2011年山东泰安中考数学试卷
2011 山东省各地历年中考数学试题、模拟题集及答案
山东省中考数学试题、模拟题集及答案目录历年试题集及答案2010年山东省济南市中考数学试卷2009年山东省德州市中考数学试题及答案2008年山东省青岛市中考数学试题及答案2007年山东省淄博市中考数学试卷及答案2006年山东省烟台市中考试题数学试题和答案A. 2005年山东省临沂市中考试题数学(非课改实验区用)及答案2005年山东省临沂市中考数学试题(课改实验区用)模拟题集及答案2011山东圆精中考选试题2010~2011学年度第二学期模拟试卷济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2+(-2)的值是 A .-4B .14C .0D .42.一组数据0、1、2、2、3、1、3、3的众数是 A .0B .1C .2D .33.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规第4题图A .B .C .D .第3题图第10题图yxO -1 2 ABCDMNO 第9题图5分数人数(人)156分 020108分 10分第7题图模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为A .0.284×105吨 B .2.84×104吨 C .28.4×103吨D .284×102吨5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=- 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为 A .53分 B .354分 C .403分 D .8分8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B 2C 3D .110.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >2A BCDPE第12题图⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第11题图……11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n 12.如图所示,矩形ABCD 中,AB =4,BC =43E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个ABC DEF第14题图第16题图第17题图济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中的横线上.)13.分解因式:221x x ++= .14.如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.15.解方程23123x x =-+的结果是 . 16.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .ABCD第19题图17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 18.(本小题满分7分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .19.(本小题满分7分)0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长.BACDM第18题图第21题图20.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.21.(本小题满分8分)如图所示,某幼儿园有一道长为16米的墙,计划用32120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.第20题图第22题图22.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?ABCN MPAMN1 CP 2B A CMNP 1 P 2 P 2009 …… ……B第23题图2第23题图1第23题图323.(本小题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A . ⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)x24.(本小题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为y =+l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.济南市2010年初三年级学业水平考试数学试题参考答案及评分标准一、选择题二、填空题13. 2(1)x + 14. 70 15. 9x=-三、解答题18.(1)解:224x xx +-⎧⎨-⎩>≤解不等式①,得1x ->, ················· 1分 解不等式②,得2x ≥-, ················· 2分 ∴不等式组的解集为1x ->. ················· 3分 (2) 证明:∵BC ∥AD ,AB =DC ,∴∠BAM =∠CDM , ·················· 1分 ∵点M 是AD 的中点,∴AM =DM , ····················· 2分∴△ABM ≌△DCM , ·················· 3分 ∴BM =CM . ····················· 4分 19.(1)解:原式0(3)- ·············· 1分2+1 ···················· 2分 -1 ····················· 3分(2)解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ···················· 1分①②∴在Rt△ADC 中,cos30ACAD =︒············· 2分··········· 3分=2 . ·············· 4分20.解:a 与b 的乘积的所有可能出现的结果如下表所示:····························· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ································ 7分∴a 与 b 的乘积等于2的概率是18. (8)分21.解:设BC 边的长为x 米,根据题意得 ············· 1分 321202xx-=, ····················4分 解得:121220x x ==,, ··················· 6分∵20>16,∴220x =不合题意,舍去, ················ 7分 答:该矩形草坪BC 边的长为12米. ············ 8分 22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OD =OA ·tan60°=∴点D 的坐标为(0,), ··············· 1分 设直线AD 的函数表达式为y kx b =+,20k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩AB CM N P 1 第23题图P 21 2O xy B CDP 1P 2P 3P 4123 4 A第22题图∴直线AD 的函数表达式为33y x =+. ·········· 3分 ⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°, ∴∠1=∠2=∠3=∠4=30°,AD =DC =CB =BA =4, ···················· 5分 如图所示:①点P 在AD 上与AC 相切时,AP 1=2r =2,∴t 1=2. ························ 6分②点P 在DC 上与AC 相切时,CP 2=2r =2,∴AD +DP 2=6,∴t 2=6. ········· 7分 ③点P 在BC 上与AC 相切时,CP 3=2r =2,∴AD +DC +CP 3=10,∴t 3=10. ········· 8分 ④点P 在AB 上与AC 相切时,AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切. ··············· 9分23. ⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM , ······ 1分∴四边形AMPN 是平行四边形, · 2分 ∴∠MPN =∠A . ······· 3分DCMNO A B P 第24题图lxyFE ⑵∠MP 1N +∠MP 2N =∠A 正确. ····· 4分 如图所示,连接MN , ······· 5分 ∵13AM AN AB AC ==,∠A =∠A , ∴△AMN ∽△ABC , ∴∠AMN =∠B ,13MN BC =, ∴MN ∥BC ,MN =13BC , ······· 6分∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,·················· 7分 ∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A . ················· 8分 ⑶∠A . ············· 9分24.解:⑴令2230x x -++=,解得:121,3x x =-=, ∴A (-1,0),B (3,0) ······· 2分 ∵223y x x =-++=2(1)4x --+, ∴抛物线的对称轴为直线x =1,将x =1代入333y x =-+y 3 ∴C (1,3. ········ 3分 ⑵①在Rt△ACE 中,tan∠CAE =3CEAE= ∴∠CAE =60º,由抛物线的对称性可知l 是线段AB 的垂直平分线, ∴AC=BC ,∴△ABC 为等边三角形, ················· 4分 ∴AB = BC =AC = 4,∠ABC=∠ACB = 60º, 又∵AM=AP ,BN=BP , ∴BN = CM ,∴△ABN ≌△BCM ,∴AN =BM . ························ 5分 ②四边形AMNB 的面积有最小值. ············· 6分 设AP=m ,四边形AMNB 的面积为S ,由①可知AB = BC= 4,BN = CM=BP ,S △ABC ×42= ∴CM=BN= BP=4-m ,CN=m , 过M 作MF ⊥BC ,垂足为F ,则MF =MC )m -,∴S △CMN =12CN MF =12m )m -=2+,······· 7分 ∴S =S △ABC -S △CMN=2)22)m -+···················· 8分∴m =2时,S 取得最小值··············· 9分绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃ (B)-6℃ (C)6℃ (D)10℃2.计算()4323b a --的结果是(A)12881b a (B )7612b a (C )7612b a - (D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70° (B ) 65° (C ) 50°(D ) 25°4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 ) (B )(-2,-3 ) (C )(2,3 ) D )(3,2)5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是EDBC′FCD ′ A(第3题图)①正方体②圆柱③圆锥④球(第5题图)(A )①②(B )②③ (C ) ②④(D ) ③④6.不等式组⎪⎩⎪⎨⎧≥--+ 2.3,21123x x x >的解集在数轴上表示正确的是7.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(A )10cm (B )30cm (C )45cm (D )300cm 8.如图,点A 的坐标为(-1,0),点B 在直线y =xB 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共96分)(A ) (B )(C ) (D ) (第8题图)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.9.据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为____________人. 10.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为____________. 12.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为 .13.如图,在4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P1.则其旋转中心一定是__________.14.如图,在四边形ABCD 中,已知AB 不平行CD ,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD . 15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折得 分评 卷 人B C DAO(第14题图) E(第15题图)AB ′C F B M 11(第13题图)痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y kx b=+(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.(本题满分7分)化简:22222369x y x y yx y x xy y x y --÷-++++.(第16题图)得分评卷人18. (本题满分9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?19. (本题满分9分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E .(1) 求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.得 分评 卷 人得 分评 卷 人(第19题图)(第18题图)6080 100 120140 160 180 次数20. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?21. (本题满分10分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分 评 卷 人得 分评 卷 人ABC(第21题图)D22. (本题满分10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积;(2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数;(3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.23. (本题满分10分)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)得 分评 卷 人得 分评 卷 人FBD第23题图①BDE第23题图②DB第23题图③E ABC(第22题图)德州市二○○九年中等学校招生考试 数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、二、填空题:(本大题共8小题,每小题4分,共32分) 9.2.3×109; 10.乙;11.-2;12.43;13.点B 14.∠DAC =∠ADB ,∠BAD =∠CDA ,∠DBC =∠ACB ,∠ABC =∠DCB ,OB =OC ,OA =OD ; 15.127或2; 16.()121,2n n --. 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分7分)解:原式=3x y x y-+•222269x xy y x y ++-2yx y -+………………………1分 =3x yx y -+•()()()23x y x y x y ++-2y x y-+………………………4分 =32x y yx y x y +-++ …………………………………………6分 =x yx y++=1. ……………………………………………7分18.(本小题满分9分)解:(1)该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8.因为100.8>100,所以一定超过全校平均次数. …………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内. …………………………………………6分(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人), ……………………………………………………………………………8分 6605033.=.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66. ………………………………………………………… 9分 19.(本题满分9分)(1)解:在△AOC 中,AC =2,∵ AO =OC =2,∴ △AOC 是等边三角形.………2分 ∴ ∠AOC =60°,∴∠AEC =30°.…………………4分 (2)证明:∵OC ⊥l ,BD ⊥l .∴ OC ∥BD . ……………………5分 ∴ ∠ABD =∠AOC =60°.∵ AB 为⊙O 的直径,∴ △AEB 为直角三角形,∠EAB =30°.…………………………7分 ∴∠EAB =∠AEC .∴ 四边形OBEC 为平行四边形. …………………………………8分 又∵ OB =OC =2.∴ 四边形OBEC 是菱形. …………………………………………9分 20.(本题满分9分)解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). …………………………………………………………………………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分解得x =88. ………………………………………………………7分 ∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分 ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分 21.(本题满分10分)解:延长BC 交AD 于E 点,则CE ⊥AD .……1分在Rt △AEC 中,AC =10,由坡比为1:3可知:∠CAE =30°.………2分(第20题图) AB CED∴ CE =AC ·sin30°=10×21=5,………3分 AE =AC ·cos 30°=10×23=35.……5分 在Rt △ABE 中,BE =22AE AB -=()223514-=11.……………………………8分∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米).答:旗杆的高度为6米. …………………………………………10分22.(本题满分10分) 解:(1)由题意,当MN 和AB 之间的距离为0.5米时,MN 应位于DC 下方,且此时△EMN 中MN 边上的高为0.5米. 所以,S △EMN =5.0221⨯⨯=0.5(平方米). 即△EMN 的面积为0.5平方米. …………2分 (2)①如图1所示,当MN 在矩形区域滑动,即0<x ≤1时,△EMN 的面积S =x ⨯⨯221=x ;……3分②如图2所示,当MN 在三角形区域滑动, 即1<x <31+时,如图,连接EG ,交CD 于点F ,交MN 于点H , ∵ E 为AB 中点,∴ F 为CD 中点,GF ⊥CD ,且FG =3. 又∵ MN ∥CD ,∴ △MNG ∽△DCG .∴ GF GH DC MN =,即MN =.……4分故△EMN 的面积S=12x=x x )331(332++-; …………………5分综合可得:()()⎪⎩⎪⎨⎧+⎪⎪⎭⎫ ⎝⎛++-≤=31133133102<<.<,x x x x x S ……………………………6分 (3)①当MN 在矩形区域滑动时,x S =,所以有10≤<S ;………7分②当MN 在三角形区域滑动时,S =x x )331(332++-. 因而,当2312+=-=a b x (米)时,S 得到最大值,NE A B C图2最大值S =a b ac 442-=)()(3343312-⨯+-=3321+(平方米). ……………9分∵13321>+, ∴ S 有最大值,最大值为3321+平方米. ……………………………10分23.(本题满分10分)解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG =12FD .………… 1分 同理,在Rt △DEF 中, EG =12FD . ………………2分 ∴ CG =EG .…………………3分(2)(1)中结论仍然成立,即EG =CG .…………………………4分 证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点. 在△DAG 与△DCG 中,∵ AD =CD ,∠ADG =∠CDG ,DG =DG ,∴ △DAG ≌△DCG .∴ AG =CG .………………………5分在△DMG 与△FNG 中,∵ ∠DGM =∠FGN ,FG =DG ,∠MDG =∠NFG ,∴ △DMG ≌△FNG .∴ MG =NG在矩形AENM 中,AM =EN . ……………6分 在Rt △AMG 与Rt △ENG 中, ∵ AM =EN , MG =NG , ∴ △AMG ≌△ENG . ∴ AG =EG .∴ EG =CG . ……………………………8分证法二:延长CG 至M ,使MG =CG ,连接MF ,ME ,EC , ……………………4分在△DCG 与△FMG 中,∵FG =DG ,∠MGF =∠CGD ,MG =CG , ∴△DCG ≌△FMG .∴MF =CD ,∠FMG =∠DCG .∴MF ∥CD ∥AB .………………………5分∴EF MF ⊥.在Rt △MFE 与Rt △CBE 中,∵ MF =CB ,EF =BE , ∴△MFE ≌△CBE .∴MEF CEB ∠=∠.…………………………………………………6分 ∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°. …………7分DFB 图 ①B D N 图 ②(一)B D 图 ②(二)∴ △MEC 为直角三角形. ∵ MG = CG , ∴ EG =21MC .∴ EG CG =.………………………………8分 (3)(1)中的结论仍然成立,即EG =CG .其他的结论还有:EG ⊥CG .……10分2008年山东省青岛市中考数学试题(考试时间:120分钟;满分120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题,其中1—7题为选择题,请将所选答案的标号,写在第7题后面给出表格的相应位置上:8—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试题给出的本题位置上做答. 一、选择题(本题满分21分,共有7道小题,每小题3分)下列每小题都给出标号为A ,B ,C ,D 的四个结论,其中只有一个是正确的.每小题选对得分;不选,选错或选出的标号超过一个的不得分,请将1—7各小题所选答案的标号填写在第7小题后面表格的相应位置上.1.14-的相反数等于( ) A .14 B .14- C .4D .4-2.下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.4 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( )A .相切B .内含C .外离D .相交4.某几何体的三种视图如右图所示,则该几何体可能是( )A .圆锥体B .球体C .长方体D .圆柱体5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个 B .15个 C .12个 D .10个主视图 左视图 俯视图6.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )7.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --,B .(32)a b --,C .(32)a b ++,D .(23)a b ++,请将1—7各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 答案二、填空题(本题满分21分,共有7道小题,每小题3分)请将8—14各小题的答案填写在第14小题后面表格的相应位置上. 8.计算:0122-+= .9.化简:293x x -=- .10.如图,在矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm ,则AC 的长为 cm .11.如图,AB 是O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 .12.为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一y x O y x O y x O y x O A . C . D . 3 2 1 -1 O -2 -3 -3 -2 -1 1 2 3 x y 图① 3 21 -1 O -2 -3-3 -2 -1 1 2 3 xy 图② P A B C A ' B 'C ' P '次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .13.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .请将8—14各小题的答案填写在下表的相应位置上:题号 8 9 10 11 答案题号 12 13 14 答案三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,AB AC ,表示两条相交的公路,现要在BAC ∠的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .解:(1)测试项目测试成绩A B 面试 90 95 综合知识测试 85 80 AFE O 第14题图ACB (2) 1cm四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分)用配方法解一元二次方程:2220x x --=.17.(本小题满分6分)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)该市共抽取了多少名九年级学生?(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈自己的感想(不超过30字).18.(本小题满分6分)小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?时间(年) 02006 2007 2008 被抽取学生视力在4.9以下 的人数变化情况统计图 A40% B30%C 20%D 10% A :4.9以下B :4.9-5.1C :5.1-5.2D :5.2以上 (每组数据只含最低值不含最高值) 被抽取学生2008年的视 力分布情况统计图19.(本小题满分6分) 在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)20.(本小题满分8分)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?21.(本小题满分8分) 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.ABCDEF E 'G22.(本小题满分10分)某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)60 70y (件) 红黄 红 黄白白 红 黄 白红 红 红白白白 黄 黄黄红 红红白白白 黄 黄黄 白 … 红 黄9个9个...。
t泰安市历届中考数学试题及答案
t泰安市历届中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 4答案:C4. 以下哪个表达式的结果不是整数?A. 3 × 4B. 5 ÷ 2C. 6 - 2D. 8 + 1答案:B5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______或______。
答案:正数;07. 如果一个数的立方等于它本身,那么这个数是______、______或______。
答案:1;-1;08. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是______立方厘米。
答案:249. 一个数的倒数是1/2,那么这个数是______。
答案:210. 一个三角形的内角和是______度。
答案:180三、解答题(共30分)11. 已知一个等腰三角形的两个腰边长为5cm,底边长为6cm,求这个三角形的面积。
解答:首先,我们可以将等腰三角形分成两个直角三角形,每个直角三角形的两直角边分别为3cm和2.5cm(6cm的一半)。
根据勾股定理,我们可以求出高h:h² = 5² - 2.5² = 25 - 6.25 = 18.75h = √18.75 ≈ 4.33cm然后,根据三角形面积公式 S = (底× 高) / 2,我们可以求出面积:S = (6 × 4.33) / 2 ≈ 12.99平方厘米。
12. 一个圆的周长是18.84cm,求这个圆的半径。
解答:根据圆的周长公式C = 2πr,我们可以求出半径r:18.84 = 2πrr = 18.84 / (2π) ≈ 3cm。
2011年中考数学试题精选汇编《矩形、菱形、正方形》
2011年中考数学试题精选汇编《矩形、菱形、正方形》一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H E① ②③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若ABCDBFDESStan EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
泰安市2011年初中学生学业考试数学样题有答案
2011年泰安市初中学业考试 数学试题(样题)考生须知:1.本试卷分第Ⅰ卷和第 Ⅱ 卷两部分,其中第Ⅰ卷 4 页,60分;第Ⅱ卷6页,60分。
满分120分,考试时间120分钟。
2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷。
第Ⅰ卷(选择题 共60分)一、 选择题:本大题共20题,每小题3分,共60分.在每小题给出的代号为ABCD 四个选项中,只有一项是符合题目要求的. 1、-5的相反数是 A.5B.-5C.51D.51-2、由四舍五入法得到的近似数8.8×103,下列说法中正确的是A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字3、如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于A.30° B. 40°C. 60° D. 70°4、4的平方根是 A .2 B .2C .±2D .2±5、计算(-2a ²)·3a 的结果是A -6a ² B-6a ³ C12a ³ D6a ³6、下列几何体中,俯视图是三角形的几何体是AC BD E7、把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -8、若分式221-2b-3b b -的值为0,则b 的值为A. 1B. -1C.±1D. 29、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是A .2+10B .2+210C .12D .18 10、二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩11、不等式42-x ≤0的解集在数轴上表示为12、某县为发展教育事业,加强了对教育经费的投入,2008年投入3 000万元,预计2010年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=13、如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形① ② 3 410CDB DM NC AOA BCD 的面积为 A .33cm 2B .6 cm 2C .36cm 2D .12 cm 214、已知反比例函数y =1x ,下列结论不正确...的是 A .图象经过点(1,1) B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大15、如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B .22C .32D .116、某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大17、如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E , 则下列结论中不成立...的是 A.A D ∠=∠ B.CE DE = C.90ACB ∠=D.CE BD =21世纪教育网 18、有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是A .31 B .41 C .32 D .43 19、如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称, 则对称中心E 点的坐标是个数 平均 质量(g ) 质量的方差甲厂 50 150 2.6乙厂 50 150 3.1ED O CBAA .(3,-1) B.(0,0) C.(2,-1) D.(-1,3)20、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是 A .ab <0 B .ac <0C .当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D .二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根[来源:21世纪教育网AOxy12 -1 -2 -3 -11234-4BCA 1C 1B 152xoy2011年泰安市初中学业考试 数学试题(样题) 第Ⅱ卷 (非选择题,共60分)注意事项:1、答题前请填写好密封线内的内容。
2011年泰安市数学中考模拟试题
2011年泰安市数学中考模拟试题时间:120分钟 满分:150一、选择题(本题共10小题,每题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内.)1.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克。
某地今年计划栽插这种超级水稻3000亩,预计该地今年收获这种超级杂交稻的总产量(用科学记数法表示)是( )A .2.5×106千克B . 2.46×106千克C .2.5×105千克D .2.46×105千克2.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )3.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:4 4.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )A . 120°B .80°C .60°D .150°5.在下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .等腰三角形B .圆C .梯形D .平行四边形6.把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-27.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .21cmB .16cmC .7cmD .27cm(1) A B C DE D C B A8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )(A) (B) (C) (D)9.右图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A.180万B.200万C.300万D.400万10.如图,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m的取什范围是A . 2<m <22B .1<m <11C .10<m <12D .5<m <6二、填空题(本题共有5小题,每题4分,共20分.请把结果直接填在题中的横线上.) 11.分解因式:a 3-a= 。
2011年全国各地100份中考数学试卷分类汇编-二次函数
2011年全国各地100份中考数学试卷分类汇编第13章 二次函数一、选择题1. (2011山东滨州,7,3分)抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位 【答案】B 【答案】D2. (2011广东广州市,5,3分)下列函数中,当x >0时y 值随x 值增大而减小的是( ).A .y = x 2B .y = x -1C . y = 34 xD .y = 1x【答案】D3. (2011湖北鄂州,15,3分)已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .34. (2011山东德州6,3分)已知函数))((b x a x y --=(其中a b >)的图象如下面右图所示,则函数b ax y +=的图象可能正确的是【答案】D5. (2011山东菏泽,8,3分)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是A .a +b =-1B . a -b =-1C . b <2aD . ac <0y x1 1O(A ) y x1 -1 O (B )yx-1 -1 O (C )1-1 xy O (D )第6题图【答案】B6. (2011山东泰安,20 ,3分)若二次函数y=ax 2+bx+c 的x 与y 的部分对应值如下表:X -7 -6 -5 -4 -3 -2 y-27-13-3353则当x =1时,y 的值为A.5B.-3C.-13D.-27 【答案】D7. (2011山东威海,7,3分)二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >3【答案】A8. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h【答案】A9. (2011浙江温州,9,4分)已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量取值范围内,下列说法正确的是( ) A .有最小值0,有最大值3 B .有最小值-1,有最大值0 C .有最小值-1,有最大值3 D .有最小值-1,无最大值【答案】D10.(2011四川重庆,7,4分)已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0B . b <0C . c <0D . a +b +c >0 【答案】D11. (2011台湾台北,6)若下列有一图形为二次函数y =2x 2-8x +6的图形,则此图为何?【答案】A12. (2011台湾台北,32)如图(十四),将二次函数228999931+-=x x y 的图形画在坐标平面上,判断方程式0899993122=+-x x 的两根,下列叙述何者正确?A .两根相异,且均为正根B .两根相异,且只有一个正根C .两根相同,且为正根D .两根相同,且为负根 【答案】A13. (2011台湾全区,28)图(十二)为坐标平面上二次函数c bx ax y ++=2的图形,且此图形通(-1 ,1)、(2 ,-1)两点.下列关于此二次函数的叙述,何者正确?A .y 的最大值小于0B .当x =0时,y 的值大于1C .当x =1时,y 的值大于1D .当x =3时,y 的值小于0 【答案】D14. (2011甘肃兰州,5,4分)抛物线221y x x =-+的顶点坐标是 A .(1,0) B .(-1,0)C .(-2,1)D .(2,-1)【答案】A15. (2011甘肃兰州,9,4分)如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。
2011年全国各地中考数学试卷试题分类汇编——第15章《数据的集中趋势与离散程度》
C丙
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
D丁
新疆 源头学子小屋 特级教师 王新敞
wxckt@ /wxc/
新疆 源头学子小屋 特级教师 王新敞
wxckt@
/wxc/
【答案】D 10. (2011贵州安顺,4,3分)我市某一周的最高气温统计如下表: 最高气温(℃) 天 数 25 1 26 1 27 2 ) C.28,27 D.26.5,27 28 3
致力打造最专业的中小学学科网,服务于教师,服务于教育,服务于社会
A.a<b 且 c>d 【答案】A
B.a<b 且 c<d
C.a>b 且 c>d
D.a>b 且 c<d
19. (2011 台湾台北,22)22. 表(二)为某班成绩的次数分配表。已知全班共有 38 人,且 众数为 50 分,中位数为 60 分,求 x 2 2 y 之值为何?
致力打造最专业的中小学学科网,服务于教师,服务于教育,服务于社会
25. (2011 广东株洲,3,3 分)孔明同学在庆祝建党 90 周年的演讲比赛中,6 位评委给 他的打分如下表: 评委代号 评 分 Ⅰ 85 ) C.85 D.80 Ⅱ 90 Ⅲ 80 Ⅳ 95 Ⅴ 90 Ⅵ 90
致力打造最专业的中小学学科网,服务于教师,服务于教育,服务于社会
A. 条形统计图 图 【答案】C
B. 扇形统计图
C. 折线统计图
D.频数分布直方
14. (2011 浙江温州,2,4 分)某校开展形式多样的“阳光体育”活动,七(3)班同学积极 响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示) ,由图 可知参加人数最多的体育项目是( )
2011黄冈.淄博.泰安数学中考答案-推荐下载
=
1 100
x
602
41
+
99 100
x2
294 5
x 302 1065 ,表明 x=30 时,y 最大且为 1065,那么三年获利最大为 1065×3=3495
万元, 故五年获利最大值为 80+3495-50×2=3475 万元. ⑶有极大的 24.解:⑴b=1
6 号: 84 2 92 3 85 5 86.9 ; 10
∵88.1>86.9>86.4>84.6>84.2>80.8,
∴序号是 3,6 号的选手将被录用. 21.(本题满分 9 分) 解:(1)证明:连接 OE,则 OB=OE.
∵△ABC 是等边三角形, ∴∠ABC=∠C=60°.
∴△OBE 是等边三角形. D
∴∠OEB=∠C =60°.
∴OE∥AC .
∵EF⊥AC,
………3 分
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2011年山东省泰安市中考数学试题(WORD解析版)
2011年山东省泰安市中考数学试卷—解析版一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1、(2011•泰安)错误!未找到引用源。
的倒数是()A、错误!未找到引用源。
B、错误!未找到引用源。
C、错误!未找到引用源。
D、错误!未找到引用源。
考点:倒数。
专题:计算题。
分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•错误!未找到引用源。
=1 (a≠0),就说a(a≠0)的倒数是错误!未找到引用源。
.解答:解:错误!未找到引用源。
的倒数是﹣错误!未找到引用源。
,故选D.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•泰安)下列运算正确的是()A、3a2+4a2=7a4B、3a2﹣4a2=﹣a2C、3a•4a2=12a2D、错误!未找到引用源。
考点:整式的除法;合并同类项;单项式乘单项式。
专题:计算题。
分析:根据单项式除单项式的法则、合并同类项以及整式的除法法则计算即可.解答:解:A、3a2+4a2=7a2,故本选项错误;B、3a2﹣4a2=﹣a2,故本选项正确;C、3a•4a2=12a3,故本选项错误;D、(3a2)2÷4a2=错误!未找到引用源。
a2,故本选项错误;故选B.点评:本题主要考查多项式除以单项式运算、合并同类项以及整式的除法法则,牢记法则是关键.3、(2011•泰安)下列图形:其中是中心对称图形的个数为()A、1B、2C、3D、4考点:中心对称图形。
专题:图表型。
分析:根据轴对称图形与中心对称图形的概念求解.解答:解:一图是轴对称图形,二图是中心对称图形,三图是轴对称图形,四图即是中心对称图形,也是周对称图形;所以,中心对称图形的个数为2.故选B.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、(2011•泰安)第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人.这个数据用科学记数法表示为()A、134×107人B、13.4×108人C、1.34×109人D、1.34×1010人考点:科学记数法—表示较大的数。
2011年山东省泰安市中考数学试题及答案
泰安市2009年高中段学校招生考试数学试题注意事项:1、 本试题分第1卷和第2卷两部分,第1卷3页为选择题,36分;第2卷8页为非选择题,84分;共120分,考试时间120分。
2、 答第1卷前务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束、试题和答题卡一并收回。
3、 第1卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的序号标号(ABCD )涂黑如有改动,必须先用橡皮擦干净,在涂改其他答案,不能答在试卷上。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12分,在每小题给出的四个选项中,只有一个是正确的,请把正确的答案选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分) 1、 下列各式,运算结果为负数的是(A ))3()2(---- (B ))3()2(-⨯- (C )2)2(-- (D )3)3(--2、 光的传播速度约为300000km/s ,太阳光照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法可表示为 (A )km 71015⨯ (B )km 9105.1⨯(C )km 8105.1⨯ (D )km 81015⨯ 3、 抛物线1822-+-=x x y 的顶点坐标为(A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)4、 如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为(A )30° (B )60°(C )30°或150° (D )60°或120° 5、 若的值为则2y-x 2,54,32==yx(A )53 (B )-2(C )553 (D )56 6、 如图,是一个工件的三视图,则此工件的全面积是(A )85πcm 2 (B )90πcm 2 (C )155πcm 2 (D )165πcm 27、 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是 (A )2 (B )3 (C )25(D )4 8、 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 9、 在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为 (A )km 3310 (B )km 335 (C )km 25 (D )km 3510、 某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在 (A )第二组 (B )第三组 (C )第四组 (D )第五组11、 如图,在△ABC 中,AD 是BC 边的中线,∠ADC=30°,将△ADC 沿AD 折叠,使C 点落在C ’的位置,若BC=4,则BC ’的长为 (A )32 (B )22 (C )4 (D )3 12、 如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
2011——2019泰安市中考真题《反比例函数》汇编
2011——2019泰安市中考真题《反比例函数》汇编1、(2011•泰安)如图,一次函数y=k 1x+b 的图象经过A (0,﹣2),B (1,0)两点,与反比例函数的图象在第一象限内的交点为M ,若△OBM 的面积为2. (1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM△MP ?若存在,求出点P 的坐标;若不存在,说明理由.2、(2012泰安)如图,一次函数y kx b =+的图象与坐标轴分别交于A ,B 两点,与反比例函数n y x=的图象在第二象限的交点为C ,CD △x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1. (1)求一次函数与反比例的解析式; (2)直接写出当0x <时,0kkx b x+->的解集.3、(2013泰安)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数y=的图象经过点C ,一次函数y=ax+b 的图象经过点C ,一次函数y=ax+b 的图象经过点A , (1)求反比例函数与一次函数的解析式;(2)求点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.4、(2014泰安)(8分)如图①,△OAB 中,A (0,2),B (4,0),将△AOB 向右平移m 个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数xk=y 的图象经过点A′,一次函数y=ax+b 的图象经过A′、B′两点.求反比例函数及一次函数的表达式; (2)若反比例函数xk=y 的图象经过点A′及A′B′的中点M ,求m 的值.5、(本小题满分8分) 一次函数y=kx+b 与反比例函数y=mx图象相交于A (-1,4),B (2,n )两点,直线AB 交x 轴于点D 。
(1)求一次函数与反比例函数的表达式;(2)过点B 作BC△y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S 。
t泰安市历届中考数学试题及答案
t泰安市历届中考数学试题及答案泰安市历届中考数学试题及答案在泰安市的历届中考数学试题中,包含了各种各样的题型和难度级别。
这些试题集合了数学知识和解题能力的考察,对于备战中考的考生来说,是非常有参考价值的。
下面将为大家介绍一些泰安市历届中考数学试题及其答案,并希望能对广大考生有所帮助。
一、选择题1. 题目描述:某项工程,两个挖土机分别在甲,乙两个挖土点挖土,并运到工地。
已知甲地到工地的距离为6千米,乙地到工地的距离为8千米。
现从甲地和乙地同时出发,两个挖土机以相同的速度向工地行驶。
已知甲地的挖土机比乙地的挖土机多行驶2小时后,两台挖土机同时到达工地。
假设挖土机一秒钟可以挖土0.2千米,则挖土机甲和乙的速度之比是()。
A. 3:4B. 4:3C. 2:3D. 3:2答案:A2. 题目描述:下图是一个正方形围墙的平面图,ABCD是正方形四个顶点,E、F、G、H分别是AB、BC、CD和DA边上的四个点,相邻两点之间的距离均为1米。
若一只蚂蚁从点E出发沿图示路径顺时针绕一圈回到E,那么它所走的路程是()。
A. 16米B. 18米C. 20米D. 22米答案:A二、填空题1. 题目描述:若直线y = kx + 3与曲线y = x^2 - 2的图象恰有一个公共点,则实数k的值是______。
答案:-22. 题目描述:已知点A在直线y = 2x + 1上,且点A到直线y = x + 1的距离为14,则点A的坐标为(______,______)。
答案:(3, 7)三、解答题1. 题目描述:已知正方形ABCD的边长为8米,点E为BC边上的一个点,且BE = 5米,请你求AE的长度。
解答步骤:解题思路:根据勾股定理,正方形的对角线长度等于边长的根号2倍。
1. 正方形对角线的长度为8 * √2 = 8√2 米。
2. 根据正方形的对称性,点E到对角线AC上的距离等于点E到对角线BD上的距离。
3. 设点F为AE的交点,则点F到对角线AC的距离为8√2 - 5 米。
2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》
1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .
山东省泰安市中考数学试题版.doc
泰安市2011年初中学生学业考试数 学 试 题本试题第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至4页,第Ⅱ卷5至10页,共120分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)注意事项:1.答第卷Ⅰ前,考试务必将自己的姓名.准考证号.考试科目.试卷类型用2B 铅笔涂.写在答题卡上。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。
3.考试结束后,监考人员将本体试卷和答题卡一并收回。
一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.54-的倒数是 (A )54 (B )45 (C )54- (D )45-2.下列运算正确的是(A )422743a a a =+ (B )22243a a a -=- (C )221243a a a =∙ (D )2222434)3(a a a =÷ 3.下列图形:其中是中心对称图形的个数为(A )1 (B )2 (C )3 (D )4 4.第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人。
这个数据用科学记数法表示为(A )710134⨯人 (B )8104.13⨯人 (C )91034.1⨯人 (D )101034.1⨯人 5.下列等式不成立的是(A ))4)(4(162+-=-m m m (B ))4(42+=+m m m m (C )22)4(168-=+-m m m (D )22)3(93+=++m m m30=+y x 4001612=+y x30=+y x4001216=+y x6.下列几何体:其中,左视图是平行四边形的有(A )4个 (B )3个 (C )2个 (D )1个 7.下列运算正确的是(A )525±= (B )12734=-(C )9218=÷(D )62324=∙8.如图,m l //,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=20°,则∠α的度数为(A )25° (B )30° (C )20° (D )35° 9. 某校篮球班21名同学的身高如下表 身高cm 180186188192208人数(个)4 65 4 2则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm ) (A )186,186(B )186,187(C )186,188(D )208,18810.如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6则⊙O 的半径为(A )2 (B )22 (C )22 (D )26 11.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(A ) (B )(C ) (D )12.若点A 的坐标为(6,3)O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到O A ′,则点A ′的坐标是(A )(3,-6) (B )(-3,6) (C )(-3,-6)(D )(3,6)13.已知一次函数2-+=n mx y 的图像如图所示,则m 、n 的取值301216=+y x 400=+y x 301216=+y x400=+y xx -3>0 62334x x -〉+ 范围是(A )m >0,n <2(B )m >0,n >2(C )m <0,n <2(D )m <0,n >2 14.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是 (A )5π (B )4π (C )3π (D )2π 15.如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E ,则下列结论错误..的是 (A )AB DF EA ED= (B )FB EFBC DE = (C )BE BF DEBC =(D )AEBCBE BF = 16.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为 (A )91 (B )61 (C )31 (D )21 17.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为21,S S ,则21S S +的值为(A )16 (B )17 (C )18 (D )1918.不等式组 的最小整数解为(A )0 (B )1 (C )2 (D )1-19.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为(A )32 (B )232 (C )3 (D )6 20.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:x —7 —6 —5 —4 —3 —2 y—27—13—3353则当1=x 时,y 的值为(A )5 (B )—3 (C )—13 (D )—27泰安市2011年初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共60份)成绩统计题号 二 三总分 25 26 27 28 29 得分注意事项:1. 第Ⅱ卷用蓝、黑钢笔或中性笔直接答在试卷中(除题目有特殊要求外)。
2011年山东省圆中考专题(答案)
2011山东中考数学分类------圆一、选择题1.(淄博 11,4分)如图,矩形ABCD 中,AB=4,以点B 为圆心,BA 为半径画弧交BC 于点E ,以点O 为圆心的⊙O 与弧AE ,边AD ,DC 都相切.把扇形BAE 作一个圆锥的侧面,该圆锥的底面圆恰好是⊙O ,则AD 的长为( )A .4B .92C .112D .5 【答案】D 。
2.(临沂 6,3分)如图,⊙O 的直径CD=5cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,OM :OD=3:5 .则AB 的长是( )A 、2cm B 、3cm C 、4cm D 、2cm 故选C .3,(•滨州3,3分)如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在 y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( ) A 、(﹣4,5) B 、(﹣5,4)C 、(5,﹣4) D 、(4,﹣5) 故选D .4(济宁 5,3分).已知⊙O 1与⊙O 2相切,⊙O 1的半径为9 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 A .1 cm B .5 cmC .1 cm 或5 cmD .0.5cm 或2.5cm5(济宁 9.3分)如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为 ( ) A .6cm B .35cm C .8cm D .53cm6,(泰安 10,3分).如图,⊙O 的弦AB 垂直平分半径OC ,若AB=,6⊙O 的半径为 (A )2 (B )22 (C )22 (D )267(泰安 14,3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是(A )5π (B )4π (C )3π (D )2π 8 (日照 11.4分)已知AC ⊥BC 于C ,BC =a ,CA =b ,AB =c ,下列选项中⊙O 的半径为ba ab的是(第9题)剪去9(莱芜 11,3分)将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系是【 D 】A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S 底 10(青岛 3,3分)已知⊙O 1与⊙O 2的直径分别是4cm 和6cm ,O 1O 2=5cm ,则两圆的位置关系是【 】 A .外离 B .外切 C .相交 D .内切11(青岛 7,3分)7.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm 的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【 】 A .17cm B .4cm C .15cm D .3cm12、(2011•潍坊9,3分)如图,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( ) A 、17π B 、32π C 、49π D 、80π 故选B .13(枣庄 7,3分)7.如图,PA 是O ⊙的切线,切点为A ,P A =23,∠APO =30°, 则O ⊙的半径为( ) A .1B .3C .2D .4二、填空 1、(济宁 13,3分)如图,在Rt △ABC 中,∠C=90°,BC=4cm ,以点C 为圆心,以3cm 长为半径作圆,则⊙C 与AB 的位置关系是 。
2011年中考数学考试试题答案
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
2011年中考数学试题分类11 函数与一次函数
30.(2011湖北黄石,10,3分)已知梯形ABCD的四个顶点的坐标分别为A(-1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为
A.- B.- C.- D.-
【答案】A
31.(2011湖南衡阳,6,3分)函数 中自变量x的取值范围是()
【答案】A
46.(2011江苏南通,9,3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图像如图所示.根据图像信息,下列说法正确的是
A.甲的速度是4千米/小时
B.乙的速度是10千米/小时
【答案】B
3.(2011广东广州市,9,3分)当实数x的取值使得有意义时,函数y=4x+1中y的取值范围是().
A.y≥-7B.y≥9C.y>9D.y≤9
【答案】B
4.(2011山东滨州,6,3分)关于一次函数y=-x+1的图像,下列所画正确的是( )
【答案】C
5.(2011重庆江津,4,4分)直线y=x-1的图像经过象限是( )
C.x≥D.x<
【答案】A
25.(2011四川乐山3,3分)下列函数中,自变量x的取值范围为x<1的是
A. B. C. D.
【答案】D
26.(2011四川乐山8,3分)已知一次函数 的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式 的解集为
A.x<-1 B.x>-1 C.x>1 D.x<1
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限
2011山东泰安中考数学(word)
2011年泰安市中考试题数 学(满分150分,考试时间120分钟)第一部分(选择题 共60分)一、选择题(本大题共20小题,每小题3分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.(2011山东泰安,1 ,3分)- 45的倒数是( )A.45 B.54 C.- 45 D.- 54【答案】D2.(2011山东泰安,2 ,3分)下列运算正确的是( )A .3a 3+4a 3=7a 6B .3a 2-4a 2=-a 2C .3a 2·4a 3=12a 3D .(3a 3)2÷4a 3=34a 2【答案】B 3.(2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B 4.(2011山东泰安,4 ,3分)第六次人口普查公布的数据表明,登记的全国人口数量约为1340 000 000人,这个数据用科学记数法表示为( ) A.134×107人 B.13.4×108 人 C.1.34×109人 D.1.34×1010人 【答案】C 5.(2011山东泰安,5 ,3分)下列等式不成立...的是( ) A.m 2-16=(m-4)(m+4) B.m 2+4m=m(m+4)C.m 2-8m+16=(m-4)2D.m 2+3m+9=(m+3)2 【答案】D 6.(2011山东泰安,6 ,3分)下列几何体:其中,左视图是平等四边形的有( )A.4个B.3个C. 2个D.1个`【答案】B 7.(2011山东泰安,7 ,3分)下列运算正确的是( )A.25=±5B.43-27=1C.18÷2=9D.24·32=6 【答案】D 8.(2011山东泰安,8 ,3分)如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=200,则∠α的度数为( )A.250B.300C.200D.350 【答案】A 9.(则该校篮球班21名同学身高的众数和中位数分别是(单位:cm )( ) A.186,186 B.186,187 C.186,188 D.208,188 【答案】C10.(2011山东泰安,10 ,3分)如图,⊙O 的弦AB 垂直平分半径OC ,若AB =6,则⊙O 的半径为( )A. 2B.2 2C.22 D.62【答案】A11.(2011山东泰安,11 ,3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.⎩⎨⎧x+y=3012x+16y=400 B.⎩⎨⎧x+y=3016x+12y=400 C.⎩⎨⎧12x+16y=30x+y=400 D.⎩⎨⎧16x+12y=30x+y=400 【答案】B 12.(2011山东泰安,12 ,3分)若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转900得到OA ',则点A '的坐标为( )A.(3,-6)B.(-3,6)C.(-3,-6)D.(3,6) 【答案】A 13.(2011山东泰安,13 ,3分)已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >2 【答案】D 14.(2011山东泰安,14 ,3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是( )A.5πB. 4πC.3πD.2π 【答案】C 15.(2011山东泰安,15 ,3分)如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是A.ED EA =DF ABB.DE BC =EF FBC. BC DE =BF BED.BF BE =BC AE【答案】C16.(2011山东泰安,16 ,3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为A.19B.16C.13D.12【答案】C17.(2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19 【答案】B18.(2011山东泰安,18 ,3分)不等式组⎩⎪⎨⎪⎧3-x >04x 3+32 >- x 6 的最小整数解为 A.0 B.1 C.2 D.-1【答案】A 19.(2011山东泰安,19 ,3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为 A.23 B.332C. 3D.6【答案】A 20.(2则当x =1时,y 的值为A.5B.-3C.-13D.-27 【答案】D第二部分(非选择题 共60分)二、填空题本大题共4小题,每小题3分,满分12分 21.(2011山东泰安,21 ,3分)方程2x 2+5x -3=0的解是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年山东省泰安市中考数学试卷一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1、(2011•泰安)的倒数是()A、B、C、D、考点:倒数。
专题:计算题。
分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.解答:解:的倒数是﹣,故选D.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•泰安)下列运算正确的是()A、3a2+4a2=7a4B、3a2﹣4a2=﹣a2C、3a•4a2=12a2D、考点:整式的除法;合并同类项;单项式乘单项式。
专题:计算题。
分析:根据单项式除单项式的法则、合并同类项以及整式的除法法则计算即可.解答:解:A、3a2+4a2=7a2,故本选项错误;B、3a2﹣4a2=﹣a2,故本选项正确;C、3a•4a2=12a3,故本选项错误;D、(3a2)2÷4a2=a2,故本选项错误;故选B.点评:本题主要考查多项式除以单项式运算、合并同类项以及整式的除法法则,牢记法则是关键.3、(2011•泰安)下列图形:其中是中心对称图形的个数为()A、1B、2C、3D、4考点:中心对称图形。
专题:图表型。
分析:根据轴对称图形与中心对称图形的概念求解.解答:解:一图是轴对称图形,二图是中心对称图形,三图是轴对称图形,四图即是中心对称图形,也是周对称图形;所以,中心对称图形的个数为2.故选B.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、(2011•泰安)第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人.这个数据用科学记数法表示为()A、134×107人B、13.4×108人C、1.34×109人D、1.34×1010人考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 340 000 000=1.34×109人.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n 的值.5、(2011•泰安)下列等式不成立的是()A、m2﹣16=(m﹣4)(m+4)B、m2+4m=m(m+4)C、m2﹣8m+16=(m﹣4)2D、m2+3m+9=(m+3)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:由平方差公式,提公因式以及完全平方公式分解因式的知识求解即可求得答案.解答:解:A、m2﹣16=(m﹣4)(m+4),故本选项正确;B、m2+4m=m(m+4),故本选项正确;C、m2﹣8m+16=(m﹣4)2,故本选项正确;D、m2+3m+9≠(m+3)2,故本选项错误.故选D.点评:此题考查了因式分解的知识.注意因式分解的步骤:先提公因式,再用公式法分解,注意分解要彻底.6、(2011•泰安)下列几何体:其中,左视图是平行四边形的有()A、4个B、3个C、2个D、1个考点:简单几何体的三视图。
分析:左视图是从几何体的左面看所得到的图形.解答:解:圆柱的左视图是长方形,长方形是一个特殊的平行四边形;圆锥的左视图是三角形;棱柱的左视图是长方形,长方形是一个特殊的平行四边形;长方体的左视图是长方形,长方形是一个特殊的平行四边形;故左视图是平行四边形的有3个,故选:B,点评:此题主要考查了几何体的三视图,解决此类图的关键是由立体图形得到三视图,以及考查学生空间想象能力.7、(2011•泰安)下列运算正确的是()A、B、C、D、考点:二次根式的混合运算。
专题:计算题。
分析:根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.解答:解:A.∵=5,∴故此选项错误;B.∵4﹣=4﹣3=,∴故此选项错误;C.÷==3,∴故此选项错误;D.∵•==6,∴故此选项正确.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8、(2011•泰安)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()A、25°B、30°C、20°D、35°考点:平行线的性质;对顶角、邻补角;三角形的外角性质。
专题:计算题。
分析:根据平角的定义求出∠ACR,根据平行线的性质得出∠FDC=∠ACR=70°,求出∠AFD,即可得到答案.解答:解:∵∠β=20°,∠ACB=90°,∴∠ACR=180°﹣90°﹣20°=70°,∵l∥m,∠FDC=∠ACR=70°,∴∠AFD=∠FDC﹣∠A=70°﹣45°=25°,∴∠a=∠AFD=25°,点评:本题主要考查对平行线的性质,三角形的外角性质,对顶角、邻补角等知识点的理解和掌握,求出∠AFD的度数是解此题的关键.9、(2011•泰安)某校篮球班21名同学的身高如下表则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm)()A、186,186B、186,187C、186,188D、208,188考点:众数;中位数。
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.解答:解:众数是:188cm;中位数是:188cm.故选C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10、(2011•泰安)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A、B、C、D、考点:垂径定理;勾股定理。
专题:探究型。
分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=则AD==,OD=,再利用勾股定理即可得出结论.解答:解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选A.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11、(2011•泰安)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是()A、B、C、D、考点:由实际问题抽象出二元一次方程组。
专题:应用题。
分析:根据甲乙两种奖品共30件,可找到等量关系列出一个方程,在根据甲乙两种奖品的总价格找到一个等量关系列出一个方程,将两个方程组成一个二元一次方程组.解答:解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以x+y=30因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=400由上可得方程组:故选B.点评:本题考查根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12、(2011•泰安)若点A的坐标为(6,3)O为坐标原点,将OA绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是()A、(3,﹣6)B、(﹣3,6)C、(﹣3,﹣6)D、(3,6)考点:坐标与图形变化-旋转。
专题:作图题。
分析:正确作出A旋转以后的A′点,即可确定坐标.解答:解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选A.点评:本题考查了图形的旋转,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.13、(2011•泰安)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A、m>0,n<2B、m>0,n>2C、m<0,n<2D、m<0,n>2考点:一次函数图象与系数的关系。
专题:探究型。
分析:先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交与正半轴可知n﹣2>0,进而可得出结论.解答:解:∵一次函数y=mx+n﹣2的图象过二、四象限,∴m<0,∵函数图象与y轴交与正半轴,∴n﹣2>0,∴n>2.故选D.点评:本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b 的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14、(2011•泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A、5πB、4πC、3πD、2π考点:圆锥的计算。
分析:半圆的面积就是圆锥的侧面积,根据半圆的弧长等于圆锥底面圆的周长,即可求得圆锥底面圆的半径,进而求得面积,从而求解.解答:解:侧面积是:×π×22=2π.底面的周长是2π.则底面圆半径是1,面积是π.则该圆锥的全面积是:2π+π=3π.故选C.点评:本题主要考查了圆锥的计算,正确理解圆锥的底面的周长等于展开图中扇形的弧长是解题的关键.15、(2011•泰安)如图,点F是▱ABCD的边CD上一点,直线BF交AD 的延长线与点E,则下列结论错误的是()A、B、C、D、考点:平行线分线段成比例;平行四边形的性质。
分析:由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.点评:本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.16、(2011•泰安)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为()A、B、C、D、考点:列表法与树状图法。