溢流阀的静态特性测试-力士乐

合集下载

电液伺服阀静态特性试验台液压系统设计开题报告2word1

电液伺服阀静态特性试验台液压系统设计开题报告2word1

电液伺服阀静态特性实验台液压系统设计一、本课题的项目背景及研究意义电液伺服阀是闭环控制系统中最重要的一种伺服控制元件,它能将微弱的电信号转换成大功率的液压信号(流量和压力)。

用它作转换元件组成的闭环系统称为电液伺服系统。

电液伺服系统用电信号作为控制信号和反馈信号,灵活、快速、方便;用液压元件作执行机构,重量轻、惯量小、响应快、精度高。

对整个系统来说,电液伺服阀是信号转换和功率放大元件;对系统中的液压执行机构来说,电液伺服阀是控制元件;阀本身也是个多级放大的闭环电液伺服系统,提高了伺服阀的控制性能。

因此其性能直接决定和制约着整个电液伺服控制系统的控制精度、响应特性、工作可靠性及寿命。

电液伺服系统是液压伺服系统和电子技术相结合的产物,由于它具有更快的响应速度,更高的控制精度,在军事、航空、航天、机床等领域中得到广泛的应用。

目前,液压伺服系统特别是电液伺服系统己经成为武器自动化和工业自动化的一个重要方面,应用十分广泛。

按照国家有关规定,电液伺服阀出厂或维修以后必须进行性能测试和参数调节,以检验它的质量好坏。

伺服阀用量大的使用单位或重要使用场合,用户应设有伺服阀试验台,以便对新阀性能进行复检,并对使用中的伺服阎定期复检或比较试验。

目前,电液伺服阀性能测试试验台主要有两种类型:一种是传统的手工测试、记录类型;另一种是计算机辅助测试(ComputerAided Test简称CAT)类型。

传统手工测试系统利用按钮、信号发生器、记录仪、示波器等来实现,测试成本高、结构复杂,测试时受人为因素影响大,测试精度低。

随着信号处理技术和计算机技术的发展,出现了一种新型的测试系统,即CAT系统,是建立一套计算机数据采集和数字控制系统,与试验台连接起来,由计算机对各试验参数,如压力、流量、转速、温度等参数进行数据采集、量化和处理并输出测试结果。

在试验过程中,计算机还可以根据数字反馈或人工输入要求,对测试过程进行控制,达到计算机密切跟踪和控制试验台及试件状态的目的,从而高速、高精度地完成对液压产品的性能测试。

挖掘机力士乐液压系统分析解读

挖掘机力士乐液压系统分析解读

挖掘机力士乐液压系统分析解读液压系统概述液压系统是挖掘机中非常重要的一个系统,它主要是利用流体(液体或气体)在传递压力时的性质来实现各种机械运动。

在挖掘机中,液压系统应用广泛,比如液压缸、液压马达、液压泵等等。

其中力士乐是液压系统领域的知名品牌,其液压系统在挖掘机中也常被使用。

液压系统由几个主要组件组成,例如:液压油箱、液压泵、压力控制阀、扭转控制阀、比例控制阀、液压缸、液压马达、油管、滤清器等。

液压系统配备了必要的仪器和仪表(如压力表、热表、流量表、温度计等)来监测系统的运行情况,以保证液压系统在正常情况下运行。

力士乐液压系统力士乐作为液压系统领域的专家,其液压系统在挖掘机中得到广泛应用。

力士乐液压系统由多个组件构成,其中主要包括:液压泵力士乐液压泵是一种可变转速、轴向柱塞机构的过量式泵。

它通过控制分配体的位置和角度来实现输出流量的连续调整,满足挖掘机在不同功率工况下的操作需要。

液压缸液压缸是力士乐液压系统中的重要组成部分,用于实现各种动作,例如:翻转、伸缩、升起、旋转等。

液压缸受到液压系统的压力控制,并且通过各种控制阀的控制来改变各种动作的速度和力度。

液压马达液压马达也是力士乐液压系统中的重要组件,它主要用于将油液转换成转速或扭矩用于实现各种动作。

控制阀液压系统中的控制阀作为控制油液流动的关键元件,可以实现对压力、流量和方向等参数的控制。

常见的控制阀有比例控制阀、分配阀、压力阀、单向阀等。

液压油箱液压油箱是力士乐液压系统中存储液压油的地方。

它可以作为油液的储备,也可以用来散热,从而保证液压系统的稳定运行。

力士乐液压系统的运行原理力士乐液压系统的运行是基于流体力学原理的。

当液压泵工作时,会在液压系统中形成一定的压力,将油液送入各个液压元件中,通过各种控制阀的开启和关闭来实现液压缸、液压马达的运作。

液压泵通过液压油箱中的油液提供能量,而液压缸和液压马达则将这些能量转化成机械动力。

液压缸的作用是将液压能转化为各种机械运动,例如:升起和下降、旋转等。

力士乐液压阀分类以及特点介绍

力士乐液压阀分类以及特点介绍

力士乐液压阀分类以及特点介绍力士乐液压阀的分类液压传动中用来控制液体压力﹑流量和方向的元件。

其中控制压力的称为压力控制阀,控制流量的称为流量控制阀,控制通﹑断和流向的称为方向控制阀。

压力控制阀:按用途分为溢流阀﹑减压阀和顺序阀。

(1)溢流阀:能控制液压系统在达到调定压力时保持恒定状态。

用於过载保护的溢流阀称为安全阀。

当系统发生故障,压力升高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。

(2)减压阀:能控制分支回路得到比主回路油压低的稳定压力。

减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恒定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。

(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。

油泵产生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力升高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上升使进油口与出油口相通,使液压缸2运动。

流量控制阀:利用调节阀芯和阀体间的节流口面积和它所产生的局部阻力对流量进行调节,从而控制执行元件的运动速度。

流量控制阀按用途分为 5种。

(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。

(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。

这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。

(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。

(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。

(5)分流集流阀:兼具分流阀和集流阀两种功能。

方向控制阀:按用途分为单向阀和换向阀。

单向阀:只允许流体在管道中单向接通,反向即切断。

溢流阀测试要求

溢流阀测试要求

溢流阀测试要求一、引言溢流阀是一种常用的流体控制元件,用于控制流体系统的压力。

为了确保溢流阀在实际工作中的准确性和可靠性,需要进行严格的测试。

本文将介绍溢流阀测试的要求和方法。

二、溢流阀测试要求1. 环境条件要求:测试环境应符合溢流阀的工作条件,包括温度、湿度、气压等。

同时,测试设备应具备稳定的电源和地线接地条件。

2. 测试设备要求:测试设备应符合相关标准,具备必要的测量能力和精度。

包括压力表、温度计、流量计等。

3. 测试标准要求:根据溢流阀的型号和用途,选择相应的测试标准进行测试。

常用的测试标准有国际标准ISO 6394、美国标准ASME PTC 39等。

4. 测试方法要求:根据测试标准,选择合适的测试方法进行测试。

常用的测试方法有静态测试、动态测试、稳态测试等。

在测试过程中,应注意测试参数的选择和控制,确保测试结果的准确性。

5. 测试数据要求:测试过程中应记录相关的测试数据,包括压力、温度、流量等。

同时,还应记录测试条件、设备型号和编号等信息。

测试数据应存档并进行分析,以便后续的验证和比较。

6. 测试结果要求:根据测试数据和测试标准,评估溢流阀的性能和可靠性。

测试结果应与设计要求进行比较,确保溢流阀符合要求。

如果测试结果不符合要求,应进行分析并采取相应的措施进行修复或调整。

三、溢流阀测试方法1. 静态测试:静态测试是指在不改变流体状态的情况下对溢流阀进行测试。

静态测试主要包括开启压力测试、关闭压力测试和泄漏测试。

开启压力测试是通过改变进口压力,观察溢流阀的开启压力和开启时间;关闭压力测试是通过改变出口压力,观察溢流阀的关闭压力和关闭时间;泄漏测试是观察溢流阀在关闭状态下的泄漏情况。

2. 动态测试:动态测试是指在改变流体状态的情况下对溢流阀进行测试。

动态测试主要包括流量测试和响应时间测试。

流量测试是通过改变进口流量,观察溢流阀的流量特性和流量控制精度;响应时间测试是观察溢流阀在流量变化时的响应时间和动态稳定性。

力士乐比例减压阀中文说明书

力士乐比例减压阀中文说明书

力士乐比例减压阀中文说明书力士乐比例减压阀功能:通过比例电磁铁设置A或B中的压力。

压力的大小取决于电流。

线圈(5、6)断电后,控制阀芯(2)将通过压缩弹.簧(8)保持在中心位置。

油口A和B连接到T,以便液压油可以不受阻挡地流入油箱。

通过为比例电磁铁(例如线圈“a"(5))通电,压力测量阀芯(3)和控制阀芯(2)将向右移动。

这样将通过具有渐进流体特性的节流横截面,打开从P到B及从A到T的连接。

在通道B中形成的压力通过压力测量阀芯(4)的表面作用于控制阀芯,抵抗线圈磁力。

压力测量阀芯(4)受线圈“b”支撑。

如果压力超过线圈“a”上设置的值,将逆线圈磁力方向回推控制阀芯(2),并建立B与T的连接,直到重新达到调定压力。

压力与线圈电流成比例。

当线圈关闭时,控制阀芯(2)在压缩弹簧(8)的作用下返回到中心位置。

可选手动应急操作元件(9、10)可在线圈不通电的情况下移动控制阀芯(2)。

德国REXROTH力士乐比例减压阀特征用于控制压力和流向的直动式比例阀通过带有中心螺纹和可拆卸线圈的比例电磁铁进行操纵用于底板安装:孔图按ISo4401手动应急操作,可选弹簧定中的控制滑板带集成电子元件(OBE)的型号3DREPE带外部电子元件的型号3DREP型号DRSandZDRS比例减压阀,先导式,有直流马达操作规格6安装面按ISO4401用于降低系统压的阀,有溢流功能直流马达操作力士乐减压阀/力士乐比例减压阀底板安装作为叠加阀型号3DRE(M)和3DRE(M)E比例减压阀,先导式规格10和16安装面按DIN24340A型和ISO4401用于降低系统压力的阀比例电磁铁操作底板安装用于3DREEand3DREME的集成电控器(OBE)型号DRE比例减压阀,先导式规格6和10规格6:安装面按ISO4401规格10:安装面按ISO5781-AG-06-2-A用于降低系统压力的阀比例电磁铁操作通过电磁铁电枢位置进行调节DREBE型的集成电控器(OBE)型号DRE(M)和DRE(M)E比例减压阀,先导式规格10至32安装面按DIN24340D型用于降低系统压力的阀比例电磁铁操作底板安装线性压力/指令值特性曲线用于DREM和DREME型的ZUi大减压功能可选单向阀,在A和B油口之间集成电控器(OBE),用于DREE和DREME 型号(Z)DREandZDREE10比例减压阀,先导式规格6和10安装面按DIN24340A型和ISO4401力士乐比例减压阀中文说明书。

力士乐比例溢流阀的性能要求 溢流阀如何操作

力士乐比例溢流阀的性能要求 溢流阀如何操作

力士乐比例溢流阀的性能要求溢流阀如何操作力士乐比例溢流阀的性能要求1.换向性能:在规定的工作条件下,力士乐比例溢流阀通电后能否牢靠地换向,断电后能否牢靠地复位。

2.压力损失:力士乐比例溢流阀的压力损失由液流流过电控换向阀的阀口时产生的流动损失和节流损失构成。

3.内泄露量:力士乐比例溢流阀的内泄露量是指在规定的工作条件下,处于各个不同工作位置时,从高压腔到低压腔的泄露量。

4.换向和复位时间:从电控铁通电到阀芯换向停止所需要的时间,复位时间是指从电磁断电到阀芯回复到初始位置所需要的时间。

5.换向频率:在单位时间内所允许的大换向次数6.使用寿命:力士乐比例溢流阀使用到紧要零部件损坏,不能进行正常的换向和复位动作,或者使用到其紧要性能指标明显恶化超过了规定指标所经过的换向次数。

意大利阿托斯溢流阀工作原理图天骥公司认真把溢流阀工作原理为:利用弹簧的压力调整、掌控液压油的压力大小。

从图中可以看到:当液压油的压力小于工作需要压力时,阀芯被弹簧压在液压油的流入口,当液压油的压力超过其工作允许压力即大于弹簧压力时,阀芯被液压油顶起,液压油流入,从图示方向右侧口流出,回油箱。

液压油的压力越大,阀芯被液压油顶起得越髙,液压油经溢流阀流回油箱的流量越大如过液压油的压力小于或等于弹簧压力,则阀芯落下,封住液压油进口。

由于油泵输出的液压油压力固定,而工作油缸用液压油的压力总要比油泵输出液压油压力小,所以正常工作时总会有一些液压油从溢流阀处流回油箱,以保持液压油缸的工作压力平衡、正常工作。

由此可见,溢流阀的作用是能够防止液压系统中的液压油压力超出额定负荷,起安全保护作用。

一、溢流阀概念:溢流阀是一种液压压力掌控阀,在液压设备中紧要起定压溢流作用,稳压,系统卸荷和安全保护作用。

二、溢流阀的作用:定压溢流作用:在定量泵节流调整系统中,定量泵供应的是恒定流量。

当系统压力增大时,会使流量需求减小。

此时溢流阀开启,使多余流量溢回油箱,保证溢流阀进口压力,即泵出口压力恒定(阀口常随压力波动开启)。

溢流阀的设计

溢流阀的设计

1 绪论液压技术发展历史较短,但是发展速度相当快。

作为新兴的应用学科,在国民生活中应用十分广泛。

现如今,机电产品正朝着功能多样化的趋势发展,而液压技术正好满足它的要求,所以,为了实现生产自动化、工业自动化,液压技术是必不可缺的。

液压技术有很多优点,比如:反应速度快、液压系统体积小、结构简单、操控方便、传递的力量较大、可实现无极调速等。

通常选用矿物油作为工作介质,使用寿命长,可实现自行润滑。

因此,它被广泛应用在工程机械、农业机械、汽车工业、冶金工业等各行各业中。

近几年来,液压技术广泛采用高新技术成果,使各行业应用领域都有很大发展和提高。

液压传动设备的组成有:动力元件(液压泵)、执行元件(液压马达和液压缸)、控制元件(液压阀)、辅助元件(油箱、蓄能器等)。

液压泵:把电机的机械能转化成液压能的能量转换装置,液压泵种类有很多,按结构形式分常用的有:螺旋泵、齿轮泵、柱塞泵、叶片泵等。

液压马达是把液压能转换成机械能,并且以旋转的形式输出角速度和转矩的一种液压执行机构。

液压阀就是调节和控制流体的流量、方向和压力。

按用途分为流量控制阀、方向控制阀和压力控制阀。

常用的流量控制阀有:调速阀、节流阀等;方向控制阀有:换向阀、方向阀;压力控制阀有:溢流阀、顺序阀、减压阀等;辅助元件有:过滤器、油箱及蓄能器、密封圈等。

液压阀的作用就是控制液体的方向、流量和压力,液压阀元件的优劣对液压设备工作的可靠性有很大影响。

在设计先导式溢流阀过程中,将它系列化、标准化和通用化,能够提高产品质量,完善生产工艺性,并且维修方便,保证其工作效率。

1.1液压技术发展历史液压技术与流体力学是息息相关的。

17世纪50年代,帕斯卡提出了帕斯卡原理,17世纪70年代牛顿提出了内摩擦定律,18世纪,相继建立伯努利能量方程和连续性方程,这些理论对液压技术的发展奠定了基础。

1795年,约瑟夫·布拉曼提出了液压机的专利,并于2年后制造出手动泵供压式水压机。

溢流阀的静态特性测试-力士乐

溢流阀的静态特性测试-力士乐

溢流阀的静态特性测试一、实验目的深入了解溢流阀稳定工作时的静态特性。

学会溢流阀静态特性中的调压范围、启闭特性的测试方法。

并能对被试溢流阀的静态特性作适当的分析。

二、实验原理通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力。

原理见图3-1。

三、实验仪器力士乐液压教学实验台、秒表四、实验内容1.调压范围及压力稳定性1)调压范围:应能达到规定的调压范围(0.5--6.3MPa),压力上升与下降时应平稳,不得有尖叫声。

2)调压范围最高值时压力振摆:压力振摆应不超过规定值( 0.2MPa)。

3)调压范围最高值时压力偏离值:三分钟后应不超过规定值(0.2MPa)。

2.启闭特性1)开启压力:调节系统压力逐渐升高,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的开启压力。

2)闭合压力:调节系统压力逐渐逐渐降低,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的闭合压力。

图3-2为启闭特性曲线五、实验步骤松开溢流阀11,关闭节流阀10,换向阀13失电。

1.启闭特性调节溢流阀11,使系统压力达到4.5MPa。

二位二通电磁换向阀13得电。

调节被试阀14的实验压力为3.5MPa,用秒表配合量筒测量在试验压力下的全流量。

,使被试阀14的进闭合过程:慢慢逐渐松节流阀10手柄,观察压力表P12-2口压力分别为3.5、3.4、3.3、3.2、3.1…MPa每一压力对应测一流量值,直到被试阀无流量(全流量的1%)溢出为止。

开启过程:调节节流阀10,使系统逐渐升压,当被试阀有流量溢出时开始测量压力与流量,逐渐升压,直到被试阀14流量到全流量为止。

松开溢流阀11,14手柄,停泵。

注意事项1).调节被试阀进口压力时,开启过程,压力应一直逐渐上升,不允许上升后又下降再向上调;闭合过程,压力应一直逐渐下降,不允许下降后又上升再下降,否则,压力时高时低,实验数据无法反映启闭特性。

力士乐REXROTH溢流阀的基本结构及其工作原理

力士乐REXROTH溢流阀的基本结构及其工作原理

力士乐REXROTH溢流阀的基本结构及其工作原理下面为大家介绍一下力士乐REXROTH溢流阀的基本结构及其工作原理,详情如下:
(一)力士乐REXROTH溢流阀的基本结构及其工作原理
1、直动式溢流阀
工作原理:
直接利用液压力与弹簧力相平衡以控制阀芯的启闭动作,从而保证进油口压力基本恒定。

特点:
①阀芯所受的液压力全靠弹簧力平衡,故当系统压力很高时,弹簧必须很硬,导致结构笨重,调压不轻便。

一般用于压励小于2.5MPa的低压系统中,作安全阀或背压阀使用。

②由于惯性或负载的变化,导致q、变化,即开口度h的变化,由于k 很大,所以p不稳定,稳压精度差;
③结构简单、便宜,但工作时易产生振动和噪音。

特式溢流阀
结构:先导调压部分:控制主阀的溢流压力;主阀部分:溢流
工作原理:
利用主阀芯上下两端液体压力差与弹簧力相平衡的原理来进行压力控制。

力士乐REXROTH溢流阀特点:
①因为锥阀作用面积很小,即使压力很高,弹簧刚度仍不大,调压轻便;
②因为主阀弹簧很软,因此溢流量变化时,励波动小。

静态特性好;
③能适应各种不同的调压范围的要求;
④主阀芯采用锥面阀座式结构密封,没有搭合量,动作灵敏。

(二)力士乐REXROTH溢流阀的应用场合
1、起稳压和溢流作用(阀口常开)
在定泵进油或回油节流调速系统中
2、銨全保护作用(阀口常闭)
变泵液压系统、定泵旁路节流调速系统和非节流调速系统。

3、御荷作用
4、作背压阀使用
5、作吸收换向冲击使用。

力士乐比例溢流阀样本

力士乐比例溢流阀样本

=Y = XY
Further details in clear text
Seal material
M=
NBR seals,
suitable for mineral oil
(HL, HLP) to DIN 51524
V=
FKM seals
K4 =
Electrical connection
for DBE; DBEM: Without cable socket, with component plug to DIN EN 175301-803
Page 1 2 2 2 3
4 and 5 5 and 6
5 7 8 and 9
1) Size 32, component series 3X, see data sheet RE 29142
– Pilot operated valve for limiting a system pressure
– Operation by proportional solenoid
Type DBEM…-5X/…Y… B
Type DBEM…-5X/…XY… B
A
Y
Type DBEE…-5X/…Y… B
A XY Type DBEE…-5X/…XY…
B
A
Y
A XY
Type DBEME…-5X/…Y… B
Type DBEME…-5X/…XY… B
A
Y
A XY
A
Y
A XY
RE 29160/04.05 DBE(M); DBE(M)E
– Optional maximum pressure relief function by means of springloaded pilot valve

YF3-10L 溢流阀的设计(有cad图)

YF3-10L 溢流阀的设计(有cad图)
第 2 章 压力控制阀的分类………………………………………………………………4 第 3 章 溢流阀………………………………………………………………………………5
3.1 溢流阀的结构………………………………………………………………………5 3.2 溢流阀的主要性能…………………………………………………………………8 3.3 溢流阀的基本应用………………………………………………………………13 3.4 溢流阀的组成部分………………………………………………………………14 3.5 溢流阀的零件……………………………………………………………………15 3.5.1 调节杆及其加工……………………………………………………………15 3.5.2 调压螺帽及其加工…………………………………………………………17 3.5.3 先导阀芯及其加工…………………………………………………………20 3.5.4 先导阀座及其加工…………………………………………………………21 3.5.5 主阀座及其加工……………………………………………………………22
液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压 缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。
液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设 计动作以控制、实施整个液压系统及设备的全部工作功能。
1.1 液压技术的发展历史
液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。 液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下, 其重量的尺寸仅为直流电机的 10%~20%左右;反应速度快、准、稳;又能在大范围内 方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长, 制造成本较低。因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、 汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、 雷达等国防工业中。

力士乐溢流阀

力士乐溢流阀
QQ:1178589193 DBDH6P1X/200 DBDH6P1X/200 DBDH6P1X/200 DBDH6P1X/200,Mail:1178589193@ DB30-2N5/200 DBDS6K18-315 DBDS10K18-100 DBDS10K18-315 DBDS10K18-400 DB30-2-52/200 DBDS10P1X/315 DB10-1-5X/100 ZDB10VP1-4X/100 DBDS10G18/50 DBW10BG2-44/100-6EG24N9K4W65 DBEM20-51/315YG24K4M DBEM10-51/315YG24K4M DBDH6P1X/200 DBDS6K1X/315 DBDS10K10/20 DBW10A1-5X/200-6EG24N9K4 DBDS10K1-1X/315 DBDS10K1-1X/100 DBDH6P1X/200 DBDS6P1X/315 DBDH6P1X/200 DBEME20-51/315YG24K31M DBETE-6X/350G24K31A1V DBEM10-51/315YG24K4M+插头Z4 DBEM20-51/315YG24K4M ZDB6VP2-1-4X/200 DBDS20K18/200 DBDS20K18/200 DBDS30KIX/200 电磁阀DBW120B2-52/315-6EG24N9K4 电磁阀DBW10B2-52/315-6EG24N9K4 叠式溢流阀ZDB6VB2-4X/200 叠式溢流阀ZDB6VA1-4X/50V 插式溢流阀DBDH6K1X/100 先导式溢流阀DB10-2-5X/315V(另配)叠式溢流阀ZDB6VA1-4X/50V 叠式溢流阀ZDB6VA1-4X/50V 插式溢流阀DBDH6K1X/100 插式溢流阀DBDH6K1X/100 先导式溢流阀DB10-2

力士乐直动式溢流阀样本

力士乐直动式溢流阀样本

1/16直动式 溢流阀类型 DBDRC 25402/10.10替代对象:02.09目录内容 页码特点 1订货代码 2,3功能,截面,符号 4技术数据 5一般说明 5特性曲线6设备尺寸:螺纹连接 7设备尺寸:插装式阀 8,9设备尺寸:底板安装10,11经过类型测试的安全阀类型 DBD../..E,组件系列 1X,符合压力设备指令 97/23/EC (下文简称为 PED) 订货代码 12设备尺寸 12技术数据 13特性曲线 13安全注意事项14 至 16特点– 用作拧入式插装式阀– 适用于螺纹连接– 用于底板安装– 用于调节压力的调节类型,可选: • 六角套筒和保护帽 • 旋钮/手轮 • 可锁定旋钮H5585有关可提供备件的信息,请访问: /spc规格 6 至 30元件系列 1X最大工作压力为 630 bar [9150 psi]最大流量为 330 l/min [87 US gpm]订货代码= 可用1) 对于尺寸 15 和 20,仅可用于 25,50 或 100 bar 的压力等级。

2) 仅可用于 25,50 或 100 bar的压力等级。

3) 材料编号为 R900008158 的钥匙包括在供货范围内。

4) 不适用于经过类型测试的尺寸为 8,15 和 25 的安全阀。

5) 不适用于经过类型测试的安全阀。

6) 在进行压力等级选择时,请遵照第 6 页上的特性曲线和说明!7)对于型号 "G" 和 "P",仅适用于 "SO292",请参阅第 7 页和第 10 页!标准类型和组件已在 EPS(标准价格表)中列出。

*明文形式的更多详细信息PED 无代码 = 无型式验证E = 经过类型测试的安全阀,符合 PED 97/23/EC管道连接无代码 =符合 ISO 228/1 标准的管螺纹12 =SAE 螺纹密封材料无代码 = NBR 密封件V =FKM 密封件(可应要求提供其它密封件)注意!请务必遵守密封圈与所用液压油的兼容性!DBD 类型的溢流阀是直接操作式座阀。

REXROTH力士乐比例方向阀参数分析

REXROTH力士乐比例方向阀参数分析

REXROTH力士乐比例方向阀参数分析REXROTH力士乐比例方向阀参数分析REXROTH力士乐比例方向阀能够根据输人信号的极性和幅值大小,同时对液流的方向和流量进行控制。

液流的流动方向取决于相应比例电磁铁是否受到激励,在压力差恒定的条件下,通过电液比例方向控制阀的流量与输人电信号的幅值成正比。

REXROTH力士乐比例方向阀与普通电磁换向阀的区别是直动式电液比例方向控制阀采用比例电磁铁代替普通电磁换向阀中的普通电磁铁。

随着液压传动和液压伺服系统的发展,生产实践中出现- -些即要求能够连续的控制压力、流量和方向,又不需要其控制精度很高的液压系统。

由于普通的液压元件不能满足具有一定的伺服性要求,而使用电液伺服阀又由于控制精度要求不高而过于浪费,因此近几年产生了介于普通液压元件(开关控制)和伺服阀(连续控制) 之间的比例控制阀。

电液比例控制阀(简称比例阀)实质上是一种性价比高、抗污染性能较好的电液控制阀。

比例阀的发展经历两条途径,一是用比例电磁铁取代传统液压阀的手动调节输入机构,在传统液压阀的基础下:发展起来的各种比例方向、压力和流量阀;二是一些原电液伺服阀生产厂家在电液伺服阀的基础上,降低设计制造精度后发展起来的。

力士乐REXROTH比例阀特点:比例控制阀是一种按输入的电信号连续、按比例地控制液压系统的流量、压力和方向的控制阀,其输出的流量和压力可以不受负载变化的影响。

比例阀与普通液压元件相比,有如下特点:(1)电信号便于传递,能简单地实现远距离控制。

(2)能连续、按比例地控制液压系统的压力和流量,实现对执行机构的位置、速度、力量的控制,并能减少压力变换时的冲击。

(3)减少了元件数量,简化了油路。

REXROTH力士乐比例方向阀图片:REXROTH力士乐比例方向阀参数分析REXROTH力士乐比例方向阀Qn= 350 l/min; 压缩空气接口出口: G 1/8; 电子连接: 插头, EN 175301-803, 形式 C; 信号连接: 输入端和输出端, 插头, EN 175301-803, 形式 C; 伺服阀(导阀)安装方式提动阀移向…处控制相似的zui小/zui大环境温度+5°C / +50°Czui小/zui大介质温度+5°C / +50°C介质压缩空气颗粒大小 max. 50 ?m压缩空气中的含油量 0 mg/m? - 0,1 mg/m?Qn 350 l/min安装位置垂直滞环 0,1 bar工作运行电压 24 V电压偏差DC -10% / +10%允许的脉动 5%功率消耗 max. 0,2 A保护等符合 EN 60 529: 2001带有接线盒 / 插头 IP 54压缩空气接口人口 G 1/8压缩空气接口出口 G 1/8压缩空气连接排气 G 1/8重量 0,6 kg材料:外壳铝材-压铸件; 压铸锌密封丙烯树胶额定流量Qn,当工作压力为7 bar、二次压力为6 bar及Δp = 0.2 bar时德国技术性备注■ 压力露点必须少低于环境和介质温度15 °C,并且允许的zui高温度为3 °C。

实验三 溢流阀的静态特性测试实验报告

实验三  溢流阀的静态特性测试实验报告

实验报告专业班级指导教师姓名同组人实验室K1-206实验名称实验三溢流阀的静态特性测试时间一、实验目的:1、深入理解溢流阀稳定工作时的静态特性,测试启闭特性调压范围,压力稳定性,卸荷压力及压力损失。

重点为启闭特性的测试。

对被测试阀的静态特性作适当的分析。

2、通过实验掌握溢流阀的测试方法。

二、实验设备:本实验在RCYCS-C型智能液压综合实验台上进行,实验部分液压系统原理图如下图三、实验内容:(一)调压范围测量(二)压力振摆测量(三)压力偏移测量(四)压力损失测量(五)卸荷压力测量(六)启闭特性测量注:实验中,被试阀的额定流量由被试阀全溢流时的实测流量所代替。

四、实验步骤:(一)调压范围:1.在[测试项目选择]中,选择[测量调压范围],设置DO通道为10,按[项目运行]键;2.根据对话框提示,调节被试溢流阀手柄至全紧,关闭对话框,按[测试1]键;3.根据对话框提示,调节被试溢流阀手柄至全松, 关闭对话框, 按[测试2]键;4.调压范围值自动显示在[调压范围(MPa)]编辑框内。

(二)压力振摆:1.在[测试项目选择]中,选择[测量压力振摆],按[项目运行]键;2.调节被试溢流阀手柄,使p1的显示压力为其额定压力(7MPa), 根据对话框提示进行操作;3.压力振摆值自动显示在[压力振摆(MPa)]编辑框内。

(三)压力偏移:1.在[测试项目选择]中,选择[测量压力偏移],按[项目运行]键;2.调节被试溢流阀手柄,使p1的显示压力为其额定压力, 根据对话框提示进行操作;3.经过3分钟的自动测试,压力损失值自动显示在[压力偏移(MPa)]编辑框内。

(四)压力损失:1.在[测试项目选择]中,选择[测量压力损失],按[项目运行]键;2.调节被试溢流阀手柄至全松,使通过阀的流量为其额定流量, 根据对话框提示进行操作;3.压力损失值自动显示在[压力损失(MPa)]编辑框内。

(五)卸荷压力:1.在[测试项目选择]中,选择[测量卸荷压力],改变DO通道设置为11,按[项目运行]键;2.使通过阀的流量为其额定流量, 根据对话框提示进行操作;3.卸荷压力值自动显示在[卸荷压力(MPa)]编辑框内。

实验二、液压泵的静态性能测试实验指导书

实验二、液压泵的静态性能测试实验指导书

实验二液压泵性能实验§1 实验目的1.深入理解液压泵的静态特性。

着重测试液压泵静态特性中:①实际流量q与工作压力p之间的关系即q—p曲线;②容积效率ην、总效率η与工作压力p之间的关系即ην—p和η--p曲线;③输入功率Ni与工作压力p之间的关系即Ni--p曲线。

2.了解液压泵的动态特性。

液压泵输出流量的瞬时变化会引起其输出压力的瞬时变化,动态特性就是表示这两种瞬时变化之间的关系。

3.掌握液压泵工作特性测试的原理和方法,学会使用本实验所用的仪器和设备。

§2 实验原理一、液压泵的空载流量与理论流量液压泵的出口压力为最低时所测到的输出流量叫空载(零压)流量,即在测试回路中,节流阀开口为最大时的流量计中的读数值。

泵的理论流量是不考虑泄漏时,单位时间内输出油液的体积,它等于泵的排量与其转速的乘积。

泵在额定转速下的理论流量常以额定转速下的空载流量代替,因空载时泵的泄漏可以忽略。

额定流量是指泵在额定压力和额定转速下输出的实际流量,它总是小于泵的理论流量。

二、液压泵的流量----压力特性液压泵的额定压力是指液压泵可长期连续使用的最大工作压力,它反映了泵的能力。

超过此值就是过载。

但不超过规定的最高压力(泵能力的极限),还可短期运行。

液压泵的工作压力是指液压泵在实际工作时输出油液的压力,即油液克服负载而建立起来的压力,它随负载的增加而增高。

在实验中我们以节流阀作为负载,使节流阀具有不同的开口,则泵出口压力就有对应的不同值,在一系列的压力值下,测量出对应不同的流量值,就得出油泵的流量—压力特性:q = f1(p)。

实验油温越高、压力越大,其实测流量值就越小。

三、液压泵的容积效率、总效率----压力特性1.容积效率ηv:液压油泵的实际流量与理论流量的比值称为容积效率,它表示液压泵容积损失大小的程度。

ην=q/q t=1-q泄/q t=1-(k泄·p/V·n)= f2(p)。

式中:实际流量q=60·Δν/Δt,单位为L/min。

比例溢流阀特性测试与分析(5)

比例溢流阀特性测试与分析(5)

比例溢流阀特性测试与分析(5)5 部分实验内容设计及测试分析(1)稳态压力-电流线性特性实验试验中系统负载力保持某一恒定值,在稳定工况下运行。

在虚拟信号发生器中以频率为0.04Hz的矩形波电压信号在有效控制输入电流信号100至800mA之间输入连续增大或减小的电信号,被测阀口开度也随之变化。

重复试验10次,将测得的压力值采集至计算机,在LabVIEW中记录显示并在Matlab中得到被测试阀从最低(高)开启压力运行到最高(低)工作压力的一个完整周期的两条p-I特性拟合曲线(图3),可得出该测试阀的线性度、重复精度等特性参数。

图3 稳态压力-电流线性度拟合曲线图分析图3可知:在输入电流为100~250mA时,压力信号数据采集点产生波动,说明该信号在该段区域存在一定的非线性,其非线性最大偏差值在240~250mA点处,线性度为2.47%,小于比例阀出厂规定的3.5%线性误差,表明比例溢流阀在试验工况下工作性能稳定,线性度在正常允许范围内,且测试精度可精确至0.01%,实验设计合理。

(2)稳态负载特性实验在低压小流量工况下保持恒定负载,此时给被测阀一个控制信号,通过压力传感器11、12、13、14测量压力点p1、p2、p3、p4的实时变化。

在若干组不同时间间隔内(如1s,3s,5s…;3s,6s,9s…)观测各个压力测量点的波动变化。

通过LabVIEW和Matlab对数据进行采集和时域、频域分析。

此实验可对比p1、p2、p3、p4压力点的动态变化过程,可反映出被测阀的动态特性以及调压过程中液压系统产生压力脉动的成因。

时域分析结果见图4。

图4 p1点时域信号由图4可知:被测阀在调定5.5MPa压力值后系统平稳运行采集到的压力点位不规则波动,表明在该试验工况下,工作液压缸克服负载工作时对系统管路产生一定的压力扰动;此外,试验中可能出现了工作液压缸在克服负载时行进阻滞或受到短时较强的外界干扰,因此在18200、18900、19300的实时采样点处出现了幅值较大的波动。

比例溢流阀调试经验交流

比例溢流阀调试经验交流

比例溢流阀调试经验交流(试行方案)重庆江东机械有限责任公司技术中心乔正明通过这几年的比例阀调试从中的到一些启发,把一些调试的心得与大家分享和讨论,有不到之处请各位批评指正。

首先由电气技术员在压机调整状态下,按“滑块下行”按钮,泵和阀不断电的情况下,给比例溢流阀压力从4,5,6…….25MPa 的信号,使压机强行由比例溢流阀溢流;每个压力反复测试5次,反复观察,看每次溢流是否稳定。

一、如果波动稳定由电气技术员按下行方式编程完成调试。

1、力士乐比例溢流阀按以下曲线和函数进行调试⑴ 比例溢流阀电流型(4-20毫安输入)第一段:区间[4,7.2],包含坐标点(4,1.4),(5.36,2),(6.24,3.2),(7.2,6),曲线函数为:➢ 电流与开口度P%函数:➢ 电流I(mA)与压强P(Mpa)函数: ➢ 压强P(Mpa)与电流I(mA)函数:44.555.566.570.60.811.21.41.61.8电流m A压强Mp a原始采样点拟合后曲线图1 力士乐比例溢流阀电流与压强第一段关系曲线第二段:区间[7.2,10.4],包含坐标点(7.2,6),(8.4,10.5),(9.04,15),(9.76,20),(10.4,24.5),曲线函数为: ➢ 电流与开口度P%函数:➢ 电流I(mA)与压强P(Mpa)函数:➢ 压强P(Mpa)与电流I(mA)函数:7.588.599.510234567电流(m A )压强(Mp a )原始采样点三次拟合曲线四次拟合曲线次区间还需再测几组数据来确定曲线走向从目前对所测数据拟合效果应该选择四次多项式来拟合图2力士乐比例溢流阀电流与压强第二段关系曲线根据图2所示,就此段所测数据信息来看的话,此段曲线应该用四次函数来拟合第三段:区间[10.4,20],包含坐标点(10.4,24.5),(12.32,40),(13.6,50),(14.88,60),(16.8,75),(17.44,80),(20,100), ➢ 电流与开口度P%函数:➢ 电流I(mA)与压强P(Mpa)函数: ➢ 压强P(Mpa)与电流I(mA)函数:1112131415161718192055电流m A压强Mp a原始采样点拟合后曲线图3 力士乐比例溢流阀电流与压强第三段关系曲线根据上面所求的函数关系式绘制出电流(4~20mA )与压强(0~31.5Mpa )的总的函数图象如下:46810121416182005101520253035电流(m A )压强(M p a )三次拟合曲线四次拟合曲线根据总曲线走向确定选择三次函数拟合四次函数有突变图4力士乐比例溢流阀电流与压强总关系曲线⑵ 比例溢流阀电压型(0-10伏)第一段:区间[0,2],包含坐标点(0,1.4),(0.85,2),(1.4,3.2),(2,6) 曲线函数为:➢ 电压U(V)与开口度函数: ➢ 电压U(V)与压强P(Mpa)函数: ➢ 压强P(Mpa)与电压U(V)函数:第二段:区间[2,4],包含坐标点(2,6),(2.75,10.5),(3.15,15),(3.6,20),(4,24.5)曲线函数为: ➢ 电压U(V)与开口度函数:➢ 电压U(V)与压强P(Mpa)函数:四次函数:➢ 压强P(Mpa)与电压U(V)函数:四次函数:22.22.42.62.833.23.43.63.84234567电压(V )压强(Mp a )原始采样点三次拟合曲线四次拟合曲线这个位置需要增加采样点来确定。

力士乐M4样本

力士乐M4样本

液压油
qV, max pnom p p p p p p p p p p
粘度范围
ν
液压油的允许污染等级 清洁度等级按ISO 4406(c)
电气
电气先导控制阀
推荐的放大器 (更多控制选项请咨询)
集成电子装置(OBE)
任意 管螺纹,按ISO 228/1 kg 4.3 kg 6.0 kg 8.4 kg 4.9 kg 4.2 kg 4.5 kg 4.8 kg 0.6 kg 2.6 ℃ -20到+80 标准油漆
机能符号
负载压力补偿 执行器或泵压力的变化由压力补偿器(3)补偿。即使在负载变 化的情况下,执行器的流量也能保持恒定。 流量限制 最大流量可通过行程限制器(6)以机械的方式单独调节。 溢流功能 每一执行器油口的LS压力均可通过内部使用LS溢流阀(4)或外 部使用LS油口MA、MB来调节。 带补油功能的溢流阀(5)防止执行器油口A和B的压力达到峰 值。 最高负载压力的信号通过LS管路和内置梭阀(7)发送到泵。
例如:M4- 12多路阀(带三个换向阀联)的短型号: M4 – 7654 – 2 0 / 3 M4 – 12
多路阀编号 部件系列号(2X)
换向阀联数量 系列修订标号
RC 64 276/06.06 | M4-12
订货型号
尾联
附加信息
V 01
*
–450 = 电源电压 24 V
1 8
01 =
V= M=
LA = LAPT =
片式高压负荷传感多路阀
RC 64276/06.06
1/48
型号 M4-12
通径12 系列2X 公称压力 350 bar(泵侧) 公称压力 420 bar(执行器侧) 最大流量

详细分析德国REXROTH力士乐流量控制阀工作原理:

详细分析德国REXROTH力士乐流量控制阀工作原理:

详细分析德国REXROTH力士乐流量控制阀工作原理:力士乐流量控制阀是在一定压力差下,依靠改变节流口液阻的大小来控制节流口的流量,从而调节执行元件(液压缸或液压马达)运动速度的阀类。

主要包括节流阀、调速阀、溢流节流阀和分流集流阀等。

下面是力士乐流量控制阀的产品作用跟工作原理分析,自力式力士乐流量控制阀的作用是在阀的进出口压差变化的情况下,维持通过阀门的流量恒定,从而维持与之串联的被控对象(如一个环路、一个用户、一台设备等,下同)的流量恒定。

管网中应用自力式流量平衡阀,可直接根据设计来设定流量,阀门可在水压作用下,自动消除管线的剩余压头及压力波动所引起的流量偏差。

自力式流量控制阀的名称较多,如自力式流量平衡阀、定流量阀、自平衡阀、动态流量平衡阀等。

各种类型的自力式流量控制阀,结构各有相异,但工作原理相似。

REXROTH力士乐流量控制阀工作原理:自力式平衡阀是由一个手动调节阀组和一个自动平衡阀组组成。

调节阀组作用是设定流量,自动平衡阀组作用是维持流量恒定。

系统流体的工作压力为P1,手动调节阀的前后压力分别为P2、P3。

当手动调节阀调到某一位置时,即人为确定了设定流量Kv即手动调节阀的流量系数,流量G=Kv(P2-P3)1/2 ,Kv为,Kv设定后,只要P2-P3不变,则流量G不变。

当系统流量增大时,(P2;-;P3)的实际值超过了允许的给定值,此时通过感压膜和弹簧作用使自动调节阀组自动关小,直至流量重新维持到设定流量,反之亦然。

自力式平衡阀自动调节流量的有效范围取决于工作弹簧的性能。

一般自力式平衡阀前后压差在20;-;300kPa的范围内能按设定值有效控制流量。

当压小于20kPa时,控制流量达不到设定值;压差超过300kPa时,可能产生噪音。

1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溢流阀的静态特性测试
一、实验目的
深入了解溢流阀稳定工作时的静态特性。

学会溢流阀静态特性中的调压范围、启闭特性的测试方法。

并能对被试溢流阀的静态特性作适当的分析。

二、实验原理
通过对溢流阀开启、闭合过程的溢流量的测量,了解溢流阀开启和闭合过程的特性并确定开启和闭合压力。

原理见图3-1。

三、实验仪器
力士乐液压教学实验台、秒表
四、实验内容
1.调压范围及压力稳定性
1)调压范围:应能达到规定的调压范围(0.5--6.3MPa),压力上升与下降时应平稳,不得有尖叫声。

2)调压范围最高值时压力振摆:压力振摆应不超过规定值( 0.2MPa)。

3)调压范围最高值时压力偏离值:三分钟后应不超过规定值(0.2MPa)。

2.启闭特性
1)开启压力:调节系统压力逐渐升高,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的开启压力。

2)闭合压力:调节系统压力逐渐逐渐降低,当通过被试阀的溢流量为额定流量1%时的系统压力值称为被试阀的闭合压力。

图3-2为启闭特性曲线
五、实验步骤
松开溢流阀11,关闭节流阀10,换向阀13失电。

1.启闭特性
调节溢流阀11,使系统压力达到4.5MPa。

二位二通电磁换向阀13得电。

调节被试阀14的实验压力为3.5MPa,用秒表配合量筒测量在试验压力下的全流量。

闭合过程:慢慢逐渐松节流阀10手柄,观察压力表P
,使被试阀14的进
12-2
口压力分别为3.5、3.4、3.3、3.2、3.1…MPa每一压力对应测一流量值,直到被试阀无流量(全流量的1%)溢出为止。

开启过程:调节节流阀10,使系统逐渐升压,当被试阀有流量溢出时开始测量压力与流量,逐渐升压,直到被试阀14流量到全流量为止。

松开溢流阀11,14手柄,停泵。

注意事项
1).调节被试阀进口压力时,开启过程,压力应一直逐渐上升,不允许上升
后又下降再向上调;闭合过程,压力应一直逐渐下降,不允许下降后又上升再下降,否则,压力时高时低,实验数据无法反映启闭特性。

2).使用量筒时要注意控制油面高度,每测完一个数据后,应立即打开放油
开关,以免油液喷出。

2.压力稳定性
在两位三通电磁换向阀13处于失电状态下,将溢流阀11调至4.5MPa ,然后使阀13通电,将被试阀14的压力调至4.3MPa ,由压力表P 12-1测量压力振摆和三分钟后的压力偏移值。

六、实验报告
1.根据所得数据,绘制被试阀的启闭特性曲线。

2.根据整理好的静态特性数据及曲线,对被试阀的静态特性作适当分析。

七、思考题
1.溢流阀静态实验技术指标中,为何规定的开启压力大于闭合压力? 2.溢流阀的启闭特性,有何意义?启闭特性的好与坏对溢流阀的使用性能有何影响?
图3-1 溢流阀特性实验原理图
图3-2溢流阀启闭特性
实验数据记录。

相关文档
最新文档