等差数列教案

合集下载

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

等差数列教学设计

等差数列教学设计

等差数列教学设计等差数列教学设计(精选5篇)作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。

一份好的教学设计是什么样子的呢?以下是店铺帮大家整理的等差数列教学设计(精选5篇),欢迎大家分享。

等差数列教学设计1教学目标:1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:等差数列的概念及通项公式。

教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆上一节课学习数列的定义,请举出一个具体的例子。

表示数列有哪几种方法——列举法、通项公式、递推公式。

我们这节课接着学习一类特殊的数列——等差数列。

2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。

二.新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。

高中数学等差数列教案大全

高中数学等差数列教案大全

高中数学等差数列教案大全一、教学目标1.理解等差数列的基本概念和相关术语。

2.能够推导等差数列通项公式。

3.掌握等差数列求和公式及其应用。

二、教学内容1. 等差数列的概念和相关术语等差数列的定义等差数列是一种特殊的数列,它的每一项与前一项的差相等。

这个差值称为等差数列的公差,通常用字母d表示。

相关术语•首项:等差数列中的第一项。

•公差:等差数列中相邻项之间的差。

•通项公式:等差数列中第n项的通项公式。

•前n项和:等差数列中前n项的和。

2. 推导等差数列通项公式等差数列通项公式可以表示任意一项,只要已知它是等差数列中的第几项即可。

接下来介绍如何推导等差数列通项公式。

推导步骤假设等差数列的首项为a₁,公差为d,第n项为an。

推导通项公式的步骤如下:1.找规律:观察等差数列的前几项,列出它们之间的关系。

2.建立方程:将观察到的关系式写成一个方程。

3.解方程:解出通项公式。

例子若等差数列的首项为a₁,公差为d,第n项为an,则观察前几项可得:a₁, a₁+d, a₁+2d, a₁+3d, ...由此得出任意一项的通项公式为:an = a₁ + (n-1)d3. 掌握等差数列求和公式及其应用求和公式等差数列前n项和是一个关于n的二次函数,因此可以求出通项公式。

设等差数列的首项为a₁,公差为d,前n项和为Sn,则有:Sn = (a₁ + an) × n / 2将an代入上式,化简可得:Sn = n/2 ( 2a₁ + (n-1)d )应用等差数列求和公式的应用十分广泛,例如可以用来求某一个等差数列中的前n 项和,或者求某几项的和等问题。

三、教学方法在教学过程中,可以采用多种教学方法,例如板书演示、课堂讲解、课堂练习等,以帮助学生更好地掌握等差数列的概念和应用。

四、教学流程第一步:引入问题通过引入一些等差数列的实例,让学生感性理解等差数列的基本概念和相关术语。

第二步:讲解等差数列的定义和相关术语让学生了解等差数列的基本定义和相关术语。

等差数列教案范文最新12篇

等差数列教案范文最新12篇

等差数列教案范文最新12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!等差数列教案范文最新12篇作为一名教职工,很有必要精心设计一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

高三数学必修五教案《等差数列》优秀4篇

高三数学必修五教案《等差数列》优秀4篇

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。

数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。

二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。

三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。

【教学重点】等差数列前n项和公式的推导和应用。

【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。

【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。

【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。

二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。

传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。

你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。

数学等差数列教案优秀8篇

数学等差数列教案优秀8篇

数学等差数列教案优秀8篇一、预习问题:1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。

2、等差中项:若三个数组成等差数列,那么A叫做与的即或。

3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。

4、等差数列的通项公式:。

5、判断正误:①1,2,3,4,5是等差数列;()②1,1,2,3,4,5是等差数列;()③数列6,4,2,0是公差为2的等差数列;()④数列是公差为的等差数列;()⑤数列是等差数列;()⑥若,则成等差数列;()⑦若,则数列成等差数列;()⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()⑨等差数列的公差是该数列中任何相邻两项的差。

()6、思考:如何证明一个数列是等差数列。

二、实战操作:例1、(1)求等差数列8,5,2,的第20项。

(2)是不是等差数列中的项?如果是,是第几项?(3)已知数列的公差则例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。

而等差数列是在学生学习了数列的有关概念和给出数列的两种方法,通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。

同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。

教学过程:一、片头(30秒以内)前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。

本节微课重点讲解等差数列的定义,并且能初步判断一个数列是否是等差数列。

30秒以内二、正文讲解(8分钟左右)第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒第二部分内容:给出等差数列的定义及其数学表达式50 秒第三部分内容:哪些数列是等差数列?并且求出首项与公差。

以课堂互动为主:等差数列的趣味教案精选案例

以课堂互动为主:等差数列的趣味教案精选案例

等差数列作为初中数学中的一个重要内容,我们通常通过找规律来解决它。

但是,仅仅通过记忆公式和找规律,对于学生来说,可能会感到枯燥乏味。

那么,如何让学生对等差数列更有兴趣呢?让我们来看看以下几位老师的课堂教学案例。

教案一:初识等差数列教学目标:初步掌握等差数列的概念和特点。

教学步骤:1、短时间内完成一个任务:学生随意拍照,然后在黑板上贴出这些照片。

老师可以引导学生列出照片的地点和所在楼层,然后让学生计算相邻两张照片之间的楼层数,找出规律。

2、观察楼层差的规律,老师可以提问:“每一次楼层的差值都是多少呢?”让学生尝试回答。

3、引入等差数列的定义,老师解释等差数列的概念和特点,并且引导学生在黑板上写出等差数列的三要素:首项、公差和通项公式。

4、通过老师引导,让学生发现音乐的旋律其实也是等差数列,带领学生探究出音乐符号的第一项,公差和第十项是多少,从而懂得了等差数列的构成方式。

教案二:等差数列的猜想教学目标:通过猜想与验证的过程,让学生更好地理解等差数列的公式。

教学步骤:1、老师给出一组数列,让学生通过观察尝试总结出规律.2、通过讨论,让学生猜到这个数列的公差是多少。

3、让学生多找几组这样的数列,然后自己思考,看看能不能总结出关键特征。

4、通过观察和思考,学生猜出公式,并推导出最后一个数。

5、老师告诉学生,这样的数列就是等差数列,并解释等差数列公式的推导过程。

6、通过类比的方式,让学生联系到几何序列的公式,进一步认识等比数列。

教案三:等差数列的应用——李磊的零花钱教学目标:将等差数列的公式运用到日常生活中,提高学生对数学应用的兴趣。

教学步骤:1、先讲授李磊的零花钱问题。

2、让学生自己计算,在第30周时李磊的零花钱是多少。

3、引入等差数列公式,让学生自己推导李磊的零花钱的等差数列公式。

4、通过推导等差数列公式,让学生解决类似问题,提高了学生运用数学公式的能力。

5、同样的方法,通过趣味数学问题帮助学生巩固数学知识点,提高学生对数学的兴趣。

等差数列教案(多篇)

等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。

二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。

三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。

2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。

3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。

4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。

四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。

五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。

2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。

3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。

六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。

2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。

七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。

《等差数列》教案

《等差数列》教案

《等差数列》教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的定义及其性质。

2. 能够运用等差数列的通项公式和求和公式解决实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容:1. 等差数列的定义:介绍等差数列的定义,通过实例让学生理解等差数列的特点。

2. 等差数列的性质:探讨等差数列的性质,如相邻两项的差是常数,任意一项都可以用首项和公差表示等。

3. 等差数列的通项公式:引导学生推导等差数列的通项公式,并解释其意义。

4. 等差数列的前n项和公式:引导学生推导等差数列的前n项和公式,并解释其意义。

5. 等差数列的应用:通过实例让学生运用等差数列的知识解决实际问题,如计算等差数列的前n项和,求等差数列的某一项等。

三、教学重点与难点:1. 教学重点:等差数列的概念、性质、通项公式和前n项和公式的理解与运用。

2. 教学难点:等差数列通项公式和前n项和公式的推导过程。

四、教学方法:1. 采用问题驱动法,通过提问引导学生思考和探索等差数列的知识。

2. 使用多媒体辅助教学,展示等差数列的图形和实例,增强学生的直观理解。

3. 利用小组讨论法,让学生分组讨论等差数列的性质和公式,促进学生的合作学习。

五、教学准备:1. 准备PPT课件,包括等差数列的定义、性质、通项公式和前n项和公式的讲解。

2. 准备一些等差数列的实际问题,用于课堂练习和巩固知识。

3. 准备答案和解析,用于课堂讲解和解答学生的疑问。

六、教学过程:1. 导入:通过一个简单的等差数列实例,如自然数的序列,引导学生思考等差数列的特点。

2. 新课讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,结合PPT 课件和实例进行解释。

3. 课堂练习:给出一些等差数列的实际问题,让学生运用所学知识进行计算和解答,教师进行指导和解析。

4. 小组讨论:让学生分组讨论等差数列的性质和公式,分享彼此的想法和理解,教师进行指导和点评。

5. 总结与复习:对本节课的主要内容和知识点进行总结回顾,强调重点和难点,解答学生的疑问。

等差数列的基本定义及性质(教案二)

等差数列的基本定义及性质(教案二)

等差数列的基本定义及性质(教案二)。

一、基本定义等差数列是指一个数列中相邻的两个数字之间的差值相等的数列。

这个差值称为公差,记为d,而数列中的第一项记为a1,第n项记为an。

简单来说,等差数列可以表示为:a1, a1+d, a1+2d, a1+3d, …, an-1+d, an其中,d为公差,a1为首项,an为末项,n为项数。

二、性质1.通项公式对于一个等差数列,我们可以得到以下的通项公式:an = a1 + (n-1)d这个公式表明了,对于等差数列中的任意一项,我们可以通过首项、公差和项数来求出。

2.求和公式对于一个等差数列,我们可以使用以下的公式来求和:Sn = (a1 + an) × n / 2其中,Sn表示前n项和。

3.公差的性质公差有以下的性质:① 两个相邻的项之间的差值等于公差d。

② 对于任意两个项,它们之间的差值可以表示为d × (m - n),其中m和n分别表示这两个项的下标。

③ 如等差数列的首项和公差均为正数,那么数列中的每一项都是正数。

④ 如果等差数列的首项和公差均为负数,那么数列中的每一项都是负数。

4.项数的性质项数有以下的性质:① 对于任意一个等差数列,我们都可以通过首项、末项和公差来求出项数。

② 当n大于2时,等差数列的第n项与第n-1项之间的差值是公差。

③ 任意三个项构成的子等差数列,其公差等于原等差数列的公差。

三、应用等差数列在数学中有着广泛的应用,特别是在数列求和、数学证明、概率统计等方面。

在数列求和中,我们可以通过等差数列的求和公式来求出前n项的和。

在数学证明中,等差数列可以用来证明某些数学定理,例如等差数列的一些性质。

在概率统计中,等差数列可以被用来模拟某些随机变量的分布。

等差数列是数学中一个重要的概念,其基本定义和性质对于我们的数学学习有很大的帮助,因此,掌握等差数列的相关知识是非常必要的。

等差数列的概念教案

等差数列的概念教案

等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。

教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。

2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。

二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。

2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。

三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。

-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。

3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。

四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。

2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。

学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。

五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。

等差数列说课教案

等差数列说课教案

一、教学目标:1. 理解等差数列的定义及其性质。

2. 学会等差数列的通项公式和求和公式。

3. 能够运用等差数列解决实际问题。

二、教学内容:1. 等差数列的定义2. 等差数列的性质3. 等差数列的通项公式4. 等差数列的求和公式5. 等差数列的应用三、教学重点与难点:1. 重点:等差数列的定义、性质、通项公式和求和公式。

2. 难点:等差数列的应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列的定义和性质。

2. 利用公式推导法,引导学生发现等差数列的通项公式和求和公式。

3. 运用实例分析法,让学生学会运用等差数列解决实际问题。

五、教学过程:1. 导入:通过给学生讲一个关于等差数列的故事,引发学生对等差数列的兴趣。

2. 新课:讲解等差数列的定义和性质,引导学生通过实例发现等差数列的规律。

3. 公式推导:引导学生利用已知条件推导出等差数列的通项公式和求和公式。

4. 应用练习:让学生运用等差数列的知识解决实际问题,巩固所学内容。

6. 作业布置:布置一些有关等差数列的练习题,让学生课后巩固。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 作业评价:检查学生作业的完成情况,评估学生对等差数列知识的掌握程度。

3. 课后实践评价:鼓励学生将所学知识应用于实际生活,评估学生在实际问题中的解决能力。

七、教学反思:1. 反思教学内容:检查教学内容是否符合学生的认知水平,是否需要调整。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学评价:评估教学评价方法的科学性和有效性,不断完善评价体系。

八、教学拓展:1. 等差数列在实际生活中的应用:介绍等差数列在金融、统计等领域的作用。

2. 等差数列的进一步研究:引导学生深入研究等差数列的性质,探讨等差数列与其他数列的关系。

九、教学资源:1. 教材:选择适合学生水平的教材,为学生提供权威的学习资源。

等差数列详细教案

等差数列详细教案

等差数列详细教案一、教学目标1.知识目标:了解等差数列的概念,掌握等差数列的通项公式和求和公式。

2.能力目标:能够判断数列是否为等差数列,并确定其公差,能够计算等差数列的指定项数和前n项和。

3.情感目标:培养学生对数学的兴趣,增强学生的数学思维能力。

二、教学重点和难点1.教学重点:等差数列的概念、通项公式和求和公式的掌握,能够应用相关公式解决问题。

2.教学难点:能够正确判断数列是否为等差数列,并确定其公差。

三、教学过程1.导入新知识(10分钟)-教师引导学生观察以下数列:1,3,5,7,9...2,4,6,8,10...-提问:观察上述两个数列,有什么规律?这种数列有什么特点?-引导学生发现数列的相邻两项之间的差值相同,即第二个数减去第一个数得到的结果可以得到第三个数减去第二个数得到的结果,如此类推。

-教师解释:这种数列叫做等差数列,等差数列是指数列中相邻两项之间的差值相等的数列。

第一个数叫做首项,差值叫做公差。

-引导学生通过几个例子来发现等差数列的特点。

2.探究等差数列的性质(30分钟)-教师讲解等差数列的概念,并通过几个例子引导学生判断是否为等差数列。

-引导学生观察数列的公差是如何确定的,并与学生共同发现等差数列的任意一项与首项的差值等于公差乘以项数减一-教师提供几个解决问题的实例,引导学生应用公式计算等差数列的指定项数和前n项和。

3.归纳等差数列的通项公式(20分钟)-引导学生观察以下几个等差数列:1,4,7,10,13...2,7,12,17,22...-提问:观察上述两个数列,有什么规律?这种数列的通项公式是什么?- 引导学生发现等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

-通过几个例子的实践操作,让学生理解等差数列的通项公式的计算过程。

4.推导等差数列的求和公式(30分钟)-引导学生考虑如何计算等差数列的前n项和。

-教师提供数列的前几个项,引导学生观察其中的规律。

等差数列性质教案

等差数列性质教案

等差数列性质教案2篇等差数列性质教案(一)导语:数学是一门抽象而又具体的学科,它包含了许多重要的概念和性质。

等差数列正是数学中的一个重要概念,它在实际生活中有着广泛的应用。

本教案将介绍等差数列的性质,帮助学生更好地理解和应用这一概念。

一、等差数列的定义1. 等差数列的定义:等差数列是指数列中的任意两个相邻的项之差相等的数列。

这个相等的差值称为等差数列的公差,用d表示。

2. 等差数列的通项公式:对于等差数列an,若已知第一项a1和公差d,那么可以通过通项公式an=a1+(n-1)d来求得任意一项的值。

3. 等差数列的常用表示方法:等差数列也可以用{an}或{an}来表示。

二、等差数列的性质1. 常数数列是等差数列的一种特殊情况,其中公差d=0。

对于常数数列{an}=a1,其每一项的值都相等。

2. 等差数列的前n项和公式:等差数列的前n项和Sn是等差数列的前n项的和,可以用公式Sn=n(a1+an)/2来计算。

3. 等差数列的性质之一:等差数列的相邻项之和等于该项前面所有项的和。

即an + an+1 = 2an+2。

4. 等差数列的性质之二:等差数列的中间项等于该项前面和后面项的平均值。

即an = (an-1 + an+1)/2。

5. 等差数列的性质之三:等差数列的任意三项构成一个等差数列。

即an-1, an, an+1是一个等差数列。

三、等差数列的应用等差数列在实际生活中有着广泛的应用,如下所示:1. 计算天数:如果已知某个事件从第一天开始发生,且每天处理的数量保持等差数列增长,我们可以利用等差数列的通项公式来计算到达某个特定天数时的处理数量。

2. 财务管理:等差数列可以应用于财务规划中,如利息计算、还款计划等。

3. 构建模型:等差数列可以用来构建一些数学模型,如人口增长模型、环境污染模型等。

4. 数学推理:等差数列常常出现在数学推理题中,通过观察数列的性质和规律,可以帮助我们解答问题。

综上所述,等差数列是数学中一个重要的概念,具有其独特的定义和性质。

数学等差数列教案

数学等差数列教案

数学等差数列教案数学等差数列教案「篇一」一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式(一)例题与练习通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。

由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二)新课探究1、由引入自然的给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调:① “从第二项起”满足条件; f②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1—an=d (n≥1) ;h4z+0"6vG同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1、 9 ,8,7,6,5,4,√ d=—12、2、2、2、2、2、2、2、2、2、74√ d=0。

013、3、3、3、3、3、3、√ d=04、4、4、4、4、4、4、×5、5、5、5、5、5、×其中第一个数列公差<0,>0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、第二个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采用讨论式的教学方法。

给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。

通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。

整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d。

则据其定义可得:a2 — a1 =d 即: a2 =a1 +da3 – a2 =d 即: a3 =a2 +d = a1 +2da4 – a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d进而归纳出等差数列的通项公式:an=a1+(n—1)d此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——————迭加法:a2 – a1 =da3 – a2 =da4 – a3 =dan+1 – an=d将这(n—1)个等式左右两边分别相加,就可以得到 an– a1= (n—1) d 即 an= a1+(n—1) d (1)当n=1时,(1)也成立。

等差数列教案(多篇)

等差数列教案(多篇)

一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。

2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。

4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。

二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。

2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。

4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。

三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。

2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。

3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。

4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。

四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。

2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。

3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。

4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。

五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。

2. 针对学生的练习情况,进行讲解和解答疑惑。

3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。

等差数列数学教案精选案例大全

等差数列数学教案精选案例大全

等差数列数学教案精选案例大全(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!等差数列数学教案精选案例大全等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八.教学过程
(一)创设情景,引入概念时间:10分钟
设计意图:使学生能通过生活中的实际问题的分析,能建立等差数列模型,体会发现和创造的过程。

师生活动:
情景1:
【师】把班上学生学号从小到大排成一列,这是数列吗?你能归纳出它的通项公式吗?
【学生】是,
【师】把上面的数列各项依次记为,填空:------
【学生】填空并归纳出一般规律:,()
【师】上面这个规律还有其他形式吗?
【学生】或者写成,()
【师】你能用普通语言概括上面的规律吗?
【学生】自由发言,选择最恰当的语言。

上面的数列已找出这一特殊规律,下面再观察一些数列并也找出它们的规律。

情景2:看幻灯片上的实例
(1)2008年北京奥运会,女子举重共设置7个级别,其中较轻的4个级别体重组成数列(单位:kg):
48,53,58,63
(2)水库的管理员为了保证优质鱼类有良好的生活环境,定期放水清库的办法清理水库中的杂鱼。

如果一个水库的水位18m,自然放水每天水位下降2.5m,最低降至5m。

那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m )
18,15.5,13,10.5,8,5.5
(3)我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。

按照单利计算本利和的公式是: 本利和=本金(1+利率存期)
例如,按活期存入10000元,年利率是0.72%, 那么按照单利,5年内各年末本利和分别是:如下表(假设5年既不加存款也不取款,且不扣利息税) 各年末本利和(单位:元)
10072,10144,10216,10288,10360 【师】上面的三个数列又分别有什么规律呢? 【学生】(1),,
(2),, (3),,
【师】归纳上面数列的共同特征:
(d 是常数),,,
【师】-满足这种特征的数列很多,我们有必要为这样的数列取一个名字? 【学生(共同)】等差数列。

写出课题《等差数列》
【师】给出文字叙述的定义(学生叙述,板书定义):
一般的,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,d 为公差,a 1为数列的首项。

时间 年初本
金(元) 年末本
利和
(元) 第1年 10000 10072 第2年 10000 10144 第3年 10000 10216 第4年 10000 10288 第5年
10000 10360
对定义进行分析,强调:①同一个常数;②从第二项起。

【师】这样的数列在生活中的例子,谁能再举几个?
【学生】某剧场前8排的座位数分别是
52,50,48,46,44,42,40,38.
【学生】全国统一鞋号中成年女鞋的各种尺码分别是
21,21.5 ,22 ,22.5 ,23 ,23.5 ,24 ,24.5 ,25
抢答:观察下列数列是否为等差数列
1,2,4,6,8,10,12,……
0,1,2,3,4,5,6,……
3,3,3,3,3,3,3……
2,4,7,11,16,……
-8,-6,-4,0,2,4,……
3,0,-3,-6,-9,……
(注:常数列也是等差数列,公差是0。


推进概念,发现性质时间:5分钟
设计意图:概括等差中项的概念。

总结等差中项公式,用于发现等差数列的性质。

师生活动:
【师】想一想,一个等差数列最少有几项?它们之间有什么关系?
学生思考后回答,至少三项,然后老师引导学生概括等差中项的概念。

设三个数成等差数列,则A叫a与b的等差中项。

同时有A-a=b-A,
说明:(1)上面式子反过来也成立。

(2)等差数列中的任意连续三项都构成等差数列,反之亦成立。

(三)探究通项公式时间:10分钟
设计意图:通过具体数列的通项公式,总结一般等差数列的通项公式,体会特殊到一般的数学思想方法。

师生活动:
【师】对于一个数列,我们最关心的是每一项,而这就要求我们能知道它的通项公式。

下面一起来研究等差数列的通项公式。

先写出上面引例中等差数列的通项公式。

再推导一般等差数列的通项公式。

【师】若一个数列是等差数列,它的公差是d,那么数列的通项公式是什么?
启发学生:(归纳、猜想)可用首项与公差表示数列中任意一项。

【学生】:即:
即:
即:
……
由此可得:
【师】从第几项开始归纳的?
【学生】第二项,所以n≥2。

【师】n=1时呢?
【学生】当n=1时,等式也是成立,因而等差数列的通项公式
【师】很好!
(归纳、猜想,培养学生合理的推理能力)还有没有其他的推导方法?
【学生】还可用下面的方法归纳:
当n=1时,等式也是成立,因而等差数列的通项公式
【师】我们把这种方法称为迭代法。

还有其他的推导方法吗?
(学生面露难色)
启发:看方法一的第一个式子有何规律?
【学生】可以用累加的方法,左边累加后得,右边累加的d+d+d+……+d共n-1个即=d+d+d+…….+d =(n-1)d
【师】这种方法叫累加法
总结通项公式的推导方法:递推归纳法;迭代归纳法;累加法。

(注:通项公式中含有四个量,其中为基本量,当确定后,通项公式就确定了。

)(四)通项公式的应用时间:10分钟
设计意图:通过具体问题,分析等差数列通项公式中的四个量,已知什么?求什么?
怎么求?提高学生分析问题,解决问题的能力。

师生活动:多媒体展示,学生练习
例1:(1)求等差数列8,5,2…的第20项?
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
分析:(1)中求第20项,需要知道什么呢?——首项和公差
(2)中怎样判断-401是不是数列中的项呢?——先求通项公式,再判断是否存在正整数n,使得-401= 成立。

例2、已知数列的通项公式为,其中p,q是常数,且p≠0,那么这种数列是否一定是等差数列?如果是,其首项与公差是什么?
【师】:如何分析题意?
【学生】:由等差数列定义,要判定{a n}是不是等差数列,只要看a n-a n-1(n≥2)是不是一个与n无关的常数就行了。

(学生叙述,多媒体展示)
解:取数列{a n}中的任意相邻两项a n-1与a n(n≥2)。

∴a n-a n-1=(pn+q)-[p(n-1)+q]=(pn+q)-(pn-q+q)=p,
它是一个与n无关的常数,所以{a n}是等差数列,且公差为p。

在通项公式中,令n=1得a1=p+q,
所以这个等差数列的首项是p+q,公差是p。

【师】数列的通项公式给出的是a n与n之间的一种关系,一个n都对应着一个a n,这与我们以前学过的什么内容类似?由本例得到什么结论?(引发学生联想、归纳,学生很自然会想到一次函数)
【学生】与一次函数内容类似,即a n与n之间的关系是一次函数的关系;
由本例的结论可知,如果a n是关于n的一次函数,那么数列{a n}是等差数列。

【师】本例题的逆命题,是否也成立?请同学们课下自己完成证明。

由上面例题实际上可以得出证明数列{a n}是等差数列的一种方法。

(五)通项公式的图象时间:5分钟
设计意图:加深学生对等差数列与一次函数的联系的理解。

师生活动:在直角坐标系中作通项公式为a n=3n-5的数列的图像,并观察图像有什么特点?
【师】数列的图象是一群孤立的点。

且都落在直线的图象上。

【师】由图归纳出等差数列通项公式的图象的特点。

【学生】公差不为零的等差数列的图象是直线y=px+q上的均匀排开的一群孤立的点。

(注:当p=0时,a n=q,等差数列为常数列,此时数列的图象是平行x轴(或x上)的均匀公布的一群孤立点。


(六)课时小结时间:5分钟
提出问题:这节课你学到了什么?
教师鼓励学生积极回答,答不完整的没有关系,其它同学补充。

以此培养学生的口头表达能力,归纳概括能力。

多媒体把学生的归纳用一张表展示出来。

①等差数列定义和通项公式: (n∈)
②等差中项:A叫a与b的等差中项
③等差数列的性质:
④等差数列的图象是直线 y=px+q上的均匀排开的一群孤立的点。

九、板书设计
等差数列。

相关文档
最新文档