中考数学专题复习19 二次函数的应用
九年级数学下册《二次函数的应用》期末专题复习
九年级数学下册《二次函数的应用》期末专题复习【基础知识回顾】一、二次函数与一元二次方程:二、二次函数解析式的确定:1、设顶点式,即:设2、设一般式,即:设3、设交点式,即:设【提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:2、与一次函数或直线形图形结合的综合性问题【提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1 (呼和浩特)已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A.有最大值,最大值为 B.有最大值,最大值为C.有最小值,最小值为 D.有最小值,最小值为对应训练1.已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为()A.a>b B.a<b C.a=b D.不能确定考点二:确定二次函数关系式例2 如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.对应训练2.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.考点三:二次函数与x轴的交点问题例3 若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.3对应训练3.(株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0) B.(-2,0) C.x=-3 D.x=-2考点四:二次函数的实际应用例4 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是 m.例5 (重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:月份x 1 2 3 4 5 6输送的污水量y1(吨)12000 6000 4000 3000 2400 20007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=x-x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)对应训练4.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行 m才能停下来.考点五:二次函数综合性题目例6 如图,抛物线交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线沿y轴翻折得抛物线.(1)求的解析式;(2)在的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;(3)平行于x轴的一条直线交抛物线于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.对应训练6.如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【聚焦中考】1.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.92.抛物线y=-3x2-x+4与坐标轴的交点个数是()A.3 B.2 C.1 D.03.(济南)如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.4.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…20 30 40 50 60 …每天销售量(y件)…500 400 300 200 100 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)洛阳市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?5.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.6.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?【备考真题过关】一、选择题1、如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于()A. B. C.3 D.42、已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.(资阳)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x>5 C.x<-1且x>5 D.x<-1或x>53、如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:①当x>0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是或.其中正确的是()A.①② B.①④ C.②③ D.③④4、如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.45、若二次函数y=(x+1)(x﹣m)的图象的对称轴在y轴的右侧,则实数m的取值范围是()A.m<﹣1 B.﹣1<m<0 C.0<m<1 D.m>16、二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3C.﹣6 D.9二、解答题7、如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h= (t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?8、某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)9、某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)20 30出厂价(元/张)50 70(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价-成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?10、抛物线y= x2+x+m的顶点在直线y=x+3上,过点F(-2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.11、如图,一次函数y=- x+2分别交y轴、x轴于A、B两点,抛物线y=-x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大第 11 页 共 11 页 值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.14.已知抛物线y= x 2+1(如图所示).(1)填空:抛物线的顶点坐标是( , ),对称轴是 ;(2)已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;(3)在(2)的条件下,点M 在直线AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.。
苏科版数学中考复习专题练习— 二次函数及其应用(含答案)
二次函数及其应用一、学习目标1.掌握二次函数的定义;2.理解并掌握二次函数的图像以及性质;3.会利用二次函数的性质解决实际问题.二、典型例题题型一、二次函数的概念例题1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=1x2+1C.y=x(x+1) D.y=(x+2)2-x2【题小结】用二次函数的概念进行判断借题发挥:若y=(k-1)x k2+1是二次函数,则k=.题型二、二次函数的图像与性质例题2.关于抛物线y=3(x-1)2+2,下列说法错误的是()A.开口方向向上B.对称轴是直线x=1C.顶点坐标为(1,2)D.当x>1时,y随x的增大而减小例题3.已知二次函数y=2x2-8x+c的图象过点A(-2,y1),B(-1,y2),C(8,y3),则y1,y2,y3的大小关系是()A.y3>y1>y2B.y1>y2>y3C.y2>y3>y1D.y3>y2>y1【题小结】用二次函数的图像与性质解决借题发挥:1.当x≥2时,二次函数y=x2-2x-3有()A.最大值-3 B.最小值-3 C.最大值-4 D.最小值-42.二次函数y=ax2+bx+c的部分图象如图,图象过点A(3,0),对称轴为直线x=1,下列结论:①a -b+c=0;②2a+b=0;③4ac-b2>0;④a+b≥am2+bm(m为实数).其中正确的结论有()A.1个B.2个C.3个D.4个题型三、用待定系数法求二次函数例题5.如图,已知点A的坐标是(1,3),将线段OA绕点O逆时针旋转90°得到OB.(1)求经过A、O、B三点的抛物线的解析式;(2)若M是线段AB上的一个动点,过点M作MN⊥x轴交抛物线于点N,当线段MN的长度取最大值时,求点M的坐标.借题发挥:已知二次函数的图象如图所示:(1)求这个二次函数的表达式;(2)观察图象,当-3<x<0时,y的取值范围为;(3)将该二次函数图象沿x轴翻折后得到新图象,新图象的函数表达式为.题型四、二次函数与方程、不等式例题6.已知二次函数y=x2-6x-9k的图象与x轴有两个不同的交点,则k的取值范围为.例题7.如表是二次函数y=ax2+bx+c的几组对应值:()A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.20例题8.如图,抛物线y=ax2+c与直线y=mx+n交于A(-2,-3),B(3,q)两点,则不等式ax2-mx+c<n的解集是.【题小结】二次函数的图像与x轴交点坐标,一元二次方程、不等式等问题的联系.。
专题19 二次函数与实际问题:销售问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法
专题19 二次函数与实际问题:销售问题一、单选题1.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .30010y x =-B .()3006040y x =--C .()()300106040y x x =+--D .()()300106040y x x =--+【答案】D【分析】由每件涨价x 元,可得出销售每件的利润为(60﹣40+x )元,每星期的销售量为(300﹣10x ),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.【详解】解:∵每涨价1元,每星期要少卖出10件,每件涨价x 元,∵销售每件的利润为(60﹣40+x )元,每星期的销售量为(300﹣10x ),∵每星期售出商品的利润y =(300﹣10x )(60﹣40+x ).故选:D .【点睛】本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y 与x 之间的函数关系式.二、解答题2.在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩.经市场调研:某类型口罩进价每袋为20元,当售价为每袋25元时,销售量为250袋,若销售单价每提高1元,销售量就会减少10袋.(1)直接写出小明销售该类型口罩销售量y (袋)与销售单价x (元)之间的函数关系式 ;每天所得销售利润w (元)与销售单价x (元)之间的函数关系式 .(2)若小明想每天获得该类型口罩的销售利润2000元时,则销售单价应定为多少元?(3)若每天销售量不少于100袋,且每袋口罩的销售利润至少为17元,则销售单价定位多少元时,此时利润最大,最大利润是多少?【答案】(1)210500,1070010000y x w x x =-+=-+-; (2)30元或40元; (3)销售单价定位37元时,此时利润最大,最大利润是2210元.【分析】(1)根据“若销售单价每提高1元,销售量就会减少10袋,当销售单价为x 元时,销售量为()2501025x --⎡⎤⎣⎦袋”,即可得出y 关于x 的函数关系式,然后再根据销售利润w (元)等于销售数量乘以每袋利润可得销售利润w (元)与销售单价x (元)之间的函数关系式;(2)代入w=2000,建立一元二次方程,解方程求出x 的值,由此即可得出结论;(3)根据题意先求解销售单价x 的范围,利用配方法将w 关于x 的函数关系式变形为:()210352250w x =--+,根据二次函数的性质即可解决最值问题.【详解】解:(1)根据题意得,()250102510500y x x =--=-+; 则()()220105001070010000w x x x x =--+=-+-,故答案为:210500,1070010000.y x w x x =-+=-+-(2)∵w=2000,∵210700100002000x x -+-=,27012000,x x ∴-+=()()30400,x x ∴--=解得:1230,40,x x ==答:销售单价应定为30元或40元,小明每天获得该类型口罩的销售利润2000元;(3)根据题意得,105001002017x x -+≥⎧⎨-≥⎩, ∵x 的取值范围为:3740x ≤≤,∵函数()22107001000010352250x x x w -+-=--+=, ∴ 对称轴为x=35,10a =-<0,∴ 当3740x ≤≤,y 随x 的增大而减小,∵当x=37时,w 最大值=2210.答:销售单价定位每袋37元时,此时利润最大,最大利润是2210元.【点睛】本题考查了一次函数的应用,二次函数的应用,一元一次不等式组的应用,一元二次方程的解法,关键是正确理解题意,找出题目中的等量关系,掌握利用二次函数的性质求最值是解题的关键.3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润为最大?【答案】(1)标价为200元,进价为155元;(2)10元【分析】(1)设工艺品每件的标价为x元,则根据题意可知进价为(x-45)元,按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,列一元一次方程求解即可;(2)设每件应降价x元出售,每天获得的利润为y元,根据题意可得y和x的函数关系,利用函数的性质求解即可.【详解】解:(1)设工艺品每件的标价为x元,则进价为x-45 ,8[0.85x-(x-45)]=12[x-35-(x-45)] ,整理得360-1.2x=120,即1.2x=240,解得x=200,则每件进价为:200-45=155(元),∵改商品的每件标价为200元,进价为155元.(2)设利润为y,工艺品降价x元,则y=(45-x)(100+4x)=-4x2+80x+4500=-4(x-10)2+4900,∵a=-4<0,函数有最大值,∵当降价10元,每天获得的利润最大,最大利润4900元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,吃透题意,确定变量,建立函数模型是解题的关键.4.某汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y 万元.(销售利润=销售价﹣进货价)(1)求y 与x 的函数关系式,在保证商家不亏本的前提下,写出x 的取值范围;(2)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?(3)要使该汽车城平均每周的销售利润不低于48万元,那么销售价应定在哪个范围?【答案】(1)()404y x x =-+≤≤;(2)每辆汽车的定价为27.5万元时,利润最大,最大利润为50万元;(3)27万元至28万元【分析】(1)根据利润等于(29﹣进货价﹣降价)可得出y 关于x 的函数关系式,化简即可;(2)假设这种汽车平均每周的销售利润为S 万元,根据平均每周的销售利润等于每辆汽车的销售利润乘以销售量,可得出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案;(3)当S=48时,可得关于x 的一元二次方程,求得方程的解,再根据二次函数的性质可得出符合题意的x 值,再由实际售价等于(29﹣x )万元,可得出销售价的范围.【详解】(1)由题意得:2925y x =--,∵4y x =-+(04x ≤≤);(2)假设这种汽车平均每周的销售利润为S 万元,则()()0.5484S x x =÷⨯+-+282432x x =-++()28 1.550x =--+,∵ 1.5x =时,S 最大为50.∵29 1.527.5-=(万元),∵每辆汽车的定价为27.5万元时,利润最大,最大利润为50万元;(3)当S=48时,28243248x x -++=,解得:1212x x ==,,∵()28 1.550S x =--+,二次项系数为﹣8<0,∵S 为开口向下的二次函数,∵对称轴为直线 1.5x =,∵当1 1.5x ≤≤时,S 随x 的增大而增大;当1.52x <≤时,S 随x 的增大而减小,∵当12x ≤≤时,48S ≥.∵实际售价等于(29x -)万元,∵272928x ≤-≤时,48S ≥.∵销售价格在27万元至28万元之间时(含27万、28万元)该汽车城平均每周的利润不低于48万元.【点评】本题考查了二次函数在销售问题中的应用,明确成本利润问题的基本数量关系并熟练掌握二次函数的性质是解题的关键.5.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价,据测算,每箱每降价1元,平均每天可以多售出20箱.(1)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(2)每箱降价多少元超市每天获利最大?最大利润是多少?【答案】(1)2元或5元;(2)每箱降价3.5元时获利最大,最大利润是1445元【分析】(1)设每箱应降价x 元,列方程解答;(2)设每天获利W 元,由题意得到(12)(10020)W x x =-+,化为顶点式即可得到答案.【详解】解:(1)要使每天销售饮料获利1400元,设每箱应降价x 元,依据题意列方程得,(12)(10020)1400x x -+=,整理得27100x x -+=,解得12x =,25x =;答:要使每天销售该饮料获利1400元,则每箱应降价2元或5元.(2)设每天获利W 元,则(12)(10020)W x x =-+,2201401200x x =-++,220( 3.5)1445x =--+,∴每箱降价3.5元时获利最大,最大利润是1445元.【点睛】此题考查一元二次方程的实际应用,二次函数的实际应用,二次函数的性质,正确理解题意是解题的关键. 6.我市某超市销售一种文具,进价为5元/件,售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x 元/件(6x ≥,且x 是按0.5元的倍数上涨),当天销售利润为y 元.(1)求y 与x 的函数关系式(不要求写出自变量的取值范围);(2)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【答案】(1)210210800=-+-y x x ;(2)每件文具售价为9元,最大利润为280元.【分析】(1)根据总利润=每件利润×销售量,列出函数关系式,(2)由题意可知,利润不超过80%即:利润率=(售价-进价)÷进价∵80%,即可求得售价的范围.再结合二次函数的性质,问题可解.【详解】解:由题意(1)26(5)1005102108000.5x y x x x -⎛⎫=--⨯=-+- ⎪⎝⎭故y 与x 的函数关系式为:210210800=-+-y x x(2)∵每件文具利润不超过80% ∵50.85x -≤,得9x ≤ 结合题意得文具的销售单价x 的取值范围为69x ≤≤,由(1)得()22102108001010.5302.5y x x x =-+-=--+∵对称轴为10.5x =∵69x ≤≤在对称轴的左侧,且y 随着x 的增大而增大∵当9x =时,取得最大值,此时()210910.5302.5280y =-⨯-+=即每件文具售价为9元时,利润最大;最大利润为280元.【点睛】考查二次函数的应用.把实际问题转化为函数问题是关键,要注意自变量取值范围.7.某商店购进了一种小商品,每件进价为2元.经市场预测,销售定价为3元时,可售出200件;现为了减少库存,商店决定采取适当降价措施.经调查发现,销售定价每降低0.1元时,销售量将增多40件.(1)商店若希望获利224元,则应该降价多少元?(2)商店若要获得最大利润,应降价多少元?最大利润是多少?【答案】(1)降价0.3元;(2)降价0.25元,最大利润是225元【分析】(1)设每件小商品降价x 元,则可售出(200+400x )件,根据总利润=每件的利润×销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论;(2)根据题意可以得到利润与降价之间的函数关系式,从而可以解答本题.【详解】(1)设每件小商品应该降价x 元,则可售出200+400.1x =(200+400x )件, 依题意,得:(3﹣2﹣x )(200+400x )=224,整理,得:2x 2﹣x +0.12=0,解得:x 1=0.3,x 2=0.2,∵为了减少库存,∵x =0.3,答:商店若希望获利224元,则应该降价0.3元;(2)设每件应降价y 元,利润为w 元,w =(3﹣2﹣y )(200+400y )=﹣400y 2+200y +200=﹣400(y ﹣0.25)2+225,∵当y =0.25时,w 取得最大值,此时w =225,即商店若要获得最大利润,应降价0.25元,最大利润是225元.【点睛】本题考查了一元二次方程的应用,二次函数的最值,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)确定w 与y 的函数关系式,配方可得最值.8.某超市购进一种商品,进货单价为每件10元在销售过程中超市按相关规定.销售单价不低于1元且不高于19元如果该商品的销售单价x (单位:元/件)与日销售量y (单位:件)满足一次函数关系240y x =-+,设该商品的日销售利润为w 元,那么当该商品的销售单价x (元/件)定为多少时,日销售利润最大?最大利润是多少?【答案】当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元【分析】根据利润等于每件的利润乘以销售量,可列出w 关于x 的二次函数,将其写成顶点式,按照二次函数的性质可得答案.【详解】解:根据题意得:w=(-2x+40)(x -10)=-2x 2+60x -400=-2(x -15)2+50,∵当x=15时,w 取得最大值,最大值为50.∵1<15<19,∵x=15符合题意.∵当该商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.【点睛】本题考查了二次函数在实际问题中的应用,明确题意并熟练掌握二次函数的性质是解题的关键. 9.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元?(2)要使每天获利不少于6000元,求涨价x 的范围.【答案】(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∵要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.10.某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)在前50天销售过程中,为了给顾客发放福利,每售出一件商品就返还2a元给顾客,且要求售价不低于80元,但是前50天的销售中,仍可以获得最大利润5850元,求出a的值.【答案】(1)y()()22x180x20001x50120x1200050x90⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)该商品第45天时,当天销售利润最大,最大利润是6050元;(3)a的值为55﹣【分析】(1)根据单价乘以数量,可得利润,分段列出函数关系式可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)在确定函数表达式的基础上,确定函数的对称轴,进而求解.【详解】(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y()()22x180x20001x50120x1200050x90⎧-++≤⎪=⎨-+≤≤⎪⎩<;(2)当1≤x<50时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050.∵a=﹣2<0,∵二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)根据题意得,y=(200﹣2x)(x+40﹣30﹣2a)=﹣2x2+(180+4a)x+2000﹣400a,x+40≥80,则x≥40,即40≤x<50,函数的对称轴x=45+a,在40≤x<50内(a<5时),当x=45+a时,函数取得最大值,即y=(200﹣2x)(x+40﹣30﹣2a)=(200﹣90﹣2a)(45+a+10﹣2a)=2(55﹣a)(55﹣a)=5850,即(55﹣a)==解得:a=55﹣;故a的值为55﹣【点睛】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值,解答时求出函数的解析式是关键.11.一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x 元(40x >),请你分别用x 的代数式来表示销售量y 件和销售该玩具获得利润w 元,并把结果填写在表格中:(2)若该网店要获得了10000元销售利润,求该玩具销售单价x 应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?【答案】(1)101000x -+,210130030000x x -+-;(2)销售单价x 应定为50元或80元;(3)最大利润为8250元.【分析】(1)根据题意可直接进行列式求解即可;(2)由(1)可得210x 1300x 3000010000-+-=,然后求解即可;(3)由题意易得101000550x -+≥,然后可得4045x <≤,最后由二次函数的性质可进行求解.【详解】解:(1)由题意得:销售量()6001040101000y x x =--=-+;销售玩具获得利润()()23010100010130030000w x x x x =--+=-+-; 故答案为101000x -+,210130030000x x -+-;(2)由(1)及题意得:210x 1300x 3000010000-+-=,213040000x x -+=,解得:1250,80x x ==,∵40x >,∵1250,80x x ==;答:销售单价x 应定为50元或80元.(3)由题意得:101000550x -+≥,解得:45x ≤,∵40x >,∵4045x <≤,∵()2210130030000106512250w x x x =-+-=--+,∵100a =-<,对称轴为直线65x =,∵当4045x <≤时,w 随x 的增大而增大,∵当x=45时,w 有最大值,即为()2104565122508250w =-⨯-+=;答:销售该玩具所获最大利润为8250元.【点睛】本题主要考查二次函数的应用,会根据题意正确列式并明确二次函数的相关性质是解题的关键.12.进入冬季,我市空气质量下降,多次出现雾霾天气.商场根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?【答案】(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价x定为40元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是3000元.【分析】(1)由题意直接写出y与x之间的函数关系式即可;(2)先由题意直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包且商场每周完成不少于150包的销售任务列出方程组确定x的取值范围即可;(3)根据第(2)问中的函数解析式和x的取值范围运用二次函数的性质求最值即可.【详解】解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得:w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000且305350150x x ≥⎧⎨-+≥⎩ 解得:30≤x ≤40 即商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式是:w =﹣5x 2+450x ﹣7000(30≤x ≤40);(3)∵w =﹣5x 2+450x ﹣7000的二次项系数﹣5<0,∵抛物线对称轴为x =﹣4502(5)⨯-=45, ∵30≤x ≤40,∵当x <45时,w 随x 的增大而增大,∵当x =40时,w 取得最大值,w =﹣5×402+450×40﹣7000=3000,即当售价x (元/包)定为40元时,商场每周销售这种防尘口罩所获得的利润w (元)最大,最大利润是3000元.【点睛】本题主要考查二次函数的应用,明确题意、列出相应的函数解析式并确定自变量的取值范围是解答本题的关键.13.绿水青山,就是金山银山,为了保护环境,凉山州某公司生产了A 、B 两种型号的垃圾处理设备.已知生产4件甲设备和3件乙设备,共需成本62万元;生产3件甲设备和2件乙设备,共需成本44万元. (1)求生产每件甲、乙设备的成本分别是多少万元?(2)设甲设备的销售单价为x (单位:万元/件),该公司在销售过程中发现:甲设备的月销售量y (单位:件)与销售单价x 之间存在一次函数关系,x 、y 之间的部分数值对应关系如表:()1119x ≤≤请求出当1119x ≤≤时,y 与x 之间的函数关系式.(3)在(2)的条件下,设甲设备的月销售利润为w 万元,当甲设备的销售单价x (万元/件)定为多少时,月销售利润最大?最大利润是多少?【答案】(1)生产每件甲、乙设备的成本分别是8万元,10万元;(2)当1119x ≤≤时,函数关系式为240y x =-+;(3)当甲设备的销售单价定为14(万元/件)时,月销售利润最大是72万元.【分析】(1)设甲、乙的成本分别为a ,b 万元,根据题意列出二元一次方程组,求解即可;(2)设一次函数解析式,再代入(11,18),(19,2)利用待定系数法求解即可;(3)利用(2)的结论,列出w 与x 之间的关系式,利用函数的性质求解即可.【详解】(1)设生产每件甲、乙设备的成本分别是a 万元、b 万元,由题意可得:43623244a b a b +=⎧⎨+=⎩解得:810a b =⎧⎨=⎩答:生产每件甲、乙设备的成本分别是8万元,10万元.(2)设()0y kx b k =+≠, 把()11,18,()19,2代入得1811219k b k b =+⎧⎨=+⎩解得:240k b =-⎧⎨=⎩ ∵当1119x ≤≤时,函数关系式为240y x =-+.(3)由题意得:()()8240w x x =--+256320x x =-+-()221472x =--+∵当14x =时,利润最大为72万元答:当甲设备的销售单价定为14(万元/件)时,月销售利润最大是72万元.【点睛】本题考查二元一次方程组,一次函数,二次函数的实际应用,能够准确根据题意列出方程或表达式是解题关键.14.新冠肺炎期间,某超市将购进一批口罩进行销售,已知购进4盒甲口罩和6盒乙口罩需260元,购进5盒甲口罩和4盒乙口罩需220元.两种口罩以相同的售价销售,甲口罩的销售量1y (盒)与售价x (元)之间的关系为14008y x =-;当售价为40元时,乙口罩可销售100盒,售价每提高1元,少销售5盒. (1)求甲、乙两种口罩每盒的进价分别为多少元?(2)当乙口罩的售价为多少元时,乙口罩的销售总利润最大?此时甲乙两种口罩的销售利润总和为多少? (3)当甲口罩的销售量不低于乙口罩的销售量的1415,若使两种口罩的总利润最高,求此时的定价为多少? 【答案】(1)20元、30元;(2)45元,2125元;(3)36元.【分析】(1)设甲、乙两种口罩每盒的进价分别为x 元、y 元,由题意列方程组,求解即可.(2)设乙口罩的销售利润为w 元,由题意可列出关于x 的二次函数,将其改写成顶点式,即可知道乙口罩的售价及此时乙口罩的最大利润,继而求出甲口罩利润,即可求解.(3)根据题意可列出不等式,解得x 的取值范围,在得出两种口罩的利润总和关于x 的二次函数,根据二次函数的性质可得其对称轴,即得到答案.【详解】(1)设甲、乙两种口罩每盒的进价分别为x 元、y 元,由题意得:4626054220x y x y +=⎧⎨+=⎩, 解得:2030x y =⎧⎨=⎩, ∵甲、乙两种口罩每盒的进价分别为20元、30元.(2)设乙口罩的销售利润为w 元,由题意得:()()30100540w x x =---⎡⎤⎣⎦254509000x x =-+-()25451125x =--+,∵当乙口罩的售价为45元时,乙口罩的销售总利润最大,为1125元,当售价为45元时,1400840084540y x =-=-⨯=(盒);∵甲口罩的销售利润为:()4520401000-⨯=(元), ∵此时两种口罩的销售利润总和为:112510002125+=(元),∵当乙口罩的售价为45元时,乙口罩的销售总利润最大,此时两种口罩的销售利润总和为2125元. (3)由题意得:()14400810054015x x -≥--⎡⎤⎣⎦, 解得:36x ≤,∵两种口罩的利润总和()()()240082054509000w x x x x =--+-+-213101017000x x =-+-,∵对称轴为:5053613x =>, ∵当36x =时,两种口罩的利润总和最高,∵若使两种口罩的利润总和最高,此时的定价应为36元.【点睛】本题考查一次函数、二元一次方程组、二次函数及一元一次不等式在实际问题中的应用.根据题干理清它们的数量关系是解题的关键,综合性较强.15.某厂生产一种玩具,成本价是8元∕件,经过调查发现,每天的销售量y (件)与销售单价x (元)存在一次函数关系10600 y x =-+.(1)销售单价定为多少时,该厂每天获得的利润最大?最大利润是多少?(2)若物价部门规定,该产品的最高销售单价不得超过30元,那么销售单价如何定位才能获得最大利润?【答案】(1)34,6760元;(2)当销售单价定为30元时,才能获得最大利润.【分析】(1)根据题意,可以写出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可得到销售单价定为多少时,该厂每天获取的利润最大,最大利润为多少;(2)根据(1)中利润与单价之间的函数关系式和物价部门规定,该产品的最高销售单价不得超过30元,可以得到当单价为30时,才能获得最大利润.【详解】解:(1)设该厂每天获得的利润为w 元,2810600106804800W x x x x210x346760=时,W有最大值6760元当x34因此,当销售单价定为34元时,该厂每天获得的利润最大,最大利润是6760元.(2)由(1)可知2W x10346760x=,∵函数图像开口向下,对称轴为34∵最高销售单价不得超过30元,∵当x=30时,w取得最大值,此时2W,10303467606600因此,当销售单价定为30元时,才能获得最大利润是6600元.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.16.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该产品每千克售价为多少元时,批发商获得的利润w (元)最大?此时的最大利润为多少元?【答案】(1)y=﹣x+150(0<x≤90);(2)85,4225.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据题意列出w 与x 的函数关系式,然后配方()221703000854225w x x x =-+-=--+即可求出【详解】(1)设y 与x 的函数关系式为y =kx +b (k ≠0),根据题意得 501006090k b k b +=⎧⎨+=⎩,解得k 1b 150=-⎧⎨=⎩. 故y 与x 的函数关系式为y =﹣x +150(0<x ≤90);(2)根据题意得()()()20+15020w y x x x =-=--()221703000854225w x x x =-+-=--+当=85x 时批发商获得的利润w (元)最大,最大利润4225w =【点睛】本题考查了一次函数与二次函数的应用问题,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出二次函数解析式,会配方变为顶点式.17.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?【答案】(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x元,多卖10x,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y=100+10x,由60﹣x≥36得x≤24,∵1≤x≤24,且x为整数;(2)设所获利润为W,则W=(60﹣x﹣36)(10x+100)=﹣10x2+140x+2400=﹣10(x﹣7)2+2890,∵此二次函数的二次项系数小于0,∵函数开口向下,有最大值,∵当x=7时,W取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.18.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)销售单价为多少元时,每天的销售利润可达4000元?。
中考数学专题复习之 二次函数的应用 课件
二次函数的应用
考点精讲·导析探究
B
( 1 )设 y = kx + b ,
把( 22 , 36 )与( 24 , 32 )代入得:
则 y =- 2x + 80 ;
( 2 )设当文具店每周销售这种纪念册获得 150元的利润时,每本纪念册的销售单价是
x 元,根据题意得:( x - 20 ) y = 150 ,
润是 192 元.
(1)∵ B ( 4 , m )在直线 y = x + 2 上
∴ m = 4 + 2 = ቤተ መጻሕፍቲ ባይዱ ,∴ B ( 4 , 6 )
∵抛物线 y =
ax2+
1 5
bx+ 6经过 A ( , ),B ( 4 , 6 )
2 2
∴抛物线的解析式为 y = 2x2 - 8x + 6 .
( 2 )设 P ( m , m + 2 ),则 D ( m , 2m2- 8m + 6 ).
整理得 w =-( x - 25 ) 2 + 225
∵- 1 < 0
∴当 x = 25 时, w 取得最大值,最大值为 225 元.
1
( 1 )根据题意得, y =- x + 50 ;
2
1
( 2 )根据题意得,( 40 + x )(- x + 50 )= 2 250 ,
2
解得: x 1 = 50 , x 2= 10 ,
=- 2 ( x - 30 ) 2 + 200 ,
此时当 x = 30 时, w 最大,
又∵售价不低于 20 元且不高于 28 元,
∴ x < 30 时, y 随 x 的增大而增大,即当 x = 28时, w 最大 =- 2 ( 28 - 30 ) 2 + 200 =
中考数学复习专题训练 二次函数的综合应用(含解析)
中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。
中考数学专题复习:二次函数
第三课时 二次函数的综合应用
考点
1.与几何图形有关的线段、周长、面积 的最值问题; 2.特殊三角形、四边形的存在问题; 3.动点产生的角度问题等综合题
教学思路
跨领域复合型综合题涵盖了初中数学几乎所有的数学 思想方法,一般以压轴题的形式出现.在有限的中考复习 时间里,应该做到以下几点,以提升学生的思维高度:
二。抛物线型
例2 (2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面 0.7 m,水柱在距喷水头P水平距离5 m处达到最高,最高点距地面3.2 m;建立如图所示的平面直角坐标系, 并设抛物线的解析式为y=a(x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高 度.
中考ห้องสมุดไป่ตู้学专题复习
二次函数
第一课时二次函数的图像和性质
二
次
函
第二课时二次函数的实际应用
数
复
习
第三课时二次函数的综合应用
第一课时 二次函数的图像和性质
考点
二次函数的图像与性质通常以选择题或填 空题的形式出现,为历年必考题目。题目设计 主要有同一坐标系中多函数像问题、根据图像 做判断的多结论问题、根据表格形式呈现的多 结论问题等,考查a、b、c的符号、对称轴、最 值、大小比较、与一元二次方程的关系(与x轴、 平行于x轴的直线交点个数)、根据图像解不等 式、图像的平移等。
(1)要加强学生的做题意识,树立必胜的信心,教 师要让学生知道综合题常常是“起点低,坡度缓,尾巴略 翘”,要多鼓励学生大敢作答;
(2)是基础知识和基本技能训练要全面,重点内容 适当分类进行专题训练;
(3)是要教会学生一些常用的解题策略,重视数学 思想和方法的提炼,注意知识的迁移,让学生学会融会贯 通.
初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。
中考数学-二次函数在实际生活中的应用
(3)由(2)可知m=12,m+1=13, 设第13天提价a元,由题意,得 w13=(6+a-p)(30x+120)=510(a+1.5), ∴510(a+1.5)-768≥48,解得a=0.1. 答:第13天每只粽子至少应提价0.1元.
解:(2)由题意,得y=x(-50x+1 400)-4 800=-50x2+1 400x-4 800=-50(x-14)2+5 000, 即在0≤x≤20范围内,当x=14时, y有最大值5 000, ∴当每日租出14辆时,租赁公司日收益最大,日收益的最大值是5 000元; (3)要使租赁公司日收益不盈也不亏,则y=0, 即-50(x-14)2+5 000=0, 解得x1=24,x2=4. ∵x=24不满足0≤x≤20,不合题意,舍去, ∴当每日租出4辆时,租赁公司日收益不盈也不亏.
-20x+1 500≥1 200, 解得 11≤x≤15,因为 x 为整数,所以 x 可取的值为 11,12, 13,14,15,所以该商家共有 5 种进货方案;
(2)设总利润为w(元),则 w=(1 760-y1)x1+(1 700-y2)x2 =1 760x-(-20x+1 500)x+1 700(20-x)-[-10(20-x)+1 300](20-x) =1 760x-(-20x+1 500)x+1 700(20-x)-(10x+1 100)(20-x) =30x2-540x+12 000 =30(x-9)2+9 570, 当x>9时,w随着x的增大而增大,因为11≤x≤15,所以当x=15时,w最大值=30×(15-9)2+9 570=10 650(元). 所以采购空调数量15台时,获得的总利润最大,最大利润值为 10 650元.
①0≤x≤5时,w=(6-4.1)×54x=102.6x,当x=5时,w最大 =513(元); ②5<x≤9时,w=(6-4.1)×(30x+120)=57x+228, ∵x是整数, ∴当x=9时,w最大=741(元); ③9<x≤15时,w=(6-0.1x-3.2)×(30x+120)=-3x2+72x+336, ∵a=-3<0, ∴当x=-=12时,w最大=768(元); 综上,当x=12时,w有最大值,最大值为768元;
2024年中考数学复习专题+课件 二次函数的实际应用
2.(2023·滨州)如图,要修一个圆形喷水池,在池中心竖直安装一根水 管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水 平距离为 1 m 处达到最高,高度为 3 m,水柱落地处离池中心 3 m,水管 长度应为 22..225 5 m.
3.(2023·十堰)“端午节”吃粽子是中国传统习俗,在“端午节”来临 前,某超市购进一种品牌粽子,每盒进价是 40 元,并规定每盒售价不得 少于 50 元,日销售量不低于 350 盒,根据以往销售经验发现,当每盒售 价定为 50 元时,日销售量为 500 盒,每盒售价每提高 1 元,日销售量减 少 10 盒,设每盒售价为 x 元,日销售量为 p 盒. (1)当 x=60 时,p=44000 0; (2)当每盒售价定为多少元时,日销售利润 W(单位:元)最大?最大利润 是多少? (3)小强说:“当日销售利润最大时,日销售额不是最大,”小红说:“当 日销售利润不低于 8 000 元时,每盒售价 x 范围为 60≤x≤80.”你认为 他们的说法正确吗?若正确,请说明理由;若不正确,请直接写出正确 的结论.
(2)∵OA=3 m,CA=2 m,∴OC=5 m, 选择扣球,则令 y=0,即-0.4x+2.8=0, 解得 x=7, ∴落地点到 C 点的距离为 7-5=2 m, 选择吊球,则令 y=0,即-0.4(x-1)2+3.2=0, 解得 x=±2 2+1(负值舍去), ∴落地点到 C 点的距离为 5-(2 2+1)=(4-2 2)m, ∵4-2 2<2,
又∵50≤x≤65,∴当日销售利润不低于 8 000 元时,每盒售价 x 的范围
为 60≤x≤65.
4.(2023·朝阳)某超市以每件 10 元的价格购进一种文具,销售时该文
具的销售单价不低于进价且不高于 19 元.经过市场调查发现,该文具的
2019全国中考数学真题分类汇编之33:二次函数的实际应用(含解析)
2019年全国中考数学真题分类汇编:二次函数的实际应用一、选择题1. (2019年湖北省襄阳市)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.【考点】二次函数的实际应用【解答】解:依题意,令h=0得0=20t﹣5t2得t(20﹣5t)=0解得t=0(舍去)或t=4即小球从飞出到落地所用的时间为4s故答案为4.二、填空题1. (2019年四川省广安市)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.【考点】二次函数的应用、自变量与函数的实际意义【解答】解:当y=0时,y=﹣x2+x+=0,解得,x=2(舍去),x=10.故答案为:10.三、解答题1. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市。
某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系。
(1)某天这种芒果售价为28元/千克。
求当天该芒果的销售量(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式。
如果水果店该天获利400元,那么这天芒果的售价为多少元?【考点】一次函数、二次函数、一元二次方程的解法【解答】解:(1)设该一次函数解析式为y kx b =+则25352238k b k b +=⎧⎨+=⎩解得:160k b =-⎧⎨=⎩ ∴60y x =-+(1540x ≤≤)∴当28x =时,32y =∴芒果售价为28元/千克时,当天该芒果的销售量为32千克(2)由题易知(10)m y x =-(60)(10)x x =-+- 270600x x =-+- 当400m =时,则270600400x x -+-=整理得:27010000x x -+= 解得:120x =,250x =∵1540x ≤≤ ∴20x =所以这天芒果的售价为20元2. (2019年山东省青岛市)某商店购进一批成本为每件30元的商品,经调查发现,该商品 每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【考点】一次函数、二次函数、一元二次方程的解法【解答】解:(1)设y 与销售单价x 之间的函数关系式为:y =kx +b ,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y =﹣2x +160;(2)由题意得:w =(x ﹣30)(﹣2x +160)=﹣2(x ﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件.3. (2019年湖北省十堰市)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.【考点】待定系数法、一次函数的性质、二次函数的性质【解答】解:(1)依题意,当x=36时,y=37;x=44时,y=33,当31≤x≤50时,设y=kx+b,则有,解得∴y与x的关系式为:y=x+55(2)依题意,∵W=(y﹣18)•m∴整理得,当1≤x≤30时,∵W随x增大而增大∴x=30时,取最大值W=30×110+1100=4400当31≤x≤50时,W=x2+160x+1850=∵<0∴x=32时,W取得最大值,此时W=4410综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元(3)依题意,W=(y+a﹣18)•m=∵第31天到第35天的日销售利润W(元)随x的增大而增大∴对称轴x==≥35,得a≥3故a的最小值为3.4. (2019年甘肃省天水市)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【考点】待定系数法、二次函数的应用、二次函数的性质【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.5. (2019年湖北省鄂州市)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?【考点】二次函数的应用【解答】解:(1)由题意可得:y=100+5(80﹣x)整理得y=﹣5x+500;(2)由题意,得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500∵a=﹣5<0∴w有最大值即当x=70时,w最大值=4500∴应降价80﹣70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:﹣5(x﹣70)2+4500=4220+200解之,得:x1=66,x2 =74,∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.6. (2019年湖北省随州市)某食品厂生产一种半成品食材,成本为2元/千克,每天的产量x+8,从市场反馈的信息发现,该p(百千克)与销售价格x(元/千克)满足函数关系式p=12半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:已知按物价部门规定销售价格x不低于2元/千克且不高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量小于或等于市场需求量时,这种半成品食材能全部售出,而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.①当每天的半成品食材能全部售出时,求x的取值范围;②求厂家每天获得的利润y(百元)与销售价格x的函数关系式;(3)在(2)的条件下,当x为______元/千克时,利润y有最大值;若要使每天的利润不低于24(百元),并尽可能地减少半成品食材的浪费,则x应定为______元/千克.【考点】二次函数的应用【解答】解:(1)由表格的数据,设q 与x 的函数关系式为:q=kx+b根据表格的数据得,解得故q与x的函数关系式为:q=-x+14,其中2≤x≤10(2)①当每天的半成品食材能全部售出时,有p≤q即x+8≤-x+14,解得x≤4又2≤x≤10,所以此时2≤x≤4②由①可知,当2≤x≤4时,y=(x-2)p=(x-2)(x+8)=x2+7x-16当4<x≤10时,y=(x-2)q-2(p-q)=(x-2)(-x+14)-2[x+8-(-x+14)]=-x2+13x-16即有y=(3)当2≤x≤4时,y=x2+7x-16的对称轴为x===-7∴当2≤x≤4时,除x的增大而增大∴x=4时有最大值,y==20当4<x≤10时y=-x2+13x-16=-(x-)2+,∵-1<0,>4∴x=时取最大值即此时y有最大利润要使每天的利润不低于24百元,则当2≤x≤4时,显然不符合故y=-(x-)2+≥24,解得x≤5故当x=5时,能保证不低于24百元故答案为:,57. (2019年辽宁省本溪市)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?【考点】二次函数的应用、一次函数的应用【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.8. (2019年内蒙古包头市)某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?【考点】二次函数的应用、分式方程的应用【解答】解:(1)该出租公司这批对外出租的货车共有x辆,根据题意得,,解得:x=20,经检验:x=20是分式方程的根,∴1500÷(20﹣10)=150(元),答:该出租公司这批对外出租的货车共有20辆,淡季每辆货车的日租金150元;(2)设每辆货车的日租金上涨a元时,该出租公司的日租金总收入为W元,根据题意得,W=[a+150×(1+)]×(20﹣),∴W=﹣a2+10a+4000=﹣(a﹣100)2+4500,∵﹣<0,∴当a=100时,W有最大值,答:每辆货车的日租金上涨100元时,该出租公司的日租金总收入最高.9. (2019年内蒙古通辽市)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【考点】二次函数的应用【解答】解:(1)根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x﹣20﹣a)(﹣10x+500)=﹣10x2+(10a+700)x﹣500a﹣10000(30≤x≤38)对称轴为x=35+a,且0<a≤6,则30a≤38,则当x=35+a时,w取得最大值,∴(35+a﹣20﹣a)[﹣10x(35+a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.。
中考数学复习 二次函数 第19讲 二次函数的应用(2)试题(含解析)
—————————— 教育资源共享 步入知识海洋 ————————第19讲 二次函数的应用(2)1. (2012,河北,导学号5892921)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm 2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.(1)(2)已知出厂一张边长为40 cm 的薄板,获得的利润是26元(利润=出厂价-成本价). ①求一张薄板的利润与边长之间满足的函数解析式;②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?【思路分析】 (1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .利用待定系数法求一次函数的解析式即可.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2,进而得出m 的值,求出函数解析式即可.②利用二次函数的最值公式求出二次函数的最值即可.解:(1)设一张薄板的边长为x cm ,它的出厂价为y 元,基础价为n 元,浮动价为kx 元,则y =kx +n .由表格中的数据,得⎩⎪⎨⎪⎧50=20k +n ,70=30k +n .解得⎩⎪⎨⎪⎧k =2,n =10.所以一张薄板的出厂价与边长之间满足的函数解析式为y =2x +10.(2)①设一张薄板的利润为p 元,它的成本价为mx 2元.由题意,得p =y -mx 2=2x +10-mx 2.将x =40,p =26代入p =2x +10-mx 2,得26=2×40+10-m ·402. 解得m =125.所以一张薄板的利润与边长之间满足的函数解析式为p =-125x 2+2x +10.②因为a =-125<0,所以当x =-b 2a=-22×⎝ ⎛⎭⎪⎫-125=25(在5~50之间)时,p 最大=4ac -b 24a =4×⎝ ⎛⎭⎪⎫-125×10-224×⎝ ⎛⎭⎪⎫-125=35.所以出厂一张边长为25 cm 的薄板,获得的利润最大,最大利润是35元.利润问题例 1 (2018,扬州节选,导学号5892921)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?例1题图【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)先由题意得出x 的取值范围,再根据总利润=销售量×单件的利润,将(1)中的函数关系式代入,得到总利润与销售单价之间的函数关系式,最后根据其性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧40k +b =300,55k +b =150.解得⎩⎪⎨⎪⎧k =-10,b =700.故y 与x 之间的函数关系式为y =-10x +700.(2)由题意,得-10x +700≥240. 解得x ≤46.设每天获取的利润为w 元, 则w =(x -30)·y=(x -30)(-10x +700)=-10x 2+1 000x -21 000=-10(x -50)2+4 000. ∵-10<0,∴当x <50时,w 随x 的增大而增大.∴当x =46时,w 最大,w 最大=-10×(46-50)2+4 000=3 840.答:当销售单价为46元时,每天获取的利润最大,最大利润是3 840元.针对训练1 (2018,深圳模拟)某商场试销一种成本为50元/件的T 恤,规定试销期间单价不低于成本单价,又获利不得高于50%.经试销发现,销售量y (件)与销售单价x (元/件)符合一次函数关系,试销数据如下表:(1)求y 与x 之间的函数关系式;(2)若该商场获得的利润为w 元,试写出利润w 与销售单价x 之间的函数关系式.当销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?【思路分析】 (1)直接利用待定系数法确定y 与x 之间的函数关系式.(2)根据利润=销售量×(销售单价-单件成本),将(1)中的函数关系式代入,得到利润w 与销售单价x 之间的函数关系式,再根据x 的取值范围和二次函数的性质求出最大值.解:(1)设y 与x 之间的函数关系式为y =kx +b .由题意,得⎩⎪⎨⎪⎧55k +b =75,60k +b =70.解得⎩⎪⎨⎪⎧k =-1,b =130.∴y =-x +130.(2)w =(x -50)(130-x )=-x 2+180x -6 500=-(x -90)2+1 600.由题意,得x ≤50×(1+50%),即x ≤75. ∴50≤x ≤75.∵当x <90时,w 随x 的增大而增大, ∴当x =75时,w 取得最大值,为1 375.所以当销售单价定为75元时,商场可以获得最大利润,最大利润是1 375元.二次函数与几何图形的综合例2 (2018,保定模拟)如图,已知矩形ABCD 的边AB =2,BC =3,P 是AD 边上的一动点(点P 异于点A ,D ),Q 是BC 边上的任意一点,连接AQ ,DQ ,过点P 作PE ∥DQ 交AQ 于点E ,作PF ∥AQ 交DQ 于点F .(1)求证:△APE ∽△PDF ;(2)设AP =x ,求四边形EQDP 的面积S (用含x 的代数式表示出来);当四边形EQDP 的面积等于214时,说明PE 与DQ 的数量关系.例2题图【思路分析】 (1)根据PE ∥DQ ,PF ∥AQ 得出同位角相等即可证得两三角形相似.(2)由PE ∥DQ ,得到△APE ∽△ADQ .根据相似三角形的性质得到S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29.求出S △ADQ =12S 矩形ABCD =3,于是得到S =S △ADQ -S △APE =-13x 2+3.根据四边形EQDP 的面积等于214,列方程即可得到结论.(1)证明:∵PE ∥DQ , ∴∠APE =∠PDF . ∵PF ∥AQ ,∴∠DPF =∠PAE . ∴△APE ∽△PDF . (2)解:∵PE ∥DQ , ∴△APE ∽△ADQ .∴S △APE S △ADQ =⎝ ⎛⎭⎪⎫AP AD 2=x 29,AP AD =PE DQ. ∵S △ADQ =12S 矩形ABCD =3,∴S △APE =13x 2.∴S =S △ADQ -S △APE =-13x 2+3.当四边形EQDP 的面积等于214时,214=-13x 2+3.解得x =32.∴AP =32=12AD .∴PE =12DQ .针对训练2(2018,揭阳一模)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,动点P 在AD 上,从点A 出发,沿A →D 方向运动.设AP =x ,△ABP 的面积为S 1,矩形PDFE 的面积为S 2,y =S 1+S 2,则y 与x 之间的关系式是 y =-x 2+3x .训练2题图【解析】 ∵在Rt △ABC 中,∠BAC =90°,AB =AC =22,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°.∴BD =AD =2.∴PE =AP =x ,PD =AD -AP =2-x .∴y =S 1+S 2=x ·22+(2-x )·x =-x 2+3x .一、 选择题1. (2018,马鞍山二模)某农产品市场经销一种成本为每千克40元的农产品.据市场分析,若按每千克50元销售,一个月能售出500 kg ;销售单价每涨1元,月销售量就减少10 kg.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 之间的函数关系式为(C )A. y =(x -40)(500-10x )B. y =(x -40)(10x -500)C. y =(x -40)[500-10(x -50)]D. y =(x -40)[500-10(50-x )]【解析】 因为销售单价为每千克x 元,月销售利润为y 元,所以y 与x 之间的函数关系式为y =(x -40)[500-10(x -50)].2. (2018,芜湖繁昌县一模)某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y =-4x +440,要使销售该商品获得的月利润最大,该商品的售价应定为(C )A. 60元/件B. 70元/件C. 80元/件D. 90元/件【解析】 设销售该商品每月所获总利润为w 元,则w =(x -50)(-4x +440)=-4x 2+640x-22 000=-4(x -80)2+3 600.∴当x =80时,w 取得最大值,最大值为3 600.所以当售价为80元/件时,销售该商品所获月利润最大.3. 如图,已知边长为4的正方形ABCD ,P 是BC 边上一动点(与点B ,C 不重合),连接AP ,作PE ⊥AP 交外角∠DCF 的平分线于点E .设BP =x ,△PCE 的面积为y ,则y 与x 之间的函数关系式是(C )第3题图A. y =2x +1B. y =12x -2x 2C. y =2x -12x 2D. y =2x【解析】 如答图,过点E 作EH ⊥BC 于点H .∵四边形ABCD 是正方形,∴∠DCH = 90°.∵CE 平分∠DCH ,∴∠ECH =12∠DCH =45°.∵∠CHE =90°,∴∠CEH =∠ECH =45°.∴EH =CH .∵四边形ABCD 是正方形,AP ⊥EP ,∴∠B =∠CHE =∠APE =90°.∴∠BAP +∠APB =90°,∠APB +∠EPH =90°.∴∠BAP =∠EPH .∴△BAP ∽△HPE .∴AB PH=BP EH .∴44-x +EH =x EH .∴EH =x .∴y =12·CP ·EH =12·(4-x )·x =2x -12x 2.第3题答图4. (2018,淄博模拟)如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向点B 以2 mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向点C 以4 mm/s 的速度移动(不与点C 重合).如果点P ,Q 分别从点A ,B 同时出发,那么四边形APQC 的面积最小时,经过(C )第4题图A. 1 sB. 2 sC. 3 sD. 4 s【解析】 设点P ,Q 同时出发t s 时,四边形APQC 的面积为S mm 2,则S =S △ABC -S △PBQ =12×12×24-12·4t ·(12-2t )=4t 2-24t +144=4(t -3)2+108.∵4>0,∴当t =3时,S 取得最小值.5. (2018,天津武清区模拟)某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800,要想获得日最大利润,则销售单价为(B )A. 30元B. 35元C. 40元D. 45元【解析】 ∵y =-x 2+70x -800=-(x -35)2+425,∴当x =35时,y 取得最大值,最大值为425,即销售单价为35元时,日销售利润最大.6. (2018,广州南沙区模拟)如图,△ABC 是直角三角形,∠A =90°,AB =8 cm ,AC =6 cm.点P 从点A 出发,沿AB 方向以2 cm/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,其中一个动点到达终点则另一个动点也停止运动,则△APQ 的面积最大是(C )第6题图A. 10 cm 2B. 8 cm 2C. 16 cm 2D. 24 cm 2【解析】 设运动时间为t s .根据题意,得AP =2t ,AQ =t ,∴S △APQ =t 2.易知0<t ≤4,∴△APQ 的面积最大是16 cm 2.7. 如图,正方形ABCD 的边长为1,E ,F 分别是边BC 和CD 上的动点(不与正方形的顶点重合),不管点E ,F 怎样运动,始终保持AE ⊥EF .设BE =x ,DF =y ,则y 关于x 的函数解析式是(C )第7题图A. y =x +1B. y =x -1C. y =x 2-x +1D. y =x 2-x -1【解析】 ∵四边形ABCD 为正方形,∴∠B =∠C =90°.∴∠BAE +∠AEB =90°.∵AE ⊥EF ,∴∠AEB +∠FEC =90°.∴∠BAE =∠FEC .∴△ABE ∽△ECF .∴AB ∶EC =BE ∶CF .∴AB ·CF=EC ·BE .∵AB =1,BE =x ,EC =1-x ,CF =1-y ,∴1·(1-y )=(1-x )·x .化简得y =x 2-x +1.二、 填空题8. (导学号5892921)如图,在矩形ABCD 中,AD =16,AB =12,E ,F 分别是边BC ,DC 上的点,且EC +CF =8.设BE 的长为x ,△AEF 的面积为y ,则y 关于x 的函数解析式是( y =12x 2-10x +96 ).第8题图【解析】 ∵BE =x ,∴CE =16-x .∵CE +CF =8,∴CF =x -8.∴DF =20-x .∴y =S 矩形ABCD-S △ABE -S △CEF -S △ADF =12x 2-10x +96.9. (2018,天津和平区一模)某旅行社组团去外地旅游,30人起组团,每人的费用是800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加1人,每人的费用就降低10元.当一个旅行团有 55 人时,这个旅行社可以获得最大的营业额.【解析】设一个旅行团有x人,营业额为y元.根据题意,得y=x[800-10(x-30)]=-10x2+1 100x=-10(x-55)2+30 250.故当一个旅行团有55人时,这个旅行社可以获得最大的营业额.三、解答题10. (2018,盘锦节选)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本为30元.设该款童装每件售价为x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(不求自变量的取值范围)(2)当每件童装售价定为多少元时,每星期的销售利润最大?最大利润是多少?(3)当每件童装售价定为多少元时,该店销售该款童装一星期可获得3 910元的利润?【思路分析】 (1)每星期的销售量等于100件加上因降价而多销售的销售量,由此得到函数关系式.(2)设每星期的销售利润为W元,构建二次函数,利用二次函数的性质解决问题.(3)根据题意列方程即可解决问题.解:(1)y=100+10(60-x)=-10x+700.(2)设每星期的销售利润为W元.根据题意,得W=(x-30)(-10x+700)=-10x2+1 000x-21 000=-10(x-50)2+4 000.∴当x=50时,W最大,W最大=4 000.所以当每件童装售价定为50元时,每星期的销售利润最大,最大利润是4 000元.(3)由题意,得-10(x-50)2+4 000=3 910.解得x=53或x=47.所以当每件童装售价定为53元或47元时,该店销售该款童装一星期可获得3 910元的利润.11. (2018,承德一模,导学号5892921)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资成本x成正比例关系,种植花卉的利润y2与投资成本x的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y1与y2关于投资成本的函数解析式;(2)如果这位专业户计划以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利润W万元,求出W关于m的函数解析式,并求他至少获得多少利润,他能获取的最大利润是多少.【思路分析】 (1)根据题意设y1=kx,y2=px2,将表格中的数据分别代入求解可得.(2)由投入种植花卉金额m万元,则投入种植树木金额(8-m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可.解:(1)设y1=kx.由表格数据可知,函数y1=kx的图象过(2,4),∴4=k·2.解得k=2.故种植树木的利润y1关于投资成本x的函数解析式是y1=2x(x≥0).设y2=px2.由表格数据可知,函数y2=px2的图象过(2,2).∴2=p ·22. 解得p =12.故种植花卉的利润y 2关于投资成本x 的函数解析式是y 2=12x 2(x ≥0).(2)因为投入种植花卉金额m 万元,则投入种植树木金额(8-m )万元. 根据题意,得W =2(8-m )+12m 2=12m 2-2m +16 =12(m -2)2+14. ∵a =12>0,0≤m ≤8,∴当m =2时,W 取得最小值,为14. ∵a =12>0,∴当0≤m <2时,W 随m 的增大而减小;当2<m ≤8时,W 随m 的增大而增大. 在对称轴左侧,当m =0时,W 取得最大值,为16. 在对称轴右侧,当m =8时,W 取得最大值,为32. ∵16<32,∴当m =8时,W 取得最大值,为32.故他至少获得14万元的利润,他能获取的最大利润是32万元.12. 如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从点A ,B 同时出发,点P 在边AB 上沿AB 方向以2 cm/s 的速度匀速运动,点Q 在边BC 上沿BC 方向以1 cm/s 的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x s ,△PBQ 的面积为y cm 2.(1)求y 关于x 的函数解析式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.第12题图【思路分析】 (1)用x 分别表示出PB ,BQ 的长,然后根据三角形的面积公式列式整理即可得解.(2)把函数解析式整理成顶点式,然后结合实际求二次函数的最值即可.解:(1)∵S △PBQ =12PB ·BQ ,BQ =x ,PB =AB -AP =18-2x ,∴y =12(18-2x )x ,即y =-x 2+9x (0≤x ≤4).(2)由(1)知y =-x 2+9x ,∴y =-⎝ ⎛⎭⎪⎫x -922+814.∵当x ≤92时,y 随x 的增大而增大,而0≤x ≤4,∴当x =4时,y 最大,y 最大=20.所以△PBQ 的面积的最大值是20 cm 2.1. 某旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则会相应地减少10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是(C )A. 140元B. 150元C. 160元D. 180元【解析】 设每张床位收费提高x 个20元,每天收入为y 元.根据题意,得y =(100+20x )(100-10x )=-200x 2+1 000x +10 000.当x =-b 2a =1 000200×2=2.5时,可使y 有最大值.又x 为整数,则x =2时,y =11 200;x =3时,y =11 200.所以为使租出的床位少且租金高,每张床位每天最合适的收费是100+3×20=160(元).2. (2017,湖州,导学号5892921)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20 000 kg 淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a 万元,收购成本为b 万元,求a 和b 的值; (2)设这批淡水鱼放养t 天后的质量为m kg ,销售单价为y 元/kg.根据以往经验可知m 与t 的函数关系为m =⎩⎪⎨⎪⎧20 000(0≤t ≤50),100t +15 000(50<t ≤100),y 与t 之间的函数关系如图所示.①分别求出当0≤t ≤50和50<t ≤100时,y 关于t 的函数解析式;②设将这批淡水鱼放养t 天后一次性出售所得利润为W 元,求当t 为何值时,W 最大,并求出最大值.(利润=销售总额-总成本)第2题图【思路分析】 (1)由放养10天的总成本为30.4万元,放养20天的总成本为30.8万元可列出方程组进而求得答案.(2)①分0≤t ≤50,50<t ≤100两种情况,结合函数图象利用待定系数法求解可得.②就以上两种情况,根据“利润=销售总额-总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.解:(1)由题意,得⎩⎪⎨⎪⎧10a +b =30.4,20a +b =30.8.解得⎩⎪⎨⎪⎧a =0.04,b =30.(2)①当0≤t ≤50时,设y 关于t 的函数解析式为y =k 1t +n 1.将(0,15),(50,25)分别代入,得⎩⎪⎨⎪⎧n 1=15,50k 1+n 1=25.解得⎩⎪⎨⎪⎧k 1=15,n 1=15.∴此时y 关于t 的函数解析式为y =15t +15.当50<t ≤100时,设y 关于t 的函数解析式为y =k 2t +n 2.将(50,25),(100,20)分别代入,得⎩⎪⎨⎪⎧50k 2+n 2=25,100k 2+n 2=20.解得⎩⎪⎨⎪⎧k 2=-110,n 2=30.∴此时y 关于t 的函数解析式为y =-110t +30.②当0≤t ≤50时,W =20 000⎝ ⎛⎭⎪⎫15t +15-(400t +300 000)=3 600t .∵3 600>0,∴当t =50时,W 最大,W 最大=180 000. 当50<t ≤100时,W =(100t +15 000)⎝ ⎛⎭⎪⎫-110t +30-(400t +300 000)=-10t 2+1 100t +150 000 =-10(t -55)2+180 250. ∵-10<0,∴当t =55时,W 最大,W 最大=180 250.综上所述,当t =55时,W 最大,最大值为180 250.。
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)(含答案)
2024年九年级中考数学专题复习:二次函数实际应用(抛物线型问题)一、单选题 1.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是21.560s t t =-+.飞机着陆后到停下来滑行的距离是( )mA .300B .400C .500D .6002.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m3.小康在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()2116399y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则小康此次掷球的成绩(即OA 的长度)是( )A .8mB .7mC .6mD .5m4.如图,要修建一个圆形喷水池,在池中心O 点竖直安装一根水管,在水管的顶端A 处安一个喷水头,使喷出的抛物线形水柱与水池中心O 点的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心O 点3m ,则水管OA 的高是( )A.2m B.2.25m C.2.5m D.2.8m5.学校组织学生去同安进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面上有一瓶洗手液(如图①).于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且喷口B为该抛物线的顶点.洗手液瓶子的截面图下面部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径12cmGH=,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线.小王在距离台面15.5cm处接洗于液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是()A.122cm B.123cm C.62cm D.6cm6.某公园有一个圆形喷水池,喷出的水流呈抛物线形,一条水流的高度h(单位:m)与水流运动时间t(单位:s)之间的函数解析式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s7.如图所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯间的水平距离为6m,则厂门的高度约为()A.307B.387C.487D.5078.如图,一座拱桥的轮廓是抛物线型,桥高10米,拱高8米,跨度24米,相邻两支柱间的距离均为6米,则支柱MN的长度为()A.6米B.5米C.4.5米D.4米二、填空题9.如图,已知一抛物线形大门,其地面宽度AB长10米,一位身高1.8米的同学站在门下离门角B点1米的D 处,其头顶刚好顶在抛物线形门上C处.则该大门的最高处离地面高h为米.10.如图所示,抛物线形拱桥的顶点距水面2m时,测得拱桥内水面宽为12m.当水面升高1m后,拱桥内水面的宽度减少m.11.从地面竖直向上抛出一小球,小球的高度h(米)与小球的运动时间(秒)之间的关系式是()2h t t t=-≤≤,若抛出小球1秒钟后再抛出同样的第二个小球.则第二个小球抛出秒时,两个30506小球在空中相撞.12.从地面竖直向上跑出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是()2=-≤≤,小球运动到s时,达到最大高度.h t t t3020613.如图,以40m/s的速度将小球沿与地面成30︒角的方向击出时,小球的飞行路线将是一条抛物线,如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系2=-+,小520h t t球飞行过程中能达到的最大高度为m.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到A最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高8m时,水柱落点距O点为m.16.某次踢球,足球的飞行高度h(米)与水平距离x(米)之间满足2=-+,则足球从离地到落地的560h x x水平距离为米.三、解答题AA的17.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面1距离为8m.(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m ,宽为4m ,如果该隧道内设双向行车道,那么这辆货车能否安全通过?18.掷实心球是中考体育考试的项目.如图是一男生所掷实心球的行进路线(抛物线的一部分)的高度()y m 与水平距离()x m 之间的函数图象,且掷出时起点处高度为2m ,当到起点的水平距离为4m 时,实心球行进至最高点,此时实心球与地面的距离为3m .(1)求抛物线的函数解析式;(2)在该市的评分标准中,实心球从起点到落地点的水平距离大于等于10m 时,即可得满分,试判断该男生在此项考试中能否得满分,并说明理由(参考数据:3 1.73≈).19.南湖大桥作为我市首个全面采用数控技术的桥体音乐喷泉项目,历经多年已经成为长春市民夜间休闲放松的网红打卡地.其中喷水头喷出的水柱轨迹呈抛物线形状,喷水头P 距水面7.5m ,水柱喷射水平距离为5m 时,达到最大高度,此时距水面10m ,水柱落在水面A 点处.将收集到数据建立如图所示的平面直角坐标系,水柱喷出的高度()m y 与水平距离()m x 之间的函数关系式是21()y a x h k =-+.(1)求抛物线的表达式.(2)现调整P 的出水角度,其喷出的水柱高度()m y 与水平距离()m x 之间的函数关系式是220.1 1.2y x x m =-++,落点恰好在A 点右边的B 点处,求AB 的长.(结果精确到0.1m ,参考数据:11110.54=)20.图①是古代的一种远程投石机,其投出去的石块运动轨迹是抛物线的一部分.据《范蠡兵法》记载:“飞石重十二斤,为机发,行二百步”,其原理蕴含了物理中的“杠杆原理”.在如图②所示的平面直角坐标系中,将投石机置于斜坡OA 的底部点O 处,石块从投石机竖直方向上的点C 处被投出,已知石块运动轨迹所在抛物线的顶点坐标是()50,25,5OC =.(1)求抛物线的表达式;(2)在斜坡上的点A 建有垂直于水平线OD 的城墙AB ,且75OD =,12AD =,9AB =,点D ,A ,B 在一条直线上.通过计算说明石块能否飞越城墙AB .参考答案:1.D2.B3.B4.B。
中考数学专题复习:二次函数图象综合应用
图象性质:二次函数图象主要掌握开口方向、对称轴、顶点坐标、与坐标轴的交点、单调性和最值等方面.若二次函数解析式为2y ax bx c =++(或2()y a x h k =-+)(0a ≠),则: 开口方向 00a a >⇔⎧⎨<⇔⎩向上向下,a 越大,开口越小. 对称轴 2bx a=-(或x h =). 顶点坐标(2ba-,24)4ac b a -或(h ,)k . 单调性当0a >时,在对称轴的左侧,y 随x 的增大而减小;在对称轴的右侧,y 随x 的增大而增大(如图1);知识互联网思路导航题型一:二次函数图象与其解析式系数的关系二次函数图象综合应用当0a <时,在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小(如图2)与坐标轴的交点① 与y 轴的交点:()0c ,; ② 与x 轴的交点:()()1200x x ,,,,其中12x x ,是方程()200ax bx c a ++=≠的两根.图象与x 轴的交点个数① 当240b ac ∆=->时,图象与x 轴有两个交点. ② 当0∆=时,图象与x 轴只有一个交点. ③ 当0∆<时,图象与x 轴没有交点.Ⅰ当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; Ⅱ当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.【引例】 二次函数2y ax bx c =++的图象如图所示,判断a ,b ,c ,24b ac -,2a b +,a b c ++,a b c -+的符号【解析】 由图知:图象开口向上,所以0a >;函数的对称轴02bx a=->,所以0b <;函数图象与y 轴的交点小于0,所以0c <;函数图象与x 轴有两个不同的交点,所以240b ac ->;同时12bx a=-<,所以20a b +>;1x =所对应的函数值小于0,所以0a b c ++<; 1x =-所对应的函数值大于0,所以0a b c -+>【例1】 ⑴ 二次函数2y ax bx c =++的图象如图所示,则点()a c ,在( )A .第一象限B .第二象限C .第三象限D .第四象限⑵ 二次函数c bx ax y ++=2的图象如图所示,则一次函数b ax y +=与反比例函数xcy =在同一平面直角坐标系中的大致图象为( ) 例题精讲典题精练A .B .C .D .⑶ 一次函数()0≠+=a b ax y 、二次函数bx ax y +=2和反比例函数()0≠=k xky 在同一直角坐标系中的图象如图所示,A 点的坐标为()02,-,则下列结论中,正确的是( )A .k a b +=2B .k b a +=C .0>>b aD .0>>k a【解析】 ⑴ B. ⑵ B .⑶D.【例2】 ⑴ 如图,抛物线2y ax bx c =++,OA OC =,下列关系中正确的是()A .1ac b +=B .1ab c +=C .1bc a +=D .1ac b+= )⑵ 如图,抛物线2y ax bx c =++与x 轴交于点A 、B ,与y 轴交于点C ,若12OB OC OA ==,则b 的值为 .【解析】 ⑴ A .提示:把()0c -,代入2y ax bx c =++即可.⑵ 12-.提示:先把B ()0c ,代入2y ax bx c =++,得1ac b =--,再把()0c ,代入()()2y a x c x c =+-即可.【例3】 ⑴ 函数2y ax bx c =++与x y =的图象如图所示,有以下结论:①ac b 42->0;②01=++c b ;③063=++c b ;④当1<x<3时,()012<c x b x +-+.其中正确的为.⑵ 已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列8 个结论:①0abc >;②b a c <+;③420a b c ++>;④23c b <;⑤()a b m am b +>+,(1m ≠的实数);⑥20a b += ;⑦240b ac -<,⑧22()a c b +>,其中正确的结论有( )A .2个B .3个C .4个D .5个【解析】 ⑴ ③④⑵ C .对称轴在y 轴的右边得0ab <(由开口向下得0a <,故0b >),抛物线与y 轴交于正半轴得0c >,∴0abc <,①不正确;当1x =-时,函数值为0a b c -+<,②不正确; 当2x =时,函数值420a b c ++>,③正确;其实0x =和2x =到对称轴1x =的距离相等,函数值相等得42a b c c ++=,∴2b a =-代入0a b c -+<,32bc <,即23c b <,④正确;当1x =,∵1m ≠,2max y a b c am bm c =++>++,可知⑤正确;由对称轴12ba-=得20a b +=,故⑥正确;抛物线与x 轴有两个交点,故240b ac ->,故⑦不正确;0a b c ++>,0a b c -+<,故()220a c b +-<,故⑧不正确.对于二次函数()20y ax bx c a =++>(max y 表示y 的最大值,min y 表示y 的最小值) ⑴ 若自变量x 的取值范围为全体实数,如图①,函数在顶点处2bx a=-时,取到最值. ⑵ 若2bm x n a<-≤≤,如图②,当x m =,max y y =;当x n =,min y y =. ⑶ 若2bm x n a-<≤≤,如图③,当x m =,min y y =;当x n =,max y y =. ⑷ 若m x n ≤≤,且2b m n a -≤≤,22b b n m a a +>--,如图④,当2bx a=-,min y y =; 当x n =,max y y =.【引例】 ⑴ 若x 为任意实数,求函数221y x x =-+的最小值;⑵ 若12x ≤≤,求221y x x =-+的最大值、最小值; ⑶ 若01x ≤≤,求221y x x =-+的最大值、最小值;b 思路导航例题精讲题型二:二次函数的最值⑷ 若20x -≤≤,求221y x x =-+的最大值、最小值; ⑸ 若x 为整数,求函数221y x x =-+的最小值.【解析】 ⑴ 套用求最值公式(建议教师讲配方法):当112224b x a -=-=-=⨯时,y 的最小值是24748ac b a -=. ⑵ 由图象可知:当12x ≤≤时,函数221y x x =-+单调递增,当1x =时,y 最小,且21112y =⨯-+=,当2x =时,y 最大,且222217y =⨯-+=.⑶ 由图象可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =.∵当0x =时,20011y =⨯-+=;当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.⑷ 由函数图象开口向上,且120<4x -≤≤,故当2x =-时,y 取最大值为11,当0x =时,y 取最小值为1.⑸ ∵112224b x a -=-=-=⨯,当0x =时,y 取最小值为1.【点评】 由此题我们可以得到:求二次函数2(0)y ax bx c a =++≠在给定区域内的最值,得看抛物线顶点横坐标2bx a=-是否在给定区域内.若在,则在顶点处取到一个最值,若不在,则在端点处取得最大值和最小值(其实求出端点值和顶点值,这三个值中最大的为最大值,最小的为最小值).【例4】 ⑴ 已知m 、n 、k 为非负实数,且121=+=+-n k k m ,则代数式6822+-k k 的最小值 为 .⑵ 已知实数x y ,满足2330x x y ++-=,则x y +的最大值为 .⑶当12x ≤时,二次函数223y x x =--的最小值为( ) A .4- B .154- C .12- D .12【解析】 ⑴∵m 、n 、k 为非负实数,且121=+=+-n k k m ,∴m 、n 、k 最小为0,当n =0时,k 最大为:21;∴210≤≤k ,故最小值为2.5.⑵ 4.提示:233y x x =--+,令()222314q x y x x x =+=--+=-++,当1x =-,q的最大值为4.本题属于x 为全体实数,求二次函数的最值,配方法要熟练掌握.⑶ B .提示:二次函数的对称轴为1122b x a =-=>,且抛物线的开口向上,故12x =时,y 的最小值为154-.【例5】 如图,抛物线211y ax ax =--+经过点1928P ⎛⎫- ⎪⎝⎭,,且与抛物线221y ax ax =--相交于典题精练A B ,两点.⑴ 求a 值; ⑵ 设211y ax ax =--+与x 轴分别交于M N ,两点(点M 在点N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(点E 在点F 的左边),观察M N E F ,,,四点的坐标,写出一条正确的结论,并通过计算说明;⑶ 设A B ,两点的横坐标分别记为A B x x ,,若在x 轴上有一动点()0Q x ,,且A B x x x ≤≤,过Q 作一条垂直于x 轴的直线,与两条抛物线分别交于C D ,两点,试问当x 为何值时,线段CD 有最大值?其最大值为多少?【解析】 ⑴ ∵点1928P ⎛⎫- ⎪⎝⎭,在抛物线211y ax ax =--+上,∴1191428a a -++=,解得12a =.⑵ 由⑴知12a =,∴抛物线2111122y x x =--+,2211122y x x =--.当2111022x x --+=时,解得12x =-,21x =.∵点M 在点N 的左边,∴2M x =-,1N x =. 当2111022x x --=时,解得31x =-,42x =. ∵点E 在点F 的左边,∴1E x =-,2F x =.∵0M F x x +=,0N E x x +=,∴点M 与点F 关于y 轴对称,点N 与点E 关于y 轴对称. ⑶ ∵102a =>.∴抛物线1y 开口向下,抛物线2y 开口向上. 根据题意,得12CD y y =-22211111122222x x x x x ⎛⎫⎛⎫=--+---=-+ ⎪ ⎪⎝⎭⎝⎭.又21221112211122y x x y x x ⎧=--+⎪⎪⎨⎪=--⎪⎩,消y可解得12x x ==,则当0x =时,CD 的最大值为2.【例6】 ⑴ 二次函数2y ax bx c =++的图象的一部分如图所示,求a 的取值范围⑵ 二次函数2y ax bx c =++的图象的一部分如图所示,试求a b c ++的取值范围.【解析】 ⑴ 根据二次函数图象可知0a <,又此二次函数图象经过(10),,(01), 则有0a b c ++=,1c =,得(1)b a =-+,∵0a <,据图象得对称轴在y 轴左侧,∴0b <∴()10a -+<,∴1a >-于是有10a -<<. ⑵ 由图象可知0a >.又顶点在y 轴的右侧,在x 轴的下方,则:02ba->,2404ac b a -<,∴0b <. 又∵当0x =时,1y c =-=当0y =时,1x =-,∴0a b c -+= ∴10a b =+> ∴10b -<<.∴202a b c a b c b b ++=-++=+ ∴220b -<<,即20a b c -<++<.精讲:数形结合思想在二次函数中的应用探究【探究对象】数形结合思想在二次函数中的应用 【探究过程】【探究1】数形结合思想在含参二次函数中求参数的取值范围的应用;二次函数的图像信息:⑴ 根据抛物线的开口方向判断a 的正负性.⑵ 根据抛物线的对称轴的位置判断a 与b 之间的关系. ⑶ 根据抛物线与y 轴的交点,判断c 的大小.⑷ 根据抛物线与x 轴有无交点,判断24b ac -的正负性.⑸ 根据抛物线所经过的特殊点的坐标,可得到关于a b c ,,的等式. ⑹ 根据抛物线的顶点,判断244ac b a-的大小.例. 2y ax bx c =++的图象如图所示.设|||||2||2|M a b c a b c a b a b =++--+++--, 则( )A .0M >B .0M =C .0M <D .不能确定M 为正,为负或为0分析:依题意得0a >,012ba<-<,∴0b <,20a b +>,20a b ->, 又当1x =时,0y a b c =++<,当1x =-时,0y a b c =-+>,故()()(2)(2)2()0M a b c a b c a b a b a b c =-++--+++--=--+<,故选C .☆【探究2】数形结合思想在求解二次函数的区间最值中的应用;(区间最值问题为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲) 区间最值分三种类型: “轴定区间定”、“轴动区间定”、“轴定区间动”;1、轴定区间定:2、轴动区间定:例.求2()22f x x ax =-+在[24],上的最大值和最小值. 分析: 先求最小值.因为()f x 的对称轴是x a =,可分以下三种情况:⑴ 当2a <时,()f x 在[24],上为增函数,所以min ()(2)64f x f a ==-; ⑵ 当24a ≤≤时,()f a 为最小值,2min ()2f x a =-;⑶ 当4a >时,()f x 在[24],上为减函数,所以min ()(4)188f x f a ==-.综上所述:2min 64, (2)()2, (24)188, (4)a a f x a a a a -<⎧⎪=-⎨⎪->⎩≤≤最大值为(2)f 与(4)f 中较大者:(2)(4)(64)(188)124f f a a a -=---=-+,(1)当3a ≥时,(2)(4)f f ≥,则max ()(2)64f x f a ==-; (2)当3a <时,(2)(4)f f <,则max ()(4)188f x f a ==-.故max 64, (3)()88, (3)a a f x a a -⎧=⎨-<⎩≥ 点评:本题属于二次函数在给定区间上的最值问题,由于二次函数的系数含有参数,对称轴是变动的,属于“轴动区间定”,由于图象开口向上,所以求最小值要根据对称轴x a = 与区间[24],的位置关系,分三种情况讨论;最大值在端点取得时,只须比较(2)f 与 (4)f 的大小,按两种情况讨论即可,实质上是讨论对称轴位于区间中点的左、右两 种情况. 3、轴定区间动:例.若函数2()22f x x x =-+当1t x t +≤≤时的最小值为()g t ,求函数()g t 当[32]t ∈-,时的最值. 分析:2()(1)1f x x =-+,按直线1x =与区间[1]t t +,的不同位置关系分类讨论:若1t >,则2min ()()(1)1f x f t t ==-+;若11t t +≤≤,即01t ≤≤,则min ()(1)1f x f ==; 若11t +<,即0t <,则2min ()(1)1f x f t t =+=+.∴22(1)1(1)()1(0)1(0)t t g t t t t ⎧-+>⎪=⎨⎪+<⎩≤≤1 函数()g t 在(0)-∞,内是减函数,在[01],内是常值函数,在(1)+∞,内是增函数,又(3)(2)g g ->,故在区间[32]-,内,min ()1g t =(当01t ≤≤时取得),max ()(3)10g t g =-=.小结:(i )解此类问题时,心中要有图象;(ii )含参数问题有两种:一种是“轴变区间定”,另一种是“轴定区间变”.讨论时,要紧紧抓住对称轴与所给区间的相对位置关系,这是进行正确划分的关键.☆【探究3】数形结合思想在求解二次函数的区间根中的应用;(区间根问题同样为高中二次函数部分的重要内容,但在目前中考改革创新,部分高中思想下放初中的大 前提下,老师可以针对班里学生层次进行选讲)二次方程的根其实质就是其相应二次函数的图像与x 轴交点的横坐标.因此, 可以借助于二次函数及其图像,利用数形结合的方法来研究二次方程的实根分布问题.设二次方程()002≠=++a c bx ax 的两个实根1x 、2x ()21x x <,ac b 42-=∆,方程对应的二次函数为()()02≠++=a c bx ax x f .1.当方程有一根大于m ,另一根小于m 时,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ;2.当方程两根均大于m 时,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, m ab2-,()0>m af ; 3.当方程两根均在区间()n m ,内,对应二次函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:0>∆, n abm <<2-,()0>m af ,()0>n af ; 4.当两根中仅有一根在区间()n m ,内,对应函数()x f 的图像有下列四种情形:方程系数所满足的充要条件: ()()0<n f m f ⋅;5.当两根在区间[]n m ,之外时:对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0<m af ,()0<n af ;6.当两根分别在区间()n m ,、()t s ,内,且s n ≤,对应函数()x f 的图像有下列两种情形:方程系数所满足的充要条件:()0>m af ,()0<n af ,()0<s af , ()0>t af .小结: 由函数图像与x 轴交点的位置写出相应的充要条件,一般考虑三个方面:①判别式ac b 42-=∆的符号;②对称轴abx 2-=的位置分布;③二次函数在实根分布界点处 函数值的符号.例.若方程01222=+-+m mx x 的两个根均大于2,求实数m 的取值范围. 分析:令()1222+-+=m mx x x f ,如图得充要条件:()()⎪⎩⎪⎨⎧-+-+=≥+-⋅-=∆20124220124422>>m m m f m m ,解得4316-≤-m .训练1. 已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A B C D【解析】 B .由a b c >>,且0a b c ++=,可得0a >, 0c <,且过()10,点,由a b c >>,且a b c ++=0,利用不等式性质,可以进一步推出下列不等关系:a b a b >>--,∴112ba -<<, ∴11224b a -<-<.另一方法:∵a b >,∴330a b ->,330a b a b c -+++>,从而得到420a b c -+>.训练2.已知二次函数()2211y kx k x =+--与x 轴交点的横坐标为1x 、2x ()12x x <,则对于下列结论:⑴ 当2x =-时,1y =;⑵ 当2x x >时,0y >;⑶ 方程()22110kx k x +--=有两个不相等的实数根1x 、2x ;⑷11x <-,21x >-;⑸21x x -=确的结论是______.(只需填写序号)【解析】 ⑴⑶⑷.当2x =-时,代入得1y =,故⑴正确;因为k 的符号不确定,故开口不确定,因此无法确定当2x x >时,0y >,故⑵不正确;联立方程()22110y kx k x y ⎧=+--⎪⎨=⎪⎩可得()22110kx k x +--=,抛物线与x 轴有两个交点,即方程()22110kx k x +--=有两个不相等的实数根.当1x =-时,y k =-,若0k >,0y k =-<,若0k <,0y k =->,故⑷正确.21x x -=.训练3. 如图所示,二次函数2(2)5y x a x a =--+-的图象交x 轴于A 和B ,交y 轴于C ,当线段AB 最短时,求线段OC 的长.【解析】 设1(A x ,0),2(B x ,0),思维拓展训练(选讲)则1x ,2x 是方程2(2)50x a x a --+-=的两根,则12AB x x =-=== 当4a =时,AB 取最小值,即最短,此时,抛物线为221y x x =--, 可求得C 的纵坐标为1-,即线段OC 的长是1.训练4. 小明为了通过描点法作出函数21y x x =-+的图象,先取自变量x 的7个值满足:213276x x x x x x d -=-==-= ,再分别算出对应的y 值,列出表1:表1:x1x 2x3x4x 5x 6x7xy1 3 7 13 21 31 43记121m y y =-,232m y y =-,343m y y =-,454m y y =-,…; 121s m m =-,232s m m =-,343s m m =-,… ⑴ 判断1s 、2s 、3s 之间关系;⑵ 若将函数“21y x x =-+”改为“2(0)y ax bx c a =++≠”,列出表2:表2:x 1x 2x 3x 4x 5x 6x 7x y1y 2y 3y 4y 5y 6y 7y其他条件不变,判断1s 、2s 、3s 之间关系,并说明理由;⑶ 小明为了通过描点法作出函数2(0)y ax bx c a =++≠的图象,列出表3: 表3: x 1x 2x 3x4x 5x 6x7x y 10 50 110 190 290 420 550由于小明的粗心,表3中有一个y 值算错了,请指出算错的y 值(直接写答案).【解析】 ⑴ 123s s s ==;⑵ 123s s s ==.证明:()()222121111112m y y a x d b x d c ax bx c adx ad bd ⎡⎤⎡⎤=-=++++-++=++⎣⎦⎣⎦()222322122m y y adx ad bd ad x d ad bd =-=++=+++()2234331222m y y adx ad bd ad x d ad bd =-=++=+++()2245441223m y y adx ad bd ad x d ad bd =-=++=+++()22212111222s m m ad x d ad bd adx ad bd ad ⎡⎤⎡⎤=-=+++-++=⎣⎦⎣⎦ 同理22322s m m ad =-=,23432s m m ad =-=. ∴123s s s ==.⑶ 表中的420改为410.题型一 二次函数图象与其解析式系数的关系 巩固练习【练习1】 ⑴ 函数ky x=与22(0)y kx k k =+≠在同一坐标系中图象大致是图中的( )⑵ 二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )【解析】 ⑴ A .⑵ D .【练习2】 如图所示,二次函数2y ax bx c =++的图象开口向上,图象经点()12-,和()10,且与y 轴交于负半轴.⑴ 下列四个结论:①0a >;②0b >;③0c >;④0a b c ++=, 其中正确的结论的序号是 . ⑵给出下列四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确的结论的序号是 .【解析】 ⑴图象开口向上得0a >;对称轴02ba->可得0b <;当0x =时,0y <,即0c <;由1x =时,0y =,即0a b c ++=.故①④.⑵由⑴可知0abc >;对称轴12ba-<,∴20a b +>;∵点()12-,和()10,在抛物线上,代入解析式得20a b c a b c -+=⎧⎨++=⎩两式相加得1a c +=,得1a c =-,∵0c <,∴11c ->,即1a >.A BCD复习巩固故②③④.【练习3】 如图,表示抛物线2y ax bx c =++的一部分图象,它与x轴的一个交点为A ,与y 轴交于点B .则b 的取值范围是( )A .20b -<<B .10b -<<C .102b -<< D .01b <<【解析】 B .【练习4】 二次函数()20y ax bx c a =++≠的图象大致如图所示,⑴判别a ,b ,c 和24b ac -的符号,并说明理由; ⑵如果OA OC =,求证:10ac b ++=【解析】 ⑴ 解:因为抛物线开口向上,0a >.因为抛物线与y 轴交于负半轴,0c <.又因为抛物线对称轴在y 轴的右侧,02ba->,即a ,b 异号,由0a >,得0b <. 因为抛物线与x 轴有两个交点,所以方程20ax bx c ++=有两个不相等的实根,所以其判别式240b ac ->.⑵ 证明:由于C 点坐标为()0c ,,而OA OC =,所以A 点坐标为()0c ,,把()0A c ,代入2y ax bx c =++,得20ac bc c =++. 因为0c ≠,所以10ac b ++=.题型二 二次函数的最值 巩固练习【练习5】 已知:关于x 的一元二次方程22(2)0x n m x m mn +-+-=①.⑴ 求证:方程①有两个实数根;⑵ 若10m n --=,求证方程①有一个实数根为1;⑶ 在⑵的条件下,设方程①的另一个根为a . 当2x =时,关于m 的函数1y nx am =+与()2222y x a n m x m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线l 与1y 、2y 的图象分别交于点C 、D . 当l 沿AB 由点A 平移到点B 时,求CD 的最大值.【解析】 ⑴ 证明:()()22224n m m mn n ∆=---=.∵20n ≥, ∴0∆≥. ∴方程①有两个实数根.⑵ 解:由10m n --=,得1m n -=当x =1时,等号左边212n m m mn =+-+-()121210n m m m n n m m n m =+-+-=+-+=+-=. 等号右边=0. ∴左边=右边.∴ 1x =是方程①的一个实数根.⑶ 解:由求根公式,得22m n nx -±=.x =m 或x m n =-∵ 1m n -=, ∴ a m =.当2x =时,222122(1)22y n m m m m m =+=-+=+-,22222()()42(1)24y m n m m m m n m m m m m =+--+-=+--+=--+如图,当l 沿AB 由点A 平移到点B 时,22211273363(24CD y y m m m =-=--+=-++由12y y =,得222224m m m m +-=--+解得m =-2或m =1.∴ m A =-2,m B =1.∵-2<12-<1,∴当m =12-时,CD 取得最大值274.【测试1】 设二次函数()20y ax bx c a =++≠图像如图所示,试判断:24a b c a b c a b c b ac ++-+-、、、、、的符号.【解析】由图像可知0a >,102ba-<<,2404ac b a -<,2000a b c ⋅+⋅+<,0a b c -+=,0a b c ++>,于是20000040a b c a b c a b c b ac >><++>-+=->,,,,,.【测试2】 若01x ≤≤,求221y x x =-+的最大值、最小值;【解析】由图像可知:当01x ≤≤时,函数221y x x =-+是先减后增,∴当14x =,y 最小,且78y =. ∵当0x =时,20011y =⨯-+=当1x =时, 211121y =⨯-+=>, ∴当1x =时,y 最大,且2y =.课后测。
2019中考数学狙击重难点系列专题1----二次函数的实际应用之销售问题
二次函数的实际应用--销售问题1.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?2.一家饰品店购进一种今年新上市的饰品进行销售,每件进价为元,出于营销考虑,要求每件饰品的售价不低于元且不高于元,在销售过程中发现该饰品每周的销售量(件)与每件饰品的售价(元)之间满足一次函数关系:当销售单价为元时,销售量为件;当销售单价为元时,销售量为件.(1)请写出与的函数关系式;(2)当饰品店每周销售这种饰品获得元的利润时,每件饰品的销售单价是多少元?(3)设该饰品店每周销售这种饰品所获得的利润为元,将该饰品销售单价定为多少元时,才能使饰品店销售这种饰品所获利润最大?最大利润是多少?3.某公司经市场调查发现,该公司生产的某商品在第x天的售价(1≤x≤100)为(x +30)元/件,而该商品每天的销售量y(件)满足关系式:y=220-2x,如果该商品第15天的售价按8折出售,仍然可以获得20%的利润.(1)求该公司生产每件商品的成本为多少元;(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?(3)该公司每天需要控制人工、水电和房租支出共计a元,若考虑这一因素后公司对最大利润要控制在4000元至4500元之间(包含4000和4500),且保证至少有90天的盈利,请直接写出a的取值范围.4.某商店经销《超能陆战队》超萌“小白”玩具,“小白”玩具每个进价60元,每个玩具不得低于80元出售.销售“小白”玩具的单价(元/个)与销售数量(个)之间的函数关系如图所示.(1)试解释线段AB所表示的实际优惠销售政策;(2)写出该店当一次销售( >10)个时,所获利润(元)与(个)之间的函数关系式;(3)店长经过一段时间的销售发现:卖25个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到多少元?5.某农户承包荒山种植某产品种蜜柚.已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?6.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?7.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?8. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.9.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数天生产的产品件数y(件)与x(天)满足如下关系:y= ,设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?10.襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=________,n=________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?11.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第个月该原料药的月销售量为(单位:吨),与之间存在如图所示的函数关系,其图象是函数的图象与线段的组合;设第个月销售该原料药每吨的毛利润为(单位:万元),与之间满足如下关系:(1)当时,求关于的函数解析式;(2)设第个月销售该原料药的月毛利润为(单位:万元).①求关于的函数解析式;②该药厂销售部门分析认为,是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量的最小值和最大值. 12.某公司经营杨梅业务,以3万元/吨的价格买入杨梅后,分拣成A、B两类,A类杨梅包装后直接销售,包装成本为1万元/吨,它的平均销售价格y (单位:万元/吨)与销售数量x(≥2,单位:吨)之间的函数关系如图所示;B类杨梅深加工后再销售,深加工总费用s(单位:万元)与加工数量t (单位:吨)之间的函数关系是,平均销售价格为9万元/吨.(1)A类杨梅的销售量为5吨时,它的平均销售价格是每吨多少万元?(2)若该公司收购10吨杨梅,其中A类杨梅有4吨,则经营这批杨梅所获得的毛利润(w)为多少万元?(毛利润=销售总收入-经营总成本)(3)若该公司收购20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元.①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?13.随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a= ,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)14.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?15.某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润 (万元)与进货量 (t)近似满足函数关系;乙种水果的销售利润 (万元)与进货量 (t)近似满足函数关系 (其中,、为常数),且进货量为1t时,销售利润为1. 4万元;进货量为2t时,销售利润为2. 6万元.(1)求 (万元)与 (t)之间的函数关系式;(2)如果市场准备进甲、乙两种水果共10t,设乙种水果的进货量为 (t),请你写出这两种水果所获得的销售利润之和 (万元)与 (t)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少. 16.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?17. 某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x (元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他费用80元.(1)请直接写出y与x之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?18.小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)19.2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮.某“火龙果”经营户有A.B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价x(元)之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?20.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量(万件)与销售价格(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出(万件)与(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润(万元)与(元/件)之间的函数关系式,并求出第一年年利润的最大值;(3)假设公司的这种电子产品第一年恰好按年利润(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格(元)定在8元以上(),当第二年的年利润不低于103万元时,请结合年利润(万元)与销售价格(元/件)的函数示意图,求销售价格(元/件)的取值范围.答案解析部分一、综合题1.【答案】(1)解:w=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,∴z与x之间的函数解析式为z=﹣2x2+136x﹣1800(x>18)(2)解:∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴当x=34时,w取得最大,最大利润为512万元.答:当销售单价为34元时,厂商每周能获得最大利润,最大利润是512万元.(3)解:周销售利润=周销量×(单件售价﹣单件制造成本)=(﹣2x+100)(x ﹣18)=﹣2x2+136x﹣1800,由题意得,﹣2x2+136x﹣1800=350,解得:x1=25,x2=43,∵销售单价不得高于30元,∴x取25,答:销售单价定为25元时厂商每周能获得350万元的利润;【解析】【分析】(1)每只节能灯的利润为:(x﹣18)元,根据总利润等于单只的利润乘以销售数量y,而y=﹣2x+100,再整体替换即可列出W与x之间的函数关系式;(2)根据(1)列函数解析式的性质即可得出答案;(3)将W=350代入(1)列函数解析式,解方程,求出对应的x的值,再根据销售单价不得高于30元检验,即可得出答案。
中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)
中考数学复习----《二次函数之实际应用》知识点总结与专项练习题(含答案解析)知识点总结1.利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题。
解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量的取值范围。
2.几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论。
3.构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题。
练习题1、(2022•自贡)九年级2班计划在劳动实践基地内种植蔬菜,班长买回来8米长的围栏,准备围成一边靠墙(墙足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰三角形(底边靠墙)、半圆形这三种方案,最佳方案是()A.方案1B.方案2C.方案3D.方案1或方案2【分析】分别计算三个方案的菜园面积进行比较即可.【解答】解:方案1:设AD=x米,则AB=(8﹣2x)米,则菜园面积=x(8﹣2x)=﹣2x2+8x=﹣2(x﹣2)2+8,当x=2时,此时菜园最大面积为8米2;方案2:解法一:如图,过点B作BH⊥AC于H,则BH≤AB=4,∵S△ABC=•AC•BH,∴当BH=4时,△ABC的面积最大为×4×4=8;解法二:过点A作AD⊥BC于D,设CD=x,AD=y,则x2+y2=16,∴S=•BC•AD=•2x•y=xy,∵(x﹣y)2=x2+y2﹣2xy≥0,∴16﹣2xy≥0,∴xy≤8,∴当且仅当x=y=2时,菜园最大面积=8米2;方案3:半圆的半径=米,∴此时菜园最大面积==米2>8米2;故选:C . 2、(2022•襄阳)在北京冬奥会自由式滑雪大跳台比赛中,我国选手谷爱凌的精彩表现让人叹为观止,已知谷爱凌从2m 高的跳台滑出后的运动路线是一条抛物线,设她与跳台边缘的水平距离为xm ,与跳台底部所在水平面的竖直高度为ym ,y 与x 的函数关系式为y =2213212++−x x (0≤x ≤20.5),当她与跳台边缘的水平距离为 m 时,竖直高度达到最大值.【分析】把抛物线解析式化为顶点式,由函数的性质求解即可.【解答】解:y =x 2+x +2=﹣(x ﹣8)2+4,∵﹣<0, ∴当x =8时,y 有最大值,最大值为4,∴当她与跳台边缘的水平距离为8m 时,竖直高度达到最大值.故答案为:8.3、(2022•黔西南州)如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是y =﹣121x 2+32x +35,则铅球推出的水平距离OA 的长是 m .【分析】根据题目中的函数解析式和图象可知,OA 的长就是抛物线与x 轴正半轴的交点的横坐标的值,然后令y =0求出相应的x 的值,即可得到OA 的长.【解答】解:∵y =﹣x 2+x +,∴当y=0时,0=﹣x2+x+,解得x1=﹣2,x2=10,∴OA=10m,故答案为:10.4、(2022•南通)根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是h=﹣5t2+20t,当飞行时间t为s时,小球达到最高点.【分析】把二次函数解析式化为顶点式,即可得出结论.【解答】解:h=﹣5t2+20t=﹣5(t﹣2)2+20,∵﹣5<0,∴当t=2时,h有最大值,最大值为20,故答案为:2.5、(2022•聊城)某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).【分析】利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.【解答】解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.6、(2022•广安)如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降米,水面宽8米.【分析】根据已知建立直角坐标系,进而求出二次函数解析式,再根据通过把x=4代入抛物线解析式得出y,即可得出答案.【解答】解:以水面所在的直线AB为x轴,以过拱顶C且垂直于AB的直线为y轴建立平面直角坐标系,O为原点,由题意可得:AO=OB=3米,C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,把A点坐标(﹣3,0)代入抛物线解析式得,9a+2=0,解得:a=﹣,所以抛物线解析式为y=﹣x2+2,当x=4时,y=﹣×16+2=﹣,∴水面下降米,故答案为:.7、(2022•新疆)如图,用一段长为16m的篱笆围成一个一边靠墙的矩形围栏(墙足够长),则这个围栏的最大面积为m2.【分析】设与墙垂直的一边长为xm,然后根据矩形面积列出函数关系式,从而利用二次函数的性质分析其最值.【解答】解:设与墙垂直的一边长为xm,则与墙平行的一边长为(16﹣2x)m,∴矩形围栏的面积为x(16﹣2x)=﹣2x2+16x=﹣2(x﹣4)2+32,∵﹣2<0,∴当x=4时,矩形有最大面积为32m2,故答案为:32.8、(2022•甘肃)如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t (单位:s)之间具有函数关系:h=﹣5t2+20t,则当小球飞行高度达到最高时,飞行时间t=s.【分析】把一般式化为顶点式,即可得到答案.【解答】解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,故答案为:2.9、(2022•连云港)如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为 3.05m,则他距篮筐中心的水平距离OH是m.【分析】根据所建坐标系,水平距离OH就是y=3.05时离他最远的距离.【解答】解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.10、(2022•南充)如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O 点3m.那么喷头高m时,水柱落点距O点4m.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a=﹣,b=,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为y=﹣x2+x+h,将(4,0)代入可得﹣×42+×4+h=0,解得h=8.故答案为:8.。
中考数学总复习《二次函数的实际应用》专题训练(附答案)
(1)求二次函数的表达式;
(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少万元?
9.张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成,围成的花圃是如图所示的矩形 .
(2)求出篮球在该运动员出手时的高度.
13.“活力海洋之都,精彩宜人之城”,青岛获评2023年中国十大旅游目的地必去城市.为宣传青岛城市文化,某景区研发出一款文创纪念品,投入景区内进行销售.已知该文创纪念品每件的成本为20元,销售一段时间发现,每天的销售量y(件)与销售单价x(元/件)之间的关系如图所示,图象是直线的一部分.
(1)求该拋物线的表达式;
(2)如图 ,为了保证蔬菜大棚的通风性,该大棚要安装两个大小一样的正方形孔的排气装置 , ( ,G,M,N在线段 上,L,R在抛物线上),若要保证两个正方形装置的间距 ,求正方形排气装置的边长 的长.(结果保留根号)
6.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个,设该商场决定把售价上涨x( ,且x为整数)元.
(1)商城举行了“感恩老客户”活动,对于老客户,商城连续两次降价,每次降价的百分率相同,最后以每个16.2元的价格售出,求商城每次降价的百分率;
(2)市场调研表明:当每个售价20元时,平均每天能够售出40个,当每个售价每降1元时,平均每天就能多售出10个,在保证每个商品的售价不低于进价的前提下,商城要想获得最大利润,每个商品的定价应为多少元?最大利润是多少?
中考数学专题复习二次函数的应用题与最值问题
二次函数的应用题与最值问题二次函数最值问题(一)开口向上:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最小值,在离对称轴较远端点处取得最大值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最大值,离对称轴较近端点处取得最小值.(二)开口向下:1.当对称轴a b x 2-=在所给范围内,必在顶点处取得最大值,在离对称轴较远端点处取得最小值;2.当对称轴ab x 2-=不在所给范围内,在离对称轴较远端点处取得最小值,离对称轴较近端点处取得最大值.1. 求解析式综合题型:例1.如图,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,BC =CD .(1)求b ,c 的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.2.已知二次函数y =ax 2+bx +c 的图象过点(﹣1,0),且对任意实数x ,都有4x ﹣12≤ax 2+bx +c ≤2x 2﹣8x +6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x 轴的正半轴交点为A ,与y 轴交点为C ;点M 是(1)中二次函数图象上的动点.问在x 轴上是否存在点N ,使得以A 、C 、M 、N 为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N 的坐标;若不存在,请说明理由.2.二次函数的应用题例1.某商品现在的售价为每件25元,每天可售出50件,市场调查发现,售价每上涨1元,每天就少卖出2件,已知该商品的进价为每件20元,设该商品每天的销售量为y件,售价为每件x元(x为正整数)(1)求y与x之间的函数关系式;(2)该商品的售价定为每件多少元时,每天的销售利润W(元)最大,最大利润是多少元?1.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.某商家在构进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y (元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x 天该产品的销售量z(件)与x(天)满足关系式z = x + 15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天,该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?.3.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;如果每台设备提价5万元时,则年销售量就减少50台.设该设备的年销售量为y(单位:台),销售单价为x(单位:万元/台).(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,则应把这种设备的销售单价定为多少万元时,该公司所获得的年利润最大?最大的年利润是多少?4.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价x元(x为整数),每个月的销售量为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式.例2.某农场拟建三间矩形牛饲养室,饲养室的一面全部靠现有墙(墙长为40m),饲养室之间用一道用建筑材料做的墙隔开(如图).已知计划中的建筑材料可建围墙的总长为60m,设三间饲养室合计长x(m),总占地面积为y(m2).(1)求y关于x的函数表达式和自变量的取值范围.(2)x为何值时,三间饲养室占地总面积最大?最大为多少?1.某单位为了创建城市文明单位,准备在单位的墙(线段MN所示)外开辟一处长方形的土地进行绿化美化,除墙体外三面要用栅栏围起来,计划用栅栏50米.(1)不考虑墙体长度,问长方形的各边的长为多少时,长方形的面积最大?(2)若墙体长度为20米,问长方形面积最大是多少?2.如图,用48米篱笆围成一个外形为矩形的花园,花园一面利用院墙,中间用一道篱笆间隔成两个小矩形,院墙的长度为20米,平行于院墙的一边长为x米,花园的面积为S平方米.(1)求S与x之间的函数关系式;(2)问花园面积可以达到180平方米吗?如果能,花园的长和宽各是多少?如果不能,请说明理由.3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2.为了想知道出口宽度的取值范围,小明同学根据出口宽度不小于14m,算出x≤18.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)求活动区的最大面积;(3)预计活动区造价为50元/m2,绿化区造价为40元/m2,若社区的此项建造投资费用不得超过72000元,求投资费用最少时活动区的出口宽度?例3.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.1.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.现将它的图形放在如图所示的直角坐标系中.求这条抛物线的解析式.2.如图是一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m,在图中直角坐标系中该抛物线的解析式.3.如图,是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,若水面上升1m,则水面宽为()A.m B.2m C.2m D.2m4.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t ﹣1.5t 2,那么飞机着陆后滑行的最远距离为( )A .600mB .400mC .300mD .200m5.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为()341212+--=x y ,由此可知铅球达到的最大高度是 m ,推出的距离是 m .6.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )直接具有的关系为h =24t ﹣4t 2,则小球从飞出到落地所用的时间为 s .7.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为y =﹣x 2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为6米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是 米.例4.当22≤≤-x 时,求函数322--=x x y 的最大值和最小值.1.当21≤≤x 时,求函数12+--=x x y 的最大值和最小值.2.已知二次函数y =x 2+2bx +c(1)若b =c ,是否存在实数x ,使得相应的y 的值为1?请说明理由;(2)若b =c ﹣2,y 在﹣2≤x ≤2上的最小值是﹣3,求b 的值.3.当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.4.如图是甲、乙两人进行羽毛球练习赛时的一个瞬间,羽毛球飞行的高度y (m )与水平距离x (m )的路线为抛物线的一部分,如图,甲在O 点正上方1m 的P 处发出一球,已知点O 与球网的水平距离为5m ,球网的高度为1.55m .羽毛球沿水平方向运动4m 时,达到羽毛球距离地面最大高度是m .(1)求羽毛球经过的路线对应的函数关系式;(2)通过计算判断此球能否过网;(3)若甲发球过网后,羽毛球飞行到离地面的高度为m 的Q 处时,乙扣球成功求此时乙与球网的水平距离.。
【优质】初三九年数学:《专题十九)二次函数与一次函数的综合应用》ppt课件
当 y=-3 时,由-12x2+32x+2=-3,解得 x=-2(舍去)或 x=5,此时 D
点坐标为(5,-3).综上可知存在满足条件的点 D,其坐标为(1,3)或(2,3)或(5, -3) (3)∵AO=1,OC=2,OB=4,AB=5,∴AC= 5,BC=2 5,∴AC2 +BC2=AB2,∴△ABC 为直角三角形,即 BC⊥AC,
如图,设直线 AC 与直线 BE 交于点 F,过 F 作 FM⊥x 轴于点 M,由题意
可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2 5,∴OAMO=ACCF,即O1M=
2
5 ,解得 5
OM=2,FOMC=AACF,即F2M=3
5 ,解得 5
FM=6,∴F(2,6),且
B(4,
0),可得直线 BE 的表达式为 y=-3x+12,联立直线 BE 和抛物线表达式可得
4. (滨州中考)如图,直线y=kx+b(k,b为常数)分别与x轴,y轴交于点A(-4, 0),B(0,3),抛物线y=-x2+2x+1与y轴交于点C. (1)求直线y=kx+b的函数表达式; (2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的 距离为d,求d关于x的函数表达式,并求d取最小值时点P的坐标; (3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动, 求CE+EF的最小值.
5. (深圳中考)如图,抛物线 y=ax2+bx+2 经过点 A(-1,0),B(4,0), 交 y 轴于点 C;
(1)求抛物线的表达式(用一般式表示);
(2)点 D 为 y 轴右侧抛物线上一点,是否存在点 D 使 S△ABC=23S△ABD?若 存在请直接给出点 D 坐标;若不存在请说明理由;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时19.二次函数的应用
【课前热身】
1. 二次函数y =2x 2
-4x +5的对称轴方程是x =___;当x = 时,y 有最小值是 . 2. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图 放在平面直角坐标系中(如右图),则此抛物线的解析式为 . 3. 某公司的生产利润原来是a 元,经过连续两年的增长达到
了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )
A .y =x 2+a
B .y = a (x -1)2
C .y =a (1-x )2
D .y =a (l +x )
2
4. 把一段长1.6米的铁丝围长方形ABCD ,设宽为x ,面积为y .则当y 最大时,x 所取的值是( )
A .0.5
B .0.4
C .0.3
D .0.6
【考点链接】
1. 二次函数的解析式:(1)一般式: ;(2)顶点式: ;
(3)交点式: . 2. 顶点式的几种特殊形式.
⑴ , ⑵ , ⑶ ,(4) . 3.二次函数c bx ax y ++=2
通过配方可得2
2
4()24b
ac b
y a x a a
-=+
+
,其抛物线关于直
线x = 对称,顶点坐标为( , ).
⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
x = 时,y 有最 (“大”或“小”)值是 ;
⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当
x = 时,y 有最 (“大”或“小”)值是 . 4.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;
(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价
定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.
【典例精析】
例1 用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为x m ,窗户的透光面
积为y m 2
,y 与x 的函数图象如图2所示.
⑴ 观察图象,当x 为何值时,窗户透光面积最大?
⑵ 当窗户透光面积最大时,窗框的另一边长是多少?
例2 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P
处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米.
(1)求这条抛物线的解析式;
(2)若不计其它因素,水池的半径至少要多少米,
才能使喷出的水流不至于落在池外?
【中考演练】
1.二次函数y =x 2+10x -5的最小值为 .
2. 某飞机着陆生滑行的路程s 米与时间t 秒的关系式为:25.160t t s -=,试问飞机着陆后滑行 米才能停止.
3. 矩形周长为16cm, 它的一边长为xcm ,面积为ycm 2,则y 与x 之间函数关系为 .
4. 苹果熟了,从树上落下所经过的路程s 与下落的时间t 满足2
2
1gt s =
(g 是不为0的常数)
则s 与t 的函数图象大致是( )
5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大 ( ) A. 7 B. 6 C. 5 D. 4
6. 下列函数关系中,是二次函数的是( )
A.在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系
B.当距离一定时,火车行驶的时间t 与速度v 之间的关系
C.等边三角形的周长C 与边长a 之间的关系
D.圆心角为120°的扇形面积S 与半径R 之间的关系
7. 根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程
2
0ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )
A.6 6.17x << B.6.17 6.18x <<
C.6.18 6.19x << D.6.19 6.20x << 8.如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
⑴ 设矩形的一边为()m x 面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的
取值范围;
⑵ 当x 为何值时,所围苗圃的面积最大,最大面积是多少?
9. 体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线212
12
++-
=x x y 的一部分,根据关系式回答:
⑴ 该同学的出手最大高度是多少?
⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?
10.恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.
(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y
与x 之间的函数关系式.
(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)
(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?。