直角边之间有什么关系?
问题2 据研究,当高跟鞋的鞋底与地面的夹角为11°度左右时,人脚的感觉最
人民教育出版社 九年级 | 下册
探究新知
问题6 如图,两块三角尺中有几个不同的锐角?这几个锐角的正弦值、余弦值 和正切值各是多少?
人民教育出版社 九年级 | 下册
探究新知
问题7 我们可以用计算器来求锐角的三角函数值。如果已知锐角三角函数值, 也可以使用计算器求出相应的锐角。 如用计算器求sin18°的值。 第一步:按计算器sin键; 第二步:输入角度值18。 屏幕显示结果sin18°=0.309 016 994。 再如已知sinA=0.501 8,用计算器求锐角A。 第一步:依次按计算器2nd F、sin键; 第二步:然后输入函数值0. 501 8。 屏幕显示答案: 30.119 158 67°。(按实际需要进行精确)

人教版初中数学九年级下册 28.1 锐角三角函数(第1课时)课件 【经典初中数学课件】

人教版初中数学九年级下册 28.1 锐角三角函数(第1课时)课件 【经典初中数学课件】
C
18
21
78°
83°
β
24
G
E
F
H
α
x
118°
【例题】
例2.已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.
当堂检测,反馈提高
1.△ABC与△DEF相似,且相似比是 ,则△DEF 与△ABC与的相似比是( ). A. B. C. D. 2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A.3个 B.4个 C.5个 D.6个 3.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?
小结: 1、谈谈你的收获。 2.你有哪些困惑。 3.学会了哪些解决问题的方法。
27.1 图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
观察下面两张照片,你发现有什么相同与不同?
想一想:我们刚才所见到的图形有什么相同和不同的地方?
相同点:形状相同. 不同点:大小不一定相同.
A
C
B

【解析】在Rt△ABC中,
【尝试应用】
1.判断对错:
A
10m
6m
B
C
(1)如图 sin A= ( ) ②sin B= . ( ) ③sin A=0.6m. ( ) ④sin B=0.8. ( )

初中数学人教版九年级下册优质教学设计28-1 第1课时《 正弦》

初中数学人教版九年级下册优质教学设计28-1 第1课时《 正弦》

初中数学人教版九年级下册优质教学设计28-1 第1课时《正弦》一. 教材分析人教版九年级下册第28-1课时《正弦》是初中数学的重要内容,主要让学生了解正弦的概念,理解正弦函数的性质,以及能够运用正弦函数解决实际问题。

本节课的内容为后续学习正弦函数的图像和应用打下基础。

二. 学情分析九年级的学生已经学习了锐角三角函数的概念和性质,对本节课的正弦函数有一定的认知基础。

但学生对正弦函数的理解还需进一步深化,需要通过实例让学生感受正弦函数在实际问题中的应用。

三. 教学目标1.让学生理解正弦的概念,掌握正弦函数的性质。

2.培养学生运用正弦函数解决实际问题的能力。

3.提高学生的数学思维能力和创新意识。

四. 教学重难点1.重点:正弦的概念,正弦函数的性质。

2.难点:正弦函数在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过设置问题引导学生思考,通过案例让学生感受正弦函数的应用,通过小组合作培养学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和实际问题。

2.准备正弦函数的图像资料。

3.准备小组合作的学习任务。

七. 教学过程1.导入(5分钟)通过提问方式复习锐角三角函数的概念和性质,为新课的学习做好铺垫。

接着,引入正弦的概念,让学生思考正弦函数在实际问题中的应用。

2.呈现(15分钟)呈现正弦函数的图像,引导学生观察正弦函数的性质。

同时,通过实际问题案例,让学生体会正弦函数在实际生活中的应用。

3.操练(15分钟)让学生通过计算练习正弦函数的值,巩固对正弦函数性质的理解。

在此过程中,教师给予学生解答疑惑,指导学生掌握正弦函数的计算方法。

4.巩固(10分钟)学生分组讨论,合作完成教师准备的小组任务。

通过小组合作,培养学生的团队协作能力,进一步巩固对正弦函数的理解。

5.拓展(10分钟)让学生运用正弦函数解决实际问题,如测量物体的高度、角度等。

引导学生将所学知识运用到实际生活中,提高学生的实践能力。

新课标人教版初中数学九年级下册第28章《锐角三角函数》教案

新课标人教版初中数学九年级下册第28章《锐角三角函数》教案
【学习难点】
当直角三角形的锐角固定时,,它的对边与斜边的比值是固定值的事实。
【导学过程】
一、自学提纲:
1、如图在Rt△ABC中,∠C=90°,∠A=30°,BC=10m,求AB
2、如图在Rt△ABC中,∠C=90°,∠A=30°,AB=20m,求BC
二、合作交流:
问题:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?
熟练运用锐角三角函数的概念进行有关计算。
【导学过程】
一、自学提纲:
1、我们是怎样定义直角三角形中一个锐角的正弦的?
2、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。
已知AC= ,BC=2,那么sin∠ACD=()
A. B. C. D.
3、如图,已知AB是⊙O的直径,点C、D在⊙O上,
且AB=5,BC=3.则sin∠BAC=;sin∠ADC=.
新课标人教版初中数学九年级下册第28章《锐角三角函数》精品教案
第一课时课题:第28章锐角三角函数
28.1锐角三角函数(1)——正弦
【学习目标】
⑴:经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
⑵:能根据正弦概念正确进行计算
【学习重点】
理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实.
那么 与 有什么关系?
三、教师点拨:
类似于正弦的情况,
如图在Rt△BC中,∠C=90°,当锐角A的大小确定时,∠A的邻边与斜边的比、∠A的对边与邻边的比也分别是确定的.我们
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档